1
|
Flores RA, Cammayo-Fletcher PLT, Nguyen BT, Villavicencio AGM, Lee SY, Son Y, Kim JH, Park KI, Yoo WG, Jin YB, Min W, Kim WH. Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea. Viruses 2024; 16:285. [PMID: 38400060 PMCID: PMC10891532 DOI: 10.3390/v16020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Avian influenza virus (AIV) is a pathogen with zoonotic and pandemic potential. Migratory birds are natural reservoirs of all known subtypes of AIVs, except for H17N10 and H18N11, and they have been implicated in previous highly pathogenic avian influenza outbreaks worldwide. This study identified and characterized the first isolate of the H13N6 subtype from a Vega gull (Larus vegae mongolicus) in South Korea. The amino acid sequence of hemagglutinin gene showed a low pathogenic AIV subtype and various amino acid substitutions were found in the sequence compared to the reference sequence and known H13 isolates. High sequence homology with other H13N6 isolates was found in HA, NA, PB1, and PA genes, but not for PB2, NP, M, and NS genes. Interestingly, various point amino acid mutations were found on all gene segments, and some are linked to an increased binding to human-type receptors, resistance to antivirals, and virulence. Evolutionary and phylogenetic analyses showed that all gene segments are gull-adapted, with a phylogeographic origin of mostly Eurasian, except for PB2, PA, and M. Findings from this study support the evidence that reassortment of AIVs continuously occurs in nature, and migratory birds are vital in the intercontinental spread of avian influenza viruses.
Collapse
Affiliation(s)
- Rochelle A. Flores
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Paula Leona T. Cammayo-Fletcher
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Binh T. Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Andrea Gail M. Villavicencio
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Seung Yun Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Yongwoo Son
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Jae-Hoon Kim
- National Park Research Institute, Korean National Park Service, Wonju 26441, Gangwon, Republic of Korea;
| | - Kwang Il Park
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Gyeongnam, Republic of Korea;
| | - Yeung Bae Jin
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Woo H. Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| |
Collapse
|
2
|
Petherbridge G, Gadzhiev AA, Shestopalov АМ, Alekseev AY, Sharshov KA, Daudova MG. An early warning system for highly pathogenic viruses borne by waterbird species and related dynamics of climate change in the Caspian Sea region: Outlines of a concept. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2022. [DOI: 10.18470/1992-1098-2022-2-233-263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim. Formulation of the outlines of the concept of ViEW (Viral Early Warning) which is intended as a long term system of multidisciplinary transboundary cooperation between specialist institutions of all five Caspian region states to research, regularly monitor and share data about the generation, transmission and epidemiology of avian‐borne pathogens and their vectors in the region, and the ways climate change may affect these processes.Material and Methods. The concept is based on the multidisciplinary experience of the authors in researching the processes incorporated in the ViEW concept and on an in‐depth survey of the literature involved.Results. The outlines of the ViEW concept are presented in this study for review and comment by interested parties and stakeholders.Conclusion. Review of activities and opinions of specialists and organizations with remits relating to the development, establishment and maintenance of ViEW, indicates that such a system is a necessity for global animal and human health because of the role that the Caspian region plays in the mass migration of species of waterbird known as vectors for avian influenza and the already evident impacts of climate change on their phenologies. Waterbirds frequenting the Caspian Sea littorals and their habitats together constitute a major potential global hotspot or High Risk region for the generation and transmission of highly pathogenic avian influenza viruses and other dangerous zoonotic diseases.
Collapse
Affiliation(s)
| | | | - А. М. Shestopalov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - A. Yu. Alekseev
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - K. A. Sharshov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | | |
Collapse
|
3
|
Motahhar M, Keyvanfar H, Shoushtari A, Fallah Mehrabadi MH, Nikbakht Brujeni G. The arrival of highly pathogenic avian influenza viruses H5N8 in Iran through two windows, 2016. Virus Genes 2022; 58:527-539. [PMID: 36098944 DOI: 10.1007/s11262-022-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus has received considerable attention during the past 2 decades due to its zoonotic and mutative features. This Virus is of special importance due to to the possibility of causing infection in human populations. According to it's geographical location, Iran hosts a large number of aquatic migratory birds every year, and since these birds can be considered as the host of the H5 HPAI, the country is significantly at risk of this virus. the In this study, the molecular characteristics of hemagglutinin (HA) and neuraminidase (NA) genes of the H5N8 strain were identified in Malard county of Tehran province and Meighan wetland of Arak city, Markazi province were investigated. Based on the analysis of the amino acid sequence of the HA genes, the cleavage site of the gene includes the PLREKRRKR/GLF polybasic amino acid motif, which is a characteristic of highly pathogenic influenza viruses. The HA gene of two viruses had T156A, S123P, S133A mutations associated with the increased mammalian sialic acid-binding, and the NA gene of two viruses had H253Y mutations associated with the resistance to antiviral drugs. Phylogenetic analysis of the HA genes indicated the classification of these viruses in the 2.3.4.4 b subclade. Although the A/Goose/Iran/180/2016 virus was also an H5N8 2.3.4.4 b virus, its cluster was separated from the A/Chicken/Iran/162/2016 virus. This means that the entry of these viruses in to the country happened through more than one window. Furthermore, it seems that the introduction of these H5N8 HPAI strains in Iran probably occurred through the West Asia-East African flyway by wild migratory aquatic birds.
Collapse
Affiliation(s)
- Minoo Motahhar
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Keyvanfar
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abdolhamid Shoushtari
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohammad Hossein Fallah Mehrabadi
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Avian Influenza in Wild Birds and Poultry: Dissemination Pathways, Monitoring Methods, and Virus Ecology. Pathogens 2021; 10:pathogens10050630. [PMID: 34065291 PMCID: PMC8161317 DOI: 10.3390/pathogens10050630] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
Avian influenza is one of the largest known threats to domestic poultry. Influenza outbreaks on poultry farms typically lead to the complete slaughter of the entire domestic bird population, causing severe economic losses worldwide. Moreover, there are highly pathogenic avian influenza (HPAI) strains that are able to infect the swine or human population in addition to their primary avian host and, as such, have the potential of being a global zoonotic and pandemic threat. Migratory birds, especially waterfowl, are a natural reservoir of the avian influenza virus; they carry and exchange different virus strains along their migration routes, leading to antigenic drift and antigenic shift, which results in the emergence of novel HPAI viruses. This requires monitoring over time and in different locations to allow for the upkeep of relevant knowledge on avian influenza virus evolution and the prevention of novel epizootic and epidemic outbreaks. In this review, we assess the role of migratory birds in the spread and introduction of influenza strains on a global level, based on recent data. Our analysis sheds light on the details of viral dissemination linked to avian migration, the viral exchange between migratory waterfowl and domestic poultry, virus ecology in general, and viral evolution as a process tightly linked to bird migration. We also provide insight into methods used to detect and quantify avian influenza in the wild. This review may be beneficial for the influenza research community and may pave the way to novel strategies of avian influenza and HPAI zoonosis outbreak monitoring and prevention.
Collapse
|
5
|
Biological Properties and Genetic Characterization of Novel Low Pathogenic H7N3 Avian Influenza Viruses Isolated from Mallard Ducks in the Caspian Region, Dagestan, Russia. Microorganisms 2021; 9:microorganisms9040864. [PMID: 33920551 PMCID: PMC8072542 DOI: 10.3390/microorganisms9040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Avian influenza viruses (AIVs) are maintained in wild bird reservoirs, particularly in mallard ducks and other waterfowl. Novel evolutionary lineages of AIV that arise through genetic drift or reassortment can spread with wild bird migrations to new regions, infect a wide variety of resident bird species, and spillover to domestic poultry. The vast continental reservoir of AIVs in Eurasia harbors a wide diversity of influenza subtypes, including both highly pathogenic (HP) and low pathogenic (LP) H7 AIV. The Caspian Sea region is positioned at the intersection of major migratory flyways connecting Central Asia, Europe, the Black and Mediterranean Sea regions and Africa and holds a rich wetland and avian ecology. To understand genetic reservoirs present in the Caspian Sea region, we collected 559 cloacal swabs from Anseriformes and other species during the annual autumn migration periods in 2017 and 2018. We isolated two novel H7N3 LPAIV from mallard ducks whose H7 hemagglutinin (HA) gene was phylogenetically related to contemporaneous strains from distant Mongolia, and more closely Georgia and Ukraine, and predated the spread of this H7 LPAIV sublineage into East Asia in 2019. The N3 neuraminidase gene and internal genes were prototypical of AIV widely dispersed in wild bird reservoirs sampled along flyways connected to the Caspian region. The polymerase and nucleoprotein segments clustered with contemporaneous H5 HPAI (clade 2.3.4.4b) isolates, suggesting the wide dispersal of H7 LPAIV and the potential of this subtype for reassortment. These findings highlight the need for deeper surveillance of AIV in wild birds to better understand the extent of infection spread and evolution along spatial and temporal flyways in Eurasia.
Collapse
|
6
|
Nomura N, Matsuno K, Shingai M, Ohno M, Sekiya T, Omori R, Sakoda Y, Webster RG, Kida H. Updating the influenza virus library at Hokkaido University -It's potential for the use of pandemic vaccine strain candidates and diagnosis. Virology 2021; 557:55-61. [PMID: 33667751 DOI: 10.1016/j.virol.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Genetic reassortment of influenza A viruses through cross-species transmission contributes to the generation of pandemic influenza viruses. To provide information on the ecology of influenza viruses, we have been conducting a global surveillance of zoonotic influenza and establishing an influenza virus library. Of 4580 influenza virus strains in the library, 3891 have been isolated from over 70 different bird species. The remaining 689 strains were isolated from humans, pigs, horses, seal, whale, and the environment. Phylogenetic analyses of the HA genes of the library isolates demonstrate that the library strains are distributed to all major known clusters of the H1, H2 and H3 subtypes of HA genes that are prevalent in humans. Since past pandemic influenza viruses are most likely genetic reassortants of zoonotic and seasonal influenza viruses, a vast collection of influenza A virus strains from various hosts should be useful for vaccine preparation and diagnosis for future pandemics.
Collapse
Affiliation(s)
- Naoki Nomura
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Keita Matsuno
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
| | - Marumi Ohno
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Ryosuke Omori
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
| | | | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; Collaborating Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
7
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
8
|
Gulyaeva M, Huettmann F, Shestopalov A, Okamatsu M, Matsuno K, Chu DH, Sakoda Y, Glushchenko A, Milton E, Bortz E. Data mining and model-predicting a global disease reservoir for low-pathogenic Avian Influenza (A) in the wider pacific rim using big data sets. Sci Rep 2020; 10:16817. [PMID: 33033298 PMCID: PMC7545095 DOI: 10.1038/s41598-020-73664-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022] Open
Abstract
Avian Influenza (AI) is a complex but still poorly understood disease; specifically when it comes to reservoirs, co-infections, connectedness and wider landscape perspectives. Low pathogenic (Low-path LP) AI in chickens caused by less virulent strains of AI viruses (AIVs)—when compared with highly pathogenic AIVs (HPAIVs)—are not even well-described yet or known how they contribute to wider AI and immune system issues. Co-circulation of LPAIVs with HPAIVs suggests their interactions in their ecological aspects. Here we show for the Pacific Rim an international approach how to data mine and model-predict LP AI and its ecological niche with machine learning and open access data sets and geographic information systems (GIS) on a 5 km pixel size for best-possible inference. This is based on the best-available data on the issue (~ 40,827 records of lab-analyzed field data from Japan, Russia, Vietnam, Mongolia, Alaska and Influenza Research Database (IRD) and U.S. Department of Agriculture (USDA) database sets, as well as 19 GIS data layers). We sampled 157 hosts and 110 low-path AIVs with 32 species as drivers. The prevalence across low-path AIV subtypes is dominated by Muscovy ducks, Mallards, Whistling Swans and gulls also emphasizing industrial impacts for the human-dominated wildlife contact zone. This investigation sets a good precedent for the study of reservoirs, big data mining, predictions and subsequent outbreaks of HPAI and other pandemics.
Collapse
Affiliation(s)
- Marina Gulyaeva
- Novosibirsk State University, Novosibirsk, Russia.,Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Falk Huettmann
- EWHALE Lab, Institute of Arctic Biology, Biology and Wildlife Department, University of Alaska Fairbanks (UAF), Fairbanks, USA.
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Duc-Huy Chu
- Department of Animal Health, Ministry of Agriculture and Rural Development, Ha Noi, Viet Nam
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Alexandra Glushchenko
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Elaina Milton
- University of Alaska Anchorage (UAA), Anchorage, USA
| | - Eric Bortz
- University of Alaska Anchorage (UAA), Anchorage, USA
| |
Collapse
|
9
|
Genetic characteristics and pathogenesis of H5 low pathogenic avian influenza viruses from wild birds and domestic ducks in South Korea. Sci Rep 2020; 10:12151. [PMID: 32699272 PMCID: PMC7376034 DOI: 10.1038/s41598-020-68720-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
H5 and H7 subtypes of low pathogenic avian influenza viruses (LPAIVs) can mutate to highly pathogenic forms and are therefore subject to stringent controls. We characterized H5 LPAIVs isolated from wild-bird habitats and duck farms in South Korea from 2010 to 2017. Through nationwide active surveillance for AIVs, 59 H5 LPAIVs were isolated from wild-bird habitats (a mean annual rate of 5.3% of AIV isolations). In 2015, one LPAI H5N3 strain was isolated on a duck farm. Phylogenetic analysis revealed that the hemagglutinin (HA) gene of H5 isolates belonged to the Eurasian lineage, classified into three subgroups (HA-II, HA-III, and HA-IV). The H5 LPAIVs of the HA-III and HA-IV subgroups appeared in 2015 and 2017 in unusually high proportions (13.1% and 14.4%, respectively). In gene-constellation analysis, H5 LPAIVs isolated from 2015 to 2017 constituted ≥ 35 distinct genotypes, representing high levels of genetic diversity. Representative strains of three HA subgroups replicated restrictively in specific-pathogen-free chickens. Among the 11 isolates that were tested, 10 infected and replicated in mice without prior adaptation. The frequency of recent H5 LPAIV isolates with high genetic diversity indicates the importance of continued surveillance in both wild birds and poultry to monitor genetic and pathobiological changes.
Collapse
|
10
|
Genetic and antigenic characterization of H5 and H7 avian influenza viruses isolated from migratory waterfowl in Mongolia from 2017 to 2019. Virus Genes 2020; 56:472-479. [PMID: 32430568 PMCID: PMC7235438 DOI: 10.1007/s11262-020-01764-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 05/05/2020] [Indexed: 11/12/2022]
Abstract
The circulation of highly pathogenic avian influenza viruses (HPAIVs) of various subtypes (e.g., H5N1, H5N6, H5N8, and H7N9) in poultry remains a global concern for animal and public health. Migratory waterfowls play important roles in the transmission of these viruses across countries. To monitor virus spread by wild birds, active surveillance for avian influenza in migratory waterfowl was conducted in Mongolia from 2015 to 2019. In total, 5000 fecal samples were collected from lakesides in central Mongolia, and 167 influenza A viruses were isolated. Two H5N3, four H7N3, and two H7N7 viruses were characterized in this study. The amino acid sequence at hemagglutinin (HA) cleavage site of those isolates suggested low pathogenicity in chickens. Phylogenetic analysis revealed that all H5 and H7 viruses were closely related to recent H5 and H7 low pathogenic avian influenza viruses (LPAIVs) isolated from wild birds in Asia and Europe. Antigenicity of H7Nx was similar to those of typical non-pathogenic avian influenza viruses (AIVs). While HPAIVs or A/Anhui/1/2013 (H7N9)-related LPAIVs were not detected in migratory waterfowl in Mongolia, sporadic introductions of AIVs including H5 and H7 viruses into Mongolia through the wild bird migration were identified. Thus, continued monitoring of H5 and H7 AIVs in both domestic and wild birds is needed for the early detection of HPAIVs spread into the country.
Collapse
|
11
|
Le KT, Okamatsu M, Nguyen LT, Matsuno K, Chu DH, Tien TN, Le TT, Kida H, Sakoda Y. Genetic and antigenic characterization of the first H7N7 low pathogenic avian influenza viruses isolated in Vietnam. INFECTION GENETICS AND EVOLUTION 2019; 78:104117. [PMID: 31760087 DOI: 10.1016/j.meegid.2019.104117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/31/2023]
Abstract
During the annual surveillance of avian influenza viruses (AIVs) in Vietnam in 2018, three H7N7 AIV isolates were identified in domestic ducks in a single flock in Vinh Long province. The present study is the first documented report of H7N7 virus isolates in Vietnam and aimed to characterize these viruses, both genetically and antigenically. Deduced amino acid sequences for the hemagglutinins (HAs) indicated a low pathogenicity of these viruses in chickens. Phylogenetic analysis revealed that the H7 HA genes of these isolates were closely related to each other and belonged to the European-Asian sublineage, together with those of H7N3 viruses isolated from ducks in Cambodia during 2017. They were not genetically related to those of Chinese H7N9 or H7N1 viruses that were previously detected in Vietnam during 2012. Interestingly, the M genes of the two H7N7 virus isolates were phylogenetically classified into distinct groups, suggesting an ongoing reassortment event in domestic ducks because they were isolated from the same flock. These H7N7 viruses exhibited somewhat different antigenic characteristics compared with other representative H7 low pathogenic AIVs. Surprisingly, the antigenicity of Vietnamese H7N7 viruses is similar to Chinese H7N9 highly pathogenic AIV. The findings of this study suggest that H7N7 viruses may be undergoing reassortment and antigenic diversification in poultry flocks in Vietnam. The silent spread of Vietnamese H7N7 viruses in chickens may lead to acquire high pathogenicity in chickens although the zoonotic potential of the viruses seems to be low since these viruses retain typical avian-specific motifs in the receptor-binding site in the HA and there is no mutation related to mammalian adaptation in PB2 gene. Thus, these results highlight the need for continuous and intensive surveillance of avian influenza in Vietnam, targeting not only highly pathogenic AIVs but also low pathogenic viruses.
Collapse
Affiliation(s)
- Kien Trung Le
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kitaku, Sapporo, Hokkaido 060-0818, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kitaku, Sapporo, Hokkaido 060-0818, Japan
| | - Lam Thanh Nguyen
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kitaku, Sapporo, Hokkaido 060-0818, Japan; Department of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho 900000, Viet Nam
| | - Keita Matsuno
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kitaku, Sapporo, Hokkaido 060-0818, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Duc-Huy Chu
- Department of Animal Health, Ministry of Agriculture and Rural Development, Ha Noi 115-19, Viet Nam
| | - Tien Ngoc Tien
- Regional Animal Health Office VII, Department of Animal Health, Ministry of Agriculture and Rural Development, Can Tho 900000, Viet Nam
| | - Tung Thanh Le
- Sub-Departments of Animal Health, Ministry of Agriculture and Rural Development, Vinh Long 890000, Viet Nam
| | - Hiroshi Kida
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Research Center for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kitaku, Sapporo, Hokkaido 060-0818, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
12
|
H13 influenza viruses in wild birds have undergone genetic and antigenic diversification in nature. Virus Genes 2018; 54:543-549. [PMID: 29796944 DOI: 10.1007/s11262-018-1573-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
Abstract
Among 16 haemagglutinin (HA) subtypes of avian influenza viruses (AIVs), H13 AIVs have rarely been isolated in wild waterfowl. H13 AIVs cause asymptomatic infection and are maintained mainly in gull and tern populations; however, the recorded antigenic information relating to the viruses has been limited. In this study, 2 H13 AIVs, A/duck/Hokkaido/W345/2012 (H13N2) and A/duck/Hokkaido/WZ68/2012 (H13N2), isolated from the same area in the same year in our surveillance, were genetically and antigenically analyzed with 10 representative H13 strains including a prototype strain, A/gull/Maryland/704/1977 (H13N6). The HA genes of H13 AIVs were phylogenetically divided into 3 groups (I, II, and III). A/duck/Hokkaido/W345/2012 (H13N2) was genetically classified into Group III. This virus was distinct from a prototype strain, A/gull/Maryland/704/1977 (H13N6), and the virus, A/duck/Hokkaido/WZ68/2012 (H13N2), both belonging to Group I. Antigenic analysis indicated that the viruses of Group I were antigenically closely related to those of Group II, but distinct from those of Group III, including A/duck/Hokkaido/W345/2012 (H13N2). In summary, our study indicates that H13 AIVs have undergone antigenic diversification in nature.
Collapse
|
13
|
Liu H, Xiong C, Chen J, Chen G, Zhang J, Li Y, Xiong Y, Wang R, Cao Y, Chen Q, Liu D, Wang H, Chen J. Two genetically diverse H7N7 avian influenza viruses isolated from migratory birds in central China. Emerg Microbes Infect 2018; 7:62. [PMID: 29636458 PMCID: PMC5893581 DOI: 10.1038/s41426-018-0064-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 12/03/2022]
Abstract
After the emergence of H7N9 avian influenza viruses (AIV) in early 2013 in China, active surveillance of AIVs in migratory birds was undertaken, and two H7N7 strains were subsequently recovered from the fresh droppings of migratory birds; the strains were from different hosts and sampling sites. Phylogenetic and sequence similarity network analyses indicated that several genes of the two H7N7 viruses were closely related to those in AIVs circulating in domestic poultry, although different gene segments were implicated in the two isolates. This strongly suggested that genes from viruses infecting migratory birds have been introduced into poultry-infecting strains. A Bayesian phylogenetic reconstruction of all eight segments implied that multiple reassortments have occurred in the evolution of these viruses, particularly during late 2011 and early 2014. Antigenic analysis using a hemagglutination inhibition test showed that the two H7N7 viruses were moderately cross-reactive with H7N9-specific anti-serum. The ability of the two H7N7 viruses to remain infectious under various pH and temperature conditions was evaluated, and the viruses persisted the longest at near-neutral pH and in cold temperatures. Animal infection experiments showed that the viruses were avirulent to mice and could not be recovered from any organs. Our results indicate that low pathogenic, divergent H7N7 viruses circulate within the East Asian-Australasian flyway. Virus dispersal between migratory birds and domestic poultry may increase the risk of the emergence of novel unprecedented strains.
Collapse
Affiliation(s)
- Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Chaochao Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jing Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Guang Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Jun Zhang
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Yong Li
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Yanping Xiong
- Hubei Wildlife Rescue, Research and Development Center, Wuhan, Hubei, 430074, China
| | - Runkun Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Ying Cao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 101409, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
- Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
14
|
Okamatsu M, Ozawa M, Soda K, Takakuwa H, Haga A, Hiono T, Matsuu A, Uchida Y, Iwata R, Matsuno K, Kuwahara M, Yabuta T, Usui T, Ito H, Onuma M, Sakoda Y, Saito T, Otsuki K, Ito T, Kida H. Characterization of Highly Pathogenic Avian Influenza Virus A(H5N6), Japan, November 2016. Emerg Infect Dis 2018; 23:691-695. [PMID: 28322695 PMCID: PMC5367431 DOI: 10.3201/eid2304.161957] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) A(H5N6) were concurrently introduced into several distant regions of Japan in November 2016. These viruses were classified into the genetic clade 2.3.4.4c and were genetically closely related to H5N6 HPAIVs recently isolated in South Korea and China. In addition, these HPAIVs showed further antigenic drift.
Collapse
|
15
|
Shibata A, Hiono T, Fukuhara H, Sumiyoshi R, Ohkawara A, Matsuno K, Okamatsu M, Osaka H, Sakoda Y. Isolation and characterization of avian influenza viruses from raw poultry products illegally imported to Japan by international flight passengers. Transbound Emerg Dis 2017; 65:465-475. [DOI: 10.1111/tbed.12726] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 01/03/2023]
Affiliation(s)
- A. Shibata
- Exotic Disease Inspection Division; Laboratory Department; Animal Quarantine Service; Ministry of Agriculture, Forestry and Fisheries; Tokoname Aichi Japan
| | - T. Hiono
- Laboratory of Microbiology; Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - H. Fukuhara
- Microbiological Examination Division; Laboratory Department; Animal Quarantine Service; Ministry of Agriculture, Forestry and Fisheries; Yokohama Kanagawa Japan
| | - R. Sumiyoshi
- Exotic Disease Inspection Division; Laboratory Department; Animal Quarantine Service; Ministry of Agriculture, Forestry and Fisheries; Tokoname Aichi Japan
| | - A. Ohkawara
- Laboratory of Microbiology; Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - K. Matsuno
- Laboratory of Microbiology; Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Hokkaido Japan
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Hokkaido University; Sapporo Hokkaido Japan
| | - M. Okamatsu
- Laboratory of Microbiology; Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - H. Osaka
- Exotic Disease Inspection Division; Laboratory Department; Animal Quarantine Service; Ministry of Agriculture, Forestry and Fisheries; Tokoname Aichi Japan
| | - Y. Sakoda
- Laboratory of Microbiology; Department of Disease Control; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Hokkaido Japan
- Global Station for Zoonosis Control; Global Institution for Collaborative Research and Education (GI-CoRE); Hokkaido University; Sapporo Hokkaido Japan
| |
Collapse
|
16
|
Ohkawara A, Okamatsu M, Ozawa M, Chu DH, Nguyen LT, Hiono T, Matsuno K, Kida H, Sakoda Y. Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3.4.4 isolated in Asia. Microbiol Immunol 2017; 61:149-158. [PMID: 28370432 DOI: 10.1111/1348-0421.12478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
H5 highly pathogenic avian influenza viruses (HPAIV) have spread in both poultry and wild birds since late 2003. Continued circulation of HPAIV in poultry in several regions of the world has led to antigenic drift. In the present study, we analyzed the antigenic properties of H5 HPAIV isolated in Asia using four neutralizing mAbs recognizing hemagglutinin, which were established using A/chicken/Kumamoto/1-7/2014 (H5N8), belonging to clade 2.3.4.4 and also using polyclonal antibodies. Viruses of clades 1.1, 2.3.2.1, 2.3.4, and 2.3.4.4 had different reactivity patterns to the panel of mAbs, thereby indicating that the antigenicity of the viruses of clade 2.3.4.4 were similar but differed from the other clades. In particular, the antigenicity of the viruses of clade 2.3.4.4 differed from those of the viruses of clades 2.3.4 and 2.3.2.1, which suggests that the recent H5 HPAIV have further evolved antigenically divergent. In addition, reactivity of antiserum suggests that the antigenicity of viruses of clade 2.3.4.4 differed slightly among groups A, B, and C. Vaccines are still used in poultry in endemic countries, so the antigenicity of H5 HPAIV should be monitored continually to facilitate control of avian influenza. The panel of mAbs established in the present study will be useful for detecting antigenic drift in the H5 viruses that emerge from the current strains.
Collapse
Affiliation(s)
- Ayako Ohkawara
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065.,Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065.,United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515
| | - Duc-Huy Chu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818
| | - Lam Thanh Nguyen
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818
| | - Keita Matsuno
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, North 20, West 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Hiroshi Kida
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, North 20, West 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.,Research Center for Zoonosis Control, Hokkaido University, North 20, West 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Kita-ku, Sapporo, Hokkaido, 060-0818.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, North 20, West 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| |
Collapse
|
17
|
Suzuki M, Okamatsu M, Hiono T, Matsuno K, Sakoda Y. Potency of an inactivated influenza vaccine prepared from A/duck/Hokkaido/162/2013 (H2N1) against a challenge with A/swine/Missouri/2124514/2006 (H2N3) in mice. J Vet Med Sci 2017; 79:1815-1821. [PMID: 28993601 PMCID: PMC5709558 DOI: 10.1292/jvms.17-0312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
H2N2 influenza virus caused a pandemic starting in 1957 but has not been detected in humans since 1968. Thus, most people are immunologically naive to viruses of the H2 subtype. In contrast, H2 influenza viruses are continually
isolated from wild birds, and H2N3 viruses were isolated from pigs in 2006. H2 influenza viruses could cause a pandemic if re-introduced into humans. In the present study, a vaccine against H2 influenza was prepared as an
effective control measure against a future human pandemic. A/duck/Hokkaido/162/2013 (H2N1), which showed broad antigenic cross-reactivity, was selected from the candidate H2 influenza viruses recently isolated from wild birds in
Asian countries. Sufficient neutralizing antibodies against homologous and heterologous viruses were induced in mice after two subcutaneous injections of the inactivated whole virus particle vaccine. The inactivated vaccine
induced protective immunity sufficient to reduce the impact of challenges with A/swine/Missouri/2124514/2006 (H2N3). This study demonstrates that the inactivated whole virus particle vaccine prepared from an influenza virus
library would be useful against a future H2 influenza pandemic.
Collapse
Affiliation(s)
- Mizuho Suzuki
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
18
|
Takemae N, Tsunekuni R, Sharshov K, Tanikawa T, Uchida Y, Ito H, Soda K, Usui T, Sobolev I, Shestopalov A, Yamaguchi T, Mine J, Ito T, Saito T. Five distinct reassortants of H5N6 highly pathogenic avian influenza A viruses affected Japan during the winter of 2016-2017. Virology 2017; 512:8-20. [PMID: 28892736 DOI: 10.1016/j.virol.2017.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
To elucidate the evolutionary pathway, we sequenced the entire genomes of 89 H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated in Japan during winter 2016-2017 and 117 AIV/HPAIVs isolated in Japan and Russia. Phylogenetic analysis showed that at least 5 distinct genotypes of H5N6 HPAIVs affected poultry and wild birds during that period. Japanese H5N6 isolates shared a common genetic ancestor in 6 of 8 genomic segments, and the PA and NS genes demonstrated 4 and 2 genetic origins, respectively. Six gene segments originated from a putative ancestral clade 2.3.4.4 H5N6 virus that was a possible genetic reassortant among Chinese clade 2.3.4.4 H5N6 HPAIVs. In addition, 2 NS clusters and a PA cluster in Japanese H5N6 HPAIVs originated from Chinese HPAIVs, whereas 3 distinct AIV-derived PA clusters were evident. These results suggest that migratory birds were important in the spread and genetic diversification of clade 2.3.4.4 H5 HPAIVs.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Hiroshi Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Kosuke Soda
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Tatsufumi Usui
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Ivan Sobolev
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Alexander Shestopalov
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Tsuyoshi Yamaguchi
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Toshihiro Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand; United Graduate School of Veterinary Sciences, Gifu University, 1-1, Yanagito, Gifu, Gifu 501-1112, Japan.
| |
Collapse
|
19
|
Emergence and dissemination of clade 2.3.4.4 H5Nx influenza viruses-how is the Asian HPAI H5 lineage maintained. Curr Opin Virol 2016; 16:158-163. [PMID: 26991931 DOI: 10.1016/j.coviro.2016.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/18/2016] [Indexed: 12/29/2022]
Abstract
Highly pathogenic avian influenza (HPAI) A(H5N1) viruses containing the A/goose/Guangdong/96-like (GD/96) HA genes circulated in birds from four continents in the course of 2015 (Jan to Sept). A new HA clade, termed 2.3.4.4, emerged around 2010-2011 in China and revealed a novel propensity to reassort with NA subtypes other than N1, unlike dozens of earlier clades. Two subtypes, H5N6 and H5N8, have spread to countries in Asia (H5N6), Europe and North America (H5N8). Infections by clade 2.3.4.4 viruses are characterized by low virulence in poultry and some wild birds, contributing to wide geographical dissemination of the viruses via poultry trade and wild bird migration.
Collapse
|
20
|
Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission. Vet Microbiol 2015; 182:108-15. [PMID: 26711036 DOI: 10.1016/j.vetmic.2015.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) have spread in both poultry and wild birds. Determining transmission routes of these viruses during an outbreak is essential for the control of avian influenza. It has been widely postulated that migratory ducks play crucial roles in the widespread dissemination of HPAIVs in poultry by carrying viruses along with their migrations; however close contacts between wild migratory ducks and poultry are less likely in modern industrial poultry farming settings. Therefore, we conducted experimental infections of HPAIVs and low pathogenic avian influenza viruses (LPAIVs) to chickens, domestic ducks, tree sparrows, jungle crows, and black rats to evaluate their roles in virus transmission. The results showed that chickens, ducks, sparrows, and crows were highly susceptible to HPAIV infection. Significant titers of virus were recovered from the sparrows and crows infected with HPAIVs, which suggests that they potentially play roles of transmission of HPAIVs to poultry. In contrast, the growth of LPAIVs was limited in each of the animals tested compared with that of HPAIVs. The present results indicate that these common synanthropes play some roles in influenza virus transmission from wild birds to poultry.
Collapse
|