1
|
Khadem S, Marles RJ. 2,4-Quinolinedione alkaloids: occurrence and biological activities. Nat Prod Res 2024:1-12. [PMID: 39133211 DOI: 10.1080/14786419.2024.2390611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Natural products are an important source of chemical scaffolds that have diverse biological activities. They can be used directly or as starting templates for the development of innovative pharmaceutical agents. Among natural products, quinoline alkaloids are one of the most extensively studied groups. 2,4-Quinolinedione (2,4-QD) alkaloids, which are found in a variety of natural sources, possess valuable biological properties. This review examines the natural occurrence and bioactivities of 2,4-QD alkaloids, which have not been studied in as much depth in previous research.
Collapse
Affiliation(s)
- Shahriar Khadem
- Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Robin J Marles
- Retired Senior Scientific Advisor, Health Canada, Ottawa, Canada
| |
Collapse
|
2
|
Chen Y, Zhang HL, Zhang L, Nizamani MM, Zhou T, Zhang H, Liu T. Genetic diversity assessment of Hopea hainanensis in Hainan Island. FRONTIERS IN PLANT SCIENCE 2022; 13:1075102. [PMID: 36570896 PMCID: PMC9767952 DOI: 10.3389/fpls.2022.1075102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Hopea hainanensis (Dipterocarpaceae) is an endangered tree species restricted to Hainan Island, China, and a small part of Northern Vietnam. On Hainan Island, it is an important indicator species for tropical forests. The wood of Hopea hainanensis has a very high utilization value in nature since it is compact in structure, hard in texture, not easily deformed after drying, durable, and resistant to sunlight and water. As a result of its high quality, it has been felled and mined by humans without restraint, resulting in a reduction of its population size, severe habitat fragmentation, and a sharp decline in its population. Therefore, its conservation biology needs to be researched urgently. Researchers are currently focusing on the ecological factors and seed germination in the habitat of Hopea hainanensis to determine its endangered status. In the literature, there are no systematic analyses of the endangered mechanism of Hopea hainanensis in terms of genetic diversity. It focuses especially on the systematic genetic diversity of Hopea hainanensis in fragmented habitats. Using single nucleotide polymorphism (SNP) and genotyping-by-sequencing (GBS) technology, 42 samples from seven different cohabitation groups were genotyped. The results showed that the average heterozygosity of the six populations of Hopea hainanensis was 19.77%, which indicated that the genetic diversity of Hopea hainanensis was low. Genetic diversity research is essential for rare and endangered plant protection research. We can find a scientific basis for protecting endangered plants on slope bases by analyzing genetic differences and relationships among populations.
Collapse
Affiliation(s)
- Yukai Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Hai-Li Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, Haikou, China
| | - Li Zhang
- Guizhou Normal University Museum, Guizhou Normal University, Guizhou, China
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, China
| | - Taoxiu Zhou
- College of Biological Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiyang Zhang
- College of International Studies, Sichuan University, Chengdu, China
| | - Tingting Liu
- Guizhou Normal University Museum, Guizhou Normal University, Guizhou, China
| |
Collapse
|
3
|
Zhang W, Li J, Wei C, Deng X, Xu J. Chemical epigenetic modifiers enhance the production of immunosuppressants from the endophytic fungus Aspergillus fumigatus isolated from Cynodon dactylon. Nat Prod Res 2021; 36:4487-4491. [PMID: 34613839 DOI: 10.1080/14786419.2021.1986497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chemical epigenetic modifiers applied on a plant endophytic fungus Aspergillus fumigatus isolated from a healthy stem of terrestrial plant Cynodon dactylon, significantly changed of metabolic profile and resulted in the isolation of nineteen compounds, including ten alkaloids (1-10), six polyketides (11-16), and three benzene derivatives (17-19). This is the first report of 14, 18 and 19 being isolated from this fungal species. And compound 14 was known as a synthetic product and isolated as a natural product for the first time. HPLC profiles of the control and treated samples indicated that compounds 11, 16, 18 are belonged to the newly induced secondary metabolites. Their structures were elucidated on the basis of extensive NMR spectroscopic and mass spectrometric analyses. The immunosuppressive and cytotoxic activities of all isolated compounds were evaluated.
Collapse
Affiliation(s)
- Wenfang Zhang
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, P. R. China
| | - Jinyuan Li
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, P. R. China
| | - Chengwen Wei
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, P. R. China
| | - Xiaoling Deng
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, P. R. China
| | - Jing Xu
- One Health Institute, School of Chemical Engineering and Technology, Hainan University, Haikou, P. R. China
| |
Collapse
|
4
|
Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms 2021; 9:197. [PMID: 33477910 PMCID: PMC7833388 DOI: 10.3390/microorganisms9010197] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharmacologically active compounds and the bottlenecks in the commercialization of this novel approach in the area of drug discovery. After recent updates in the field of 'omics' and 'one strain many compounds' (OSMAC) approach, fungal endophytes have emerged as strong unconventional source of such prized products.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Dheeraj K. Singh
- Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India
| | - Ravindra N. Kharwar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Surendra K. Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
| |
Collapse
|
5
|
Xiao JL, Sun JG, Pang B, Zhou X, Gong Y, Jiang L, Zhang L, Ding X, Yin J. Isolation and screening of stress-resistant endophytic fungus strains from wild and cultivated soybeans in cold region of China. Appl Microbiol Biotechnol 2021; 105:755-768. [PMID: 33409608 DOI: 10.1007/s00253-020-11048-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
In this study, we firstly reported the large-scale screening and isolation of endophytic fungi from nine wild and six cultivated soybeans in the cold regions of China. We totally isolated 302 endophytic fungal strains, of which 215 strains are isolated from the wild soybeans and 87 are identified from cultivated soybeans. Among these endophytic fungal strains, in the roots, stems, and leaves, 24.17% were isolated from roots, 28.8% were isolated from stems, and 47.01% were isolated from leaves, respectively. Most endophytic fungal strains isolated from the wild soybean roots were the species of Fusarium genus, and the fungal strains in the stems were the species of ascomycetes and Fusarium fungi, whereas most strains in the leaves were Alternaria fungi. To analyze the taxonomy of the obtained samples, we sequenced and compared their rDNA internal transcribed spacer (ITS) sequences. The data showed that 6 strains are putatively novel strains exhibiting ≤ 97% homology with the known strains. We next measured the secondary metabolites produced by the different strains and we found 11 strains exhibited high-performance synthesis of triterpenoids, phenols, and polysaccharides. Furthermore, we characterized their tolerance to abiotic stresses. The results indicated that 4 strains exhibited high tolerance to cadmium, and some strains exhibited resistance to acid, and alkali. The results of the study could facilitate the further exploration of the diversity of plant endophytic fungi and the potential applications of the fungi to practical agriculture and medicine industries. KEY POINTS: • 302 endophytic fungal strains isolated from wild soybean and cultivated soybean • 11 strains had high contents of triterpenoids, phenols, and polysaccharides • 4 strains exhibited high Cd tolerance, and a few strains with strong tolerance to acid and alkali solution.
Collapse
Affiliation(s)
- Jia-Lei Xiao
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China
| | - Jian-Guang Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Bo Pang
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China
| | - Xin Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Yuan Gong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Lichao Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Luan Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China
| | - Xiaodong Ding
- College of Life Science, Northeast Agriculture University, Harbin, 150030, China.
| | - Jing Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin, 150040, China.
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Kaur N, Arora DS, Kalia N, Kaur M. Bioactive potential of endophytic fungus Chaetomium globosum and GC-MS analysis of its responsible components. Sci Rep 2020; 10:18792. [PMID: 33139805 PMCID: PMC7606472 DOI: 10.1038/s41598-020-75722-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
The recent exploration of various medicinal plants for bioactive potential has led to the growing interest to explore their endophytes for such bioactive potential which may turn out to be better option than the plants. In the present study, Chaetomium globosum, an endophytic fungus isolated from Moringa oleifera Lam has been explored for its various biological activities. The chloroformic extract of C. globosum showed good antimutagenicity against the reactive carcinogenic mutagen, 2-aminofluorene (2-AF) in Ames test. The antiproliferative activity against various cell lines such as HCT-15, HeLa and U87-MG was found to be dose dependent and the viability reduced to 9.26%, 15.7% and 16.3%, respectively. Further, the chloroformic fungal extract was investigated for free radical scavenging activity using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethyl-benzthiazolin-6-sulfonic acid) assay which showed the IC50 value of 45.16 µg/ml and 50.55 µg/ml, respectively. The fungal extract also showed good ferric reducing power. Total phenolic and flavonoid content was found to be in linear relationship with the antioxidant potential of the fungal extract. High performance liquid chromatography showed the presence of phenolics which may help to combat the free radicals. The presence of various bioactive compounds was analysed by GC–MS which endorsed Chaetomium globosum to be a promising candidate for drug development.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Daljit Singh Arora
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
7
|
Georgousaki K, Tsafantakis N, Gumeni S, Lambrinidis G, González-Menéndez V, Tormo JR, Genilloud O, Trougakos IP, Fokialakis N. Biological Evaluation and In Silico Study of Benzoic Acid Derivatives from Bjerkandera adusta Targeting Proteostasis Network Modules. Molecules 2020; 25:molecules25030666. [PMID: 32033190 PMCID: PMC7036779 DOI: 10.3390/molecules25030666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/17/2023] Open
Abstract
A main cellular functional module that becomes dysfunctional during aging is the proteostasis network. In the present study, we show that benzoic acid derivatives isolated from Bjerkandera adusta promote the activity of the two main protein degradation systems, namely the ubiquitin-proteasome (UPP) and especially the autophagy-lysosome pathway (ALP) in human foreskin fibroblasts. Our findings were further supported by in silico studies, where all compounds were found to be putative binders of both cathepsins B and L. Among them, compound 3 (3-chloro-4-methoxybenzoic acid) showed the most potent interaction with both enzymes, which justifies the strong activation of cathepsins B and L (467.3 ± 3.9%) on cell-based assays. Considering that the activity of both the UPP and ALP pathways decreases with aging, our results suggest that the hydroxybenzoic acid scaffold could be considered as a promising candidate for the development of novel modulators of the proteostasis network, and likely of anti-aging agents.
Collapse
Affiliation(s)
- Katerina Georgousaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (K.G.); (N.T.)
| | - Nikolaos Tsafantakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (K.G.); (N.T.)
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (S.G.); (I.P.T.)
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Athens, Greece;
| | - Victor González-Menéndez
- Fundacion MEDINA, Health Sciences Technology Park, 18016 Granada, Spain; (V.G.-M.); (J.R.T.); (O.G.)
| | - Jose R. Tormo
- Fundacion MEDINA, Health Sciences Technology Park, 18016 Granada, Spain; (V.G.-M.); (J.R.T.); (O.G.)
| | - Olga Genilloud
- Fundacion MEDINA, Health Sciences Technology Park, 18016 Granada, Spain; (V.G.-M.); (J.R.T.); (O.G.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (S.G.); (I.P.T.)
| | - Nikolas Fokialakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (K.G.); (N.T.)
- Correspondence: ; Tel.:+30-210-727-4727
| |
Collapse
|
8
|
Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S, Alqarawi AA, Abd Allah EF. Endophytic Fungi-Alternative Sources of Cytotoxic Compounds: A Review. Front Pharmacol 2018; 9:309. [PMID: 29755344 PMCID: PMC5932204 DOI: 10.3389/fphar.2018.00309] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/16/2018] [Indexed: 12/29/2022] Open
Abstract
Cancer is a major cause of death worldwide, with an increasing number of cases being reported annually. The elevated rate of mortality necessitates a global challenge to explore newer sources of anticancer drugs. Recent advancements in cancer treatment involve the discovery and development of new and improved chemotherapeutics derived from natural or synthetic sources. Natural sources offer the potential of finding new structural classes with unique bioactivities for cancer therapy. Endophytic fungi represent a rich source of bioactive metabolites that can be manipulated to produce desirable novel analogs for chemotherapy. This review offers a current and integrative account of clinically used anticancer drugs such as taxol, podophyllotoxin, camptothecin, and vinca alkaloids in terms of their mechanism of action, isolation from endophytic fungi and their characterization, yield obtained, and fungal strain improvement strategies. It also covers recent literature on endophytic fungal metabolites from terrestrial, mangrove, and marine sources as potential anticancer agents and emphasizes the findings for cytotoxic bioactive compounds tested against specific cancer cell lines.
Collapse
Affiliation(s)
- Fazilath Uzma
- Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Mysore, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Mandya, India
| | - Praveen V Kamath
- Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | - Bhim P Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University, Aizawl, India
| | - Venkataramana Mudili
- Microbiology Division, DRDO-BU-Centre for Life sciences, Bharathiar University, Coimbatore, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Chandra N Siddaiah
- Department of Studies in Biotechnology, University of Mysore, Mysore, India
| | - Srinivas Chowdappa
- Microbial Metabolite Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Bangalore, India
| | - Abdulaziz A Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed F Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Uthandi S, Thankappan S, Gupta VK, Singh BP. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PLoS One 2017; 12:e0186234. [PMID: 29049321 PMCID: PMC5648158 DOI: 10.1371/journal.pone.0186234] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022] Open
Abstract
Endophytic fungi associated with medicinal plants are reported as potent
producers of diverse classes of secondary metabolites. In the present study, an
endophytic fungi, Aspergillus clavatonanicus strain MJ31,
exhibiting significant antimicrobial activity was isolated from roots of
Mirabilis jalapa L., was identified by sequencing three
nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA), 28S
ribosomal RNA (28S rRNA) and translation elongation factor 1- alpha (EF 1α).
Ethyl acetate extract of strain MJ31displayed significant antimicrobial
potential against Bacillus subtilis, followed by
Micrococccus luteus and Staphylococcus
aureus with minimum inhibitory concentrations (MIC) of 0.078, 0.156
and 0.312 mg/ml respectively. In addition, the strain was evaluated for its
ability to synthesize bioactive compounds by the amplification of polyketide
synthase (PKS) and non ribosomal peptide synthetase (NRPS) genes. Further, seven
antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin,
chloramphenicol, and rifampicin) were detected and quantified using
UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass
spectrometry (TD-GC-MS) analysis of strain MJ31 showed the presence of 28
volatile compounds. This is the first report on A.
clavatonanicus as an endophyte obtained from
M. jalapa. We conclude that
A. clavatonanicus strain MJ31 has prolific
antimicrobial potential against both plant and human pathogens and can be
exploited for the discovery of new antimicrobial compounds and could be an
alternate source for the production of secondary metabolites.
Collapse
Affiliation(s)
- Vineet Kumar Mishra
- Molecular Microbiology and Systematics Laboratory, Department of
Biotechnology, Aizawl, Mizoram University, Mizoram, India
| | - Ajit Kumar Passari
- Molecular Microbiology and Systematics Laboratory, Department of
Biotechnology, Aizawl, Mizoram University, Mizoram, India
| | - Preeti Chandra
- SAIF, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow,
India
| | - Vincent Vineeth Leo
- Molecular Microbiology and Systematics Laboratory, Department of
Biotechnology, Aizawl, Mizoram University, Mizoram, India
| | - Brijesh Kumar
- SAIF, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow,
India
| | - Sivakumar Uthandi
- Biocatalysts Lab, Department of Agricultural Microbiology, Tamil Nadu
Agricultural University, Coimbatore, India
| | - Sugitha Thankappan
- Biocatalysts Lab, Department of Agricultural Microbiology, Tamil Nadu
Agricultural University, Coimbatore, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, School of Science, Tallinn
University of Technology, Tallinn, Estonia
- Molecular Glyco-biotechnology Group, Department of Chemistry, National
University of Ireland, Galway, Ireland
| | - Bhim Pratap Singh
- Molecular Microbiology and Systematics Laboratory, Department of
Biotechnology, Aizawl, Mizoram University, Mizoram, India
- * E-mail:
| |
Collapse
|
10
|
Mukherjee S, Chandrababunaidu MM, Panda A, Khowala S, Tripathy S. Tricking Arthrinium malaysianum into Producing Industrially Important Enzymes Under 2-Deoxy D-Glucose Treatment. Front Microbiol 2016; 7:596. [PMID: 27242677 PMCID: PMC4865484 DOI: 10.3389/fmicb.2016.00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/11/2016] [Indexed: 01/24/2023] Open
Abstract
This study catalogs production of industrially important enzymes and changes in transcript expression caused by 2-deoxy D-glucose (2-DG) treatment in Arthrinium malaysianum cultures. Carbon Catabolite Repression (CCR) induced by 2-DG in this species is cAMP independent unlike many other organisms. Higher levels of secreted endoglucanase (EG), β-glucosidase (BGL), β-xylosidase (BXL), and filter paper activity assay (FPase) enzymes under 2-DG treatment can be exploited for commercial purposes. An integrated RNA sequencing and quantitative proteomic analysis was performed to investigate the cellular response to 2-DG in A. malaysianum. Analysis of RNASeq data under 2-DG treated and control condition reveals that 56% of the unigenes do not have any known similarity to proteins in non-redundant database. Gene Ontology IDs were assigned to 36% of the transcripts (13260) and about 5207 (14%) were mapped to Kyoto Encyclopedia of Genes and Genomes pathway (KEGG). About 1711 genes encoding 2691 transcripts were differentially expressed in treated vs. control samples. Out of the 2691 differentially expressed transcripts, only 582 have any known function. The most up regulated genes belonged to Pentose Phosphate Pathways and carbohydrate degradation class as expected. In addition, genes involved in protein folding, binding, catalytic activity, DNA repair, and secondary metabolites were up-regulated under 2-DG treatment. Whereas genes encoding glycosylation pathways, growth, nutrient reservoir activity was repressed. Gene ontology analysis of the differentially expressed genes indicates metabolic process (35%) is the pre-dominant class followed by carbohydrate degradation (11%), protein folding, and trafficking (6.2%) and transport (5.3%) classes. Unlike other organisms, conventional unfolded protein response (UPR) was not activated in either control or treated conditions. Major enzymes secreted by A. malaysianum are those degrading plant polysaccharides, the most dominant ones being β-glucosidase, as demonstrated by the 2D gel analysis. A set of 7 differentially expressed mRNAs were validated by qPCR. Transmission electron microscopy analyses demonstrated that the 2-DG treated cell walls of hyphae showed significant differences in the cell-wall thickness. Overall 2-DG treatment in A. malaysianum induced secretion of large amount of commercially viable enzymes compared to other known species.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Drug Development Diagnostic and Biotechnology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Mathu Malar Chandrababunaidu
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Arijit Panda
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Suman Khowala
- Drug Development Diagnostic and Biotechnology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Sucheta Tripathy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| |
Collapse
|
11
|
Mishra VK, Passari AK, Singh BP. In Vitro Antimycotic and Biosynthetic Potential of Fungal Endophytes Associated with Schima Wallichii. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27312-9_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Intaraudom C, Boonyuen N, Suvannakad R, Rachtawee P, Pittayakhajonwut P. Penicolinates A–E from endophytic Penicillium sp. BCC16054. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zhang Y, Han T, Ming Q, Wu L, Rahman K, Qin L. Alkaloids Produced by Endophytic Fungi: A Review. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700742] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In recent years, a number of alkaloids have been discovered from endophytic fungi in plants, which exhibited excellent biological properties such as antimicrobial, insecticidal, cytotoxic, and anticancer activities. This review mainly deals with the research progress on endophytic fungi for producing bioactive alkaloids such as quinoline and isoquinoline, amines and amides, indole derivatives, pyridines, and quinazolines. The biological activities and action mechanisms of these alkaloids from endophytic fungi are also introduced. Furthermore, the relationships between alkaloid-producing endophytes and their host plants, as well as their potential applications in the future are discussed.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of, Pharmacognosy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P.R. China
- Academy of Integrative, Fujian University of Traditional Chinese Medicine, Fujian 350003, P.R. China
| | - Ting Han
- Department of, Pharmacognosy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P.R. China
| | - Qianliang Ming
- Department of, Pharmacognosy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P.R. China
| | - Lingshang Wu
- Department of, Pharmacognosy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P.R. China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Luping Qin
- Department of, Pharmacognosy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P.R. China
- Academy of Integrative, Fujian University of Traditional Chinese Medicine, Fujian 350003, P.R. China
| |
Collapse
|
14
|
Peptide Scaffolds: Flexible Molecular Structures With Diverse Therapeutic Potentials. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-011-9286-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Verma VC, Kharwar RN, Strobel GA. Chemical and Functional Diversity of Natural Products from Plant Associated Endophytic Fungi. Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900401114] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review describes examples of naturally occurring bioactive compounds obtained from fungal endophytes from various host plants. The main topics addressed are sources, identification, biological activity, biosynthesis, and ecological and chemosystematic significance of those bioactive compounds whose sources were well defined.
Collapse
Affiliation(s)
- Vijay C. Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Ravindra N. Kharwar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Gary A. Strobel
- Department of Plant Sciences, Montana State University, Bozeman MT 59717, USA
| |
Collapse
|
16
|
Bioactive metabolites from Alternaria brassicicola ML-P08, an endophytic fungus residing in Malus halliana. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0062-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Suryanarayanan T, Thirunavukkarasu N, Govindarajulu M, Sasse F, Jansen R, Murali T. Fungal endophytes and bioprospecting. FUNGAL BIOL REV 2009. [DOI: 10.1016/j.fbr.2009.07.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|