1
|
Moonsamy G, Roets-Dlamini Y, Langa CN, Ramchuran SO. Advances in Yeast Probiotic Production and Formulation for Preventative Health. Microorganisms 2024; 12:2233. [PMID: 39597622 PMCID: PMC11596959 DOI: 10.3390/microorganisms12112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The use of probiotics has been gaining popularity in terms of inclusion into human diets over recent years. Based on properties exerted by these organisms, several benefits have been elucidated and conferred to the host. Bacteria have been more commonly used in probiotic preparations compared to yeast candidates; however, yeast exhibit several beneficial properties, such as the prevention and treatment of diarrhea, the production of antimicrobial agents, the prevention of pathogen adherence to intestinal sites, the maintenance of microbial balance, the modulation of the immune system, antibiotic resistance, amongst others. Saccharomyces boulardii is by far the most studied strain; however, the potential for the use of other yeast candidates, such as Kluyveromyces lactis and Debaryomyces hansenii, amongst others, have also been evaluated in this review. Furthermore, a special focus has been made regarding the production considerations for yeast-based probiotics and their formulation into different delivery formats. When drafting this review, evidence suggests that the use of yeasts, both wild-type and genetically modified candidates, can extend beyond gut health to support skin, the respiratory system, and overall immune health. Hence, this review explores the potential of yeast probiotics as a safe, effective strategy for preventative health in humans, highlighting their mechanisms of action, clinical applications, and production considerations.
Collapse
Affiliation(s)
- Ghaneshree Moonsamy
- Council for Scientific and Industrial Research (CSIR) Future Production Chemicals, Meiring Naude Drive, Pretoria 0081, South Africa; (Y.R.-D.); (C.N.L.); (S.O.R.)
| | | | | | | |
Collapse
|
2
|
Dyshlyuk LS, Milentyeva IS, Asyakina LK, Ostroumov LA, Osintsev AM, Pozdnyakova AV. Using bifidobacterium and propionibacterium strains in probiotic consortia to normalize the gastrointestinal tract. BRAZ J BIOL 2024; 84:e256945. [DOI: 10.1590/1519-6984.256945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract The gastrointestinal microflora regulates the body’s functions and plays an important role in its health. Dysbiosis leads to a number of chronic diseases such as diabetes, obesity, inflammation, atherosclerosis, etc. However, these diseases can be prevented by using probiotics – living microorganisms that benefit the microflora and, therefore, improve the host organism's health. The most common probiotics include lactic acid bacteria of the Bifidobacterium and Propionibacterium genera. We studied the probiotic properties of the following strains: Bifidobacterium adolescentis АС-1909, Bifidobacterium longum infantis АС-1912, Propionibacterium jensenii В-6085, Propionibacterium freudenreichii В-11921, Propionibacterium thoenii В-6082, and Propionibacterium acidipropionici В-5723. Antimicrobial activity was determined by the ‘agar blocks’ method against the following test cultures: Escherichia coli ATCC 25922, Salmonella enterica ATCC 14028, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa B6643, Proteus vulgaris ATCC 63, and Listeria monocytogenes ATCC 7644. Moderate antimicrobial activity against all the test cultures was registered in Bifidobacterium adolescentis АС-1909, Propionibacterium jensenii В-6085, and Propionibacterium thoenii В-6082. Antioxidant activity was determined by the DPPH inhibition method in all the lactic acid strains. Our study indicated that some Propionibacterium and Bifidobacterium strains or, theoretically, their consortia could be used as probiotic cultures in dietary supplements or functional foods to prevent a number of chronic diseases.
Collapse
|
3
|
Ma J, Wang B, Pu C, Chang K, Cheng Y, Sun R, Qi Q, Xu R, Chen J, Zhang C. Protective effects of sulforaphane on inflammation, oxidative stress and intestinal dysbacteriosis induced by triphenyltin in Cyprinus carpio haematopterus. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109135. [PMID: 37797869 DOI: 10.1016/j.fsi.2023.109135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The purpose of this experiment was to study the mitigation effect of sulforaphane (SFN) on fish toxicological damage caused by triphenyltin (TPT) pollution. A total of 320 healthy fish (56.9 ± 0.4g) were randomly placed into four groups, each with four duplicates. The control group was fed the basal diet, the TPT group was exposed to 10 ng/L TPT on the basis of the control group, the SFN group was fed a diet supplemented with 10 mg/kg SFN, the SFN + TPT group was exposed to 10 ng/L TPT on the basis of the SFN group. Each tank had 20 fish and the breeding lasted for 8 weeks. The present study found that the antioxidant enzyme activity in the TPT group was significantly lower than that of the control group (P < 0.05). In addition, compared with the control group, the mRNA expression of pro-inflammatory factors (IL-6, TNF-α) were significantly induced, and the anti-inflammatory factor genes (IL-10, TGF) were significantly inhibited (P < 0.05) in TPT group. SFN relieved the changes of inflammatory factors caused by TPT, ameliorated oxidative stress, improved antioxidant enzyme (include SOD, CAT, GSH, GPx) activities (P < 0.05). 16s RNA analysis indicated that exposure to TPT caused changes in intestinal microflora. The results of the study showed that after exposure to TPT, some beneficial genera of bacteria in the gut of Rhizobiaceae, Bdellovibrio and Candidatus Alysiosphaera were decreased. The bacteria associated with intestinal inflammation including Propionibacterium, Rubrobacter, Anaerorhabdus_furcosa_group, Rikenellaceae and Eubacterium_brachy were upregulated. However, the SFN treatment group significantly down-regulated the above five inflammation-related bacteria. The above results indicated that TPT caused oxidative stress and inflammation in fish intestines, changed the intestinal microflora, and dietary SFN could improve antioxidant status, regulate inflammation and intestinal health. Therefore, SFN is a promising diet additive for improving fish damage caused by TPT contamination.
Collapse
Affiliation(s)
- Jianshuang Ma
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou, 450044, People's Republic of China
| | - Changchang Pu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kuo Chang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yinfeng Cheng
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruyi Sun
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qian Qi
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruiyi Xu
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junliang Chen
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chunnuan Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
4
|
Coronas R, Zara G, Gallo A, Rocchetti G, Lapris M, Petretto GL, Zara S, Fancello F, Mannazzu I. Propionibacteria as promising tools for the production of pro-bioactive scotta: a proof-of-concept study. Front Microbiol 2023; 14:1223741. [PMID: 37588883 PMCID: PMC10425813 DOI: 10.3389/fmicb.2023.1223741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Dairy propionibacteria are Gram positive Actinomycetota, routinely utilized as starters in Swiss type cheese making and highly appreciated for their probiotic properties and health promoting effects. In this work, within the frame of a circular economy approach, 47 Propionibacterium and Acidipropionibacterium spp. were isolated from goat cheese and milk, and ewe rumen liquor, and characterized in view of their possible utilization for the production of novel pro-bioactive food and feed on scotta, a lactose rich substrate and one of the main by-products of the dairy industry. The evaluation of the Minimum Inhibitory Concentration (MIC) of 13 among the most common antibiotics in clinical practice revealed a general susceptibility to ampicillin, gentamycin, streptomycin, vancomycin, chloramphenicol, and clindamycin while confirming a lower susceptibility to aminoglycosides and ciprofloxacin. Twenty-five isolates, that proved capable of lactose utilization as the sole carbon source, were then characterized for functional and biotechnological properties. Four of them, ascribed to Propionibacterium freudenreichii species, and harboring resistance to bile salts (growth at 0.7-1.56 mM of unconjugated bile salts), acid stress (>80% survival after 1 h at pH 2), osmostress (growth at up to 6.5% NaCl) and lyophilization (survival rate > 80%), were selected and inoculated in scotta. On this substrate the four isolates reached cell densities ranging from 8.11 ± 0.14 to 9.45 ± 0.06 Log CFU mL-1 and proved capable of producing different vitamin B9 vitamers after 72 h incubation at 30°C. In addition, the semi-quantitative analysis following the metabolomics profiling revealed a total production of cobalamin derivatives (vitamin B12) in the range 0.49-1.31 mg L-1, thus suggesting a full activity of the corresponding biosynthetic pathways, likely involving a complex interplay between folate cycle and methylation cycle required in vitamin B12 biosynthesis. These isolates appear interesting candidates for further ad-hoc investigation regarding the production of pro-bioactive scotta.
Collapse
Affiliation(s)
- Roberta Coronas
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Lapris
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
He X, Li Z, Li X, Zhao H, Hu Y, Han W, Wang C, Yin C, Chen Y. The fecal microbiota of gravidas with fetal growth restriction newborns characterized by metagenomic sequencing. Curr Res Transl Med 2023; 71:103354. [PMID: 36434943 DOI: 10.1016/j.retram.2022.103354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fetal growth restriction (FGR) is a complex obstetric complication with various causes and of great harm. However, the specific pathogenesis of FGR is unclear, which limits its effective treatment. Gut microbiota dysbiosis was found to be important in pathogenesis of various diseases. However, its role in FGR development remains unclear and needs to be clarified. METHODS In our case-control study, we recruited eight FGR and eight control female participants and collected their fecal samples in third trimester before delivery. We performed metagenomic sequencing and bioinformatic analysis to compare the gut microbiota composition and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between the two groups. RESULTS Our results showed that totally 20 gut microbes were significantly different between two groups (p<0•05), and the correlation analysis found that g__Roseomonas and g__unclassified_f__Propionibacteriaceae were significantly positive correlated with both maternal body mass index (BMI) before delivery, placental weight, and neonatal birth weight (BW) percentile (all p<0•05), while g__Marinisporobacter and g__Sphingomonas were significantly negative correlated with both neonatal BMI and neonatal BW percentile (all p<0•05). Through KEGG pathway analysis, we found that the abundance of the Nitrogen metabolism pathway decreased significantly (p<0•05) whereas the abundance of the Amoebiasis pathway increased significantly in the FGR group (p<0•05). CONCLUSION In this study, we demonstrated that the occurrence of FGR is associated with the change of gut microbiota of pregnant women.
Collapse
Affiliation(s)
- Xin He
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China
| | - Zhengpeng Li
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Xiaohui Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China
| | - Huanying Zhao
- Genomics Research Platform, Core Facilities Center, Capital Medical University, Beijing 100069, China
| | - Yanan Hu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China
| | - Wenli Han
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China
| | - Chen Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China.
| | - Yi Chen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing 100026, China.
| |
Collapse
|
6
|
George F, Titécat M, Barois N, Daniel C, Garat A, Jan G, Foligné B. A Unique Enhancement of Propionibacterium freudenreichii's Ability to Remove Pb(II) from Aqueous Solution by Tween 80 Treatment. Int J Mol Sci 2022; 23:ijms23169207. [PMID: 36012472 PMCID: PMC9408999 DOI: 10.3390/ijms23169207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/05/2022] Open
Abstract
Microbial agents have promise for the bioremediation of Pb(II)-polluted environments and wastewater, the biodecontamination of foods, and the alleviation of toxicity in living organisms. The dairy bacterium Propionibacterium freudenreichii is poorly able to remove Pb(II) from aqueous solution at 25 ppm, ranging from 0 to 10% of initial concentration. Here, we report on an original strong enhancement of this activity (ranging from 75% to 93%, p < 0.01) following the addition of a polysorbate detergent (Tween® 80) during or either shortly after the growth of a P. freudenreichii culture. We evaluated the optimal Tween® 80 concentration for pretreatment conditions, documented the role of other detergents, and explored the possible mechanisms involved. Our results reveal a novel, environmentally friendly, low-cost pretreatment procedure for enhancing the selective removal of lead from water by probiotic-documented bacteria.
Collapse
Affiliation(s)
- Fanny George
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Marie Titécat
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Catherine Daniel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Anne Garat
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59000 Lille, France
| | - Gwénaël Jan
- STLO, INRAE, Agrocampus Ouest, Institut Agro, Science & Technologie du Lait & de l’Œuf, F-35000 Rennes, France
| | - Benoît Foligné
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
7
|
Bilal M, Ji L, Xu Y, Xu S, Lin Y, Iqbal HMN, Cheng H. Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. Front Bioeng Biotechnol 2022; 10:851768. [PMID: 35519613 PMCID: PMC9065261 DOI: 10.3389/fbioe.2022.851768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Kluyveromyces marxianus is an emerging non-conventional food-grade yeast that is generally isolated from diverse habitats, like kefir grain, fermented dairy products, sugar industry sewage, plants, and sisal leaves. A unique set of beneficial traits, such as fastest growth, thermotolerance, and broad substrate spectrum (i.e., hemi-cellulose hydrolysates, xylose, l-arabinose, d-mannose, galactose, maltose, sugar syrup molasses, cellobiose, and dairy industry) makes this yeast a particularly attractive host for applications in a variety of food and biotechnology industries. In contrast to Saccharomyces cerevisiae, most of the K. marxianus strains are apparently Crabtree-negative or having aerobic-respiring characteristics, and unlikely to endure aerobic alcoholic fermentation. This is a desirable phenotype for the large-scale biosynthesis of products associated with biomass formation because the formation of ethanol as an undesirable byproduct can be evaded under aerobic conditions. Herein, we discuss the current insight into the potential applications of K. marxianus as a robust yeast cell factory to produce various industrially pertinent enzymes, bioethanol, cell proteins, probiotic, fructose, and fructo-oligosaccharides, and vaccines, with excellent natural features. Moreover, the biotechnological improvement and development of new biotechnological tools, particularly CRISPR-Cas9-assisted precise genome editing in K. marxianus are delineated. Lastly, the ongoing challenges, concluding remarks, and future prospects for expanding the scope of K. marxianus utilization in modern biotechnology, food, feed, and pharmaceutical industries are also thoroughly vetted. In conclusion, it is critical to apprehend knowledge gaps around genes, metabolic pathways, key enzymes, and regulation for gaining a complete insight into the mechanism for producing relevant metabolites by K. marxianus.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuping Lin
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Bücher C, Burtscher J, Domig KJ. Propionic acid bacteria in the food industry: An update on essential traits and detection methods. Compr Rev Food Sci Food Saf 2021; 20:4299-4323. [PMID: 34355493 DOI: 10.1111/1541-4337.12804] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Propionic acid bacteria (PAB) is an umbrella term for a group of bacteria with the ability to produce propionic acid. In the past, due to this common feature and other phenotypic similarities, genetically heterogeneous bacteria were considered as a single genus, Propionibacterium. Members of this genus ranged from "dairy propionibacteria," which are widely known for their role in eye and flavor formation in cheese production, to "cutaneous propionibacteria," which are primarily associated with human skin. In 2016, the introduction of two new genera based on genotypic data facilitated a clear separation of cutaneous (Cutibacterium spp.) from dairy PAB (Propionibacterium spp., Acidipropionibacterium spp.). In light of these taxonomic changes, but with particular emphasis on dairy PAB, this review describes the current state of knowledge about metabolic pathways and other characteristics such as antibiotic resistance and virulence factors. In addition, the relevance of dairy PAB for the food industry and cheese production in particular is highlighted. Furthermore, methods for cultivation, detection, and enumeration are reviewed, incorporating the current taxonomy as well as the potential for routine applications.
Collapse
Affiliation(s)
- Carola Bücher
- Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), Tulln, Austria
| | - Johanna Burtscher
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Konrad J Domig
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| |
Collapse
|
9
|
Karim A, Gerliani N, Aïder M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int J Food Microbiol 2020; 333:108818. [PMID: 32805574 DOI: 10.1016/j.ijfoodmicro.2020.108818] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
Several yeasts, which are eukaryotic microorganisms, have long been used in different industries due to their potential applications, both for fermentation and for the production of specific metabolites. Kluyveromyces marxianus is one of the most auspicious nonconventional yeasts, generally isolated from wide-ranging natural habitats such as fermented traditional dairy products, kefir grain, sewage from sugar industries, sisal leaves, and plants. This is a food-grade yeast with various beneficial traits, such as rapid growth rate and thermotolerance that make it appealing for different industrial food and biotechnological applications. K. marxianus is a respiro-fermentative yeast likely to produce energy by either respiration or fermentation pathways. It generates a wide-ranging specific metabolites and could contribute to a variety of different food and biotechnological industries. Although Saccharomyces cerevisiae is the most widely used dominant representative in all aspects, many applications of K. marxianus in biotechnology, food and environment have only started to emerge nowadays; some of the most promising applications are reviewed here. The general physiology of K. marxianus is outlined, and then the different applications are discussed: first, the applications of K. marxianus in biotechnology, and then the recent advances and possible applications in food, feed and environmental industries. Finally, this review provides a discussion of the main challenges and some perspectives for targeted applications of K. marxianus in the modern food technology and applied biotechnology in order to exploit the full potential of this yeast which can be used as a cell factory with great efficiency.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soil Sciences and Agri-food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Natela Gerliani
- Department of Soil Sciences and Agri-food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Mohammed Aïder
- Department of Soil Sciences and Agri-food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
10
|
Associations of prenatal exposure to polybrominated diphenyl ethers and polychlorinated biphenyls with long-term gut microbiome structure: a pilot study. Environ Epidemiol 2019; 3. [PMID: 30778401 PMCID: PMC6376400 DOI: 10.1097/ee9.0000000000000039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Supplemental Digital Content is available in the text. The gut microbiome is influenced by early-life exposures, but—despite potentially enormous implications for child health—is understudied in environmental epidemiology. This pilot study is one of the first to explore in utero exposures and long-term gut microbiome profiles. We examined the association between exposure to polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) during pregnancy and the mid-childhood gut microbiome.
Collapse
|
11
|
Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol 2018; 9:1830. [PMID: 30158926 PMCID: PMC6104162 DOI: 10.3389/fimmu.2018.01830] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
The microbiota consists of a dynamic multispecies community of bacteria, fungi, archaea, and protozoans, bringing to the host organism a dowry of cells and genes more numerous than its own. Among the different non-sterile cavities, the human gut harbors the most complex microbiota, with a strong impact on host homeostasis and immunostasis, being thus essential for maintaining the health condition. In this review, we outline the roles of gut microbiota in immunity, starting with the background information supporting the further presentation of the implications of gut microbiota dysbiosis in host susceptibility to infections, hypersensitivity reactions, autoimmunity, chronic inflammation, and cancer. The role of diet and antibiotics in the occurrence of dysbiosis and its pathological consequences, as well as the potential of probiotics to restore eubiosis is also discussed.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Carmen Curutiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ariana Picu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Laura Petcu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
12
|
Mekadim C, Killer J, Pechar R, Mrázek J. Variable regions of the glyS, infB and rplB genes usable as novel genetic markers for identification and phylogenetic purposes of genera belonging to the family Propionibacteriaceae. Int J Syst Evol Microbiol 2018; 68:2697-2705. [DOI: 10.1099/ijsem.0.002873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- C. Mekadim
- 1Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
- 2Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 – Krč, 142 20, Czech Republic
| | - J. Killer
- 1Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
- 2Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 – Krč, 142 20, Czech Republic
| | - R. Pechar
- 1Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol, 165 00, Czech Republic
- 3Food Research Institute Prague, Radiová 1285/7, Prague 10 – Hostivař, 102 00, Czech Republic
| | - J. Mrázek
- 2Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 – Krč, 142 20, Czech Republic
| |
Collapse
|
13
|
Campaniello D, Speranza B, Petruzzi L, Bevilacqua A, Corbo MR. How to routinely assess transition, adhesion and survival of probiotics into the gut: a case study on propionibacteria. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniela Campaniello
- Department of the Science of Agriculture, Food and Environment; University of Foggia; Via Napoli 25, 71122, Foggia Italy
| | - Barbara Speranza
- Department of the Science of Agriculture, Food and Environment; University of Foggia; Via Napoli 25, 71122, Foggia Italy
| | - Leonardo Petruzzi
- Department of the Science of Agriculture, Food and Environment; University of Foggia; Via Napoli 25, 71122, Foggia Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment; University of Foggia; Via Napoli 25, 71122, Foggia Italy
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment; University of Foggia; Via Napoli 25, 71122, Foggia Italy
| |
Collapse
|
14
|
Deptula P, Laine PK, Roberts RJ, Smolander OP, Vihinen H, Piironen V, Paulin L, Jokitalo E, Savijoki K, Auvinen P, Varmanen P. De novo assembly of genomes from long sequence reads reveals uncharted territories of Propionibacterium freudenreichii. BMC Genomics 2017; 18:790. [PMID: 29037147 PMCID: PMC5644110 DOI: 10.1186/s12864-017-4165-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Propionibacterium freudenreichii is an industrially important bacterium granted the Generally Recognized as Safe (the GRAS) status, due to its long safe use in food bioprocesses. Despite the recognized role in the food industry and in the production of vitamin B12, as well as its documented health-promoting potential, P. freudenreichii remained poorly characterised at the genomic level. At present, only three complete genome sequences are available for the species. RESULTS We used the PacBio RS II sequencing platform to generate complete genomes of 20 P. freudenreichii strains and compared them in detail. Comparative analyses revealed both sequence conservation and genome organisational diversity among the strains. Assembly from long reads resulted in the discovery of additional circular elements: two putative conjugative plasmids and three active, lysogenic bacteriophages. It also permitted characterisation of the CRISPR-Cas systems. The use of the PacBio sequencing platform allowed identification of DNA modifications, which in turn allowed characterisation of the restriction-modification systems together with their recognition motifs. The observed genomic differences suggested strain variation in surface piliation and specific mucus binding, which were validated by experimental studies. The phenotypic characterisation displayed large diversity between the strains in ability to utilise a range of carbohydrates, to grow at unfavourable conditions and to form a biofilm. CONCLUSION The complete genome sequencing allowed detailed characterisation of the industrially important species, P. freudenreichii by facilitating the discovery of previously unknown features. The results presented here lay a solid foundation for future genetic and functional genomic investigations of this actinobacterial species.
Collapse
Affiliation(s)
- Paulina Deptula
- Department of Food and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Pia K. Laine
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsi Savijoki
- Department of Food and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Arevalo‐Villena M, Briones‐Perez A, Corbo M, Sinigaglia M, Bevilacqua A. Biotechnological application of yeasts in food science: Starter cultures, probiotics and enzyme production. J Appl Microbiol 2017; 123:1360-1372. [DOI: 10.1111/jam.13548] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- M. Arevalo‐Villena
- Ciencia Y Tecnologia de Alimentos Castilla La Mancha University Ciudad Real Spain
| | - A. Briones‐Perez
- Ciencia Y Tecnologia de Alimentos Castilla La Mancha University Ciudad Real Spain
| | - M.R. Corbo
- Department of the Science of Agriculture Food and Environment University of Foggia Foggia Italy
| | - M. Sinigaglia
- Department of the Science of Agriculture Food and Environment University of Foggia Foggia Italy
| | - A. Bevilacqua
- Department of the Science of Agriculture Food and Environment University of Foggia Foggia Italy
| |
Collapse
|
16
|
Dairy Propionibacteria: Versatile Probiotics. Microorganisms 2017; 5:microorganisms5020024. [PMID: 28505101 PMCID: PMC5488095 DOI: 10.3390/microorganisms5020024] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 12/18/2022] Open
Abstract
Dairy propionibacteria are used as cheese ripening starters, as biopreservative and as beneficial additives, in the food industry. The main species, Propionibacterium freudenreichii, is known as GRAS (Generally Recognized As Safe, USA, FDA). In addition to another dairy species, Propionibacterium acidipropionici, they are included in QPS (Qualified Presumption of Safety) list. Additional to their well-known technological application, dairy propionibacteria increasingly attract attention for their promising probiotic properties. The purpose of this review is to summarize the probiotic characteristics of dairy propionibacteria reported by the updated literature. Indeed, they meet the selection criteria for probiotic bacteria, such as the ability to endure digestive stressing conditions and to adhere to intestinal epithelial cells. This is a prerequisite to bacterial persistence within the gut. The reported beneficial effects are ranked according to property’s type: microbiota modulation, immunomodulation, and cancer modulation. The proposed molecular mechanisms are discussed. Dairy propionibacteria are described as producers of nutraceuticals and beneficial metabolites that are responsible for their versatile probiotic attributes include short chain fatty acids (SCFAs), conjugated fatty acids, surface proteins, and 1,4-dihydroxy-2-naphtoic acid (DHNA). These metabolites possess beneficial properties and their production depends on the strain and on the growth medium. The choice of the fermented food matrix may thus determine the probiotic properties of the ingested product. This review approaches dairy propionibacteria, with an interest in both technological abilities and probiotic attributes.
Collapse
|
17
|
Zárate G, Sáez GD, Pérez Chaia A. Dairy propionibacteria prevent the proliferative effect of plant lectins on SW480 cells and protect the metabolic activity of the intestinal microbiota in vitro. Anaerobe 2017; 44:58-65. [PMID: 28161414 DOI: 10.1016/j.anaerobe.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/09/2017] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
Plant lectins are specific carbohydrate-binding proteins that are widespread in legumes such as beans and pulses, seeds, cereals, and many plants used as farm feeds. They are highly resistant to cooking and digestion, reaching the intestinal lumen and/or blood circulation with biological activity. Since many legume lectins trigger harmful local and systemic reactions after their binding to the mucosal surface, these molecules are generally considered anti-nutritive and/or toxic substances. In the gut, specific cell receptors and bacteria may interact with these dietary components, leading to changes in intestinal physiology. It has been proposed that probiotic microorganisms with suitable surface glycosidic moieties could bind to dietary lectins, favoring their elimination from the intestinal lumen or inhibiting their interaction with epithelial cells. In this work, we assessed in vitro the effects of two representative plant lectins, concanavalin A (Con A) and jacalin (AIL) on the proliferation of SW480 colonic adenocarcinoma cells and metabolic activity of colonic microbiota in the absence or presence of Propionibacterium acidipropionici CRL 1198. Both lectins induced proliferation of colonic cells in a dose-dependent manner, whereas ConA inhibited fermentative activities of colonic microbiota. Pre-incubation of propionibacteria with lectins prevented these effects, which could be ascribed to the binding of lectins by bacterial cells since P. acidipropionici CRL 1198 was unable to metabolize these proteins, and its adhesion to colonic cells was reduced after reaction with Con A or AIL. The results suggest that consumption of propionibacteria at the same time as lectins could reduce the incidence of lectin-induced alterations in the gut and may be a tool to protect intestinal physiology.
Collapse
Affiliation(s)
- Gabriela Zárate
- Centro de Referencias para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina.
| | - Gabriel D Sáez
- Centro de Referencias para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| | - Adriana Pérez Chaia
- Centro de Referencias para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| |
Collapse
|