1
|
Ramar M, Wiscovitch-Russo R, Yano N, Singh H, Lamere E, Short M, Gonzalez-Juarbe N, Fedulov AV. Live bacteria in gut microbiome dictate asthma onset triggered by environmental particles via modulation of DNA methylation in dendritic cells. Cell Rep 2025; 44:115684. [PMID: 40372916 DOI: 10.1016/j.celrep.2025.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/24/2025] [Accepted: 04/18/2025] [Indexed: 05/17/2025] Open
Abstract
Despite broad knowledge of the pathogenesis, our understanding of the origin of allergy and asthma remains poor, preventing etiotropic treatments. The gut microbiome is seen to be altered in asthmatics; however, proof of causality of the microbiome alterations is lacking. We report on gut microbiome transplantation (GMT) from mice predisposed to asthma by maternal exposure to pro-allergy environmental particles into naive recipients. This GMT confers asthma predisposition, and the effect is abrogated by gamma sterilization of the transplant material or by co-administration of antibacterials, indicating that viable bacteria are mediating the effect. Metagenomics identifies key changes in the "pro-asthma" microbiome, and metabolomics links the identified species to altered production of butyrate known to act on immune cells and epigenetic mechanisms. We further show that transplant recipients develop DNA methylation alterations in dendritic cells. Finally, dendritic cells with an altered methylome present allergen to T cells, and this effect is abrogated by an epigenetically acting drug in vitro.
Collapse
Affiliation(s)
- Mohankumar Ramar
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Rosana Wiscovitch-Russo
- Department of Infectious Diseases and Genomic Medicine, J. Craig Venter Institute, Rockville, MD, USA
| | - Naohiro Yano
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Harinder Singh
- Department of Infectious Diseases and Genomic Medicine, J. Craig Venter Institute, Rockville, MD, USA
| | - Edward Lamere
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Short
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Norberto Gonzalez-Juarbe
- Department of Infectious Diseases and Genomic Medicine, J. Craig Venter Institute, Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - Alexey V Fedulov
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Zhan Y, Fu Y, Dai H, Gao H, Huang S, Chen H, Xu J. Characteristics and Clinical Significance of Gut Microbiota in Patients With Epstein-Barr Virus-Associated Liver Dysfunction. Microbiol Immunol 2025; 69:203-211. [PMID: 39789755 DOI: 10.1111/1348-0421.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Infectious mononucleosis (IM) is mainly triggered by Epstein-Barr virus (EBV) infection. There are few studies on the role of the gut microbiota in IM and EBV-associated liver dysfunction. The aim of this study was to investigate the characteristics of the gut microbiota in the EBV-associated liver dysfunction and to evaluate the relationship between the severity of gut microbiota dysbiosis and cytokine levels. A case-control study was performed. Individuals meeting the inclusion and exclusion criteria for EBV-induced IM were enrolled and their fecal and blood samples were collected. The V3-V4 region of the 16s rDNA gene of fecal microbiota was sequenced; bioinformatics analysis including α-diversity, β-diversity, and linear discriminant analysis (LDA) effect size (LEfSe) was performed; and the correlation between bacteria and clinical indices was analysed. A total of 48 participants completed fecal and blood tests, including 18 IM, 11 EBV-associated liver dysfunction, 12 healthy children and 7 EBV-negative liver dysfunction. The α-diversity and β-diversity of the gut microbiota in the EBV-associated liver dysfunction was more than that in IM. The abundance of Granulicatella, Enterococcus, Atopobium and Acinetobacter increased, while the abundance of Prevotella, Sutterella, Collinsella, Desulfovibrio decreased in the EBV-associated liver dysfunction compared with the IM. The abundance of Enterococcus, Atopobium and Acinetobacter correlated positively with the levels of IL-1β, IL-6, TNF-α and CD8+ cytotoxic T lymphocytes%. Gut microbiota of EBV-associated liver dysfunction was significantly disturbed and associated with systemic immune response.
Collapse
Affiliation(s)
- Yi Zhan
- Pediatric Internal Medicine Department, Jinhua Municipal Central Hospital, Zhejiang, China
- The Ward II of Pediatric, Jinhua Maternal & Child Health Care Hospital, Zhejiang, China
| | - Yu Fu
- The Ward II of Pediatric, Jinhua Maternal & Child Health Care Hospital, Zhejiang, China
| | - Hanqi Dai
- The Ward II of Pediatric, Jinhua Maternal & Child Health Care Hospital, Zhejiang, China
| | - Haihong Gao
- Pediatric Internal Medicine Department, Jinhua Municipal Central Hospital, Zhejiang, China
- The Ward II of Pediatric, Jinhua Maternal & Child Health Care Hospital, Zhejiang, China
| | - Shanshan Huang
- The Affiliated Jinhua Hospital of Wenzhou Medical University, Zhejiang, China
| | - Huijuan Chen
- Pediatric Internal Medicine Department, Jinhua Municipal Central Hospital, Zhejiang, China
| | - Jianxin Xu
- Pediatric Internal Medicine Department, Jinhua Municipal Central Hospital, Zhejiang, China
- The Ward II of Pediatric, Jinhua Maternal & Child Health Care Hospital, Zhejiang, China
| |
Collapse
|
3
|
Gong S, Sun L, Sun Y, Ju W, Wang G, Zhang J, Fu X, Lu C, Zhang Y, Song W, Li M, Sun L. Integrated Macrogenomics and Metabolomics Analysis of the Effect of Sea Cucumber Ovum Hydrolysates on Dextran Sodium Sulfate-Induced Colitis. Mar Drugs 2025; 23:73. [PMID: 39997197 PMCID: PMC11857712 DOI: 10.3390/md23020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Inflammatory bowel disease remains a significant challenge in clinical settings. This study investigated the therapeutic potential of sea cucumber ovum hydrolysates (SCH) in a dextran sulfate sodium (DSS)-induced colitis mouse model. SCH, defined by its elevated stability and solubility, with a molecular weight below 1000 Da, significantly alleviated DSS-induced colitis, as evidenced by enhanced splenic index, reduced colonic damage, and diminished serum pro-inflammatory cytokines. Furthermore, macrogenomic analysis demonstrated that SCH increased beneficial gut microbes and decreased pro-inflammatory bacteria. Furthermore, metabolomic analysis of colonic tissues identified elevated levels of anti-inflammatory metabolites, such as Phenyllactate, 2-Hydroxyglutarate, and L-Aspartic acid, in colitis mice after oral administration of SCH. In conclusion, SCH represents a promising candidate for the treatment of colitis.
Collapse
Affiliation(s)
- Shunmin Gong
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Liqin Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Yongjun Sun
- Homey Group Co., Ltd., Rongcheng 264300, China; (Y.S.); (W.J.)
| | - Wenming Ju
- Homey Group Co., Ltd., Rongcheng 264300, China; (Y.S.); (W.J.)
| | - Gongming Wang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.); (J.Z.)
| | - Jian Zhang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.); (J.Z.)
| | - Xuejun Fu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Chang Lu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Yu Zhang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Wenkui Song
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingbo Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| | - Leilei Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (S.G.); (L.S.); (X.F.); (C.L.); (Y.Z.)
| |
Collapse
|
4
|
Singh BK, Thakur K, Kumari H, Mahajan D, Sharma D, Sharma AK, Kumar S, Singh B, Pankaj PP, Kumar R. A review on comparative analysis of marine and freshwater fish gut microbiomes: insights into environmental impact on gut microbiota. FEMS Microbiol Ecol 2025; 101:fiae169. [PMID: 39719366 PMCID: PMC11730441 DOI: 10.1093/femsec/fiae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
The gut microbiota, which includes prokaryotes, archaea, and eukaryotes such as yeasts, some protozoa, and fungi, significantly impacts fish by affecting digestion, metabolism, and the immune system. In this research, we combine various tasks carried out by various bacteria in the gut of fish. This study also examines the gut microbiome composition of marine and freshwater fish, identifying important bacterial species linked to different biological functions. The diversity within fish species highlights the importance of considering nutrition, habitat, and environmental factors in microbiological research on fish. The ever-changing gut microbiome of the fish indicates that microbial communities are specifically adapted to meet the needs of both the host and its environment. This indicates that the fish can adjust to a specific environment with the help of gut microbiota. This important research is crucial for comprehending the complex relationships between fish and their gut bacteria in different aquatic environments. These discoveries have implications for aquaculture practices, fisheries administration, and the broader ecological processes of both freshwater and marine environments. With further progress in this area of study, the knowledge acquired would offer a valuable standpoint to enhance our comprehension of aquatic microbiology and enhance the sustainability and nutrition of fish resources.
Collapse
Affiliation(s)
- Binoy Kumar Singh
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Hishani Kumari
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Birbal Singh
- ICAR—Indian Veterinary Research Institute (IVRI), Regional Station, Palampur 176061, India
| | - Pranay Punj Pankaj
- Department of Zoology, Nagaland University (A Central University), Lumami 798627, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| |
Collapse
|
5
|
Rong X, Shu Q. Modulating butyric acid-producing bacterial community abundance and structure in the intestine of immunocompromised mice with neutral polysaccharides extracted from Codonopsis pilosula. Int J Biol Macromol 2024; 278:134959. [PMID: 39179083 DOI: 10.1016/j.ijbiomac.2024.134959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Codonopsis pilosula, an important medicinal and edible plant in traditional Chinese medicine, is used widely as a tonifying herb for various immunodeficiency diseases. A neutral polysaccharide (CPPs-D1N1) was purified from C. pilosula, composed of fructose and glucose in a molar ratio of 97.28:2.72, with an average molecular weight of 5.985 kDa. Structural analysis revealed a backbone composed of →1)-β-D-Fruf-(2 → units with some β-D-Fruf-(2 → linkages. In a murine immunosuppression model induced by cyclophosphamide injection, oral treatment with C. pilosula polysaccharide was administered, investigating changes in gut microbiota during therapy. The polysaccharide modulated serum immunoglobulins (Ig-G, Ig-M), cytokines (IL-2, IL-6, TNFα), and spleen and thymus indices in immunodeficient mice. Additionally, functional gene primer sequencing enrichment methods revealed alterations in abundance, diversity, and structure of butyrate-producing bacterial populations in the gut, with primary differential genera identified as Butyribacter, Rumanococcus, Dysosmobacter, and Ruseburia. This study provides in vivo evidence supporting the beneficial effects of C. pilosula polysaccharide oral therapy in improving gut microbiota, particularly butyrate-producing bacteria, during treatment of immunosuppressive diseases.
Collapse
Affiliation(s)
- XinQian Rong
- College of traditional Chinese medicine, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang 330004, PR China
| | - QingLong Shu
- College of traditional Chinese medicine, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang 330004, PR China.
| |
Collapse
|
6
|
Moodley S, Kroon E, Naidoo CC, Nyawo GR, Wu BG, Naidoo S, Chiyaka TL, Tshivhula H, Singh S, Li Y, Warren RM, Hoal EG, Schurr E, Clemente JC, Segal LN, Möller M, Theron G. Latent Tuberculosis Infection Is Associated with an Enrichment of Short-Chain Fatty Acid-Producing Bacteria in the Stool of Women Living with HIV. Microorganisms 2024; 12:1048. [PMID: 38930430 PMCID: PMC11205370 DOI: 10.3390/microorganisms12061048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high-TB-burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI in PLHIV. We characterised the stool microbiota of PLHIV with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST-negative) LTBI (n = 25 per group). The 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet-Multinomial Mixtures, DESeq2, and PICRUSt2. No α- or β-diversity differences occurred by LTBI status; however, LTBI-positive people were Faecalibacterium-, Blautia-, Gemmiger-, and Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, and Streptococcus-depleted. Inferred metagenome data showed that LTBI-negative-enriched pathways included several metabolite degradation pathways. Stool from LTBI-positive people demonstrated differential taxa abundance based on a quantitative response to antigen stimulation. In LTBI-positive people, older people had different β-diversities than younger people, whereas in LTBI-negative people, no differences occurred across age groups. Amongst female PLHIV, those with LTBI were, vs. those without LTBI, Faecalibacterium-, Blautia-, Gemmiger-, and Bacteriodes-enriched, which are producers of short-chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.
Collapse
Affiliation(s)
- Suventha Moodley
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Elouise Kroon
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
| | - Charissa C. Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Georgina R. Nyawo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Benjamin G. Wu
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; (B.G.W.); (S.S.); (Y.L.); (L.N.S.)
| | - Selisha Naidoo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
| | - Tinaye L. Chiyaka
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Happy Tshivhula
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Shivani Singh
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; (B.G.W.); (S.S.); (Y.L.); (L.N.S.)
| | - Yonghua Li
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; (B.G.W.); (S.S.); (Y.L.); (L.N.S.)
| | - Robin M. Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
| | - Eileen G. Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
| | - Erwin Schurr
- Department of Biochemistry, McGill University, Montreal, QC H3A 1Y6, Canada;
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, 1001 Boul Décarie, Site Glen Block E, Room EM3.3210, Montréal, QC H4A 3J1, Canada
- McGill International TB Centre, McGill University, Montréal, QC H3A3J1, Canada
- Departments of Medicine and Human Genetics, McGill University, Montréal, QC H3A0C7, Canada
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Leopoldo N. Segal
- Division of Pulmonary and Critical Care Medicine, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; (B.G.W.); (S.S.); (Y.L.); (L.N.S.)
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; (S.M.); (E.K.); (C.C.N.); (G.R.N.); (S.N.); (T.L.C.); (H.T.); (R.M.W.); (E.G.H.); (M.M.)
- African Microbiome Institute, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| |
Collapse
|
7
|
Moodley S, Kroon E, Naidoo CC, Nyawo GR, Wu BG, Naidoo S, Chiyaka TL, Tshivhula H, Singh S, Li Y, Warren RM, Hoal EG, Schurr E, Clemente J, Segal LN, Möller M, Theron G. Latent tuberculosis infection is associated with an enrichment of short chain fatty acid producing bacteria in the stool of women living with HIV. RESEARCH SQUARE 2024:rs.3.rs-4182285. [PMID: 38645218 PMCID: PMC11030539 DOI: 10.21203/rs.3.rs-4182285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high TB burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI, including in PLHIV. Method Within a parent study that recruited adult females with HIV from Cape Town, South Africa into predefined age categories (18-25, 35-60 years), we characterised the stool microbiota of those with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST- negative) LTBI (n=25 per group). 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet Multinomial Mixtures, DESeq2 and PICRUSt2. Results No α- or β-diversity differences occurred by LTBI status; however, LTBI-positives were Faecalibacterium-, Blautia-, Gemmiger-, Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, Streptococcus-depleted. Inferred metagenome data showed LTBI-negative-enriched pathways included several involved in methylglyoxal degradation, L-arginine, putrescine, 4-aminobutanoate degradation and L-arginine and ornithine degradation. Stool from LTBI-positives demonstrated differential taxa abundance based on a quantitative response to antigen stimulation (Acidaminococcus-enrichment and Megamonas-, Alistipes-, and Paraprevotella-depletion associated with higher IGRA or TST responses, respectively). In LTBI-positives, older people had different β-diversities than younger people whereas, in LTBI-negatives, no differences occurred across age groups. Conclusion Amongst female PLHIV, those with LTBI had, vs. those without LTBI, Faecalibacterium, Blautia, Gemmiger, Bacteriodes-enriched, which are producers of short chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.
Collapse
|