1
|
Ehlen QT, Mirsky NA, Slavin BV, Parra M, Nayak VV, Cronstein B, Witek L, Coelho PG. Translational Experimental Basis of Indirect Adenosine Receptor Agonist Stimulation for Bone Regeneration: A Review. Int J Mol Sci 2024; 25:6104. [PMID: 38892291 PMCID: PMC11172580 DOI: 10.3390/ijms25116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Bone regeneration remains a significant clinical challenge, often necessitating surgical approaches when healing bone defects and fracture nonunions. Within this context, the modulation of adenosine signaling pathways has emerged as a promising therapeutic option, encouraging osteoblast activation and tempering osteoclast differentiation. A literature review of the PubMed database with relevant keywords was conducted. The search criteria involved in vitro or in vivo models, with clear methodological descriptions. Only studies that included the use of indirect adenosine agonists, looking at the effects of bone regeneration, were considered relevant according to the eligibility criteria. A total of 29 articles were identified which met the inclusion and exclusion criteria, and they were reviewed to highlight the preclinical translation of adenosine agonists. While preclinical studies demonstrate the therapeutic potential of adenosine signaling in bone regeneration, its clinical application remains unrealized, underscoring the need for further clinical trials. To date, only large, preclinical animal models using indirect adenosine agonists have been successful in stimulating bone regeneration. The adenosine receptors (A1, A2A, A2B, and A3) stimulate various pathways, inducing different cellular responses. Specifically, indirect adenosine agonists act to increase the extracellular concentration of adenosine, subsequently agonizing the respective adenosine receptors. The agonism of each receptor is dependent on its expression on the cell surface, the extracellular concentration of adenosine, and its affinity for adenosine. This comprehensive review analyzed the multitude of indirect agonists currently being studied preclinically for bone regeneration, discussing the mechanisms of each agonist, their cellular responses in vitro, and their effects on bone formation in vivo.
Collapse
Affiliation(s)
- Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bruce Cronstein
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Keren G, Yehezkel G, Satish L, Adamov Z, Barak Z, Ben-Shabat S, Kagan-Zur V, Sitrit Y. Root-secreted nucleosides: signaling chemoattractants of rhizosphere bacteria. FRONTIERS IN PLANT SCIENCE 2024; 15:1388384. [PMID: 38799096 PMCID: PMC11120975 DOI: 10.3389/fpls.2024.1388384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
The rhizosphere is a complex ecosystem, consisting of a narrow soil zone influenced by plant roots and inhabited by soil-borne microorganisms. Plants actively shape the rhizosphere microbiome through root exudates. Some metabolites are signaling molecules specifically functioning as chemoattractants rather than nutrients. These elusive signaling molecules have been sought for several decades, and yet little progress has been made. Root-secreted nucleosides and deoxynucleosides were detected in exudates of various plants by targeted ultra-performance liquid chromatography-mass spectrometry/mass spectrometry. Rhizobacteria were isolated from the roots of Helianthemum sessiliflorum carrying the mycorrhizal desert truffle Terfezia boudieri. Chemotaxis was determined by a glass capillary assay or plate assays on semisolid agar and through a soil plate assay. Nucleosides were identified in root exudates of plants that inhabit diverse ecological niches. Nucleosides induced positive chemotaxis in plant beneficial bacteria Bacillus pumilus, Bacillus subtilis, Pseudomonas turukhanskensis spp., Serratia marcescens, and the pathogenic rhizobacterium Xanthomonas campestris and E coli. In a soil plate assay, nucleosides diffused to substantial distances and evoked chemotaxis under conditions as close as possible to natural environments. This study implies that root-secreted nucleosides are involved in the assembly of the rhizosphere bacterial community by inducing chemotaxis toward plant roots. In animals, nucleoside secretion known as "purinergic signaling" is involved in communication between cells, physiological processes, diseases, phagocytic cell migration, and bacterial activity. The coliform bacterium E. coli that inhabits the lower intestine of warm-blooded organisms also attracted to nucleosides, implying that nucleosides may serve as a common signal for bacterial species inhabiting distinct habitats. Taken together, all these may indicate that chemotaxis signaling by nucleosides is a conserved universal mechanism that encompasses living kingdoms and environments and should be given further attention in plant rhizosphere microbiome research.
Collapse
Affiliation(s)
- Guy Keren
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Galit Yehezkel
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lakkakula Satish
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zahar Adamov
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ze’ev Barak
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Varda Kagan-Zur
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yaron Sitrit
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Katif Research Center for Research & Development, Netivot, Israel
| |
Collapse
|
3
|
Povo-Retana A, Sánchez-García S, Alvarez-Lucena C, Landauro-Vera R, Prieto P, Delgado C, Martín-Sanz P, Boscá L. Crosstalk between P2Y receptors and cyclooxygenase activity in inflammation and tissue repair. Purinergic Signal 2024; 20:145-155. [PMID: 37052777 PMCID: PMC10997571 DOI: 10.1007/s11302-023-09938-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
The role of extracellular nucleotides as modulators of inflammation and cell stress is well established. One of the main actions of these molecules is mediated by the activation of purinergic receptors (P2) of the plasma membrane. P2 receptors can be classified according to two different structural families: P2X ionotropic ion channel receptors, and P2Y metabotropic G protein-coupled receptors. During inflammation, damaged cells release nucleotides and purinergic signaling occurs along the temporal pattern of the synthesis of pro-inflammatory and pro-resolving mediators by myeloid and lymphoid cells. In macrophages under pro-inflammatory conditions, the expression and activity of cyclooxygenase 2 significantly increases and enhances the circulating levels of prostaglandin E2 (PGE2), which exerts its effects both through specific plasma membrane receptors (EP1-EP4) and by activation of intracellular targets. Here we review the mechanisms involved in the crosstalk between PGE2 and P2Y receptors on macrophages, which is dependent on several isoforms of protein kinase C and protein kinase D1. Due to this crosstalk, a P2Y-dependent increase in calcium is blunted by PGE2 whereas, under these conditions, macrophages exhibit reduced migratory capacity along with enhanced phagocytosis, which contributes to the modulation of the inflammatory response and tissue repair.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Patricia Prieto
- Departamento de Farmacología, Farmacognosia y Botánica. Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Čunderlíková B, Klučková K, Babál P, Mlkvý P, Teplický T. Modifications of DAMPs levels in extracellular environment induced by aminolevulinic acid-based photodynamic therapy of esophageal cancer cells. Int J Radiat Biol 2024; 100:802-816. [PMID: 38319688 DOI: 10.1080/09553002.2024.2310002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE Immunogenic cell death plays an important role in anticancer treatment because it combines cell death with appearance of damage associated molecular patterns that have the potential to activate anticancer immunity. Effects of damage associated molecular patterns induced by aminolevulinic acid-based photodynamic therapy were studied mainly on dendritic cells. They have not been deeply studied on macrophages that constitute the essential component of the tumor microenvironment. The aim of this study was to analyze features of esophageal cancer cell death in relation to release capacity of damage associated molecular pattern species, and to test the effect of related extracellular environmental alterations on macrophages. MATERIAL AND METHODS Esophageal Kyse 450 carcinoma cells were subjected to aminolevulinic acid-based photodynamic therapy at different concentrations of aminolevulinic acid. Resting, IFN/LPS and IL-4 macrophage subtypes were prepared from monocytic THP-1 cell line. Cell death features and macrophage modifications were analyzed by fluorescence-based live cell imaging. ATP and HMGB1 levels in cell culture media were determined by ELISA assays. The presence of lipid peroxidation products in culture media was assessed by spectrophotometric detection of thiobarbituric acid reactive substances. RESULTS Aminolevulinic acid-based photodynamic therapy induced various death pathways in Kyse 450 cells that included features of apoptosis, necrosis and ferroptosis. ATP amounts in extracellular environment of treated Kyse 450 cells increased with increasing aminolevulinic acid concentration. Levels of HMGB1, detectable by ELISA assay in culture media, were decreased after the treatment. Aminolevulinic acid-based photodynamic therapy induced lipid peroxidation of cellular structures and increased levels of extracellular lipid peroxidation products. Incubation of resting and IL-4 macrophages in conditioned medium from Kyse 450 cells treated by aminolevulinic acid-based photodynamic therapy induced morphological changes in macrophages, however, comparable alterations were induced also by conditioned medium from untreated cancer cells. CONCLUSION Aminolevulinic acid-based photodynamic therapy leads to alterations in local extracellular levels of damage associated molecular patterns, however, comprehensive studies are needed to find whether they can be responsible for macrophage phenotype modifications.
Collapse
Affiliation(s)
- Beata Čunderlíková
- Institute of Medical Physics and Biophysics, Comenius University, Bratislava, Slovakia
- International Laser Centre, Slovak Centre of Scientific and Technical Information, Bratislava, Slovakia
| | | | - Pavel Babál
- Institute of Pathological Anatomy, Comenius University, Bratislava, Slovakia
| | - Peter Mlkvý
- International Laser Centre, Slovak Centre of Scientific and Technical Information, Bratislava, Slovakia
- St. Elisabeth Cancer Institute Hospital, Bratislava, Slovakia
| | - Tibor Teplický
- Institute of Medical Physics and Biophysics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
5
|
O'Grady SM, Kita H. ATP functions as a primary alarmin in allergen-induced type 2 immunity. Am J Physiol Cell Physiol 2023; 325:C1369-C1386. [PMID: 37842751 PMCID: PMC10861152 DOI: 10.1152/ajpcell.00370.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells after loss of plasma membrane integrity. Oxidative stress represents a form of allergen-induced cellular stress that stimulates oxidant-sensing mechanisms coupled to pathways, which facilitate alarmin mobilization and efflux across the plasma membrane. In this review, we highlight examples of alarmin release and discuss their roles in the initiation of type 2 immunity and allergic airway inflammation. In addition, we discuss the concept of alarmin amplification, where "primary" alarmins, which are directly released in response to a specific cellular stress, stimulate additional signaling pathways that lead to secretion of "secondary" alarmins that include proinflammatory cytokines, such as IL-33, as well as genomic and mitochondrial DNA that coordinate or amplify type 2 immunity. Accordingly, allergen-evoked cellular stress can elicit a hierarchy of alarmin signaling responses from the airway epithelium that trigger local innate immune reactions, impact adaptive immunity, and exacerbate diseases including asthma and other chronic inflammatory conditions that affect airway function.
Collapse
Affiliation(s)
- Scott M O'Grady
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hirohito Kita
- Division of Allergy, Asthma and Immunology, Mayo Clinic, Scottsdale, Arizona, United States
| |
Collapse
|
6
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
7
|
Metz LM, Feige T, de Biasi L, Ehrenberg A, Mulorz J, Toska LM, Reusswig F, Quast C, Gerdes N, Kelm M, Schelzig H, Elvers M. Platelet pannexin-1 channels modulate neutrophil activation and migration but not the progression of abdominal aortic aneurysm. Front Mol Biosci 2023; 10:1111108. [PMID: 36950521 PMCID: PMC10025481 DOI: 10.3389/fmolb.2023.1111108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common disease and highly lethal if untreated. The progressive dilatation of the abdominal aorta is accompanied by degradation and remodeling of the vessel wall due to chronic inflammation. Pannexins represent anion-selective channels and play a crucial role in non-vesicular ATP release to amplify paracrine signaling in cells. Thus, pannexins are involved in many (patho-) physiological processes. Recently, Panx1 channels were identified to be significantly involved in abdominal aortic aneurysm formation through endothelial derived Panx1 regulated inflammation and aortic remodeling. In platelets, Panx1 becomes activated following activation of glycoprotein (GP) VI. Since platelets play a role in cardiovascular diseases including abdominal aortic aneurysm, we analyzed the contribution of platelet Panx1 in the progression of abdominal aortic aneurysm. We detected enhanced Panx1 plasma levels in abdominal aortic aneurysm patients. In experimental abdominal aortic aneurysm using the pancreatic porcine elastase (PPE) mouse model, a major contribution of platelet Panx1 channels in platelet activation, pro-coagulant activity of platelets and platelet-mediated inflammation has been detected. In detail, platelets are important for the migration of neutrophils into the aortic wall induced by direct cell interaction and by activation of endothelial cells. Decreased platelet activation and inflammation did not affect ECM remodeling or wall thickness in platelet-specific Panx1 knock-out mice following PPE surgery. Thus, aortic diameter expansion at different time points after elastase infusion of the aortic wall was unaltered in platelet-specific Panx1 deficient mice suggesting that the modulation of inflammation alone does not affect abdominal aortic aneurysm formation and progression. In conclusion, our data strongly supports the role of platelets in inflammatory responses in abdominal aortic aneurysm via Panx1 channels and adds important knowledge about the significance of platelets in abdominal aortic aneurysm pathology important for the establishment of an anti-platelet therapy for abdominal aortic aneurysm patients.
Collapse
Affiliation(s)
- Lisa Maria Metz
- Department of Vascular- and Endovascular Surgery, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Tobias Feige
- Department of Vascular- and Endovascular Surgery, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Larissa de Biasi
- Department of Vascular- and Endovascular Surgery, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Agnes Ehrenberg
- Department of Vascular- and Endovascular Surgery, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Joscha Mulorz
- Department of Vascular- and Endovascular Surgery, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Laura Mara Toska
- Department of Vascular- and Endovascular Surgery, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Friedrich Reusswig
- Department of Vascular- and Endovascular Surgery, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Christine Quast
- Department of Cardiology, Pulmonology and Vascular Medicine, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Norbert Gerdes
- Department of Cardiology, Pulmonology and Vascular Medicine, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Hubert Schelzig
- Department of Vascular- and Endovascular Surgery, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Margitta Elvers
- Department of Vascular- and Endovascular Surgery, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
- *Correspondence: Margitta Elvers,
| |
Collapse
|
8
|
Mafba and Mafbb regulate microglial colonization of zebrafish brain via controlling chemotaxis receptor expression. Proc Natl Acad Sci U S A 2022; 119:e2203273119. [PMID: 36122226 PMCID: PMC9522419 DOI: 10.1073/pnas.2203273119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Microglia are a subpopulation of macrophages residing in the central nervous system (CNS). Because microglial precursors/peripheral macrophages are born in peripheral hematopoietic tissues, the establishment of a microglia pool in the CNS involves two processes: colonization, the homing of macrophages from peripheral tissues to the CNS, and maturation, the differentiation of brain-colonizing macrophages into microglia. This study aims to investigate the molecular mechanisms underlying microglial colonization during early development. Utilizing a zebrafish model system, we show that Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB essential for macrophage differentiation and phagocytosis, regulate microglial colonization of the brain via modulating the lysoPS-Gpr34a signaling pathway during early embryogenesis. Our findings reveal a previously unappreciated genetic mechanism involved in microglial colonization of the brain. Microglia are the central nervous system (CNS)–resident macrophages involved in neural inflammation, neurogenesis, and neural activity regulation. Previous studies have shown that naturally occurring neuronal apoptosis plays a critical role in regulating microglial colonization of the brain in zebrafish. However, the molecular signaling cascades underlying neuronal apoptosis-mediated microglial colonization and the regulation of these cascades remain undefined. Here, we show that basic leucine zipper (b-Zip) transcription factors, Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB, are key regulators in neuronal apoptosis-mediated microglial colonization of the brain in zebrafish. We document that the loss of Mafba and Mafbb function perturbs microglial colonization of the brain. We further demonstrate that Mafba and Mafbb act cell-autonomously and cooperatively to orchestrate microglial colonization, at least in part, by regulating the expression of G protein–coupled receptor 34a (Gpr34a), which directs peripheral macrophage recruitment into the brain through sensing the lysophosphatidylserine (lysoPS) released by the apoptotic neurons. Our study reveals that Mafba and Mafbb regulate neuronal apoptosis-mediated microglial colonization of the brain in zebrafish via the lysoPS-Gpr34a pathway.
Collapse
|
9
|
Ball JB, Green-Fulgham SM, Watkins LR. Mechanisms of Microglia-Mediated Synapse Turnover and Synaptogenesis. Prog Neurobiol 2022; 218:102336. [DOI: 10.1016/j.pneurobio.2022.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
|
10
|
Gellner AK, Reis J, Fiebich BL, Fritsch B. Electrified microglia: Impact of direct current stimulation on diverse properties of the most versatile brain cell. Brain Stimul 2021; 14:1248-1258. [PMID: 34411753 DOI: 10.1016/j.brs.2021.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation [(t)DCS], modulates cortical excitability and promotes neuroplasticity. Microglia has been identified to respond to electrical currents as well as neuronal activity, but its response to DCS is mostly unknown. OBJECTIVE This study addresses effects of DCS applied in vivo to the sensorimotor cortex on physiological microglia properties and neuron-microglia communication. METHODS Time lapse in vivo 2-photon microscopy in anaesthetized mice was timely coupled with DCS of the sensorimotor cortex to observe microglia dynamics on a population-based and single cell level. Neuron-microglia communication during DCS was investigated in mice with a functional knock out of the fractalkine receptor CX3CR1. Moreover, the role of voltage gated microglial channels and DCS effects on phagocytosis were studied. RESULTS DCS promoted several physiological microglia properties, depending on the glial activation state and stimulation intensity. On a single cell level, process motility was predominantly enhanced in ramified cells whereas horizontal soma movement and galvanotaxis was pronounced in reactive microglia. Blockage of voltage sensitive microglial channels suppressed DCS effects in vivo and in vitro. Microglial motility changes were partially driven by the fractalkine signaling pathway. Moreover, phagocytosis increased after DCS in vitro. CONCLUSION Microglia dynamics are rapidly influenced by DCS. This is the first in vivo demonstration of a direct effect of electrical currents on microglia and indirect effects potentially driven by neuronal activity via the fractalkine pathway.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany; Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Janine Reis
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Brita Fritsch
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
11
|
da Silva W, da Rocha Torres N, de Melo Agripino J, da Silva VHF, de Souza ACA, Ribeiro IC, de Oliveira TA, de Souza LA, Andrade LKR, de Moraes JVB, Diogo MA, de Castro RB, Polêto MD, Afonso LCC, Fietto JLR. ENTPDases from Pathogenic Trypanosomatids and Purinergic Signaling: Shedding Light towards Biotechnological Applications. Curr Top Med Chem 2021; 21:213-226. [PMID: 33019932 DOI: 10.2174/1568026620666201005125146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
ENTPDases are enzymes known for hydrolyzing extracellular nucleotides and playing an essential role in controlling the nucleotide signaling via nucleotide/purinergic receptors P2. Moreover, ENTPDases, together with Ecto-5´-nucleotidase activity, affect the adenosine signaling via P1 receptors. These signals control many biological processes, including the immune system. In this context, ATP is considered as a trigger to inflammatory signaling, while adenosine (Ado) induces anti-inflammatory response. The trypanosomatids Leishmania and Trypanosoma cruzi, pathogenic agents of Leishmaniasis and Chagas Disease, respectively, have their own ENTPDases named "TpENTPDases," which can affect the nucleotide signaling, adhesion and infection, in order to favor the parasite. Besides, TpENTPDases are essential for the parasite nutrition, since the Purine De Novo synthesis pathway is absent in them, which makes these pathogens dependent on the intake of purines and nucleopurines for the Salvage Pathway, in which TpENTPDases also take place. Here, we review information regarding TpNTPDases, including their known biological roles and their effect on the purinergic signaling. We also highlight the roles of these enzymes in parasite infection and their biotechnological applications, while pointing to future developments.
Collapse
Affiliation(s)
- Walmir da Silva
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Nancy da Rocha Torres
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Joice de Melo Agripino
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Anna Cláudia Alves de Souza
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Isadora Cunha Ribeiro
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Luciana Angelo de Souza
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | | | - Marcel Arruda Diogo
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Raíssa Barbosa de Castro
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Marcelo Depolo Polêto
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Luis Carlos Crocco Afonso
- Nucleo de Pesquisa em Ciencias Biologicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| |
Collapse
|
12
|
Seo JH, Dalal MS, Contreras JE. Pannexin-1 Channels as Mediators of Neuroinflammation. Int J Mol Sci 2021; 22:ijms22105189. [PMID: 34068881 PMCID: PMC8156193 DOI: 10.3390/ijms22105189] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a major component of central nervous system (CNS) injuries and neurological diseases, including Alzheimer’s disease, multiple sclerosis, neuropathic pain, and brain trauma. The activation of innate immune cells at the damage site causes the release of pro-inflammatory cytokines and chemokines, which alter the functionality of nearby tissues and might mediate the recruitment of leukocytes to the injury site. If this process persists or is exacerbated, it prevents the adequate resolution of the inflammation, and ultimately enhances secondary damage. Adenosine 5′ triphosphate (ATP) is among the molecules released that trigger an inflammatory response, and it serves as a chemotactic and endogenous danger signal. Extracellular ATP activates multiple purinergic receptors (P2X and P2Y) that have been shown to promote neuroinflammation in a variety of CNS diseases. Recent studies have shown that Pannexin-1 (Panx1) channels are the principal conduits of ATP release from dying cells and innate immune cells in the brain. Herein, we review the emerging evidence that directly implicates Panx-1 channels in the neuroinflammatory response in the CNS.
Collapse
Affiliation(s)
- Joon Ho Seo
- Department of Neurology and Nash Family, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA;
| | - Miloni S. Dalal
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
| | - Jorge E. Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA;
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-754-2770
| |
Collapse
|
13
|
Zahiri D, Burow P, Großmann C, Müller CE, Klapperstück M, Markwardt F. Sphingosine-1-phosphate induces migration of microglial cells via activation of volume-sensitive anion channels, ATP secretion and activation of purinergic receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118915. [PMID: 33271273 DOI: 10.1016/j.bbamcr.2020.118915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Microglia cells are versatile players coordinating inflammatory and regenerative processes in the central nervous system in which sphingosine-1-phosphate (S1P)-mediated migration is essential. We investigated the involved signaling cascade by means of voltage clamp, measurement of ATP secretion, and wound healing assay in murine microglial BV-2 cells. S1P and extracellular hypoosmolar solution evoked an anion conductance of the cell membrane. The corresponding ion currents were inhibited by intracellular hypoosmolar solution and by the anion channel antagonists NPPB, tamoxifen, and carbenoxolone, pointing to the activation of volume-regulated anion channels (VRAC). The knockdown by siRNA indicates the involvement of LRRC8A subunits. The S1PR1-antagonist W123 and pertussis-toxin prevented the S1P-induced currents, showing the involvement of the Gi-protein-coupled S1P receptor 1 (S1PR1). Furthermore, S1P and hypoosmolar extracellular solution induced an increase of ATP levels in the supernatants of BV-2 cells, which was inhibited by NPPB, tamoxifen, and W123. S1P, ATP, and ADP stimulated cell migration into the scratch area. The inhibition of S1PR1 and the downstream Gi proteins hampered cell migration. Antagonists of VRAC were also able to diminish the migration of BV-2 cells. Furthermore, direct inhibition of ATP-gated P2X4 or P2X7 receptors or ADP-stimulated P2Y12 receptors blocked the stimulating effects of S1P on BV-2 cell migration. We conclude that there is an interaction between S1P receptors and purinergic receptors mediated by an S1P-induced ATP release via VRAC and that the amount of released ATP is capable of stimulating cell migration of BV-2 microglia cells via activation of P2X4, P2X7, and P2Y12 receptors.
Collapse
Affiliation(s)
- Danyal Zahiri
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Philipp Burow
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Claudia Großmann
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Manuela Klapperstück
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany.
| |
Collapse
|
14
|
Cozzo AJ, Coleman MF, Pearce JB, Pfeil AJ, Etigunta SK, Hursting SD. Dietary Energy Modulation and Autophagy: Exploiting Metabolic Vulnerabilities to Starve Cancer. Front Cell Dev Biol 2020; 8:590192. [PMID: 33224954 PMCID: PMC7674637 DOI: 10.3389/fcell.2020.590192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells experience unique and dynamic shifts in their metabolic function in order to survive, proliferate, and evade growth inhibition in the resource-scarce tumor microenvironment. Therefore, identification of pharmacological agents with potential to reprogram cancer cell metabolism may improve clinical outcomes in cancer therapy. Cancer cells also often exhibit an increased dependence on the process known as autophagy, both for baseline survival and as a response to stressors such as chemotherapy or a decline in nutrient availability. There is evidence to suggest that this increased dependence on autophagy in cancer cells may be exploitable clinically by combining autophagy modulators with existing chemotherapies. In light of the increased metabolic rate in cancer cells, interest is growing in approaches aimed at "starving" cancer through dietary and pharmacologic interventions that reduce availability of nutrients and pro-growth hormonal signals known to promote cancer progression. Several dietary approaches, including chronic calorie restriction and multiple forms of fasting, have been investigated for their potential anti-cancer benefits, yielding promising results in animal models. Induction of autophagy in response to dietary energy restriction may underlie some of the observed benefit. However, while interventions based on dietary energy restriction have demonstrated safety in clinical trials, uncertainty remains regarding translation to humans as well as feasibility of achieving compliance due to the potential discomfort and weight loss that accompanies dietary restriction. Further induction of autophagy through dietary or pharmacologic metabolic reprogramming interventions may enhance the efficacy of autophagy inhibition in the context of adjuvant or neo-adjuvant chemotherapy. Nonetheless, it remains unclear whether therapeutic agents aimed at autophagy induction, autophagy inhibition, or both are a viable therapeutic strategy for improving cancer outcomes. This review discusses the literature available for the therapeutic potential of these approaches.
Collapse
Affiliation(s)
- Alyssa J Cozzo
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Duke University School of Medicine, Durham, NC, United States
| | - Michael F Coleman
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jane B Pearce
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alexander J Pfeil
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Suhas K Etigunta
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D Hursting
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| |
Collapse
|
15
|
Adamiak M, Abdel-Latif A, Bujko K, Thapa A, Anusz K, Tracz M, Brzezniakiewicz-Janus K, Ratajczak J, Kucia M, Ratajczak MZ. Nlrp3 Inflammasome Signaling Regulates the Homing and Engraftment of Hematopoietic Stem Cells (HSPCs) by Enhancing Incorporation of CXCR4 Receptor into Membrane Lipid Rafts. Stem Cell Rev Rep 2020; 16:954-967. [PMID: 32661868 PMCID: PMC7456406 DOI: 10.1007/s12015-020-10005-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fast and efficient homing and engraftment of hematopoietic stem progenitor cells (HSPCs) is crucial for positive clinical outcomes from transplantation. We found that this process depends on activation of the Nlrp3 inflammasome, both in the HSPCs to be transplanted and in the cells in the recipient bone marrow (BM) microenvironment. For the first time we provide evidence that functional deficiency in the Nlrp3 inflammasome in transplanted cells or in the host microenvironment leads to defective homing and engraftment. At the molecular level, functional deficiency of the Nlrp3 inflammasome in HSPCs leads to their defective migration in response to the major BM homing chemoattractant stromal-derived factor 1 (SDF-1) and to other supportive chemoattractants, including sphingosine-1-phosphate (S1P) and extracellular adenosine triphosphate (eATP). We report that activation of the Nlrp3 inflammasome increases autocrine release of eATP, which promotes incorporation of the CXCR4 receptor into membrane lipid rafts at the leading surface of migrating cells. On the other hand, a lack of Nlrp3 inflammasome expression in BM conditioned for transplantation leads to a decrease in expression of SDF-1 and danger-associated molecular pattern molecules (DAMPs), which are responsible for activation of the complement cascade (ComC), which in turn facilitates the homing and engraftment of HSPCs.
Collapse
Affiliation(s)
- Mateusz Adamiak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, USA
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Arjun Thapa
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Krzysztof Anusz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Michał Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Myeloid Pannexin-1 mediates acute leukocyte infiltration and leads to worse outcomes after brain trauma. J Neuroinflammation 2020; 17:245. [PMID: 32819386 PMCID: PMC7441665 DOI: 10.1186/s12974-020-01917-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023] Open
Abstract
Background Neuroinflammation is a major component of secondary damage after traumatic brain injury (TBI). We recently reported that pharmacological inhibition of Pannexin-1 (Panx1) channels markedly reduced the inflammatory response after TBI. Panx1 channels have been shown to be important conduits for adenosine 5′-triphosphate (ATP) release and are associated with leukocyte infiltration and pyroptosis. Because Panx1 blockers significantly decrease ATP release and migration of activated microglia and other myeloid cells (such as monocyte-derived macrophages and dendritic cells) in vitro, we hypothesized that myeloid Panx1 channels play a specific role in immune cell infiltration promoting tissue damage following TBI. Methods The murine-controlled cortical impact (CCI) model was used on myeloid-specific Panx1 conditional knockout (Cx3cr1-Cre::Panx1fl/fl) mice to determine whether myeloid Panx1 mediates neuroinflammation and brain damage. Immune cell infiltration was measured using flow cytometry. Locomotor and memory functions were measured using the rotarod and Barnes maze test, respectively. The levels of biomarkers for tissue damage and blood–brain barrier leakage were measured using western blot and magnetic resonance imaging. Panx1 channel activity was measured with ex vivo dye uptake assays, using flow cytometry and confocal microscopy. Results CCI-injured Cx3cr1-Cre::Panx1fl/fl mice showed markedly reduced immune cell infiltration to the brain parenchyma compared with Panx1fl/fl mice. As expected, Panx1 dependent activity, assessed by dye uptake, was markedly reduced only in myeloid cells from Cx3cr1-Cre::Panx1fl/fl mice. The expression of biomarkers of tissue damage was significantly reduced in the CCI-injured Cx3cr1-Cre::Panx1fl/fl mice compared with Panx1fl/fl mice. In line with this, magnetic resonance imaging showed reduced blood–brain barrier leakage in CCI-injured Cx3cr1-Cre::Panx1fl/fl mice. There was also a significant improvement in motor and memory function in Cx3cr1-Cre::Panx1fl/fl mice when compared with Panx1fl/fl mice within a week post-CCI injury. Conclusion Our data demonstrate that CCI-related outcomes correlate with Panx1 channel function in myeloid cells, indicating that activation of Panx1 channels in myeloid cells is a major contributor to acute brain inflammation following TBI. Importantly, our data indicate myeloid Panx1 channels could serve as an effective therapeutic target to improve outcome after TBI.
Collapse
|
17
|
Tam TH, Chan KL, Boroumand P, Liu Z, Brozinick JT, Bui HH, Roth K, Wakefield CB, Penuela S, Bilan PJ, Klip A. Nucleotides released from palmitate-activated murine macrophages attract neutrophils. J Biol Chem 2020; 295:4902-4911. [PMID: 32132172 DOI: 10.1074/jbc.ra119.010868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/27/2020] [Indexed: 01/11/2023] Open
Abstract
Obesity and elevation of circulating free fatty acids are associated with an accumulation and proinflammatory polarization of macrophages within metabolically active tissues, such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high-fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. Here we used a cell culture system as proof of concept to show that, upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we found that palmitate up-regulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, shown previously to allow transfer of nucleotides across membranes. These findings suggest that proinflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity.
Collapse
Affiliation(s)
- Theresa H Tam
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kenny L Chan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhi Liu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | | | | | - Kenneth Roth
- Eli Lilly and Company, Indianapolis, Indiana 46285
| | - C Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
18
|
Synthesis and preclinical validation of novel P2Y1 receptor ligands as a potent anti-prostate cancer agent. Sci Rep 2019; 9:18938. [PMID: 31831761 PMCID: PMC6908675 DOI: 10.1038/s41598-019-55194-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Purinergic receptor is a potential drug target for neuropathic pain, Alzheimer disease, and prostate cancer. Focusing on the structure-based ligand discovery, docking analysis on the crystal structure of P2Y1 receptor (P2Y1R) with 923 derivatives of 1-indolinoalkyl 2-phenolic compound is performed to understand the molecular insights of the receptor. The structural model identified the top novel ligands, 426 (compound 1) and 636 (compound 2) having highest binding affinity with the docking score of -7.38 and -6.92. We have reported the interaction efficacy and the dynamics of P2Y1R protein with the ligands. The best hits synthesized were experimentally optimized as a potent P2Y1 agonists. These ligands exhibits anti-proliferative effect against the PC-3 and DU-145 cells (IC50 = 15 µM - 33 µM) with significant increase in the calcium level in dose- and time-dependent manner. Moreover, the activation of P2Y1R induced the apoptosis via Capase3/7 and ROS signaling pathway. Thus it is evidenced that the newly synthesized ligands, as a P2Y1R agonists could potentially act as a therapeutic drug for treating prostate cancer.
Collapse
|
19
|
McQuade A, Blurton-Jones M. Microglia in Alzheimer's Disease: Exploring How Genetics and Phenotype Influence Risk. J Mol Biol 2019; 431:1805-1817. [PMID: 30738892 PMCID: PMC6475606 DOI: 10.1016/j.jmb.2019.01.045] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/25/2023]
Abstract
Research into the function of microglia has dramatically accelerated during the last few years, largely due to recent genetic findings implicating microglia in virtually every neurodegenerative disorder. In Alzheimer's disease (AD), a majority of risk loci discovered through genome-wide association studies were found in or near genes expressed most highly in microglia leading to the hypothesis that microglia play a much larger role in disease progression than previously thought. From this body of work produced in the last several years, we find that almost every function of microglia has been proposed to influence the progression of AD from altered phagocytosis and synaptic pruning to cytokine secretion and changes in trophic support. By studying key Alzheimer's risk genes such as TREM2, CD33, ABCA7, and MS4A6A, we will be able to distinguish true disease-modulatory pathways from the full range of microglial-related functions. To successfully carry out these experiments, more advanced microglial models are needed. Microglia are quite sensitive to their local environment, suggesting the need to more fully recapitulate an in vivo environment to study this highly plastic cell type. Likely only by combining the above approaches will the field fully elucidate the molecular pathways that regulate microglia and influence neurodegeneration, in turn uncovering potential new targets for future therapeutic development.
Collapse
Affiliation(s)
- Amanda McQuade
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Lin YF, Xie Z, Zhou J, Yin G, Lin HD. Differential gene and protein expression between rat tibial nerve and common peroneal nerve during Wallerian degeneration. Neural Regen Res 2019; 14:2183-2191. [PMID: 31397358 PMCID: PMC6788246 DOI: 10.4103/1673-5374.262602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Wallerian degeneration and nerve regeneration after injury are complex processes involving many genes, proteins and cytokines. After different peripheral nerve injuries the regeneration rate can differ. Whether this is caused by differential expression of genes and proteins during Wallerian degeneration remains unclear. The right tibial nerve and the common peroneal nerve of the same rat were exposed and completely cut through and then sutured in the same horizontal plane. On days 1, 7, 14, and 21 after surgery, 1–2 cm of nerve tissue distal to the suture site was dissected out from the tibial and common peroneal nerves. The differences in gene and protein expression during Wallerian degeneration of the injured nerves were then studied by RNA sequencing and proteomic techniques. In the tibial and common peroneal nerves, there were 1718, 1374, 1187, and 2195 differentially expressed genes, and 477, 447, 619, and 495 differentially expressed proteins on days 1, 7, 14, and 21 after surgery, respectively. Forty-seven pathways were activated during Wallerian degeneration. Three genes showing significant differential expression by RNA sequencing (Hoxd4, Lpcat4 and Tbx1) were assayed by real-time quantitative polymerase chain reaction. RNA sequencing and real-time quantitative polymerase chain reaction results were consistent. Our findings showed that expression of genes and proteins in injured tibial and the common peroneal nerves were significantly different during Wallerian degeneration at different time points. This suggests that the biological processes during Wallerian degeneration are different in different peripheral nerves after injury. The procedure was approved by the Animal Experimental Ethics Committee of the Second Military Medical University, China (approval No. CZ20160218) on February 18, 2016.
Collapse
Affiliation(s)
- Yao-Fa Lin
- Department of Orthopedic Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Zheng Xie
- Department of Orthopedic Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Jun Zhou
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Yin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao-Dong Lin
- Department of Orthopedic Surgery, Changzheng Hospital, the Second Military Medical University; Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Ventura ALM, Dos Santos-Rodrigues A, Mitchell CH, Faillace MP. Purinergic signaling in the retina: From development to disease. Brain Res Bull 2018; 151:92-108. [PMID: 30458250 DOI: 10.1016/j.brainresbull.2018.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Retinal injuries and diseases are major causes of human disability involving vision impairment by the progressive and permanent loss of retinal neurons. During development, assembly of this tissue entails a successive and overlapping, signal-regulated engagement of complex events that include proliferation of progenitors, neurogenesis, cell death, neurochemical differentiation and synaptogenesis. During retinal damage, several of these events are re-activated with both protective and detrimental consequences. Purines and pyrimidines, along with their metabolites are emerging as important molecules regulating both retinal development and the tissue's responses to damage. The present review provides an overview of the purinergic signaling in the developing and injured retina. Recent findings on the presence of vesicular and channel-mediated ATP release by retinal and retinal pigment epithelial cells, adenosine synthesis and release, expression of receptors and intracellular signaling pathways activated by purinergic signaling in retinal cells are reported. The pathways by which purinergic receptors modulate retinal cell proliferation, migration and death of retinal cells during development and injury are summarized. The contribution of nucleotides to the self-repair of the injured zebrafish retina is also discussed.
Collapse
Affiliation(s)
- Ana Lucia Marques Ventura
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Niterói, RJ, Brazil.
| | | | - Claire H Mitchell
- Department of Anatomy and Cell Biology, Ophthalmology, and Physiology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Maria Paula Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Ratajczak MZ, Adamiak M, Kucia M, Tse W, Ratajczak J, Wiktor-Jedrzejczak W. The Emerging Link Between the Complement Cascade and Purinergic Signaling in Stress Hematopoiesis. Front Immunol 2018; 9:1295. [PMID: 29922299 PMCID: PMC5996046 DOI: 10.3389/fimmu.2018.01295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Innate immunity plays an important role in orchestrating the immune response, and the complement cascade (ComC) is a major component of this ancient defense system, which is activated by the classical-, alternative-, or mannan-binding lectin (MBL) pathways. However, the MBL-dependent ComC-activation pathway has been somewhat underappreciated for many years; recent evidence indicates that it plays a crucial role in regulating the trafficking of hematopoietic stem/progenitor cells (HSPCs) by promoting their egress from bone marrow (BM) into peripheral blood (PB). This process is initiated by the release of danger-associated molecular patterns (DAMPs) from BM cells, including the most abundant member of this family, adenosine triphosphate (ATP). This nucleotide is well known as a ubiquitous intracellular molecular energy source, but when secreted becomes an important extracellular nucleotide signaling molecule and mediator of purinergic signaling. What is important for the topic of this review, ATP released from BM cells is recognized as a DAMP by MBL, and the MBL-dependent pathway of ComC activation induces a state of "sterile inflammation" in the BM microenvironment. This activation of the ComC by MBL leads to the release of several potent mediators, including the anaphylatoxins C5a and desArgC5a, which are crucial for egress of HSPCs into the circulation. In parallel, as a ligand for purinergic receptors, ATP affects mobilization of HSPCs by activating other pro-mobilizing pathways. This emerging link between the release of ATP, which on the one hand is an activator of the MBL pathway of the ComC and on the other hand is a purinergic signaling molecule, will be discussed in this review. This mechanism plays an important role in triggering defense mechanisms in response to tissue/organ injury but may also have a negative impact by triggering autoimmune disorders, aging of HSPCs, induction of myelodysplasia, and graft-versus-host disease after transplantation of histoincompatible hematopoietic cells.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Mateusz Adamiak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - William Tse
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
23
|
Abstract
More than a decade has passed since the conceptualization of the "alarmin" hypothesis. The alarmin family has been expanding in terms of both number and the concept. It has recently become clear that alarmins play important roles as initiators and participants in a diverse range of physiological and pathophysiological processes such as host defense, regulation of gene expression, cellular homeostasis, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Here, we provide a general view on the participation of alarmins in the induction of innate and adaptive immune responses, as well as their contribution to tumor immunity.
Collapse
Affiliation(s)
- De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Zhen Han
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
24
|
Hatano N, Ohya S, Imaizumi Y, Clark RB, Belke D, Giles WR. ATP increases [Ca 2+ ] i and activates a Ca 2+ -dependent Cl - current in rat ventricular fibroblasts. Exp Physiol 2018; 103:666-682. [PMID: 29493027 DOI: 10.1113/ep086822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/22/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Although electrophysiological and biophysical characteristics of heart fibroblasts have been studied in detail, their responses to prominent paracrine agents in the myocardium have not been addressed adequately. Our experiments characterize changes in cellular electrophysiology and intracellular calcium in response to ATP. What is the main finding and its importance? In rat ventricular fibroblasts maintained in cell culture, we find that ATP activates a specific subset of Ca2+ -activated Cl- channels as a consequence of binding to P2Y purinoceptors and then activating phospholipase C. This response is not dependent on [Ca2+ ]o but requires an increase in [Ca2+ ]i and is modulated by the type of nucleotide that is the purinergic agonist. ABSTRACT Effects of ATP on enzymatically isolated rat ventricular fibroblasts maintained in short-term (36-72 h) cell culture were examined. Immunocytochemical staining of these cells revealed that a fibroblast, as opposed to a myofibroblast, phenotype was predominant. ATP, ADP or uridine 5'-triphosphate (UTP) all produced large increases in [Ca2+ ]i . Voltage-clamp studies (amphotericin-perforated patch) showed that ATP (1-100 μm) activated an outwardly rectifying current, with a reversal potential very close to the Nernst potential for Cl- . In contrast, ADP was much less effective, and UTP produced no detectable current. The non-selective Cl- channel blockers niflumic acid, DIDS and NPPB (each at 100 μm), blocked the responses to 100 μm ATP. An agonist for P2Y purinoceptors, 2-MTATP, activated a very similar outwardly rectifying C1- current. The P2Y receptor antagonists, suramin and PPADS (100 μm each), significantly inhibited the Cl- current produced by 100 μm ATP. ATP was able to activate this Cl- current when [Ca2+ ]o was removed, but not when [Ca2+ ]i was buffered with BAPTA-AM. In the presence of the phospholipase C inhibitor U73122, this Cl- current could not be activated. PCR analysis revealed strong signals for a number of P2Y purinoceptors and for the Ca2+ -activated Cl- channel, TMEM16F (also denoted ANO6). In summary, these results demonstrate that activation of P2Y receptors by ATP causes a phospholipase C-dependent increase in [Ca2+ ]i , followed by activation of a Ca2+ -dependent Cl- current in rat ventricular fibroblasts.
Collapse
Affiliation(s)
- Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Robert B Clark
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Darrell Belke
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Wayne R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol 2018; 135:529-550. [PMID: 29302779 PMCID: PMC5978931 DOI: 10.1007/s00401-017-1803-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022]
Abstract
Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV-neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes.
Collapse
|
26
|
Abstract
Neutrophils are the primary cells recruited to inflamed sites during an innate immune response to tissue damage and/or infection. They are finely sensitive to inciting stimuli to reach in great numbers and within minutes areas of inflammation and tissue insult. For this effective response, they can detect extracellular chemical gradients and move towards higher concentrations, the so-called chemotaxis process or guided cell migration. This directed neutrophil recruitment is orchestrated by chemoattractants, a chemically diverse group of molecular guidance cues (e.g., lipids, N-formylated peptides, complement, anaphylotoxins and chemokines). Neutrophils respond to these guidance signals in a hierarchical manner and, based on this concept, they can be further subdivided into two groups: "end target" and "intermediary" chemoattractants, the signals of the former dominant over the latter. Neutrophil chemoattractants exert their effects through interaction with heptahelical G protein-coupled receptors (GPCRs) expressed on cell surfaces and the chemotactic response is mainly regulated by the Rho family of GTPases. Additionally, neutrophil behavior might differ and be affected in different complex scenarios such as disease conditions and type of vascular bed in specific organs. Finally, there are different mechanisms to disrupt neutrophil chemotaxis either associated to the resolution of inflammation or to bacterial escape and systemic infection. Therefore, in the present review, we will discuss the different molecular players involved in neutrophil chemotaxis, paying special attention to the different chemoattractants described and the way that they interact intra- and extravascularly for neutrophils to properly reach the target tissue.
Collapse
Affiliation(s)
- Björn Petri
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Maria-Jesús Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain. .,Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
| |
Collapse
|
27
|
Drago F, Lombardi M, Prada I, Gabrielli M, Joshi P, Cojoc D, Franck J, Fournier I, Vizioli J, Verderio C. ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes. Front Pharmacol 2017; 8:910. [PMID: 29321741 PMCID: PMC5733563 DOI: 10.3389/fphar.2017.00910] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Extracellular ATP is among molecules promoting microglia activation and inducing the release of extracellular vesicles (EVs), which are potent mediators of intercellular communication between microglia and the microenvironment. We previously showed that EVs produced under ATP stimulation (ATP-EVs) propagate a robust inflammatory reaction among astrocytes and microglia in vitro and in mice with subclinical neuroinflammation (Verderio et al., 2012). However, the proteome of EVs released upon ATP stimulation has not yet been elucidated. In this study we applied a label free proteomic approach to characterize the proteome of EVs released constitutively and during microglia activation with ATP. We show that ATP drives sorting in EVs of a set of proteins implicated in cell adhesion/extracellular matrix organization, autophagy-lysosomal pathway and cellular metabolism, that may influence the response of recipient astrocytes to EVs. These data provide new clues to molecular mechanisms involved in microglia response to ATP and in microglia signaling to the environment via EVs.
Collapse
Affiliation(s)
- Francesco Drago
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France.,Fondazione Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | | | | | | | - Pooja Joshi
- Institute of Neuroscience (CNR), Milan, Italy
| | - Dan Cojoc
- Institute of Materials (CNR), Trieste, Italy
| | - Julien Franck
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Isabelle Fournier
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Jacopo Vizioli
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Claudia Verderio
- IRCCS Humanitas, Rozzano, Italy.,Institute of Neuroscience (CNR), Milan, Italy
| |
Collapse
|
28
|
Myeloid P2Y2 receptor promotes acute inflammation but is dispensable for chronic high-fat diet-induced metabolic dysfunction. Purinergic Signal 2017; 14:19-26. [PMID: 29086245 DOI: 10.1007/s11302-017-9589-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
The purinergic receptor P2Y2 binds ATP to control chemotaxis of myeloid cells, and global P2Y2 receptor knockout mice are protected in models of acute inflammation. Chronic inflammation mediated by macrophages and other immune cells in adipose tissue contributes to the development of insulin resistance. Here, we investigate whether mice lacking P2Y2 receptors on myeloid cells are protected against acute and chronic inflammation. Wild-type mice were transplanted with either wild-type or P2Y2 receptor null bone marrow and treated with a sublethal dose of endotoxin as a model of acute inflammation, or fed a high-fat diet to induce obesity and insulin resistance as a model of chronic inflammation. P2Y2-/- chimeric mice were protected against acute inflammation. However, high-fat diet feeding induced comparable inflammation and insulin resistance in both WT and P2Y2-/- chimeric mice. Of note, confocal microscopy revealed significantly fewer crown-like structures, assemblies of macrophages around adipocytes, in P2Y2-/- chimeric mice compared to WT chimeric mice. We conclude that P2Y2 receptors on myeloid cells are important in mediating acute inflammation but are dispensable for the development of whole body insulin resistance in diet-induced obese mice.
Collapse
|
29
|
Mound A, Lozanova V, Warnon C, Hermant M, Robic J, Guere C, Vie K, Lambert de Rouvroit C, Tyteca D, Debacq-Chainiaux F, Poumay Y. Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in sphingomyelin and involved in re-epithelialization. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:958-971. [DOI: 10.1016/j.bbalip.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
|
30
|
Amison R, Arnold S, O'Shaughnessy B, Cleary S, Ofoedu J, Idzko M, Page C, Pitchford S. Lipopolysaccharide (LPS) induced pulmonary neutrophil recruitment and platelet activation is mediated via the P2Y1 and P2Y14 receptors in mice. Pulm Pharmacol Ther 2017; 45:62-68. [DOI: 10.1016/j.pupt.2017.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 11/29/2022]
|
31
|
Garcia J, Bagwell J, Njaine B, Norman J, Levic DS, Wopat S, Miller SE, Liu X, Locasale JW, Stainier DYR, Bagnat M. Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord. Curr Biol 2017. [PMID: 28648824 DOI: 10.1016/j.cub.2017.05.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The notochord, a conserved axial structure required for embryonic axis elongation and spine development, consists of giant vacuolated cells surrounded by an epithelial sheath [1-3]. During morphogenesis, vacuolated cells maintain their structural integrity despite being under constant mechanical stress [4]. We hypothesized that the high density of caveolae present in vacuolated cells [5, 6] could buffer mechanical tension. Caveolae are 50- to 80-nm membrane invaginations lined by cage-like polygonal structures [7, 8] formed by caveolin 1 (Cav1) or Cav3 and one of the cavin proteins [6, 9-11]. Recent in vitro work has shown that plasma membrane caveolae constitute a membrane reservoir that can buffer mechanical stresses such as stretching or osmotic swelling [12]. Moreover, mechanical integrity of vascular and muscle cells is partly dependent on caveolae [13-15]. However, the in vivo mechano-protective roles of caveolae have only begun to be explored. Using zebrafish mutants for cav1, cav3, and cavin1b, we show that caveolae are essential for notochord integrity. Upon loss of caveola function, vacuolated cells collapse at discrete positions under the mechanical strain of locomotion. Then, sheath cells invade the inner notochord and differentiate into vacuolated cells, thereby restoring notochord function and allowing normal spine development. Our data further indicate that nucleotides released by dying vacuolated cells promote sheath cell vacuolization and trans-differentiation. This work reveals a novel structural role for caveolae in vertebrates and provides unique insights into the mechanisms that safeguard notochord and spine development.
Collapse
Affiliation(s)
- Jamie Garcia
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Brian Njaine
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - James Norman
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Daniel S Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Susan Wopat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Sara E Miller
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
32
|
Abstract
Neuronal survival, electrical signaling and synaptic activity require a well-balanced micro-environment in the central nervous system. This is achieved by the blood-brain barrier (BBB), an endothelial barrier situated in the brain capillaries, that controls near-to-all passage in and out of the brain. The endothelial barrier function is highly dependent on signaling interactions with surrounding glial, neuronal and vascular cells, together forming the neuro-glio-vascular unit. Within this functional unit, connexin (Cx) channels are of utmost importance for intercellular communication between the different cellular compartments. Connexins are best known as the building blocks of gap junction (GJ) channels that enable direct cell-cell transfer of metabolic, biochemical and electric signals. In addition, beyond their role in direct intercellular communication, Cxs also form unapposed, non-junctional hemichannels in the plasma membrane that allow the passage of several paracrine messengers, complementing direct GJ communication. Within the NGVU, Cxs are expressed in vascular endothelial cells, including those that form the BBB, and are eminent in astrocytes, especially at their endfoot processes that wrap around cerebral vessels. However, despite the density of Cx channels at this so-called gliovascular interface, it remains unclear as to how Cx-based signaling between astrocytes and BBB endothelial cells may converge control over BBB permeability in health and disease. In this review we describe available evidence that supports a role for astroglial as well as endothelial Cxs in the regulation of BBB permeability during development as well as in disease states.
Collapse
|
33
|
Dworak M, Kim T, McCarley RW, Basheer R. Creatine supplementation reduces sleep need and homeostatic sleep pressure in rats. J Sleep Res 2017; 26:377-385. [PMID: 28397310 PMCID: PMC5435551 DOI: 10.1111/jsr.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/11/2017] [Indexed: 01/02/2023]
Abstract
Sleep has been postulated to promote brain energy restoration. It is as yet unknown if increasing the energy availability within the brain reduces sleep need. The guanidine amino acid creatine (Cr) is a well-known energy booster in cellular energy homeostasis. Oral Cr-monohydrate supplementation (CS) increases exercise performance and has been shown to have substantial effects on cognitive performance, neuroprotection and circadian rhythms. The effect of CS on cellular high-energy molecules and sleep-wake behaviour is unclear. Here, we examined the sleep-wake behaviour and brain energy metabolism before and after 4-week-long oral administration of CS in the rat. CS decreased total sleep time and non-rapid eye movement (NREM) sleep significantly during the light (inactive) but not during the dark (active) period. NREM sleep and NREM delta activity were decreased significantly in CS rats after 6 h of sleep deprivation. Biochemical analysis of brain energy metabolites showed a tendency to increase in phosphocreatine after CS, while cellular adenosine triphosphate (ATP) level decreased. Microdialysis analysis showed that the sleep deprivation-induced increase in extracellular adenosine was attenuated after CS. These results suggest that CS reduces sleep need and homeostatic sleep pressure in rats, thereby indicating its potential in the treatment of sleep-related disorders.
Collapse
Affiliation(s)
- Markus Dworak
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
- Institute of Movement and Neurosciences, German Sport University Cologne, Germany
| | - Tae Kim
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Robert W. McCarley
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| | - Radhika Basheer
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| |
Collapse
|
34
|
Matyash M, Zabiegalov O, Wendt S, Matyash V, Kettenmann H. The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain. PLoS One 2017; 12:e0175012. [PMID: 28376099 PMCID: PMC5380357 DOI: 10.1371/journal.pone.0175012] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/20/2017] [Indexed: 02/03/2023] Open
Abstract
Microglial cells invade the brain as amoeboid precursors and acquire a highly ramified morphology in the postnatal brain. Microglia express all essential purinergic elements such as receptors, nucleoside transporters and ecto-enzymes, including CD39 (NTPDase1) and CD73 (5'-nucleotidase), which sequentially degrade extracellular ATP to adenosine. Here, we show that constitutive deletion of CD39 and CD73 or both caused an inhibition of the microglia ramified phenotype in the brain with a reduction in the length of processes, branching frequency and number of intersections with Sholl spheres. In vitro, unlike wild-type microglia, cd39-/- and cd73-/- microglial cells were less complex and did not respond to ATP with the transformation into a more ramified phenotype. In acute brain slices, wild-type microglia retracted approximately 50% of their processes within 15 min after slicing of the brain, and this phenomenon was augmented in cd39-/- mice; moreover, the elongation of microglial processes towards the source of ATP or towards a laser lesion was observed only in wild-type but not in cd39-/- microglia. An elevation of extracellular adenosine 1) by the inhibition of adenosine transport with dipyridamole, 2) by application of exogenous adenosine or 3) by degradation of endogenous ATP/ADP with apyrase enhanced spontaneous and ATP-induced ramification of cd39-/- microglia in acute brain slices and facilitated the transformation of cd39-/- and cd73-/- microglia into a ramified process-bearing phenotype in vitro. These data indicate that under normal physiological conditions, CD39 and CD73 nucleotidases together with equilibrative nucleoside transporter 1 (ENT1) control the fate of extracellular adenosine and thereby the ramification of microglial processes.
Collapse
Affiliation(s)
- Marina Matyash
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oleksandr Zabiegalov
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefan Wendt
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Vitali Matyash
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- * E-mail:
| |
Collapse
|
35
|
Lawrence SM, Corriden R, Nizet V. Age-Appropriate Functions and Dysfunctions of the Neonatal Neutrophil. Front Pediatr 2017; 5:23. [PMID: 28293548 PMCID: PMC5329040 DOI: 10.3389/fped.2017.00023] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
Neonatal and adult neutrophils are distinctly different from one another due to well-defined and documented deficiencies in neonatal cells, including impaired functions, reduced concentrations of microbicidal proteins and enzymes necessary for pathogen destruction, and variances in cell surface receptors. Neutrophil maturation is clearly demonstrated throughout pregnancy from the earliest hematopoietic precursors in the yolk sac to the well-developed myeloid progenitor cells in the bone marrow around the seventh month of gestation. Notable deficiencies of neonatal neutrophils are generally correlated with gestational age and clinical condition, so that the least functional neutrophils are found in the youngest, sickest neonates. Interruption of normal gestation secondary to preterm birth exposes these shortcomings and places the neonate at an exceptionally high rate of infection and sepsis-related mortality. Because the fetus develops in a sterile environment, neonatal adaptive immune responses are deficient from lack of antigen exposure in utero. Newborns must therefore rely on innate immunity to protect against early infection. Neutrophils are a vital component of innate immunity since they are the first cells to respond to and defend against bacterial, viral, and fungal infections. However, notable phenotypic and functional disparities exist between neonatal and adult cells. Below is review of neutrophil ontogeny, as well as a discussion regarding known differences between preterm and term neonatal and adult neutrophils with respect to cell membrane receptors and functions. Our analysis will also explain how these variations decrease with postnatal age.
Collapse
Affiliation(s)
- Shelley Melissa Lawrence
- Pediatrics, Neonatal-Perinatal Medicine, UCSD, La Jolla, CA, USA; Division of Host-Microbe Systems and Therapeutics, UCSD, La Jolla, CA, USA
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, UCSD, La Jolla, CA, USA; Pharmacology, UCSD, La Jolla, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, UCSD, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA, USA
| |
Collapse
|
36
|
de Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F. Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal 2016; 12:595-609. [PMID: 27557887 DOI: 10.1007/s11302-016-9529-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an important molecule that exerts control on the immune system, by signaling through receptors lying on the surface of immune cells. This nucleotide is produced, in part, by the action of the ectoenzymes CD39 and CD73. Interestingly, these proteins are expressed on the cell surface of regulatory T-cells (Tregs) and mesenchymal stromal cells (MSCs)-two cell populations that have emerged as potential therapeutic tools in the field of cell therapy. In fact, the production of adenosine constitutes a mechanism used by both cell types to control the immune response. Recently, great scientific progress was obtained regarding the role of adenosine in the inflammatory environment. In this context, the present review focuses on the advances related to the impact of adenosine production over the immune modulatory activity of Tregs and MSCs, and how this nucleotide controls the biological functions of these cells. Finally, we mention the main challenges and hurdles to bring such molecule to clinical settings.
Collapse
Affiliation(s)
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Center, Catholic University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
37
|
Wang F, Qiao L, Lv X, Trivett A, Yang R, Oppenheim JJ, Yang D, Zhang N. Alarmin human α defensin HNP1 activates plasmacytoid dendritic cells by triggering NF-κB and IRF1 signaling pathways. Cytokine 2016; 83:53-60. [PMID: 27031443 PMCID: PMC7822553 DOI: 10.1016/j.cyto.2016.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 01/13/2023]
Abstract
Human neutrophil peptide 1 (HNP1), a predominant α defensin in the azurophilic granules of human neutrophils, is an alarmin capable of inducing the migration and maturation of human myeloid/conventional dendritic cells. However, it is not determined whether it can activate plasmacytoid dendritic cells (pDCs). Herein, we found that both human pDCs and CAL-1 cells, a pDC-like cell line, produced IFNα upon treatment with HNP1. Additionally, HNP1 could promote CpG ODN-induced pDC production of proinflammatory cytokines including IFNα. HNP1 triggered activation of NF-κB and nuclear translocation of interferon regulatory factor 1 (IRF1) in CAL-1 cells. HNP1 upregulation of cytokine expression in pDCs was inhibited by blockade of NF-κB activation or knockdown of IRF1, demonstrating the importance of these two signaling events in HNP1-induced pDC activation. Using a human pDC-nude mouse model, HNP1 was shown to induce IFNα production by human pDCs in vivo. Thus, HNP1 can activate human pDCs using NF-κB and IRF signaling pathways, and HNP-induced IFN production may participate in the inflammatory pathogenesis in certain authoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Fang Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Linan Qiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Xing Lv
- Department of Rheumatism and Immunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, People's Republic of China
| | - Anna Trivett
- Basic Science Program, Leidos Biomedical Research Inc., and Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research (FNLCR), 1050 Boyles Street, Frederick, MD 21702, USA
| | - Rui Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Joost J Oppenheim
- Basic Science Program, Leidos Biomedical Research Inc., and Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research (FNLCR), 1050 Boyles Street, Frederick, MD 21702, USA
| | - De Yang
- Basic Science Program, Leidos Biomedical Research Inc., and Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research (FNLCR), 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Ning Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China.
| |
Collapse
|
38
|
Ferrari D, McNamee EN, Idzko M, Gambari R, Eltzschig HK. Purinergic Signaling During Immune Cell Trafficking. Trends Immunol 2016; 37:399-411. [PMID: 27142306 DOI: 10.1016/j.it.2016.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/24/2022]
Abstract
Migration and positioning of immune cells is fundamental for their differentiation and recruitment at sites of infection. Besides the fundamental role played by chemokines and their receptors, recent studies demonstrate that a complex network of purinergic signaling events plays a key role in these trafficking events. This process includes the release of nucleotides (such as ATP and ADP) and subsequent autocrine and paracrine signaling events through nucleotide receptors. At the same time, surface-expressed ectoapyrases and nucleotidases convert extracellular nucleotides to adenosine, and adenosine signaling events play additional functional roles in leucocyte trafficking. In this review we revisit classical paradigms of inflammatory cell trafficking in the context of recent studies implicating purinergic signaling events in this process.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, I-44100 Ferrara, Italy.
| | - Eóin N McNamee
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marco Idzko
- Department of Pulmonary Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Roberto Gambari
- Department of Life Science and Biotechnology, University of Ferrara, I-44100 Ferrara, Italy
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
39
|
Ferrari D, Gambari R, Idzko M, Müller T, Albanesi C, Pastore S, La Manna G, Robson SC, Cronstein B. Purinergic signaling in scarring. FASEB J 2016; 30:3-12. [PMID: 26333425 PMCID: PMC4684510 DOI: 10.1096/fj.15-274563] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/17/2015] [Indexed: 12/23/2022]
Abstract
Adenosine (ADO) and nucleotides such as ATP, ADP, and uridine 5'-triphosphate (UTP), among others, may serve as extracellular signaling molecules. These mediators activate specific cell-surface receptors-namely, purinergic 1 and 2 (P1 and P2)-to modulate crucial pathophysiological responses. Regulation of this process is maintained by nucleoside and nucleotide transporters, as well as the ectonucleotidases ectonucleoside triphosphate diphosphohydrolase [ENTPD; cluster of differentiation (CD)39] and ecto-5'-nucleotidase (5'-NT; CD73), among others. Cells involved in tissue repair, healing, and scarring respond to both ADO and ATP. Our recent investigations have shown that modulation of purinergic signaling regulates matrix deposition during tissue repair and fibrosis in several organs. Cells release adenine nucleotides into the extracellular space, where these mediators are converted by CD39 and CD73 into ADO, which is anti-inflammatory in the short term but may also promote dermal, heart, liver, and lung fibrosis with repetitive signaling under defined circumstances. Extracellular ATP stimulates cardiac fibroblast proliferation, lung inflammation, and fibrosis. P2Y2 (UTP/ATP) and P2Y6 [ADP/UTP/uridine 5'-diphosphate (UDP)] have been shown to have profibrotic effects, as well. Modulation of purinergic signaling represents a novel approach to preventing or diminishing fibrosis. We provide an overview of the current understanding of purinergic signaling in scarring and discuss its potential to prevent or decrease fibrosis.
Collapse
Affiliation(s)
- Davide Ferrari
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Roberto Gambari
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Marco Idzko
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Tobias Müller
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Cristina Albanesi
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Saveria Pastore
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Gaetano La Manna
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Simon C Robson
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Bruce Cronstein
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| |
Collapse
|
40
|
Aikeremujiang Muheremu, Ao Q, Wang Y, Cao P, Peng J. Femoral nerve regeneration and its accuracy under different injury mechanisms. Neural Regen Res 2015. [PMID: 26692867 DOI: 10.4103/1673-5374.167768.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.
Collapse
Affiliation(s)
- Aikeremujiang Muheremu
- Medical Center, Tsinghua University, Beijing, China ; Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Peng Cao
- Department of Orthopedics, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiang Peng
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
41
|
Aikeremujiang Muheremu, Ao Q, Wang Y, Cao P, Peng J. Femoral nerve regeneration and its accuracy under different injury mechanisms. Neural Regen Res 2015; 10:1669-73. [PMID: 26692867 PMCID: PMC4660763 DOI: 10.4103/1673-5374.167768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.
Collapse
Affiliation(s)
- Aikeremujiang Muheremu
- Medical Center, Tsinghua University, Beijing, China ; Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Peng Cao
- Department of Orthopedics, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiang Peng
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
42
|
Volden TA, Reyelts CD, Hoke TA, Arikkath J, Bonasera SJ. Validation of Flow Cytometry and Magnetic Bead-Based Methods to Enrich CNS Single Cell Suspensions for Quiescent Microglia. J Neuroimmune Pharmacol 2015; 10:655-65. [PMID: 26260923 DOI: 10.1007/s11481-015-9628-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/30/2015] [Indexed: 11/29/2022]
Abstract
Microglia are resident mononuclear phagocytes within the CNS parenchyma that intimately interact with neurons and astrocytes to remodel synapses and extracellular matrix. We briefly review studies elucidating the molecular pathways that underlie microglial surveillance, activation, chemotaxis, and phagocytosis; we additionally place these studies in a clinical context. We describe and validate an inexpensive and simple approach to obtain enriched single cell suspensions of quiescent parenchymal and perivascular microglia from the mouse cerebellum and hypothalamus. Following preparation of regional CNS single cell suspensions, we remove myelin debris, and then perform two serial enrichment steps for cells expressing surface CD11b. Myelin depletion and CD11b enrichment are both accomplished using antigen-specific magnetic beads in an automated cell separation system. Flow cytometry of the resultant suspensions shows a significant enrichment for CD11b(+)/CD45(+) cells (perivascular microglia) and CD11b(+)/CD45(-) cells (parenchymal microglia) compared to starting suspensions. Of note, cells from these enriched suspensions minimally express Aif1 (aka Iba1), suggesting that the enrichment process does not evoke significant microglial activation. However, these cells readily respond to a functional challenge (LPS) with significant changes in the expression of molecules specifically associated with microglia. We conclude that methods employing a combination of magnetic-bead based sorting and flow cytometry produce suspensions highly enriched for microglia that are appropriate for a variety of molecular and cellular assays.
Collapse
Affiliation(s)
- T A Volden
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - C D Reyelts
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - T A Hoke
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - J Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - S J Bonasera
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,University of Nebraska Medical Center, 3028 Durham Research Center II, Omaha, NE, 68198-5039, USA.
| |
Collapse
|
43
|
Boros D, Thompson J, Larson DF. Adenosine regulation of the immune response initiated by ischemia reperfusion injury. Perfusion 2015; 31:103-10. [PMID: 25987550 DOI: 10.1177/0267659115586579] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is clinically established that adenosine has negative chronotropic, antiarrhythmic effects and reduces arterial blood pressure. Adenosine addition to cardioplegic solutions used in cardiac operations is clinically well tolerated and has been shown to improve myocardial protection in several studies. However, the mechanism of action remains unclear. Therefore, it is important to define the effect of adenosine on the inflammatory cascade as immune cell activation occurs early during ischemia reperfusion injury. Adenosine appears to mediate the initial steps of the inflammatory cascade via its four G-coupled protein receptors: A1, A2A, A2B, and A3, expressed on neutrophils, lymphocytes and macrophages. The adenosine receptor isotype dictates the immune response. More specifically, the A1 and A3 receptors stimulate a pro-inflammatory immune response whereas the A2A and A2B are immunosuppressive. As the adenosine receptors are important for cardiac pre-conditioning and post-conditioning, adenosine may regulate the inflammatory responses initiated during ischemia-mediated immune injury related to myocardial protection.
Collapse
Affiliation(s)
- D Boros
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - J Thompson
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - D F Larson
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
44
|
Sekizar S, Mannioui A, Azoyan L, Colin C, Thomas JL, Du Pasquier D, Mallat M, Zalc B. Remyelination by Resident Oligodendrocyte Precursor Cells in a Xenopus laevis Inducible Model of Demyelination. Dev Neurosci 2015; 37:232-42. [DOI: 10.1159/000380817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022] Open
Abstract
We have generated a Xenopus laevis transgenic line, MBP-GFP-NTR, allowing conditional ablation of myelin-forming oligodendrocytes. In this transgenic line the transgene is driven by the proximal portion of the myelin basic protein regulatory sequence, specific to mature oligodendrocytes. The transgene protein is formed by the green fluorescent protein reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. The NTR enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Ablation of oligodendrocytes by MTZ treatment of the tadpole induced demyelination, and here we show that myelin debris are subsequently eliminated by microglial cells. After cessation of MTZ treatment, remyelination proceeded spontaneously. We questioned the origin of remyelinating cells. Our data suggest that Sox10+ oligodendrocyte precursor cells (OPCs), which are already present in the optic nerve prior to the experimentally induced demyelination, are responsible for remyelination, and this required only minimal (if any) cell division of OPCs.
Collapse
|
45
|
Silva TM, França GR, Ornelas IM, Loiola EC, Ulrich H, Ventura ALM. Involvement of nucleotides in glial growth following scratch injury in avian retinal cell monolayer cultures. Purinergic Signal 2015; 11:183-201. [PMID: 25663277 DOI: 10.1007/s11302-015-9444-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/21/2015] [Indexed: 10/24/2022] Open
Abstract
When retinal cell cultures were mechanically scratched, cell growth over the empty area was observed. Only dividing and migrating, 2 M6-positive glial cells were detected. Incubation of cultures with apyrase (APY), suramin, or Reactive Blue 2 (RB-2), but not MRS 2179, significantly attenuated the growth of glial cells, suggesting that nucleotide receptors other than P2Y1 are involved in the growth of glial cells. UTPγS but not ADPβS antagonized apyrase-induced growth inhibition in scratched cultures, suggesting the participation of UTP-sensitive receptors. No decrease in proliferating cell nuclear antigen (PCNA(+)) cells was observed at the border of the scratch in apyrase-treated cultures, suggesting that glial proliferation was not affected. In apyrase-treated cultures, glial cytoplasm protrusions were smaller and unstable. Actin filaments were less organized and alfa-tubulin-labeled microtubules were mainly parallel to scratch. In contrast to control cultures, very few vinculin-labeled adhesion sites could be noticed in these cultures. Increased Akt and ERK phosphorylation was observed in UTP-treated cultures, effect that was inhibited by SRC inhibitor 1 and PI3K blocker LY294002. These inhibitors and the FAK inhibitor PF573228 also decreased glial growth over the scratch, suggesting participation of SRC, PI3K, and FAK in UTP-induced growth of glial cells in scratched cultures. RB-2 decreased dissociated glial cell attachment to fibronectin-coated dishes and migration through transwell membranes, suggesting that nucleotides regulated adhesion and migration of glial cells. In conclusion, mechanical scratch of retinal cell cultures induces growth of glial cells over the empty area through a mechanism that is dependent on activation of UTP-sensitive receptors, SRC, PI3K, and FAK.
Collapse
Affiliation(s)
- Thayane Martins Silva
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, RJ, 24020-141, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1α and ATP Gradient. BONE MARROW RESEARCH 2014; 2014:182645. [PMID: 25610653 PMCID: PMC4294463 DOI: 10.1155/2014/182645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
Both stem cell chemokine stromal cell-derived factor-1α (SDF-1α) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone marrow of cardiac surgery patients. Migration assays were performed in vitro. Subsequently, migrated cells were subjected to multicolor flow cytometric analysis of CD133, CD34, CD117, CD184, CD309, and CD14 expression. BM-TNCs migrated significantly towards a combination of SDF-1 and ATP. The proportions of CD34+ cells as well as subpopulations coexpressing multiple stem cell markers were selectively enhanced after migration towards SDF-1 or SDF-1 + ATP. After spontaneous migration, significantly fewer stem cells and CD184+ cells were detected. Direct incubation with SDF-1 led to a reduction of CD184+ but not stem cell marker-positive cells, while incubation with ATP significantly increased CD14+ percentage. In summary, we found that while a combination of SDF-1 and ATP elicited strong migration of BM-TNCs in vitro, only SDF-1 was responsible for selective attraction of hematopoietic stem cells. Meanwhile, spontaneous migration of stem cells was lower compared to BM-TNCs or monocytes.
Collapse
|
47
|
Amison RT, Momi S, Morris A, Manni G, Keir S, Gresele P, Page CP, Pitchford SC. RhoA signaling through platelet P2Y₁ receptor controls leukocyte recruitment in allergic mice. J Allergy Clin Immunol 2014; 135:528-38. [PMID: 25445826 DOI: 10.1016/j.jaci.2014.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/21/2014] [Accepted: 09/19/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Clinical studies reveal platelet activation in patients with asthma, allergic rhinitis, and eczema. This is distinct from platelet aggregation, which is critical for the maintenance of hemostasis and in which a role for platelet purinergic receptors is well documented. However, purines are also essential for inflammatory cell trafficking in animal models of allergic lung inflammation, which are known to be platelet dependent, yet the role of purines in the platelet activation accompanying inflammation is unknown. OBJECTIVES We investigated whether the involvement of purine activation of platelets during allergic inflammation is distinct from purine involvement in platelet aggregation. METHODS BALB/c mice were sensitized to ovalbumin and subsequent airway ovalbumin challenge. Bronchoalveolar lavage fluid was analyzed for inflammatory cells, and blood samples were assessed for platelet activation. The role of platelet purinergic receptors and associated signaling mechanisms (RhoA) were assessed. RESULTS P2Y₁, but not P2Y₁₂ or P2X₁, antagonism inhibited pulmonary leukocyte recruitment. The formation of platelet-leukocyte complexes in vivo and platelet/P-selectin-dependent polymorphonuclear cell migration in vitro were exclusively platelet P2Y₁ receptor dependent. Furthermore, platelet P2Y₁ activation resulted in RhoA activity in vivo after allergen challenge, and RhoA signaling in platelets through P2Y₁ stimulation was required for platelet-dependent leukocyte chemotaxis in vitro. Leukocyte recruitment in thrombocytopenic mice remained suppressed after reinfusion of platelets pretreated with a P2Y₁ antagonist or a Rho-associated kinase 1 inhibitor, confirming the crucial role of platelet P2Y₁ receptor and subsequent activation of RhoA. CONCLUSION RhoA signaling downstream of platelet P2Y₁, but not P2Y₁₂, represents a clear dichotomy in platelet activation during allergic inflammation versus hemostasis.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Stefania Momi
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Abigail Morris
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Giorgia Manni
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Sandra Keir
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom.
| |
Collapse
|
48
|
Hill SJ, May LT, Kellam B, Woolard J. Allosteric interactions at adenosine A(1) and A(3) receptors: new insights into the role of small molecules and receptor dimerization. Br J Pharmacol 2014; 171:1102-13. [PMID: 24024783 DOI: 10.1111/bph.12345] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/22/2022] Open
Abstract
The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs -protein-coupled adenosine receptors (A2A and A2B ), or inhibit AC activity, in the case of Gi/o -coupled adenosine receptors (A1 and A3 ). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1 - and A3 -receptor allosteric modulators on in vivo pharmacology.
Collapse
Affiliation(s)
- Stephen J Hill
- Cell Signalling Research Group, School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
49
|
Pimentel-Santillana M, Través PG, Pérez-Sen R, Delicado EG, Martín-Sanz P, Miras-Portugal MT, Boscá L. Sustained release of prostaglandin E₂ in fibroblasts expressing ectopically cyclooxygenase 2 impairs P2Y-dependent Ca²⁺-mobilization. Mediators Inflamm 2014; 2014:832103. [PMID: 25214717 PMCID: PMC4151624 DOI: 10.1155/2014/832103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023] Open
Abstract
The nucleotide uridine trisphosphate (UTP) released to the extracellular milieu acts as a signaling molecule via activation of specific pyrimidine receptors (P2Y). P2Y receptors are G protein-coupled receptors expressed in many cell types. These receptors mediate several cell responses and they are involved in intracellular calcium mobilization. We investigated the role of the prostanoid PGE2 in P2Y signaling in mouse embryonic fibroblasts (MEFs), since these cells are involved in different ontogenic and physiopathological processes, among them is tissue repair following proinflammatory activation. Interestingly, Ca(2+)-mobilization induced by UTP-dependent P2Y activation was reduced by PGE2 when this prostanoid was produced by MEFs transfected with COX-2 or when PGE2 was added exogenously to the culture medium. This Ca(2+)-mobilization was important for the activation of different metabolic pathways in fibroblasts. Moreover, inhibition of COX-2 with selective coxibs prevented UTP-dependent P2Y activation in these cells. The inhibition of P2Y responses by PGE2 involves the activation of PKCs and PKD, a response that can be suppressed after pharmacological inhibition of these protein kinases. In addition to this, PGE2 reduces the fibroblast migration induced by P2Y-agonists such as UTP. Taken together, these data demonstrate that PGE2 is involved in the regulation of P2Y signaling in these cells.
Collapse
Affiliation(s)
- María Pimentel-Santillana
- Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Paqui G. Través
- Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
- The Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Esmerilda G. Delicado
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| |
Collapse
|
50
|
Duró E, Pallai A, Köröskényi K, Sarang Z, Szondy Z. Adenosine A3 receptors negatively regulate the engulfment-dependent apoptotic cell suppression of inflammation. Immunol Lett 2014; 162:292-301. [PMID: 24998471 DOI: 10.1016/j.imlet.2014.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023]
Abstract
Timed initiation of apoptotic cell death followed by efficient removal mediated by professional macrophages is a key mechanism in maintaining tissue homeostasis. Besides phagocytosis, clearance of apoptotic cells also involves suppression of inflammatory responses by apoptotic cells mediated by both direct inhibition of pro-inflammatory cytokine production and release of soluble anti-inflammatory factors, which act in a paracrine or autocrine fashion to amplify or sustain the anti-inflammatory response. Previous work has demonstrated that during engulfment of apoptotic cells adenosine is produced in sufficient amounts to trigger both adenosine A2A receptors (A2ARs) and A3 receptors (A3Rs). Adenosine bound to A2ARs of macrophages activated the adenylate cyclase pathway to suppress the apoptotic-cell induced, NO-dependent formation of neutrophil migration factors. Here we show by using A3R null engulfing macrophages that the adenosine produced triggers the A3Rs as well, which attenuate the A2AR signaling by inhibiting adenylate cyclase. As a result, the balance in the activation of A2ARs and A3Rs determines the amounts of NO and consequently the levels of neutrophil chemoattractants formed. Since during phagocytosis of apoptotic cells the expression of A2ARs increases, while that of A3Rs decreases, on long term adenosine suppresses the proinflammatory responses in engulfing macrophages.
Collapse
Affiliation(s)
- Edina Duró
- Department of Dental Biochemistry, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Anna Pallai
- Department of Dental Biochemistry, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Krisztina Köröskényi
- Department of Dental Biochemistry, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Zsuzsa Szondy
- Department of Dental Biochemistry, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary.
| |
Collapse
|