1
|
Jagdale AD, Angal MM, Patil RS, Tupe RS. Exploring the glycation association with dyslipidaemia: Novel approach for diabetic nephropathy. Biochem Pharmacol 2024; 229:116513. [PMID: 39218042 DOI: 10.1016/j.bcp.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The transcription factor known as sterol regulatory element-binding protein (SREBP) and the glycation pathways, specifically the formation of Advanced Glycation End Products (AGEs), have a significant and deleterious impact on the kidney. They alter renal lipid metabolism and promote glomerulosclerosis, mesangial cell expansion, tubulointerstitial fibrosis, and inflammation, leading to diabetic nephropathy (DN) progression. Although several pieces of scientific evidence are reported for potential causes of glycation and lipotoxicity in DN, the underlying mechanism of renal lipid accumulation still needs to be fully understood. We provide a rationalized view on how AGEs exert multiple effects that cause SREBP activation and inflammation, contributing to DN through Receptor for AGEs (RAGE) signaling, AGE-R1-dependent downregulation of Sirtuin 1 (SIRT-1), and increased SREBP Cleavage Activating Protein (SCAP) glycosylation. This review emphasizes the association between glycation and the SREBP pathway and how it affects the onset of DN associated with obesity. Finally, we discuss the correlation of glycation and the SREBP pathway with insulin resistance (IR), oxidative stress, endoplasmic reticulum stress, inflammation, and existing and emerging therapeutic approaches toward better controlling obesity-related DN.
Collapse
Affiliation(s)
- Ashwini D Jagdale
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Mukul M Angal
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India.
| |
Collapse
|
2
|
Ren J, Kitaura H, Noguchi T, Ohori F, Marahleh A, Ma J, Kanou K, Fan Z, Mizoguchi I. Exogenous Angiotensin-(1-7) Provides Protection Against Inflammatory Bone Resorption and Osteoclastogenesis by Inhibition of TNF-α Expression in Macrophages. Calcif Tissue Int 2024; 115:432-444. [PMID: 39030433 PMCID: PMC11405502 DOI: 10.1007/s00223-024-01257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Renin-angiotensin-aldosterone system plays a crucial role in the regulation of blood pressure and fluid homeostasis. It is reported to be involved in mediating osteoclastogenesis and bone loss in diseases of inflammatory bone resorption such as osteoporosis. Angiotensin-(1-7), a product of Angiotensin I and II (Ang I, II), is cleaved by Angiotensin-converting enzyme 2 and then binds to Mas receptor to counteract inflammatory effects produced by Ang II. However, the mechanism by which Ang-(1-7) reduces bone resorption remains unclear. Therefore, we aim to elucidate the effects of Ang-(1-7) on lipopolysaccharide (LPS)-induced osteoclastogenesis. In vivo, mice were supracalvarial injected with Ang-(1-7) or LPS ± Ang-(1-7) subcutaneously. Bone resorption and osteoclast formation were compared using micro-computed tomography, tartrate-resistant acid phosphatase (TRAP) stain, and real-time PCR. We found that Ang-(1-7) attenuated tumor necrosis factor (TNF)-α, TRAP, and Cathepsin K expression from calvaria and decreased osteoclast number along with bone resorption at the suture mesenchyme. In vitro, RANKL/TNF-α ± Ang-(1-7) was added to cultures of bone marrow-derived macrophages (BMMs) and osteoclast formation was measured via TRAP staining. The effect of Ang-(1-7) on LPS-induced osteoblasts RANKL expression and peritoneal macrophages TNF-α expression was also investigated. The effect of Ang-(1-7) on the MAPK and NF-κB pathway was studied by Western blotting. As a result, Ang-(1-7) reduced LPS-stimulated macrophages TNF-α expression and inhibited the MAPK and NF-κB pathway activation. However, Ang-(1-7) did not affect osteoclastogenesis induced by RANKL/TNF-α nor reduce osteoblasts RANKL expression in vitro. In conclusion, Ang-(1-7) alleviated LPS-induced osteoclastogenesis and bone resorption in vivo via inhibiting TNF-α expression in macrophages.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Hideki Kitaura
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Takahiro Noguchi
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Fumitoshi Ohori
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Aseel Marahleh
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Jinghan Ma
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Kayoko Kanou
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Ziqiu Fan
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Itaru Mizoguchi
- Department of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
3
|
Toth DD, Souder CL, Patuel S, English CD, Konig I, Ivantsova E, Malphurs W, Watkins J, Anne Costa K, Bowden JA, Zubcevic J, Martyniuk CJ. Angiotensin II Alters Mitochondrial Membrane Potential and Lipid Metabolism in Rat Colonic Epithelial Cells. Biomolecules 2024; 14:974. [PMID: 39199363 PMCID: PMC11353208 DOI: 10.3390/biom14080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
An over-active renin-angiotensin system (RAS) is characterized by elevated angiotensin II (Ang II). While Ang II can promote metabolic and mitochondrial dysfunction in tissues, little is known about its role in the gastrointestinal system (GI). Here, we treated rat primary colonic epithelial cells with Ang II (1-5000 nM) to better define their role in the GI. We hypothesized that Ang II would negatively affect mitochondrial bioenergetics as these organelles express Ang II receptors. Ang II increased cellular ATP production but reduced the mitochondrial membrane potential (MMP) of colonocytes. However, cells maintained mitochondrial oxidative phosphorylation and glycolysis with treatment, reflecting metabolic compensation with impaired MMP. To determine whether lipid dysregulation was evident, untargeted lipidomics were conducted. A total of 1949 lipids were detected in colonocytes spanning 55 distinct (sub)classes. Ang II (1 nM) altered the abundance of some sphingosines [So(d16:1)], ceramides [Cer-AP(t18:0/24:0)], and phosphatidylcholines [OxPC(16:0_20:5(2O)], while 100 nM Ang II altered some triglycerides and phosphatidylserines [PS(19:0_22:1). Ang II did not alter the relative expression of several enzymes in lipid metabolism; however, the expression of pyruvate dehydrogenase kinase 2 (PDK2) was increased, and PDK2 can be protective against dyslipidemia. This study is the first to investigate the role of Ang II in colonic epithelial cell metabolism.
Collapse
Affiliation(s)
- Darby D. Toth
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Christopher L. Souder
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Sarah Patuel
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Cole D. English
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Isaac Konig
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
- Department of Chemistry, Federal University of Lavras (UFLA), Lavras 37200-000, MG, Brazil
| | - Emma Ivantsova
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Wendi Malphurs
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Jacqueline Watkins
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Kaylie Anne Costa
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - John A. Bowden
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH 43614, USA;
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (D.D.T.); (C.L.S.II); (S.P.); (C.D.E.); (I.K.); (E.I.); (W.M.); (J.W.); (K.A.C.); (J.A.B.)
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Interdisciplinary Program in Biomedical Sciences, Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Zhang C, Zhang Y, Liu D, Mei M, Song N, Zhuang Q, Jiang Y, Guo Y, Liu G, Li X, Ren L. Dexmedetomidine mitigates acute kidney injury after coronary artery bypass grafting: a prospective clinical trial. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2024; 77:645-655. [PMID: 38423177 DOI: 10.1016/j.rec.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION AND OBJECTIVES To evaluate the impact of dexmedetomidine impact on cardiac surgery-associated acute kidney injury (CSA-AKI), kidney function, and metabolic and oxidative stress in patients undergoing coronary artery bypass grafting with heart-lung machine support. METHODS A randomized double-masked trial with 238 participants (50-75 years) undergoing coronary artery bypass grafting was conducted from January 2021 to December 2022. The participants were divided into Dex (n=119) and NS (n = 119) groups. Dex was administered at 0.5 mcg/kg over 10minutes, then 0.4 mcg/kg/h until the end of surgery; the NS group received equivalent saline. Blood and urine were sampled at various time points pre- and postsurgery. The primary outcome measure was the incidence of CSA-AKI, defined as the occurrence of AKI within 96hours after surgery. RESULTS The incidence of CSA-AKI was significantly lower in the Dex group than in the NS group (18.26% vs 32.46%; P=.014). Substantial increases were found in estimated glomerular filtration rate value at T4-T6 (P<.05) and urine volume 24hours after surgery (P<.01). Marked decreases were found in serum creatinine level, blood glucose level at T1-T2 (P<.01), blood urea nitrogen level at T3-T6 (P<.01), free fatty acid level at T2-T3 (P<.01), and lactate level at T3-T4 (P<.01). CONCLUSIONS Dex reduces CSA-AKI, potentially by regulating metabolic disorders and reducing oxidative stress. Registered with the Chinese Clinical Study Registry (No. ChiCTR2100051804).
Collapse
Affiliation(s)
- Congli Zhang
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yang Zhang
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Di Liu
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Mei Mei
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Nannan Song
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Qin Zhuang
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yiyao Jiang
- Department of Cardiac Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yuanyuan Guo
- Department of Urology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Gang Liu
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaohong Li
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Li Ren
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China.
| |
Collapse
|
5
|
Wang CH, Surbhi, Goraya S, Byun J, Pennathur S. Fatty acids and inflammatory stimuli induce expression of long-chain acyl-CoA synthetase 1 to promote lipid remodeling in diabetic kidney disease. J Biol Chem 2024; 300:105502. [PMID: 38016515 PMCID: PMC10770716 DOI: 10.1016/j.jbc.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Fatty acid handling and complex lipid synthesis are altered in the kidney cortex of diabetic patients. We recently showed that inhibition of the renin-angiotensin system without changes in glycemia can reverse diabetic kidney disease (DKD) and restore the lipid metabolic network in the kidney cortex of diabetic (db/db) mice, raising the possibility that lipid remodeling may play a central role in DKD. However, the roles of specific enzymes involved in lipid remodeling in DKD have not been elucidated. In the present study, we used this diabetic mouse model and a proximal tubule epithelial cell line (HK2) to investigate the potential relationship between long-chain acyl-CoA synthetase 1 (ACSL1) and lipid metabolism in response to fatty acid exposure and inflammatory signals. We found ACSL1 expression was significantly increased in the kidney cortex of db/db mice, and exposure to palmitate or tumor necrosis factor-α significantly increased Acsl1 mRNA expression in HK-2 cells. In addition, palmitate treatment significantly increased the levels of long-chain acylcarnitines and fatty acyl CoAs in HK2 cells, and these increases were abolished in HK2 cell lines with specific deletion of Acsl1(Acsl1KO cells), suggesting a key role for ACSL1 in fatty acid β-oxidation. In contrast, tumor necrosis factor-α treatment significantly increased the levels of short-chain acylcarnitines and long-chain fatty acyl CoAs in HK2 cells but not in Acsl1KO cells, consistent with fatty acid channeling to complex lipids. Taken together, our data demonstrate a key role for ACSL1 in regulating lipid metabolism, fatty acid partitioning, and inflammation.
Collapse
Affiliation(s)
- Chih-Hong Wang
- Department of Physiology, Tulane University of School Medicine, New Orleans, Louisiana, USA; Tulane Hypertension & Renal Center of Excellence, Tulane University, New Orleans, Louisiana, USA; Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Surbhi
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sayhaan Goraya
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Dapagliflozin Treatment Augments Bioactive Phosphatidylethanolamine Concentrations in Kidney Cortex Membrane Fractions of Hypertensive Diabetic db/db Mice and Alters the Density of Lipid Rafts in Mouse Proximal Tubule Cells. Int J Mol Sci 2023; 24:ijms24021408. [PMID: 36674924 PMCID: PMC9865226 DOI: 10.3390/ijms24021408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
In addition to inhibiting renal glucose reabsorption and allowing for glucose excretion, the sodium/glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin may be efficacious in treating various comorbidities associated with type 2 diabetes mellitus (T2DM). The molecular mechanisms by which dapagliflozin exerts its beneficial effects are largely unknown. We hypothesized dapagliflozin treatment in the diabetic kidney alters plasma membrane lipid composition, suppresses extracellular vesicle (EV) release from kidney cells, and disrupts lipid rafts in proximal tubule cells. In order to test this hypothesis, we treated diabetic db/db mice with dapagliflozin (N = 8) or vehicle (N = 8) and performed mass spectrometry-based lipidomics to investigate changes in the concentrations of membrane lipids in the kidney cortex. In addition, we isolated urinary EVs (uEVs) from urine samples collected during the active phase and the inactive phase of the mice and then probed for changes in membrane proteins enriched in the EVs. Multiple triacylglycerols (TAGs) were enriched in the kidney cortex membrane fractions of vehicle-treated diabetic db/db mice, while the levels of multiple phosphatidylethanolamines were significantly higher in similar mice treated with dapagliflozin. EV concentration and size were lesser in the urine samples collected during the inactive phase of dapagliflozin-treated diabetic mice. In cultured mouse proximal tubule cells treated with dapagliflozin, the lipid raft protein caveolin-1 shifted from less dense fractions to more dense sucrose density gradient fractions. Taken together, these results suggest dapagliflozin may regulate lipid-mediated signal transduction in the diabetic kidney.
Collapse
|
7
|
Bitzer M, Ju W, Subramanian L, Troost JP, Tychewicz J, Steck B, Wiggins RC, Gipson DS, Gadegbeku CA, Brosius FC, Kretzler M, Pennathur S. The Michigan O'Brien Kidney Research Center: transforming translational kidney research through systems biology. Am J Physiol Renal Physiol 2022; 323:F401-F410. [PMID: 35924446 PMCID: PMC9485002 DOI: 10.1152/ajprenal.00091.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Research on kidney diseases is being transformed by the rapid expansion and innovations in omics technologies. The analysis, integration, and interpretation of big data, however, have been an impediment to the growing interest in applying these technologies to understand kidney function and failure. Targeting this urgent need, the University of Michigan O'Brien Kidney Translational Core Center (MKTC) and its Administrative Core established the Applied Systems Biology Core. The Core provides need-based support for the global kidney community centered on enabling incorporation of systems biology approaches by creating web-based, user-friendly analytic and visualization tools, like Nephroseq and Nephrocell, guiding with experimental design, and processing, analysis, and integration of large data sets. The enrichment core supports systems biology education and dissemination through workshops, seminars, and individualized training sessions. Meanwhile, the Pilot and Feasibility Program of the MKTC provides pilot funding to both early-career and established investigators new to the field, to integrate a systems biology approach into their research projects. The relevance and value of the portfolio of training and services offered by MKTC are reflected in the expanding community of young investigators, collaborators, and users accessing resources and engaging in systems biology-based kidney research, thereby motivating MKTC to persevere in its mission to serve the kidney research community by enabling access to state-of-the-art data sets, tools, technologies, expertise, and learning opportunities for transformative basic, translational, and clinical studies that will usher in solutions to improve the lives of people impacted by kidney disease.
Collapse
Affiliation(s)
- Markus Bitzer
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lalita Subramanian
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jonathan P Troost
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Joseph Tychewicz
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Becky Steck
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Roger C Wiggins
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Debbie S Gipson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Crystal A Gadegbeku
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic Health System, Cleveland, Ohio
| | - Frank C Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Division of Nephrology, The University of Arizona College of Medicine Tucson, Tucson, Arizona
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Luo Z, Chen Z, Zhu Z, Hao Y, Feng J, Luo Q, Zhang Z, Yang X, Hu J, Liang W, Ding G. Angiotensin II induces podocyte metabolic reprogramming from glycolysis to glycerol-3-phosphate biosynthesis. Cell Signal 2022; 99:110443. [PMID: 35988808 DOI: 10.1016/j.cellsig.2022.110443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Recent studies have reported that Angiotensin II (Ang II) contributes to podocyte injury by interfering with metabolism. Glycolysis is essential for podocytes and glycolysis abnormality is associated with glomerular injury in chronic kidney disease (CKD). Glycerol-3-phosphate (G-3-P) biosynthesis is a shunt pathway of glycolysis, in which cytosolic glycerol-3-phosphate dehydrogenase 1 (GPD1) catalyzes dihydroxyacetone phosphate (DHAP) to generate G-3-P in the presence of the NADH. G-3-P is not only a substrate in glycerophospholipids and glyceride synthesis but also can be oxidated by mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) to regenerate DHAP in mitochondria. Since G-3-P biosynthesis links to glycolysis, mitochondrial metabolism and lipid synthesis, we speculate G-3-P biosynthesis abnormality is probably involved in podocyte injury. In this study, we demonstrated that Ang II upregulated GPD1 expression and increased G-3-P and glycerophospholipid syntheses in podocytes. GPD1 knockdown protected podocytes from Ang II-induced lipid accumulation and mitochondrial dysfunction. GPD1 overexpression exacerbated Ang II-induced podocyte injury. In addition, we proved that lipid accumulation and mitochondrial dysfunction were correlated with G-3-P content in podocytes. These results suggest that Ang II upregulates GPD1 and promotes G-3-P biosynthesis in podocytes, which promote lipid accumulation and mitochondrial dysfunction in podocytes.
Collapse
Affiliation(s)
- Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Qiang Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
9
|
Xiong H, Zhang HT, Xiao HW, Huang CL, Huang MZ. Serum Metabolomics Coupling With Clinical Laboratory Indicators Reveal Taxonomic Features of Leukemia. Front Pharmacol 2022; 13:794042. [PMID: 35721208 PMCID: PMC9204281 DOI: 10.3389/fphar.2022.794042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic abnormality has been considered to be the seventh characteristic in cancer cells. The potential prospect of using serum biomarkers metabolites to differentiate ALL from AML remains unclear. The purpose of our study is to probe whether the differences in metabolomics are related to clinical laboratory-related indicators. We used LC-MS-based metabolomics analysis to study 50 peripheral blood samples of leukemia patients from a single center. Then Chi-square test and T test were used to analyze the clinical characteristics, laboratory indicators and cytokines of 50 patients with leukemia. Correlation analysis was used to explore the relationship between them and the differential metabolites of different types of leukemia. Our study shows that it is feasible to better identify serum metabolic differences in different types and states of leukemia by metabolomic analysis on existing clinical diagnostic techniques. The metabolism of choline and betaine may also be significantly related to the patient’s blood lipid profile. The main enrichment pathways for distinguishing differential metabolites in different types of leukemia are amino acid metabolism and fatty acid metabolism. All these findings suggested that differential metabolites and lipid profiles might identify different types of leukemia based on existing clinical diagnostic techniques, and their rich metabolic pathways help us to better understand the physiological characteristics of leukemia.
Collapse
Affiliation(s)
- Hao- Xiong
- Stem Cell Laboratory, Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hui-Tao Zhang
- Stem Cell Laboratory, Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of General Practice, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong-Wen Xiao
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chun-Lan Huang
- Stem Cell Laboratory, Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mei-Zhou Huang
- Stem Cell Laboratory, Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Mei-Zhou Huang,
| |
Collapse
|
10
|
Martin WP, Chuah YHD, Abdelaal M, Pedersen A, Malmodin D, Abrahamsson S, Hutter M, Godson C, Brennan EP, Fändriks L, le Roux CW, Docherty NG. Medications Activating Tubular Fatty Acid Oxidation Enhance the Protective Effects of Roux-en-Y Gastric Bypass Surgery in a Rat Model of Early Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 12:757228. [PMID: 35222262 PMCID: PMC8867227 DOI: 10.3389/fendo.2021.757228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/23/2021] [Indexed: 01/03/2023] Open
Abstract
Background Roux-en-Y gastric bypass surgery (RYGB) improves biochemical and histological parameters of diabetic kidney disease (DKD). Targeted adjunct medical therapy may enhance renoprotection following RYGB. Methods The effects of RYGB and RYGB plus fenofibrate, metformin, ramipril, and rosuvastatin (RYGB-FMRR) on metabolic control and histological and ultrastructural indices of glomerular and proximal tubular injury were compared in the Zucker Diabetic Sprague Dawley (ZDSD) rat model of DKD. Renal cortical transcriptomic (RNA-sequencing) and urinary metabolomic (1H-NMR spectroscopy) responses were profiled and integrated. Transcripts were assigned to kidney cell types through in silico deconvolution in kidney single-nucleus RNA-sequencing and microdissected tubular epithelial cell proteomics datasets. Medication-specific transcriptomic responses following RYGB-FMRR were explored using a network pharmacology approach. Omic correlates of improvements in structural and ultrastructural indices of renal injury were defined using a molecular morphometric approach. Results RYGB-FMRR was superior to RYGB alone with respect to metabolic control, albuminuria, and histological and ultrastructural indices of glomerular injury. RYGB-FMRR reversed DKD-associated changes in mitochondrial morphology in the proximal tubule to a greater extent than RYGB. Attenuation of transcriptomic pathway level activation of pro-fibrotic responses was greater after RYGB-FMRR than RYGB. Fenofibrate was found to be the principal medication effector of gene expression changes following RYGB-FMRR, which led to the transcriptional induction of PPARα-regulated genes that are predominantly expressed in the proximal tubule and which regulate peroxisomal and mitochondrial fatty acid oxidation (FAO). After omics integration, expression of these FAO transcripts positively correlated with urinary levels of PPARα-regulated nicotinamide metabolites and negatively correlated with urinary tricarboxylic acid (TCA) cycle intermediates. Changes in FAO transcripts and nicotinamide and TCA cycle metabolites following RYGB-FMRR correlated strongly with improvements in glomerular and proximal tubular injury. Conclusions Integrative multi-omic analyses point to PPARα-stimulated FAO in the proximal tubule as a dominant effector of treatment response to combined surgical and medical therapy in experimental DKD. Synergism between RYGB and pharmacological stimulation of FAO represents a promising combinatorial approach to the treatment of DKD in the setting of obesity.
Collapse
Affiliation(s)
- William P. Martin
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Yeong H. D. Chuah
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Mahmoud Abdelaal
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Anders Pedersen
- Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Malmodin
- Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Sanna Abrahamsson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michaela Hutter
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Eoin P. Brennan
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Lars Fändriks
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carel W. le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
- Diabetes Research Group, Ulster University, Coleraine, United Kingdom
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Baek J, He C, Afshinnia F, Michailidis G, Pennathur S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 2022; 18:38-55. [PMID: 34616096 PMCID: PMC9146017 DOI: 10.1038/s41581-021-00488-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Dyslipidaemia is a hallmark of chronic kidney disease (CKD). The severity of dyslipidaemia not only correlates with CKD stage but is also associated with CKD-associated cardiovascular disease and mortality. Understanding how lipids are dysregulated in CKD is, however, challenging owing to the incredible diversity of lipid structures. CKD-associated dyslipidaemia occurs as a consequence of complex interactions between genetic, environmental and kidney-specific factors, which to understand, requires an appreciation of perturbations in the underlying network of genes, proteins and lipids. Modern lipidomic technologies attempt to systematically identify and quantify lipid species from biological systems. The rapid development of a variety of analytical platforms based on mass spectrometry has enabled the identification of complex lipids at great precision and depth. Insights from lipidomics studies to date suggest that the overall architecture of free fatty acid partitioning between fatty acid oxidation and complex lipid fatty acid composition is an important driver of CKD progression. Available evidence suggests that CKD progression is associated with metabolic inflexibility, reflecting a diminished capacity to utilize free fatty acids through β-oxidation, and resulting in the diversion of accumulating fatty acids to complex lipids such as triglycerides. This effect is reversed with interventions that improve kidney health, suggesting that targeting of lipid abnormalities could be beneficial in preventing CKD progression.
Collapse
Affiliation(s)
- Judy Baek
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chenchen He
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Subramaniam Pennathur
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|