1
|
Wolf I, Schultze-Seemann S, Gratzke C, Wolf P. Targeting CD44 and EpCAM with Antibody Dye Conjugates for the Photoimmunotherapy of Prostate Cancer. Antibodies (Basel) 2025; 14:5. [PMID: 39846613 PMCID: PMC11755620 DOI: 10.3390/antib14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Photoimmunotherapy (PIT) is an innovative approach for the targeted therapy of cancer. In PIT, photosensitizer dyes are conjugated to tumor-specific antibodies for targeted delivery into cancer cells. Upon irradiation with visible light, the photosensitizer dye is activated and induces cancer-specific cell death. In the present article, we describe the PIT of prostate cancer (PC) as a therapeutic option for the targeted treatment of localized prostate cancer. METHODS We conjugated the silicon phthalocyanine dye WB692-CB2 to recombinant cysteine-modified anti-CD44 and anti-EpCAM antibodies via a maleimide linker and tested the antibody dye conjugates for PIT on PC cells and prostate cancer stem cell (PCSC)-like cells. RESULTS The anti-CD44 and anti-EpCAM antibody dye conjugates showed specific binding and high cytotoxicity against PC and PCSC-like cells following irradiation with red light. Combined treatment with both conjugates led to enhanced cytotoxic effects. CONCLUSIONS PIT with our dye WB692-CB2 can serve as an effective focal therapy against prostate cancer, preserving the prostate gland and minimizing side effects. It can be employed during radical prostatectomy (RP) to treat residual tumor cells or lymph node metastases in areas where further surgical intervention is not feasible. Utilizing multiple conjugates against antigens expressed on differentiated PC and PCSC-like cells, such as CD44 and EpCAM, could be an effective method to eradicate residual cancer cells in heterogeneous tumors. This approach could reduce the risk of local recurrence after RP and thus increase the therapeutic outcome of PC patients.
Collapse
Affiliation(s)
- Isis Wolf
- Department of Urology, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; (I.W.); (S.S.-S.); (C.G.)
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Susanne Schultze-Seemann
- Department of Urology, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; (I.W.); (S.S.-S.); (C.G.)
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; (I.W.); (S.S.-S.); (C.G.)
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; (I.W.); (S.S.-S.); (C.G.)
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Kopp A, Dong S, Kwon H, Wang T, Desai AA, Linderman JJ, Tessier P, Thurber GM. In vivo Auto-tuning of Antibody-Drug Conjugate Delivery for Effective Immunotherapy using High-Avidity, Low-Affinity Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588433. [PMID: 38645231 PMCID: PMC11030390 DOI: 10.1101/2024.04.06.588433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Antibody-drug conjugates (ADCs) have experienced a surge in clinical approvals in the past five years. Despite this success, a major limitation to ADC efficacy in solid tumors is poor tumor penetration, which leaves many cancer cells untargeted. Increasing antibody doses or co-administering ADC with an unconjugated antibody can improve tumor penetration and increase efficacy when target receptor expression is high. However, it can also reduce efficacy in low-expression tumors where ADC delivery is limited by cellular uptake. This creates an intrinsic problem because many patients express different levels of target between tumors and even within the same tumor. Here, we generated High-Avidity, Low-Affinity (HALA) antibodies that can automatically tune the cellular ADC delivery to match the local expression level. Using HER2 ADCs as a model, HALA antibodies were identified with the desired HER2 expression-dependent competitive binding with ADCs in vitro. Multi-scale distribution of trastuzumab emtansine and trastuzumab deruxtecan co-administered with the HALA antibody were analyzed in vivo, revealing that the HALA antibody increased ADC tumor penetration in high-expression systems with minimal reduction in ADC uptake in low-expression tumors. This translated to greater ADC efficacy in immunodeficient mouse models across a range of HER2 expression levels. Furthermore, Fc-enhanced HALA antibodies showed improved Fc-effector function at both high and low expression levels and elicited a strong response in an immunocompetent mouse model. These results demonstrate that HALA antibodies can expand treatment ranges beyond high expression targets and leverage strong immune responses.
Collapse
Affiliation(s)
- Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Shujun Dong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Hyeyoung Kwon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Tiexin Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Peter Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
3
|
Pouw JEE, Hashemi SMS, Huisman MC, Wijngaarden JE, Slebe M, Oprea-Lager DE, Zwezerijnen GJC, Vugts D, Ulas EB, de Gruijl TD, Radonic T, Senan S, Menke-van der Houven van Oordt CW, Bahce I. First exploration of the on-treatment changes in tumor and organ uptake of a radiolabeled anti PD-L1 antibody during chemoradiotherapy in patients with non-small cell lung cancer using whole body PET. J Immunother Cancer 2024; 12:e007659. [PMID: 38302416 PMCID: PMC10836378 DOI: 10.1136/jitc-2023-007659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND In patients with locally advanced unresectable non-small cell lung cancer (NSCLC), durvalumab, an anti-programmed cell death ligand-1 (PD-L1) antibody, has shown improved overall survival when used as consolidation therapy following concurrent chemoradiotherapy (CRT). However, it is unclear whether CRT itself upregulates PD-L1 expression. Therefore, this study aimed to explore the changes in the uptake of the anti PD-L1 antibody [89Zr]Zr-durvalumab in tumors and healthy organs during CRT in patients with NSCLC. METHODS Patients with NSCLC scheduled to undergo CRT were scanned 7±1 days after administration of 37±1 MBq [89Zr]Zr-durvalumab at baseline, 1-week on-treatment and 1 week after finishing 6 weeks of CRT. First, [89Zr]Zr-durvalumab uptake was visually assessed in a low dose cohort with a mass dose of 2 mg durvalumab (0.13% of therapeutic dose) and subsequently, quantification was done in a high dose cohort with a mass dose of 22.5 mg durvalumab (1.5% of therapeutic dose). Tracer pharmacokinetics between injections were compared using venous blood samples drawn in the 22.5 mg cohort. Visual assessment included suspected lesion detectability. Positron emission tomography (PET) uptake in tumoral and healthy tissues was quantified using tumor to plasma ratio (TPR) and organ to plasma ratio, respectively. RESULTS In the 2 mg dose cohort, 88% of the 17 identified tumor lesions were positive at baseline, compared with 69% (9/13) for the 22.5 mg cohort. Although the absolute plasma concentrations between patients varied, the intrapatient variability was low. The ten quantitatively assessed lesions in the 22.5 mg cohort had a median TPR at baseline of 1.3 (IQR 0.7-1.5), on-treatment of 1.0 (IQR 0.7-1.4) and at the end of treatment of 0.7 (IQR 0.6-0.7). On-treatment, an increased uptake in bone marrow was seen in three out of five patients together with a decreased uptake in the spleen in four out of five patients. CONCLUSIONS This study successfully imaged patients with NSCLC with [89Zr]Zr-durvalumab PET before and during CRT. Our data did not show any increase in [89Zr]Zr-durvalumab uptake in the tumor 1-week on-treatment and at the end of treatment. The changes observed in bone marrow and spleen may be due to an CRT-induced effect on immune cells. TRIAL REGISTRATION NUMBER EudraCT number: 2019-004284-51.
Collapse
Affiliation(s)
- Johanna E E Pouw
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Sayed M S Hashemi
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Marc C Huisman
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Jessica E Wijngaarden
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Maarten Slebe
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Daniela E Oprea-Lager
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Gerben J C Zwezerijnen
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Danielle Vugts
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Ezgi B Ulas
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Teodora Radonic
- Department of Pathology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Suresh Senan
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
- Department of Radiation Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Idris Bahce
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| |
Collapse
|
4
|
Bordeau BM, Abuqayyas L, Nguyen TD, Chen P, Balthasar JP. Development and Evaluation of Competitive Inhibitors of Trastuzumab-HER2 Binding to Bypass the Binding-Site Barrier. Front Pharmacol 2022; 13:837744. [PMID: 35250584 PMCID: PMC8895951 DOI: 10.3389/fphar.2022.837744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
Our group has developed and experimentally validated a strategy to increase antibody penetration in solid tumors through transient inhibition of antibody-antigen binding. In prior work, we demonstrated that 1HE, an anti-trastuzumab single domain antibody that transiently inhibits trastuzumab binding to HER2, increased the penetration of trastuzumab and increased the efficacy of ado-trastuzumab emtansine (T-DM1) in HER2+ xenograft bearing mice. In the present work, 1HE variants were developed using random mutagenesis and phage display to enable optimization of tumor penetration and efficacy of trastuzumab-based therapeutics. To guide the rational selection of a particular 1HE mutant for a specific trastuzumab-therapy, we developed a mechanistic pharmacokinetic (PK) model to predict within-tumor exposure of trastuzumab/T-DM1. A pharmacodynamic (PD) component was added to the model to predict the relationship between intratumor exposure to T-DM1 and the corresponding therapeutic effect in HER2+ xenografts. To demonstrate the utility of the competitive inhibition approach for immunotoxins, PK parameters specific for a recombinant immunotoxin were incorporated into the model structure. Dissociation half-lives for variants ranged from 1.1 h (for variant LG11) to 107.9 h (for variant HE10). Simulations predicted that 1HE co-administration can increase the tumor penetration of T-DM1, with inhibitors with longer trastuzumab binding half-lives relative to 1HE (15.5 h) further increasing T-DM1 penetration at the expense of total tumor uptake of T-DM1. The PK/PD model accurately predicted the response of NCI-N87 xenografts to treatment with T-DM1 or T-DM1 co-administered with 1HE. Model predictions indicate that the 1HE mutant HF9, with a trastuzumab binding half-life of 51.1 h, would be the optimal inhibitor for increasing T-DM1 efficacy with a modest extension in the median survival time relative to T-DM1 with 1HE. Model simulations predict that LG11 co-administration will dramatically increase immunotoxin penetration within all tumor regions. We expect that the mechanistic model structure and the wide range of inhibitors developed in this work will enable optimization of trastuzumab-cytotoxin penetration and efficacy in solid tumors.
Collapse
Affiliation(s)
| | | | | | | | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
5
|
Preclinical evaluation of [ 99mTc]Tc-labeled anti-EpCAM nanobody for EpCAM receptor expression imaging by immuno-SPECT/CT. Eur J Nucl Med Mol Imaging 2022; 49:1810-1821. [PMID: 35013776 DOI: 10.1007/s00259-021-05670-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Overexpression of epithelial cell adhesion molecule (EpCAM) plays essential roles in tumorigenesis and tumor progression in almost all epithelium-derived cancer. Monitoring EpCAM expression in tumors can be used for the diagnosis, staging, and prognosis of cancer patients, as well as guiding the individualized treatment of EpCAM-targeted drugs. In this study, we described the synthesis and evaluation of a site-specifically [99mTc]Tc-labeled EpCAM-targeted nanobody for the SPECT/CT imaging of EpCAM expression. METHODS We first prepared the [99mTc]Tc-HYNIC-G4K; then, it was site-specifically connected to EpCAM-targeted nanobody NB4. The in vitro characteristics of [99mTc]Tc-NB4 were investigated in HT-29 (EpCAM positive) and HL-60 (EpCAM negative) cells, while the in vivo studies were performed using small-animal SPECT/CT in the subcutaneous tumor models and the lymph node metastasis model to verify the specific targeting capacity as well as the potential applications of [99mTc]Tc-NB4. RESULTS [99mTc]Tc-NB4 displayed a high EpCAM specificity both in vitro and in vivo. SPECT/CT imaging revealed that [99mTc]Tc-NB4 was cleared rapidly from the blood and normal organs except for the kidneys, and HT-29 tumors were clearly visualized in contrast with HL-60 tumors. The uptake value of [99mTc]Tc-NB4 in HT-29 tumors was increased continuously from 3.77 ± 0.39%ID/g at 0.5 h to 5.53 ± 0.82%ID/g at 12 h after injection. Moreover, the [99mTc]Tc-NB4 SPECT/CT could clearly image tumor-draining lymph nodes. CONCLUSION [99mTc]Tc-NB4 is a broad-spectrum, specific, and sensitive SPECT radiotracer for the noninvasive imaging of EpCAM expression in the epithelium-derived cancer and revealed a great potential for the clinical translation.
Collapse
|
6
|
Bordeau BM, Polli JR, Schweser F, Grimm HP, Richter WF, Balthasar JP. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Monoclonal Antibody Tumor Disposition. Int J Mol Sci 2022; 23:679. [PMID: 35054865 PMCID: PMC8775965 DOI: 10.3390/ijms23020679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
The prediction of monoclonal antibody (mAb) disposition within solid tumors for individual patients is difficult due to inter-patient variability in tumor physiology. Improved a priori prediction of mAb pharmacokinetics in tumors may facilitate the development of patient-specific dosing protocols and facilitate improved selection of patients for treatment with anti-cancer mAb. Here, we report the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), with tumor penetration of the contrast agent gadobutrol used as a surrogate, to improve physiologically based pharmacokinetic model (PBPK) predictions of cetuximab pharmacokinetics in epidermal growth factor receptor (EGFR) positive xenografts. In the initial investigations, mice bearing Panc-1, NCI-N87, and LS174T xenografts underwent DCE-MRI imaging with the contrast agent gadobutrol, followed by intravenous dosing of an 125Iodine-labeled, non-binding mAb (8C2). Tumor concentrations of 8C2 were determined following the euthanasia of mice (3 h-6 days after 8C2 dosing). Potential predictor relationships between DCE-MRI kinetic parameters and 8C2 PBPK parameters were evaluated through covariate modeling. The addition of the DCE-MRI parameter Ktrans alone or Ktrans in combination with the DCE-MRI parameter Vp on the PBPK parameters for tumor blood flow (QTU) and tumor vasculature permeability (σTUV) led to the most significant improvement in the characterization of 8C2 pharmacokinetics in individual tumors. To test the utility of the DCE-MRI covariates on a priori prediction of the disposition of mAb with high-affinity tumor binding, a second group of tumor-bearing mice underwent DCE-MRI imaging with gadobutrol, followed by the administration of 125Iodine-labeled cetuximab (a high-affinity anti-EGFR mAb). The MRI-PBPK covariate relationships, which were established with the untargeted antibody 8C2, were implemented into the PBPK model with considerations for EGFR expression and cetuximab-EGFR interaction to predict the disposition of cetuximab in individual tumors (a priori). The incorporation of the Ktrans MRI parameter as a covariate on the PBPK parameters QTU and σTUV decreased the PBPK model prediction error for cetuximab tumor pharmacokinetics from 223.71 to 65.02%. DCE-MRI may be a useful clinical tool in improving the prediction of antibody pharmacokinetics in solid tumors. Further studies are warranted to evaluate the utility of the DCE-MRI approach to additional mAbs and additional drug modalities.
Collapse
Affiliation(s)
- Brandon M. Bordeau
- Department of Pharmaceutical Sciences, University at Buffalo, 450 Pharmacy Building, Buffalo, NY 14214, USA; (B.M.B.); (J.R.P.)
| | - Joseph Ryan Polli
- Department of Pharmaceutical Sciences, University at Buffalo, 450 Pharmacy Building, Buffalo, NY 14214, USA; (B.M.B.); (J.R.P.)
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Clinical and Translational Science Institute, Center for Biomedical Imaging, University at Buffalo, Buffalo, NY 14203, USA
| | - Hans Peter Grimm
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (H.P.G.); (W.F.R.)
| | - Wolfgang F. Richter
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (H.P.G.); (W.F.R.)
| | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, 450 Pharmacy Building, Buffalo, NY 14214, USA; (B.M.B.); (J.R.P.)
| |
Collapse
|
7
|
Billerhart M, Schönhofer M, Schueffl H, Polzer W, Pichler J, Decker S, Taschauer A, Maier J, Anton M, Eckmann S, Blaschek M, Heffeter P, Sami H, Ogris M. CD47-targeted cancer immunogene therapy: Secreted SIRPα-Fc fusion protein eradicates tumors by macrophage and NK cell activation. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:192-204. [PMID: 34729396 PMCID: PMC8526499 DOI: 10.1016/j.omto.2021.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
CD47 protects healthy cells from macrophage attack by binding to signal regulatory protein α (SIRPα), while its upregulation in cancer prevents immune clearance. Systemic treatment with CD47 antibodies requires a weakened Fc-mediated effector function or lower CD47-binding affinity to prevent side effects. Our approach combines “the best of both worlds,” i.e., maximized CD47 binding and full Fc-mediated immune activity, by exploiting gene therapy for paracrine release. We developed a plasmid vector encoding for the secreted fusion protein sCV1-hIgG1, comprising highly efficient CD47-blocking moiety CV1 and Fc domain of human immunoglobulin G1 (IgG1) with maximized immune activation. sCV1-hIgG1 exhibited a potent bystander effect, blocking CD47 on all cells via fusion protein secreted from only a fraction of cells or when transferring transfection supernatant to untransfected cells. The CpG-free plasmid ensured sustained secretion of sCV1-hIgG1. In orthotopic human triple-negative breast cancer in CB17-severe combined immunodeficiency (SCID) mice, ex vivo transfection significantly delayed tumor growth and eradicated one-third of tumors. In intratumoral transfection experiments, CD47 blockage and increased migration of macrophages into the tumor were observed within 17 h of a single injection. Natural killer (NK) cell-mediated lysis of sCV1-hIgG1-expressing cells was demonstrated in vitro. Taken together, this approach also opens the opportunity to block, in principle, any immune checkpoints.
Collapse
Affiliation(s)
- Magdalena Billerhart
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Monika Schönhofer
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Hemma Schueffl
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfram Polzer
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Julia Pichler
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Simon Decker
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Alexander Taschauer
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Julia Maier
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Martina Anton
- Institutes of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Sebastian Eckmann
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Manuel Blaschek
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Haider Sami
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| | - Manfred Ogris
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
8
|
Fluorescence grid analysis for the evaluation of piecemeal surgery in sinonasal inverted papilloma: a proof-of-concept study. Eur J Nucl Med Mol Imaging 2021; 49:1640-1649. [PMID: 34738141 PMCID: PMC8940828 DOI: 10.1007/s00259-021-05567-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Purpose Local recurrence occurs in ~ 19% of sinonasal inverted papilloma (SNIP) surgeries and is strongly associated with incomplete resection. During surgery, it is technically challenging to visualize and resect all SNIP tissue in this anatomically complex area. Proteins that are overexpressed in SNIP, such as vascular endothelial growth factor (VEGF), may serve as a target for fluorescence molecular imaging to guide surgical removal of SNIP. A proof-of-concept study was performed to investigate if the VEGF-targeted near-infrared fluorescent tracer bevacizumab-800CW specifically localizes in SNIP and whether it could be used as a clinical tool to guide SNIP surgery. Methods In five patients diagnosed with SNIP, 10 mg of bevacizumab-800CW was intravenously administered 3 days prior to surgery. Fluorescence molecular imaging was performed in vivo during surgery and ex vivo during the processing of the surgical specimen. Fluorescence signals were correlated with final histopathology and VEGF-A immunohistochemistry. We introduced a fluorescence grid analysis to assess the fluorescence signal in individual tissue fragments, due to the nature of the surgical procedure (i.e., piecemeal resection) allowing the detection of small SNIP residues and location of the tracer ex vivo. Results In all patients, fluorescence signal was detected in vivo during endoscopic SNIP surgery. Using ex vivo fluorescence grid analysis, we were able to correlate bevacizumab-800CW fluorescence of individual tissue fragments with final histopathology. Fluorescence grid analysis showed substantial variability in mean fluorescence intensity (FImean), with SNIP tissue showing a median FImean of 77.54 (IQR 50.47–112.30) compared to 35.99 (IQR 21.48–57.81) in uninvolved tissue (p < 0.0001), although the diagnostic ability was limited with an area under the curve of 0.78. Conclusions A fluorescence grid analysis could serve as a valid method to evaluate fluorescence molecular imaging in piecemeal surgeries. As such, although substantial differences were observed in fluorescence intensities, VEGF-A may not be the ideal target for SNIP surgery. Trial registration NCT03925285. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05567-x.
Collapse
|
9
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|
10
|
Nessler I, Menezes B, Thurber GM. Key metrics to expanding the pipeline of successful antibody-drug conjugates. Trends Pharmacol Sci 2021; 42:803-812. [PMID: 34456094 DOI: 10.1016/j.tips.2021.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/18/2023]
Abstract
Although the recent FDA approval of six new antibody-drug conjugates (ADCs) is promising, attrition of ADCs during clinical development remains high. The inherent complexity of ADCs is a double-edged sword that provides opportunities for perfecting therapeutic action while also increasing confounding factors in therapeutic failures. ADC design drives their pharmacokinetics and pharmacodynamics, and requires deeper analysis than the commonly used Cmax and area under the curve (AUC) metrics to scale dosing to the clinic. Common features of current FDA-approved ADCs targeting solid tumors include humanized IgG1 antibody domains, highly expressed tumor receptors, and large antibody doses. The potential consequences of these shared features for clinical pharmacokinetics and mechanism of action are discussed, and key design aspects for successful solid tumor ADCs are highlighted.
Collapse
Affiliation(s)
- Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bruna Menezes
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Wang S, Li J, Hua J, Su Y, Beckford-Vera DR, Zhao W, Jayaraman M, Huynh TL, Zhao N, Wang YH, Huang Y, Qin F, Shen S, Gioeli D, Dreicer R, Sriram R, Egusa EA, Chou J, Feng FY, Aggarwal R, Evans MJ, Seo Y, Liu B, Flavell RR, He J. Molecular Imaging of Prostate Cancer Targeting CD46 Using ImmunoPET. Clin Cancer Res 2020; 27:1305-1315. [PMID: 33293372 DOI: 10.1158/1078-0432.ccr-20-3310] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE We recently identified CD46 as a novel therapeutic target in prostate cancer. In this study, we developed a CD46-targeted PET radiopharmaceutical, [89Zr]DFO-YS5, and evaluated its performance for immunoPET imaging in murine prostate cancer models. EXPERIMENTAL DESIGN [89Zr]DFO-YS5 was prepared and its in vitro binding affinity for CD46 was measured. ImmunoPET imaging was conducted in male athymic nu/nu mice bearing DU145 [AR-, CD46+, prostate-specific membrane antigen-negative (PSMA-)] or 22Rv1 (AR+, CD46+, PSMA+) tumors, and in NOD/SCID gamma mice bearing patient-derived adenocarcinoma xenograft, LTL-331, and neuroendocrine prostate cancers, LTL-331R and LTL-545. RESULTS [89Zr]DFO-YS5 binds specifically to the CD46-positive human prostate cancer DU145 and 22Rv1 xenografts. In biodistribution studies, the tumor uptake of [89Zr]DFO-YS5 was 13.3 ± 3.9 and 11.2 ± 2.5 %ID/g, respectively, in DU145 and 22Rv1 xenografts, 4 days postinjection. Notably, [89Zr]DFO-YS5 demonstrated specific uptake in the PSMA- and AR-negative DU145 model. [89Zr]DFO-YS5 also showed uptake in the patient-derived LTL-331 and -331R models, with particularly high uptake in the LTL-545 neuroendocrine prostate cancer tumors (18.8 ± 5.3, 12.5 ± 1.8, and 32 ± 5.3 %ID/g in LTL-331, LTL-331R, and LTL-545, respectively, at 4 days postinjection). CONCLUSIONS [89Zr]DFO-YS5 is an excellent PET imaging agent across a panel of prostate cancer models, including in both adenocarcinoma and neuroendocrine prostate cancer, both cell line- and patient-derived xenografts, and both PSMA-positive and -negative tumors. It demonstrates potential for clinical translation as an imaging agent, theranostic platform, and companion biomarker in prostate cancer.
Collapse
Affiliation(s)
- Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Jun Li
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia.,Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jun Hua
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia.,Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yang Su
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Denis R Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Walter Zhao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Mayuri Jayaraman
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Ning Zhao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Yangjie Huang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Fujun Qin
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Sui Shen
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia.,University of Virginia Cancer Center, Charlottesville, Virginia
| | - Robert Dreicer
- University of Virginia Cancer Center, Charlottesville, Virginia.,Departments of Medicine and Urology, University of Virginia, Charlottesville, Virginia
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Emily A Egusa
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Jonathan Chou
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Felix Y Feng
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Rahul Aggarwal
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Division of Hematology and Oncology, University of California, San Francisco, San Francisco, California
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, San Francisco, California. .,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California. .,UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia. .,University of Virginia Cancer Center, Charlottesville, Virginia
| |
Collapse
|
12
|
Catalano M, Bassi G, Rotondi G, Khettabi L, Dichiara M, Murer P, Scheuermann J, Soler-Lopez M, Neri D. Discovery, affinity maturation and multimerization of small molecule ligands against human tyrosinase and tyrosinase-related protein 1. RSC Med Chem 2020; 12:363-369. [PMID: 34041485 PMCID: PMC8130610 DOI: 10.1039/d0md00310g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human tyrosinase (hTYR) and tyrosinase-related protein 1 (hTYRP1) are closely-related enzymes involved in the synthesis of melanin, which are selectively expressed in melanocytes and, in a pathological context, in melanoma lesions. We used a previously described tyrosinase inhibitor (Thiamidol™) and DNA-encoded library technology for the discovery of novel hTYR and hTYRP1 ligands, that could be used as vehicles for melanoma targeting. Performing de novo selections with DNA-encoded libraries, we discovered novel ligands capable of binding to both hTYR and hTYRP1. More potent ligands were obtained by multimerizing Thiamidol™ moieties, leading to homotetrameric structures that avidly bound to melanoma cells, as revealed by flow cytometry. These findings suggest that melanoma lesions may, in the future, be targeted not only by monoclonal antibody reagents but also by small organic ligands. A series of different strategies were oriented toward the discovery of small molecule ligands binding to the human version of tyrosinase (hTYR) and tyrosinase-related protein 1 (hTYRP1), which may represent the basis for novel treatments of melanoma.![]()
Collapse
Affiliation(s)
- Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Giulia Rotondi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland .,Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France.,CNRS, DCM, Université Grenoble Alpes 38000 Grenoble France
| | - Maria Dichiara
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|
13
|
Lu G, Nishio N, van den Berg NS, Martin BA, Fakurnejad S, van Keulen S, Colevas AD, Thurber GM, Rosenthal EL. Co-administered antibody improves penetration of antibody-dye conjugate into human cancers with implications for antibody-drug conjugates. Nat Commun 2020; 11:5667. [PMID: 33168818 PMCID: PMC7652891 DOI: 10.1038/s41467-020-19498-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/13/2020] [Indexed: 02/03/2023] Open
Abstract
Poor tissue penetration remains a major challenge for antibody-based therapeutics of solid tumors, but proper dosing can improve the tissue penetration and thus therapeutic efficacy of these biologics. Due to dose-limiting toxicity of the small molecule payload, antibody-drug conjugates (ADCs) are administered at a much lower dose than their parent antibodies, which further reduces tissue penetration. We conducted an early-phase clinical trial (NCT02415881) and previously reported the safety of an antibody-dye conjugate (panitumumab-IRDye800CW) as primary outcome. Here, we report a retrospective exploratory analysis of the trial to evaluate whether co-administration of an unconjugated antibody could improve the intratumoral distribution of the antibody-dye conjugate in patients. By measuring the multiscale distribution of the antibody-dye conjugate, this study demonstrates improved microscopic antibody distribution without increasing uptake (toxicity) in healthy tissue when co-administered with the parent antibody, supporting further clinical investigation of the co-administration dosing strategy to improve the tumor penetration of ADCs.
Collapse
Affiliation(s)
- Guolan Lu
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Naoki Nishio
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Nynke S van den Berg
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Brock A Martin
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Shayan Fakurnejad
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Stan van Keulen
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Alexander D Colevas
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eben L Rosenthal
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Sivaram AJ, Wardiana A, Alcantara S, Sonderegger SE, Fletcher NL, Houston ZH, Howard CB, Mahler SM, Alexander C, Kent SJ, Bell CA, Thurecht KJ. Controlling the Biological Fate of Micellar Nanoparticles: Balancing Stealth and Targeting. ACS NANO 2020; 14:13739-13753. [PMID: 32936613 DOI: 10.1021/acsnano.0c06033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Integrating nanomaterials with biological entities has led to the development of diagnostic tools and biotechnology-derived therapeutic products. However, to optimize the design of these hybrid bionanomaterials, it is essential to understand how controlling the biological interactions will influence desired outcomes. Ultimately, this knowledge will allow more rapid translation from the bench to the clinic. In this paper, we developed a micellar system that was assembled using modular antibody-polymer amphiphilic materials. The amphiphilic nature was established using either poly(ethylene glycol) (PEG) or a single-chain variable fragment (scFv) from an antibody as the hydrophile and a thermoresponsive polymer (poly(oligoethylene glycol) methyl ether methacrylate) as the hydrophobe. By varying the ratios of these components, a series of nanoparticles with different antibody content was self-assembled, where the surface presentation of targeting ligand was carefully controlled. In vitro and in vivo analysis of these systems identified a mismatch between the optimal targeting ligand density to achieve maximum cell association in vitro compared to tumor accumulation in vivo. For this system, we determined an optimum antibody density for both longer circulation and enhanced targeting to tumors that balanced stealthiness of the particle (to evade immune recognition as determined in both mouse models and in whole human blood) with enhanced accumulation achieved through receptor binding on tumor cells in solid tumors. This approach provides fundamental insights into how different antibody densities affect the interaction of designed nanoparticles with both target cells and immune cells, thereby offering a method to probe the intricate interplay between increased targeting efficiency and the subsequent immune response to nanoparticles.
Collapse
Affiliation(s)
- Amal J Sivaram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andri Wardiana
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sheilajen Alcantara
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Stefan E Sonderegger
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zachary H Houston
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cameron Alexander
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Craig A Bell
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
15
|
Jiménez-Franco LD, Glatting G, Prasad V, Weber WA, Beer AJ, Kletting P. Effect of Tumor Perfusion and Receptor Density on Tumor Control Probability in 177Lu-DOTATATE Therapy: An In Silico Analysis for Standard and Optimized Treatment. J Nucl Med 2020; 62:92-98. [PMID: 32646878 DOI: 10.2967/jnumed.120.245068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of this work was to determine a minimal tumor perfusion and receptor density for 177Lu-DOTATATE therapy using physiologically based pharmacokinetic (PBPK) modeling considering, first, a desired tumor control probability (TCP) of 99% and, second, a maximal tolerated biologically effective dose (BEDmax) for organs at risk (OARs) in the treatment of neuroendocrine tumors and meningioma. Methods: A recently developed PBPK model was used. Nine virtual patients (i.e., individualized PBPK models) were used to perform simulations of pharmacokinetics for different combinations of perfusion (0.001-0.1 mL/g/min) and receptor density (1-100 nmol/L). The TCP for each combination was determined for 3 different treatment strategies: a standard treatment (4 cycles of 7.4 GBq and 105 nmol), a treatment maximizing the number of cycles based on BEDmax for red marrow and kidneys, and a treatment having 4 cycles with optimized ligand amount and activity. The red marrow and the kidneys (BEDmax of 2 Gy15 and 40 Gy2.5, respectively) were assumed to be OARs. Additionally, the influence of varying glomerular filtration rates, kidney somatostatin receptor densities, tumor volumes, and release rates was investigated. Results: To achieve a TCP of at least 99% in the standard treatment, a minimal tumor perfusion of 0.036 ± 0.023 mL/g/min and receptor density of 34 ± 20 nmol/L were determined for the 9 virtual patients. With optimization of the number of cycles, the minimum values for perfusion and receptor density were considerably lower, at 0.022 ± 0.012 mL/g/min and 21 ± 11 nmol/L, respectively. However, even better results (perfusion, 0.018 ± 0.009 mL/g/min; receptor density, 18 ± 10 nmol/L) were obtained for strategy 3. The release rate of 177Lu (or labeled metabolites) from tumor cells had the strongest effect on the minimal perfusion and receptor density for standard and optimized treatments. Conclusion: PBPK modeling and simulations represent an elegant approach to individually determine the minimal tumor perfusion and minimal receptor density required to achieve an adequate TCP. This computational method can be used in the radiopharmaceutical development process for ligand and target selection for specific types of tumors. In addition, this method could be used to optimize clinical trials.
Collapse
Affiliation(s)
| | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University, Ulm, Germany.,Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany; and
| | - Vikas Prasad
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Peter Kletting
- Department of Nuclear Medicine, Ulm University, Ulm, Germany .,Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany; and
| |
Collapse
|
16
|
Conner KP, Devanaboyina SC, Thomas VA, Rock DA. The biodistribution of therapeutic proteins: Mechanism, implications for pharmacokinetics, and methods of evaluation. Pharmacol Ther 2020; 212:107574. [PMID: 32433985 DOI: 10.1016/j.pharmthera.2020.107574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic proteins (TPs) are a diverse drug class that include monoclonal antibodies (mAbs), recombinantly expressed enzymes, hormones and growth factors, cytokines (e.g. chemokines, interleukins, interferons), as well as a wide range of engineered fusion scaffolds containing IgG1 Fc domain for half-life extension. As the pharmaceutical industry advances more potent and selective protein-based medicines through discovery and into the clinical stages of development, it has become widely appreciated that a comprehensive understanding of the mechanisms of TP biodistribution can aid this endeavor. This review aims to highlight the literature that has advanced our understanding of the determinants of TP biodistribution. A particular emphasis is placed on the multi-faceted role of the neonatal Fc receptor (FcRn) in mAb and Fc-fusion protein disposition. In addition, characterization of the TP-target interaction at the cell-level is discussed as an essential strategy to establish pharmacokinetic-pharmacodynamic (PK/PD) relationships that may lead to more informed human dose projections during clinical development. Methods for incorporation of tissue and cell-level parameters defining these characteristics into higher-order mechanistic and semi-mechanistic PK models will also be presented.
Collapse
Affiliation(s)
- Kip P Conner
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Siva Charan Devanaboyina
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Veena A Thomas
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Dan A Rock
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| |
Collapse
|
17
|
Lu G, Fakurnejad S, Martin BA, van den Berg NS, van Keulen S, Nishio N, Zhu AJ, Chirita SU, Zhou Q, Gao RW, Kong CS, Fischbein N, Penta M, Colevas AD, Rosenthal EL. Predicting Therapeutic Antibody Delivery into Human Head and Neck Cancers. Clin Cancer Res 2020; 26:2582-2594. [PMID: 31980465 DOI: 10.1158/1078-0432.ccr-19-3717] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The efficacy of antibody-based therapeutics depends on successful drug delivery into solid tumors; therefore, there is a clinical need to measure intratumoral antibody distribution. This study aims to develop and validate an imaging and computation platform to directly quantify and predict antibody delivery into human head and neck cancers in a clinical study. EXPERIMENTAL DESIGN Twenty-four patients received systemic infusion of a near-infrared fluorescence-labeled therapeutic antibody followed by surgical tumor resection. A computational platform was developed to quantify the extent of heterogeneity of intratumoral antibody distribution. Both univariate and multivariate regression analyses were used to select the most predictive tumor biological factors for antibody delivery. Quantitative image features from the pretreatment MRI were extracted and correlated with fluorescence imaging of antibody delivery. RESULTS This study not only confirmed heterogeneous intratumoral antibody distribution in-line with many preclinical reports, but also quantified the extent of interpatient, intertumor, and intratumor heterogeneity of antibody delivery. This study demonstrated the strong predictive value of tumor size for intratumoral antibody accumulation and its significant impact on antibody distribution in both primary tumor and lymph node metastasis. Furthermore, this study established the feasibility of using contrast-enhanced MRI to predict antibody delivery. CONCLUSIONS This study provides a clinically translatable platform to measure antibody delivery into solid tumors and yields valuable insight into clinically relevant antibody tumor penetration, with implications in the selection of patients amenable to antibody therapy and the design of more effective dosing strategies.
Collapse
Affiliation(s)
- Guolan Lu
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | | | - Brock A Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Nynke S van den Berg
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Stan van Keulen
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Naoki Nishio
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Ashley J Zhu
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Stefania U Chirita
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Quan Zhou
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Rebecca W Gao
- Stanford University School of Medicine, Stanford, California
| | - Christina S Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Nancy Fischbein
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Mrudula Penta
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Alexander D Colevas
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Eben L Rosenthal
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California. .,Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
18
|
Menezes B, Cilliers C, Wessler T, Thurber GM, Linderman JJ. An Agent-Based Systems Pharmacology Model of the Antibody-Drug Conjugate Kadcyla to Predict Efficacy of Different Dosing Regimens. AAPS JOURNAL 2020; 22:29. [PMID: 31942650 DOI: 10.1208/s12248-019-0391-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
The pharmaceutical industry has invested significantly in antibody-drug conjugates (ADCs) with five FDA-approved therapies and several more showing promise in late-stage clinical trials. The FDA-approved therapeutic Kadcyla (ado-trastuzumab emtansine or T-DM1) can extend the survival of patients with tumors overexpressing HER2. However, tumor histology shows that most T-DM1 localizes perivascularly, but coadministration with its unconjugated form (trastuzumab) improves penetration of the ADC into the tumor and subsequent treatment efficacy. ADC dosing schedule, e.g., dose fractionation, has also been shown to improve tolerability. However, it is still not clear how coadministration with carrier doses impacts efficacy in terms of receptor expression, dosing regimens, and payload potency. Here, we develop a hybrid agent-based model (ABM) to capture ADC and/or antibody delivery and to predict tumor killing and growth kinetics. The results indicate that a carrier dose improves efficacy when the increased number of cells targeted by the ADC outweighs the reduced fractional killing of the targeted cells. The threshold number of payloads per cell required for killing plays a pivotal role in defining this cutoff. Likewise, fractionated dosing lowers ADC efficacy due to lower tissue penetration from a reduced maximum plasma concentration. It is only beneficial when an increase in tolerability from fractionation allows a higher ADC/payload dose that more than compensates for the loss in efficacy from fractionation. Overall, the multiscale model enables detailed depictions of heterogeneous ADC delivery, cancer cell death, and tumor growth to show how carrier dosing impacts efficacy to design the most efficacious regimen.
Collapse
Affiliation(s)
- Bruna Menezes
- Department of Chemical Engineering, University of Michigan, NCRC B28, 2800 Plymouth Road, Ann Arbor, Michigan, 48109-2800, USA
| | - Cornelius Cilliers
- Department of Chemical Engineering, University of Michigan, NCRC B28, 2800 Plymouth Road, Ann Arbor, Michigan, 48109-2800, USA
| | - Timothy Wessler
- Department of Chemical Engineering, University of Michigan, NCRC B28, 2800 Plymouth Road, Ann Arbor, Michigan, 48109-2800, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, NCRC B28, 2800 Plymouth Road, Ann Arbor, Michigan, 48109-2800, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, NCRC B28, 2800 Plymouth Road, Ann Arbor, Michigan, 48109-2800, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
19
|
Khera E, Zhang L, Roberts S, Nessler I, Sandoval D, Reiner T, Thurber GM. Blocking of Glucagonlike Peptide-1 Receptors in the Exocrine Pancreas Improves Specificity for β-Cells in a Mouse Model of Type 1 Diabetes. J Nucl Med 2019; 60:1635-1641. [PMID: 31076502 DOI: 10.2967/jnumed.118.224881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/03/2019] [Indexed: 01/18/2023] Open
Abstract
The diabetes community has long desired an imaging agent to quantify the number of insulin-secreting β-cells, beyond just functional equivalents (insulin secretion), to help diagnose and monitor early stages of both type 1 and type 2 diabetes mellitus. Loss in the number of β-cells can be masked by a compensatory increase in function of the remaining cells. Since β-cells form only about 1% of the pancreas and decrease as the disease progresses, only a few imaging agents, such as exendin, have demonstrated clinical potential to detect a drop in the already scarce signal. However, clinical translation of imaging with exendin has been hampered by pancreatic uptake that is higher than expected in subjects with long-term diabetes who lack β-cells. Exendin binds glucagonlike peptide-1 receptor (GLP-1R), previously thought to be expressed only on β-cells, but recent studies report low levels of GLP-1R on exocrine cells, complicating β-cell mass quantification. Methods: Here, we used a GLP-1R knockout mouse model to demonstrate that exocrine binding of exendin is exclusively via GLP-1R (∼1,000/cell) and not any other receptor. We then used lipophilic Cy-7 exendin to selectively preblock exocrine GLP-1R in healthy and streptozotocin-induced diabetic mice. Results: Sufficient receptors remain on β-cells for subsequent labeling with a fluorescent- or 111In-exendin. Conclusion: Selective GLP-1R blocking, which improves contrast between healthy and diabetic pancreata and provides a potential avenue for achieving the long-standing goal of imaging β-cell mass in the clinic.
Collapse
Affiliation(s)
- Eshita Khera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Liang Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Darleen Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Pogue BW, Rosenthal EL, Achilefu S, van Dam GM. Perspective review of what is needed for molecular-specific fluorescence-guided surgery. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 30291698 PMCID: PMC6210787 DOI: 10.1117/1.jbo.23.10.100601] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/07/2018] [Indexed: 05/21/2023]
Abstract
Molecular image-guided surgery has the potential for translating the tools of molecular pathology to real-time guidance in surgery. As a whole, there are incredibly positive indicators of growth, including the first United States Food and Drug Administration clearance of an enzyme-biosynthetic-activated probe for surgery guidance, and a growing number of companies producing agents and imaging systems. The strengths and opportunities must be continued but are hampered by important weaknesses and threats within the field. A key issue to solve is the inability of macroscopic imaging tools to resolve microscopic biological disease heterogeneity and the limitations in microscopic systems matching surgery workflow. A related issue is that parsing out true molecular-specific uptake from simple-enhanced permeability and retention is hard and requires extensive pathologic analysis or multiple in vivo tests, comparing fluorescence accumulation with standard histopathology and immunohistochemistry. A related concern in the field is the over-reliance on a finite number of chosen preclinical models, leading to early clinical translation when the probe might not be optimized for high intertumor variation or intratumor heterogeneity. The ultimate potential may require multiple probes, as are used in molecular pathology, and a combination with ultrahigh-resolution imaging and image recognition systems, which capture the data at a finer granularity than is possible by the surgeon. Alternatively, one might choose a more generalized approach by developing the tracer based on generic hallmarks of cancer to create a more "one-size-fits-all" concept, similar to metabolic aberrations as exploited in fluorodeoxyglucose - positron emission tomography (FDG-PET) (i.e., Warburg effect) or tumor acidity. Finally, methods to approach the problem of production cost minimization and regulatory approvals in a manner consistent with the potential revenue of the field will be important. In this area, some solid steps have been demonstrated in the use of fluorescent labeling commercial antibodies and separately in microdosing studies with small molecules.
Collapse
Affiliation(s)
- Brian W. Pogue
- Dartmouth College, Thayer School of Engineering and Department of Surgery, Geisel School of Medicine, Hanover, New Hampshire, United States
- Address all correspondence to: Brian W. Pogue, E-mail:
| | - Eben L. Rosenthal
- Stanford University School of Medicine, Department of Otolaryngology and Head and Neck Surgery, Stanford, California, United States
| | - Samuel Achilefu
- Washington University in St. Louis, Department of Radiology, St. Louis, Missouri, United States
| | - Gooitzen M. van Dam
- University Medical Center Groningen, Department of Surgery, Nuclear Medicine and Molecular Imaging, Groningen, The Netherlands
| |
Collapse
|
21
|
Evaluation of optical imaging agents in a fluorescence-guided surgical model of head and neck cancer. Surg Oncol 2018; 27:225-230. [PMID: 29937175 DOI: 10.1016/j.suronc.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Tumor proliferation often occurs from pathologic receptor upregulation. These receptors provide unique targets for near-infrared (NIR) probes that have fluorescence-guided surgery (FGS) applications. We demonstrate the use of three smart-targeted probes in a model of head and neck squamous cell carcinoma. METHODS A dose escalation study was performed using IntegriSense750, ProSense750EX, and ProSense750FAST in mice (n = 5) bearing luciferase-positive SCC-1 flank xenograft tumors. Whole body fluorescence imaging was performed serially after intravenous injection using commercially available open-field (LUNA, Novadaq, Canada) and closed-field NIR systems (Pearl, LI-COR, Lincoln, NE). An ex vivo, whole-body biodistribution was conducted. Lastly, FGS was performed with IntegriSense750 to demonstrate orthotopic and metastatic disease localization. RESULTS Disease fluorescence delineation was assessed by tumor-to-background fluorescence ratios (TBR). Peak TBR values were 3.3 for 1 nmol ProSense750EX, 5.5 for 6 nmol ProSense750FAST, and 10.8 for 4 nmol IntegriSense750 at 5.5, 3, and 4 d post administration, respectively. Agent utility is unique: ProSense750FAST provides sufficient contrast quickly (TBR: 1.5, 3 h) while IntegriSense750 produces strong (TBR: 10.8) contrast with extended administration-to-resection time (96 h). IntegriSense750 correctly identified all diseased nodes in situ during exploratory surgeries. Ex vivo, whole-body biodistribution was assessed by tumor-to-tissue fluorescence ratios (TTR). Agents provided sufficient fluorescence contrast to discriminate disease from background, TTR>1. IntegriSense750 was most robust in neural tissue (TTR: 64) while ProSense750EX was superior localizing disease against lung tissue (TBR: 13). CONCLUSION All three agents appear effective for FGS.
Collapse
|
22
|
Cilliers C, Menezes B, Nessler I, Linderman J, Thurber GM. Improved Tumor Penetration and Single-Cell Targeting of Antibody-Drug Conjugates Increases Anticancer Efficacy and Host Survival. Cancer Res 2017; 78:758-768. [PMID: 29217763 DOI: 10.1158/0008-5472.can-17-1638] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
Abstract
Current antibody-drug conjugates (ADC) have made advances in engineering the antibody, linker, conjugation site, small-molecule payload, and drug-to-antibody ratio (DAR). However, the relationship between heterogeneous intratumoral distribution and efficacy of ADCs is poorly understood. Here, we compared trastuzumab and ado-trastuzumab emtansine (T-DM1) to study the impact of ADC tumor distribution on efficacy. In a mouse xenograft model insensitive to trastuzumab, coadministration of trastuzumab with a fixed dose of T-DM1 at 3:1 and 8:1 ratios dramatically improved ADC tumor penetration and resulted in twice the improvement in median survival compared with T-DM1 alone. In this setting, the effective DAR was lowered, decreasing the amount of payload delivered to each targeted cell but increasing the number of cells that received payload. This result is counterintuitive because trastuzumab acts as an antagonist in vitro and has no single-agent efficacy in vivo, yet improves the effectiveness of T-DM1 in vivo Novel dual-channel fluorescence ratios quantified single-cell ADC uptake and metabolism and confirmed that the in vivo cellular dose of T-DM1 alone exceeded the minimum required for efficacy in this model. In addition, this technique characterized cellular pharmacokinetics with heterogeneous delivery after 1 day, degradation and payload release by 2 days, and in vitro cell killing and in vivo tumor shrinkage 2 to 3 days later. This work demonstrates that the intratumoral distribution of ADC, independent of payload dose or plasma clearance, plays a major role in ADC efficacy.Significance: This study shows how lowering the drug-to-antibody ratio during treatment can improve the intratumoral distribution of a antibody-drug conjugate, with implications for improving the efficacy of this class of cancer drugs. Cancer Res; 78(3); 758-68. ©2017 AACR.
Collapse
Affiliation(s)
- Cornelius Cilliers
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Bruna Menezes
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jennifer Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Prince AC, Jani A, Korb M, Tipirneni KE, Kasten BB, Rosenthal EL, Warram JM. Characterizing the detection threshold for optical imaging in surgical oncology. J Surg Oncol 2017. [PMID: 28628728 DOI: 10.1002/jso.24733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Optical imaging to guide cancer resections is rapidly transitioning into the operating room. However, the sensitivity of this technique to detect subclinical disease is yet characterized. The purpose of this study was to determine the minimum range of cancer cells that can be detected by antibody-based fluorescence imaging. METHODS 2LMP (breast), COLO-205 (colon), MiaPaca-2 (pancreas), and SCC-1 (head and neck) cells incubated in vitro with cetuximab-IRDye800CW (dose range 8.6-86 nM) were implanted subcutaneously in mice (n = 3 mice, 5 tumors/mouse). Following incubation with 8.6 × 10-2 µM of cetuximab-IRDye800CW in vitro, serial dilutions of each cell type (1 × 103 -1 × 106 ) were implanted subcutaneously (n = 3, 5 tumors/mouse). Tumors were imaged with Pearl Impulse and Xenogen IVIS 100 imaging systems. Scatchard analysis was performed to determine receptor density and kinetics for each cell line. RESULTS Under conditions of minimal cetuximab-IRDye800CW exposure to low cellular quantity, closed-field fluorescence imaging theoretically detected a minimum of 4.2 × 104 -9.5 × 104 2LMP cells, 1.9 × 105 -4.5 × 105 MiaPaca-2 cells, and 2.4 × 104 -6.7 × 104 SCC-1 cells; COLO-205 cells could not be identified. Higher EGFR-mediated uptake of cetuximab correlated with sensitivity of detection. CONCLUSION This study supports the clinical utility of cetuximab-IRDye800CW to sensitively localize subclinical disease in the surgical setting.
Collapse
Affiliation(s)
- Andrew C Prince
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aditi Jani
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Melissa Korb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kiranya E Tipirneni
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Benjamin B Kasten
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Jason M Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
24
|
Alsaid H, Skedzielewski T, Rambo MV, Hunsinger K, Hoang B, Fieles W, Long ER, Tunstead J, Vugts DJ, Cleveland M, Clarke N, Matheny C, Jucker BM. Non invasive imaging assessment of the biodistribution of GSK2849330, an ADCC and CDC optimized anti HER3 mAb, and its role in tumor macrophage recruitment in human tumor-bearing mice. PLoS One 2017; 12:e0176075. [PMID: 28448604 PMCID: PMC5407619 DOI: 10.1371/journal.pone.0176075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/05/2017] [Indexed: 11/23/2022] Open
Abstract
The purpose of this work was to use various molecular imaging techniques to non-invasively assess GSK2849330 (anti HER3 ADCC and CDC enhanced ‘AccretaMab’ monoclonal antibody) pharmacokinetics and pharmacodynamics in human xenograft tumor-bearing mice. Immuno-PET biodistribution imaging of radiolabeled 89Zr-GSK2849330 was assessed in mice with HER3 negative (MIA-PaCa-2) and positive (CHL-1) human xenograft tumors. Dose dependency of GSK2849330 disposition was assessed using varying doses of unlabeled GSK2849330 co-injected with 89Zr-GSK2849330. In-vivo NIRF optical imaging and ex-vivo confocal microscopy were used to assess the biodistribution of GSK2849330 and the HER3 receptor occupancy in HER3 positive xenograft tumors (BxPC3, and CHL-1). Ferumoxytol (USPIO) contrast-enhanced MRI was used to investigate the effects of GSK2849330 on tumor macrophage content in CHL-1 xenograft bearing mice. Immuno-PET imaging was used to monitor the whole body drug biodistribution and CHL-1 xenograft tumor uptake up to 144 hours post injection of 89Zr-GSK2849330. Both hepatic and tumor uptake were dose dependent and saturable. The optical imaging data in the BxPC3 xenograft tumor confirmed the tumor dose response finding in the Immuno-PET study. Confocal microscopy showed a distinguished cytoplasmic punctate staining pattern within individual CHL-1 cells. GSK2849330 inhibited tumor growth and this was associated with a significant decrease in MRI signal to noise ratio after USPIO injection and with a significant increase in tumor macrophages as confirmed by a quantitative immunohistochemistry analysis. By providing both dose response and time course data from both 89Zr and fluorescently labeled GSK2849330, complementary imaging studies were used to characterize GSK2849330 biodistribution and tumor uptake in vivo. Ferumoxytol-enhanced MRI was used to monitor aspects of the immune system response to GSK2849330. Together these approaches potentially provide clinically translatable, non-invasive techniques to support dose optimization, and assess immune activation and anti-tumor responses.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cell Line, Tumor
- Female
- Ferrosoferric Oxide/chemistry
- Humans
- Immunohistochemistry
- Isotope Labeling
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/pathology
- Mice
- Mice, Nude
- Neoplasms/diagnostic imaging
- Neoplasms/drug therapy
- Radioisotopes
- Radiopharmaceuticals/chemistry
- Radiopharmaceuticals/pharmacokinetics
- Radiopharmaceuticals/therapeutic use
- Receptor, ErbB-3/immunology
- Receptor, ErbB-3/metabolism
- Tissue Distribution
- Transplantation, Heterologous
- Zirconium/chemistry
Collapse
Affiliation(s)
- Hasan Alsaid
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
- * E-mail:
| | - Tinamarie Skedzielewski
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Mary V. Rambo
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Kristen Hunsinger
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Bao Hoang
- Target Sciences Target & Pathway, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - William Fieles
- Target Sciences Target & Pathway, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Edward R. Long
- Integrated Biological Platform Sciences, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - James Tunstead
- Target Sciences Target & Pathway, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Danielle J. Vugts
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Matthew Cleveland
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, Stevenage, United Kingdom
| | - Neil Clarke
- Biopharm Molecular Discovery, GlaxoSmithKline, Stevenage, United Kingdom
| | - Christopher Matheny
- Immunoginicity and Biomarkers, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Beat M. Jucker
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| |
Collapse
|
25
|
Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 2017; 113:61-86. [PMID: 27266447 PMCID: PMC5136524 DOI: 10.1016/j.addr.2016.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
Therapeutic nanoparticles (NPs) can deliver cytotoxic chemotherapeutics and other drugs more safely and efficiently to patients; furthermore, selective delivery to target tissues can theoretically be accomplished actively through coating NPs with molecular ligands, and passively through exploiting physiological "enhanced permeability and retention" features. However, clinical trial results have been mixed in showing improved efficacy with drug nanoencapsulation, largely due to heterogeneous NP accumulation at target sites across patients. Thus, a clear need exists to better understand why many NP strategies fail in vivo and not result in significantly improved tumor uptake or therapeutic response. Multicolor in vivo confocal fluorescence imaging (intravital microscopy; IVM) enables integrated pharmacokinetic and pharmacodynamic (PK/PD) measurement at the single-cell level, and has helped answer key questions regarding the biological mechanisms of in vivo NP behavior. This review summarizes progress to date and also describes useful technical strategies for successful IVM experimentation.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Oriented conjugation of antibodies against the epithelial cell adhesion molecule on fluorescently doped silica nanoparticles for flow-cytometric determination and in vivo imaging of EpCAM, a biomarker for colorectal cancer. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2211-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Noh G, Youn YS, Lee ES. Preparation of iron oxide nanoparticles functionalized with Y-shaped ligands for brain tumor targeting. J Mater Chem B 2016; 4:6074-6080. [PMID: 32263495 DOI: 10.1039/c6tb01894g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, we developed functionalized iron oxide nanoparticles for brain tumor targeting. The iron oxide (Fe3O4) particles were stabilized with pluronic F127 and coupled with dopamine-terminated Y-shaped ligands (Tat peptide and transferrin) as a result of the noncovalent conjugation of dopamine (of Y-shaped ligands) and the iron oxide nanoparticles. Here, the hydrophobic domain of pluronic F127 coated on the iron oxide nanoparticles enabled the absorption of a model photosensitizing antitumor drug (chlorin e6) in the core/shell interface of the nanoparticles. The experimental results demonstrated that the Y-shaped ligands on the nanoparticles enabled a significant enhancement of in vitro/in vivo cellular uptake for human primary glioblastoma U87-MG cells as a result of multivalent endocytosis by Y-shaped ligands (transferrin receptor-mediated endocytosis and the following Tat peptide-mediated cellular interaction). Furthermore, the Ce6-loaded nanoparticles showed significant enhancement of in vitro/in vivo photodynamic U87-MG cell ablation under light illumination.
Collapse
Affiliation(s)
- Gwangjin Noh
- Department of Biotechnology, The Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do 420-743, Republic of Korea.
| | | | | |
Collapse
|
28
|
Mukherjee A, Kumar B, Hatano K, Russell LM, Trock BJ, Searson PC, Meeker AK, Pomper MG, Lupold SE. Development and Application of a Novel Model System to Study "Active" and "Passive" Tumor Targeting. Mol Cancer Ther 2016; 15:2541-2550. [PMID: 27486224 DOI: 10.1158/1535-7163.mct-16-0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/21/2016] [Indexed: 01/04/2023]
Abstract
Macromolecular reagents can be targeted to tumors through active and passive mechanisms. "Active" targeting involves moieties, such as receptor ligands, to direct tumor cell binding, whereas "passive" targeting relies on long reagent circulating half-life, abnormal tumor vasculature, and poor lymphatic drainage for tumor entrapment. Here, we sought to study the impact of reagent circulating half-life on "active" and "passive" tumor uptake. The humanized prostate-specific membrane antigen (PSMA)-targeting antibody HuJ591 was used as the "active" targeting agent. HuJ591 was labeled with a Near Infrared (NIR) dye and its circulating half-life was modified by conjugation to high-molecular-weight Polyethylene Glycol (PEG). PEGylation did not negatively impact PSMA-binding specificity. "Active" and "passive" tumor targeting of intravenously injected antibody conjugates were then quantified by NIR fluorescent imaging of immunocompromised mice bearing bilateral isogenic PSMA-positive and PSMA-negative human tumor xenografts. Two isogenic tumor pairs were applied, PC3 ± PSMA (PC3-PIP/PC3-Flu) or LMD-MDA-MB-231 ± PSMA (LMD-PSMA/LMD). This study provided a unique model system to simultaneously observe "active" and "passive" tumor targeting within a single animal. "Passive" targeting was observed in all PSMA-negative tumors, and was not enhanced by increased HuJ591 size or extended circulating half-life. Interestingly, "active" targeting was only successful in some situations. Both PSMA-positive tumor models could be actively targeted with J591-IR800 and J591-PEG10K. However, the larger J591-PEG30K enhanced "active" targeting in the PC-3 tumor models, but inhibited "active" targeting the LMD-MDA-MB-231 tumor model. Successful "active" targeting was associated with higher PSMA expression. These results support the potential for "active" targeting to enhance overall macromolecular reagent uptake within tumors. Mol Cancer Ther; 15(10); 2541-50. ©2016 AACR.
Collapse
Affiliation(s)
- Amarnath Mukherjee
- Department of Urology and The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Binod Kumar
- Department of Urology and The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koji Hatano
- Department of Urology and The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luisa M Russell
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland
| | - Bruce J Trock
- Department of Urology and The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland. Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K Meeker
- Department of Urology and The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin G Pomper
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland. Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Russel H. Morgan Department of Radiology and Radiologic Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shawn E Lupold
- Department of Urology and The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland. Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland. Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
29
|
Mazor Y, Yang C, Borrok MJ, Ayriss J, Aherne K, Wu H, Dall'Acqua WF. Enhancement of Immune Effector Functions by Modulating IgG's Intrinsic Affinity for Target Antigen. PLoS One 2016; 11:e0157788. [PMID: 27322177 PMCID: PMC4913924 DOI: 10.1371/journal.pone.0157788] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Antibody-mediated immune effector functions play an essential role in the anti-tumor efficacy of many therapeutic mAbs. While much of the effort to improve effector potency has focused on augmenting the interaction between the antibody-Fc and activating Fc-receptors expressed on immune cells, the role of antibody binding interactions with the target antigen remains poorly understood. We show that antibody intrinsic affinity to the target antigen clearly influences the extent and efficiency of Fc-mediated effector mechanisms, and report the pivotal role of antibody binding valence on the ability to regulate effector functions. More particularly, we used an array of affinity modulated variants of three different mAbs, anti-CD4, anti-EGFR and anti-HER2 against a panel of target cell lines expressing disparate levels of the target antigen. We found that at saturating antibody concentrations, IgG variants with moderate intrinsic affinities, similar to those generated by the natural humoral immune response, promoted superior effector functions compared to higher affinity antibodies. We hypothesize that at saturating concentrations, effector function correlates most directly with the amount of Fc bound to the cell surface. Thus, high affinity antibodies exhibiting slow off-rates are more likely to interact bivalently with the target cell, occupying two antigen sites with a single Fc. In contrast, antibodies with faster off-rates are likely to dissociate each binding arm more rapidly, resulting in a higher likelihood of monovalent binding. Monovalent binding may in turn increase target cell opsonization and lead to improved recruitment of effector cells. This unpredicted relationship between target affinity and effector function potency suggests a careful examination of antibody design and engineering for the development of next-generation immunotherapeutics.
Collapse
Affiliation(s)
- Yariv Mazor
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - Chunning Yang
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - M Jack Borrok
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - Joanne Ayriss
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - Karen Aherne
- Department of Biopharmaceutical Development, MedImmune, Gaithersburg, Maryland, United States of America
| | - Herren Wu
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - William F Dall'Acqua
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| |
Collapse
|
30
|
Warnders FJ, Waaijer SJH, Pool M, Lub-de Hooge MN, Friedrich M, Terwisscha van Scheltinga AGT, Deegen P, Stienen SK, Pieslor PC, Cheung HK, Kosterink JGW, de Vries EGE. Biodistribution and PET Imaging of Labeled Bispecific T Cell-Engaging Antibody Targeting EpCAM. J Nucl Med 2016; 57:812-7. [PMID: 26848172 DOI: 10.2967/jnumed.115.168153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED AMG 110, a bispecific T cell engager (BiTE) antibody construct, induces T cell-mediated cancer cell death by cross-linking epithelial cell adhesion molecule (EpCAM) on tumor cells with a cluster of differentiation 3 ε (CD3ε) on T cells. We labeled AMG 110 with (89)Zr or near-infrared fluorescent dye (IRDye) 800CW to study its tumor targeting and tissue distribution. METHODS Biodistribution and tumor uptake of (89)Zr-AMG 110 was studied up to 6 d after intravenous administration to nude BALB/c mice bearing high EpCAM-expressing HT-29 colorectal cancer xenografts. Tumor uptake of (89)Zr-AMG 110 was compared with uptake in head and neck squamous cell cancer FaDu (intermediate EpCAM) and promyelocytic leukemia HL60 (EpCAM-negative) xenografts. Intratumoral distribution in HT-29 tumors was studied using 800CW-AMG 110. RESULTS Tumor uptake of (89)Zr-AMG 110 can be clearly visualized using small-animal PET imaging up to 72 h after injection. The highest tumor uptake of (89)Zr-AMG 110 at the 40-μg dose level was observed at 6 and 24 h (respectively, 5.35 ± 0.22 and 5.30 ± 0.20 percentage injected dose per gram; n = 3 and 4). Tumor uptake of (89)Zr-AMG 110 was EpCAM-specific and correlated with EpCAM expression. 800CW-AMG 110 accumulated at the tumor cell surface in viable EpCAM-expressing tumor tissue. CONCLUSION PET and fluorescent imaging provided real-time information about AMG 110 distribution and tumor uptake in vivo. Our data support using (89)Zr and IRDye 800CW to evaluate tumor and tissue uptake kinetics of bispecific T cell engager antibody constructs in preclinical and clinical settings.
Collapse
Affiliation(s)
- Frank J Warnders
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stijn J H Waaijer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Pharmacy, Section of Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Kim JS. Combination Radioimmunotherapy Approaches and Quantification of Immuno-PET. Nucl Med Mol Imaging 2016; 50:104-11. [PMID: 27275358 PMCID: PMC4870465 DOI: 10.1007/s13139-015-0392-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/18/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022] Open
Abstract
Monoclonal antibodies (mAbs), which play a prominent role in cancer therapy, can interact with specific antigens on cancer cells, thereby enhancing the patient's immune response via various mechanisms, or mAbs can act against cell growth factors and, thereby, arrest the proliferation of tumor cells. Radionuclide-labeled mAbs, which are used in radioimmunotherapy (RIT), are effective for cancer treatment because tumor associated-mAbs linked to cytotoxic radionuclides can selectively bind to tumor antigens and release targeted cytotoxic radiation. Immunological positron emission tomography (immuno-PET), which is the combination of PET with mAb, is an attractive option for improving tumor detection and mAb quantification. However, RIT remains a challenge because of the limited delivery of mAb into tumors. The transport and uptake of mAb into tumors is slow and heterogeneous. The tumor microenvironment contributed to the limited delivery of the mAb. During the delivery process of mAb to tumor, mechanical drug resistance such as collagen distribution or physiological drug resistance such as high intestinal pressure or absence of lymphatic vessel would be the limited factor of mAb delivery to the tumor at a potentially lethal mAb concentration. When α-emitter-labeled mAbs were used, deeper penetration of α-emitter-labeled mAb inside tumors was more important because of the short range of the α emitter. Therefore, combination therapy strategies aimed at improving mAb tumor penetration and accumulation would be beneficial for maximizing their therapeutic efficacy against solid tumors.
Collapse
Affiliation(s)
- Jin Su Kim
- />Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812 Korea
- />Korea Drug Development Platform using Radio-Isotope(KDePRI), Seoul, Korea
- />Radiologcial and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea
| |
Collapse
|
32
|
Fung EK, Cheal SM, Fareedy SB, Punzalan B, Beylergil V, Amir J, Chalasani S, Weber WA, Spratt DE, Veach DR, Bander NH, Larson SM, Zanzonico PB, Osborne JR. Targeting of radiolabeled J591 antibody to PSMA-expressing tumors: optimization of imaging and therapy based on non-linear compartmental modeling. EJNMMI Res 2016; 6:7. [PMID: 26801327 PMCID: PMC4723373 DOI: 10.1186/s13550-016-0164-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022] Open
Abstract
Background We applied a non-linear immunokinetic model to quantitatively compare absolute antibody uptake and turnover in subcutaneous LNCaP human prostate cancer (PCa) xenografts of two radiolabeled forms of the humanized anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 (124I-J591 and 89Zr-J591). Using the model, we examined the impact of dose on the tumor and plasma positron emission tomography (PET)-derived time-activity curves. We also sought to predict the optimal targeting index (ratio of integrated-tumor-to-integrated-plasma activity concentrations) for radioimmunotherapy. Methods The equilibrium rates of antibody internalization and turnover in the tumors were derived from PET images up to 96 h post-injection using compartmental modeling with a non-linear transfer rate. In addition, we serially imaged groups of LNCaP tumor-bearing mice injected with 89Zr-J591 antibody doses ranging from antigen subsaturating to saturating to examine the suitability of using a non-linear approach and derived the time-integrated concentration (in μM∙hours) of administered tracer in tumor as a function of the administered dose of antibody. Results The comparison of 124I-J591 and 89Zr-J591 yielded similar model-derived values of the total antigen concentration and internalization rate. The association equilibrium constant (ka) was twofold higher for 124I, but there was a ~tenfold greater tumoral efflux rate of 124I from tumor compared to that of 89Zr. Plots of surface-bound and internalized radiotracers indicate similar behavior up to 24 h p.i. for both 124I-J591 and 89Zr-J591, with the effect of differential clearance rates becoming apparent after about 35 h p.i. Estimates of J591/PSMA complex turnover were 3.9–90.5 × 1012 (for doses from 60 to 240 μg) molecules per hour per gram of tumor (20 % of receptors internalized per hour). Conclusions Using quantitative compartmental model methods, surface binding and internalization rates were shown to be similar for both 124I-J591 and 89Zr-J591 forms, as expected. The large difference in clearance rates of the radioactivity from the tumor is likely due to differential trapping of residualizing zirconium versus non-residualizing iodine. Our non-linear model was found to be superior to a conventional linear model. This finding and the calculated activity persistence time in tumor have important implications for radioimmunotherapy and other antibody-based therapies in patients.
Collapse
Affiliation(s)
- Edward K Fung
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Sarah M Cheal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Shoaib B Fareedy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Blesida Punzalan
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Volkan Beylergil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Jawaria Amir
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Sandhya Chalasani
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Wolfgang A Weber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Daniel E Spratt
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Neil H Bander
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Joseph R Osborne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
33
|
Tichauer KM, Wang Y, Pogue BW, Liu JTC. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging. Phys Med Biol 2015; 60:R239-69. [PMID: 26134619 PMCID: PMC4522156 DOI: 10.1088/0031-9155/60/14/r239] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago IL 60616, USA
| | | | | | | |
Collapse
|
34
|
Sato R, Obonai T, Tsumura R, Tsumoto K, Koga Y, Yasunaga M, Matsumura Y. Preparation and characterization of anti-tissue factor single-chain variable fragment antibody for cancer diagnosis. Cancer Sci 2014; 105:1631-7. [PMID: 25311092 PMCID: PMC4317963 DOI: 10.1111/cas.12557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022] Open
Abstract
Tissue factor (TF), which serves as the initiator of the extrinsic blood coagulation cascade, has been found to be overexpressed in various solid tumors, especially brain tumors, pancreatic cancer, and gastric cancer. Overexpression of TF is considered to contribute to the high incidence of thrombotic complications and poor prognosis in patients with such cancers. Therefore, detection or targeting of TF may be a promising approach for the diagnosis and treatment of solid tumors that are known to overexpress the protein. Here, we used the recombinant DNA technology to develop an anti-TF single-chain Fv (scFv) of small size and high affinity for its target. The biochemical characteristics of the anti-TF scFv were evaluated using surface plasmon resonance (SPR) sensing and flow cytometry. The data obtained showed that the affinity of the anti-TF scFv was 2.04 × 10−8 (KD), and that the protein showed significant binding to the cancer cells. Then, Alexa 647-labeled anti-TF scFv and anti-TF IgG were administered to mice bearing chemically induced spontaneous tumors. The maximum tumor to background ratios of anti-TF scFv and anti-TF IgG were obtained 3 and 24 h after the injections, respectively. This study indicates anti-TF scFv may be suitable as an imaging probe for the diagnosis of solid tumors.
Collapse
Affiliation(s)
- Ryuta Sato
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Chiba, Japan; Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Knowles SM, Tavaré R, Zettlitz KA, Rochefort MM, Salazar FB, Jiang ZK, Reiter RE, Wu AM. Applications of immunoPET: using 124I-anti-PSCA A11 minibody for imaging disease progression and response to therapy in mouse xenograft models of prostate cancer. Clin Cancer Res 2014; 20:6367-78. [PMID: 25326233 DOI: 10.1158/1078-0432.ccr-14-1452] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Prostate stem cell antigen (PSCA) is highly expressed in local prostate cancers and prostate cancer bone metastases and its expression correlates with androgen receptor activation and a poor prognosis. In this study, we investigate the potential clinical applications of immunoPET with the anti-PSCA A11 minibody, an antibody fragment optimized for use as an imaging agent. We compare A11 minibody immunoPET to (18)F-Fluoride PET bone scans for detecting prostate cancer bone tumors and evaluate the ability of the A11 minibody to image tumor response to androgen deprivation. EXPERIMENTAL DESIGN Osteoblastic, PSCA-expressing, LAPC-9 intratibial xenografts were imaged with serial (124)I-anti-PSCA A11 minibody immunoPET and (18)F-Fluoride bone scans. Mice bearing LAPC-9 subcutaneous xenografts were treated with either vehicle or MDV-3100 and imaged with A11 minibody immunoPET/CT scans pre- and posttreatment. Ex vivo flow cytometry measured the change in PSCA expression in response to androgen deprivation. RESULTS A11 minibody demonstrated improved sensitivity and specificity over (18)F-Fluoride bone scans for detecting LAPC-9 intratibial xenografts at all time points. LAPC-9 subcutaneous xenografts showed downregulation of PSCA when treated with MDV-3100 which A11 minibody immunoPET was able to detect in vivo. CONCLUSIONS A11 minibody immunoPET has the potential to improve the sensitivity and specificity of clinical prostate cancer metastasis detection over bone scans, which are the current clinical standard-of-care. A11 minibody immunoPET additionally has the potential to image the activity of the androgen signaling axis in vivo which may help evaluate the clinical response to androgen deprivation and the development of castration resistance.
Collapse
Affiliation(s)
- Scott M Knowles
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California
| | - Richard Tavaré
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California
| | - Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California
| | - Matthew M Rochefort
- Department of Surgery, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California
| | - Felix B Salazar
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California
| | - Ziyue Karen Jiang
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California. Department of Urology, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California.
| |
Collapse
|
36
|
Bhatnagar S, Deschenes E, Liao J, Cilliers C, Thurber GM. Multichannel imaging to quantify four classes of pharmacokinetic distribution in tumors. J Pharm Sci 2014; 103:3276-86. [PMID: 25048378 DOI: 10.1002/jps.24086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/31/2023]
Abstract
Low and heterogeneous delivery of drugs and imaging agents to tumors results in decreased efficacy and poor imaging results. Systemic delivery involves a complex interplay of drug properties and physiological factors, and heterogeneity in the tumor microenvironment makes predicting and overcoming these limitations exceptionally difficult. Theoretical models have indicated that there are four different classes of pharmacokinetic behavior in tissue, depending on the fundamental steps in distribution. In order to study these limiting behaviors, we used multichannel fluorescence microscopy and stitching of high-resolution images to examine the distribution of four agents in the same tumor microenvironment. A validated generic partial differential equation model with a graphical user interface was used to select fluorescent agents exhibiting these four classes of behavior, and the imaging results agreed with predictions. BODIPY-FL exhibited higher concentrations in tissue with high blood flow, cetuximab gave perivascular distribution limited by permeability, high plasma protein and target binding resulted in diffusion-limited distribution for Hoechst 33342, and Integrisense 680 was limited by the number of binding sites in the tissue. Together, the probes and simulations can be used to investigate distribution in other tumor models, predict tumor drug distribution profiles, and design and interpret in vivo experiments.
Collapse
Affiliation(s)
- Sumit Bhatnagar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | | | | | |
Collapse
|
37
|
Weigert R. Imaging the dynamics of endocytosis in live mammalian tissues. Cold Spring Harb Perspect Biol 2014; 6:a017012. [PMID: 24691962 DOI: 10.1101/cshperspect.a017012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In mammalian cells, endocytosis plays a pivotal role in regulating several basic cellular functions. Up to now, the dynamics and the organization of the endocytic pathways have been primarily investigated in reductionist model systems such as cell and organ cultures. Although these experimental models have been fully successful in unraveling the endocytic machinery at a molecular level, our understanding of the regulation and the role of endocytosis in vivo has been limited. Recently, advancements in intravital microscopy have made it possible to extend imaging in live animals to subcellular structures, thus revealing new aspects of the molecular machineries regulating membrane trafficking that were not previously appreciated in vitro. Here, we focus on the use of intravital microscopy to study endocytosis in vivo, and discuss how this approach will allow addressing two fundamental questions: (1) how endocytic processes are organized in mammalian tissues, and (2) how they contribute to organ physiopathology.
Collapse
Affiliation(s)
- Roberto Weigert
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4340
| |
Collapse
|
38
|
Cheal SM, Punzalan B, Doran MG, Evans MJ, Osborne JR, Lewis JS, Zanzonico P, Larson SM. Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. Eur J Nucl Med Mol Imaging 2014; 41:985-94. [PMID: 24604591 DOI: 10.1007/s00259-013-2679-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Abstract
PURPOSE The PET tracer, (124)I-cG250, directed against carbonic anhydrase IX (CAIX) shows promise for presurgical diagnosis of clear-cell renal cell carcinoma (ccRCC) (Divgi et al. in Lancet Oncol 8:304-310, 2007; Divgi et al. in J Clin Oncol 31:187-194, 2013). The radiometal (89)Zr, however, may offer advantages as a surrogate PET nuclide over (124)I in terms of greater tumor uptake and retention (Rice et al. in Semin Nucl Med 41:265-282, 2011). We have developed a nonlinear immunokinetic model to facilitate a quantitative comparison of absolute uptake and antibody turnover between (124)I-cG250 and (89)Zr-cG250 using a human ccRCC xenograft tumor model in mice. We believe that this unique model better relates quantitative imaging data to the salient biological features of tumor antibody-antigen binding and turnover. METHODS We conducted experiments with (89)Zr-cG250 and (124)I-cG250 using a human ccRCC cell line (SK-RC-38) to characterize the binding affinity and internalization kinetics of the two tracers in vitro. Serial PET imaging was performed in mice bearing subcutaneous ccRCC tumors to simultaneously detect and quantify time-dependent tumor uptake in vivo. Using the known specific activities of the two tracers, the equilibrium rates of antibody internalization and turnover in the tumors were derived from the PET images using nonlinear compartmental modeling. RESULTS The two tracers demonstrated virtually identical tumor cell binding and internalization but showed markedly different retentions in vitro. Superior PET images were obtained using (89)Zr-cG250, owing to the more prolonged trapping of the radiolabel in the tumor and simultaneous washout from normal tissues. Estimates of cG250/CAIX complex turnover were 1.35 - 5.51 × 10(12) molecules per hour per gram of tumor (20 % of receptors internalized per hour), and the ratio of (124)I/(89)Zr atoms released per unit time by tumor was 17.5. CONCLUSION Pairwise evaluation of (89)Zr-cG250 and (124)I-cG250 provided the basis for a nonlinear immunokinetic model which yielded quantitative information about the binding and internalization of radioantibody bound to CAIX on tumor cells in vivo. (89)Zr-cG250 is likely to provide high-quality PET images and may be a useful tool to quantify CAIX/cG250 receptor turnover and cG250-accessible antigen density noninvasively in humans.
Collapse
Affiliation(s)
- Sarah M Cheal
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Thurber GM, Reiner T, Yang KS, Kohler RH, Weissleder R. Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors. Mol Cancer Ther 2014; 13:986-95. [PMID: 24552776 DOI: 10.1158/1535-7163.mct-13-0801] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging, given the complex tumor microenvironment including intra- and intertumor heterogeneity. The difficulty in studying this distribution is even more significant for small-molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small-molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model.
Collapse
Affiliation(s)
- Greg M Thurber
- Authors' Affiliations: Center for Systems Biology, Massachusetts General Hospital; and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
40
|
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66:2-25. [PMID: 24270007 PMCID: PMC4219254 DOI: 10.1016/j.addr.2013.11.009] [Citation(s) in RCA: 1984] [Impact Index Per Article: 180.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/23/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
Cancer nanotherapeutics are progressing at a steady rate; research and development in the field has experienced an exponential growth since early 2000's. The path to the commercialization of oncology drugs is long and carries significant risk; however, there is considerable excitement that nanoparticle technologies may contribute to the success of cancer drug development. The pace at which pharmaceutical companies have formed partnerships to use proprietary nanoparticle technologies has considerably accelerated. It is now recognized that by enhancing the efficacy and/or tolerability of new drug candidates, nanotechnology can meaningfully contribute to create differentiated products and improve clinical outcome. This review describes the lessons learned since the commercialization of the first-generation nanomedicines including DOXIL® and Abraxane®. It explores our current understanding of targeted and non-targeted nanoparticles that are under various stages of development, including BIND-014 and MM-398. It highlights the opportunities and challenges faced by nanomedicines in contemporary oncology, where personalized medicine is increasingly the mainstay of cancer therapy. We revisit the fundamental concepts of enhanced permeability and retention effect (EPR) and explore the mechanisms proposed to enhance preferential "retention" in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages. The overall objective of this review is to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancers.
Collapse
Affiliation(s)
- Nicolas Bertrand
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Xiaoyang Xu
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
41
|
Upponi JR, Torchilin VP. Passive vs. Active Targeting: An Update of the EPR Role in Drug Delivery to Tumors. NANO-ONCOLOGICALS 2014. [DOI: 10.1007/978-3-319-08084-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Keereweer S, Van Driel PBAA, Snoeks TJA, Kerrebijn JDF, Baatenburg de Jong RJ, Vahrmeijer AL, Sterenborg HJCM, Löwik CWGM. Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res 2013; 19:3745-54. [PMID: 23674494 DOI: 10.1158/1078-0432.ccr-12-3598] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optical image-guided cancer surgery is a promising technique to adequately determine tumor margins by tumor-specific targeting, potentially resulting in complete resection of tumor tissue with improved survival. However, identification of the photons coming from the fluorescent contrast agent is complicated by autofluorescence, optical tissue properties, and accurate fluorescent targeting agents and imaging systems. All these factors have an important influence on the image that is presented to the surgeon. Considering the clinical consequences at stake, it is a prerequisite to answer the questions that are essential for the surgeon. What is optical image-guided surgery and how can it improve patient care? What should the oncologic surgeon know about the fundamental principles of optical imaging to understand which conclusions can be drawn from the images? And how do the limitations influence clinical decision making? This article discusses these questions and provides a clear overview of the basic principles and practical applications. Although there are limitations to the intrinsic capacity of the technique, when practical and technical surgical possibilities are considered, optical imaging can be a very powerful intraoperative tool in guiding the future oncologic surgeon toward radical resection and optimal clinical results.
Collapse
Affiliation(s)
- Stijn Keereweer
- Department of Otorhinolaryngology Head and Neck Surgery; Center of Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Shigdar S, Qian C, Lv L, Pu C, Li Y, Li L, Marappan M, Lin J, Wang L, Duan W. The use of sensitive chemical antibodies for diagnosis: detection of low levels of EpCAM in breast cancer. PLoS One 2013; 8:e57613. [PMID: 23460885 PMCID: PMC3584034 DOI: 10.1371/journal.pone.0057613] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/24/2013] [Indexed: 12/31/2022] Open
Abstract
EpCAM is expressed at low levels in a variety of normal human epithelial tissues, but is overexpressed in 70–90% of carcinomas. From a clinico-pathological point of view, this has both prognostic and therapeutic significance. EpCAM was first suggested as a therapeutic target for the treatment of epithelial cancers in the 1990s. However, following several immunotherapy trials, the results have been mixed. It has been suggested that this is due, at least in part, to an unknown level of EpCAM expression in the tumors being targeted. Thus, selection of patients who would benefit from EpCAM immunotherapy by determining EpCAM status in the tumor biopsies is currently undergoing vigorous evaluation. However, current EpCAM antibodies are not robust enough to be able to detect EpCAM expression in all pathological tissues. Here we report a newly developed EpCAM RNA aptamer, also known as a chemical antibody, which is not only specific but also more sensitive than current antibodies for the detection of EpCAM in formalin-fixed paraffin-embedded primary breast cancers. This new aptamer, together with our previously described aptamer, showed no non-specific staining or cross-reactivity with tissues that do not express EpCAM. They were able to reliably detect target proteins in breast cancer xenograft where an anti-EpCAM antibody (323/A3) showed limited or no reactivity. Our results demonstrated a more robust detection of EpCAM using RNA aptamers over antibodies in clinical samples with chromogenic staining. This shows the potential of aptamers in the future of histopathological diagnosis and as a tool to guide targeted immunotherapy.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Christine Qian
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
- Department of Histopathology, St John of God Pathology, Geelong, Victoria, Australia
| | - Li Lv
- Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunwen Pu
- Dalian Sixth People’s Hospital, Dalian, China
| | - Yong Li
- Cancer Care Centre, St. George Hospital, and St George Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Australia
| | - Lianhong Li
- Department of Pathology and Forensic Science, Dalian Medical University, Dalian, China
| | - Manju Marappan
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jia Lin
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Lifen Wang
- Second Affiliated Hospital of Dalian Medical University, Dalian, China
- * E-mail: (WD); (LW)
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
- * E-mail: (WD); (LW)
| |
Collapse
|
44
|
Tichauer KM, Samkoe KS, Klubben WS, Hasan T, Pogue BW. Advantages of a dual-tracer model over reference tissue models for binding potential measurement in tumors. Phys Med Biol 2012; 57:6647-59. [PMID: 23022732 DOI: 10.1088/0031-9155/57/20/6647] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The quantification of tumor molecular expression in vivo could have a significant impact for informing and monitoring emerging targeted therapies in oncology. Molecular imaging of targeted tracers can be used to quantify receptor expression in the form of a binding potential (BP) if the arterial input curve or a surrogate of it is also measured. However, the assumptions of the most common approaches (reference tissue models) may not be valid for use in tumors. In this study, the validity of reference tissue models is investigated for use in tumors experimentally and in simulations. Three different tumor lines were grown subcutaneously in athymic mice and the mice were injected with a mixture of an epidermal growth factor receptor-targeted fluorescent tracer and an untargeted fluorescent tracer. A one-compartment plasma input model demonstrated that the transport kinetics of both tracers was significantly different between tumors and all potential reference tissues, and using the reference tissue model resulted in a theoretical underestimation in BP of 50% ± 37%. On the other hand, the targeted and untargeted tracers demonstrated similar transport kinetics, allowing a dual-tracer approach to be employed to accurately estimate BP (with a theoretical error of 0.23% ± 9.07%). These findings highlight the potential for using a dual-tracer approach to quantify receptor expression in tumors with abnormal hemodynamics, possibly to inform the choice or progress of molecular cancer therapies.
Collapse
Affiliation(s)
- K M Tichauer
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
45
|
Thurber GM, Dane Wittrup K. A mechanistic compartmental model for total antibody uptake in tumors. J Theor Biol 2012; 314:57-68. [PMID: 22974563 DOI: 10.1016/j.jtbi.2012.08.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization.
Collapse
Affiliation(s)
- Greg M Thurber
- Dept. Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
46
|
Williams SP. Tissue distribution studies of protein therapeutics using molecular probes: molecular imaging. AAPS JOURNAL 2012; 14:389-99. [PMID: 22467336 DOI: 10.1208/s12248-012-9348-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/14/2012] [Indexed: 11/30/2022]
Abstract
Molecular imaging techniques for protein therapeutics rely on reporter labels, especially radionuclides or sometimes near-infrared fluorescent moieties, which must be introduced with minimal perturbation of the protein's function in vivo and are detected non-invasively during whole-body imaging. PET is the most sensitive whole-body imaging technique available, making it possible to perform biodistribution studies in humans with as little as 1 mg of injected antibody carrying 1 mCi (37 MBq) of zirconium-89 radiolabel. Different labeling chemistries facilitate a variety of optical and radionuclide methods that offer complementary information from microscopy and autoradiography and offer some trade-offs in whole-body imaging between cost and logistic difficulty and image quality and sensitivity (how much protein needs to be injected). Interpretation of tissue uptake requires consideration of label that has been catabolized and possibly residualized. Image contrast depends as much on background signal as it does on tissue uptake, and so the choice of injected dose and scan timing guides the selection of a suitable label and helps to optimize image quality. Although only recently developed, zirconium-89 PET techniques allow for the most quantitative tomographic imaging at millimeter resolution in small animals and they translate very well into clinical use as exemplified by studies of radiolabeled antibodies, including trastuzumab in breast cancer patients, in The Netherlands.
Collapse
Affiliation(s)
- Simon-Peter Williams
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, California 94080, USA.
| |
Collapse
|
47
|
Buckle T, van Berg NS, Kuil J, Bunschoten A, Oldenburg J, Borowsky AD, Wesseling J, Masada R, Oishi S, Fujii N, van Leeuwen FWB. Non-invasive longitudinal imaging of tumor progression using an (111)indium labeled CXCR4 peptide antagonist. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2011; 2:99-109. [PMID: 23133805 PMCID: PMC3478110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/05/2011] [Indexed: 06/01/2023]
Abstract
The chemokine receptor 4 (CXCR4) is a biomarker that is over-expressed in ductal carcinoma in situ (DCIS). Hence, CXCR4-targeted (molecular) imaging approaches may have diagnostic value in such a challenging, premalignant lesion. The indium labeled CXCR4 peptide-antagonist, (111)In-DTPA-Ac-TZ14011, was used to visualize CXCR4-expression in a mammary intraepithelial neoplastic outgrowth (MIN-O) mouse tumor model resembling human DCIS. MIN-O lesion development was longitudinally monitored using SPET/CT and tracer uptake was compared to uptake in control lesions. Expression of CXCR4 was validated using immunohistochemistry and flow cytometric analysis. The uptake of (111)In-DTPA-Ac-TZ14011 was related to tumor angiogenesis using (111)In-cDTPA-[RGDfK]. Twenty-four hours after tracer injection, MIN-O lesions could be discriminated from low CXCR4-expressing control tumors, while the degree of angiogenesis based on the α(v)β(3) integrin expression in both tumor types was similar. The uptake of (111)In-DTPA-Ac-TZ14011 in early MIN-O lesions was significantly lower than in larger intermediate and late-stage lesions, two-and-a-half-times (p=0.03) and seven-times (p=0.002), respectively. Intermediate and late stage lesions show a higher degree of membranous CXCR4-staining at immunohistochemistry and flow cytometric analysis. From this study we can conclude that (111)In-DTPA-Ac-TZ14011 can be used to visualize the CXCR4-expression in MIN-O lesions longitudinally.
Collapse
Affiliation(s)
- Tessa Buckle
- Departments of Radiology and Nuclear Medicine, The Netherlands
Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL)Amsterdam, The Netherlands
- Department of Radiology, Interventional Molecular Imaging group,
Leiden University Medical Center (LUMC)Leiden, The Netherlands
| | - Nynke S van Berg
- Departments of Radiology and Nuclear Medicine, The Netherlands
Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL)Amsterdam, The Netherlands
- Department of Radiology, Interventional Molecular Imaging group,
Leiden University Medical Center (LUMC)Leiden, The Netherlands
| | - Joeri Kuil
- Departments of Radiology and Nuclear Medicine, The Netherlands
Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL)Amsterdam, The Netherlands
- Department of Radiology, Interventional Molecular Imaging group,
Leiden University Medical Center (LUMC)Leiden, The Netherlands
| | - Anton Bunschoten
- Departments of Radiology and Nuclear Medicine, The Netherlands
Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL)Amsterdam, The Netherlands
- Department of Radiology, Interventional Molecular Imaging group,
Leiden University Medical Center (LUMC)Leiden, The Netherlands
| | - Joppe Oldenburg
- Departments of Radiology and Nuclear Medicine, The Netherlands
Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL)Amsterdam, The Netherlands
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, Center for
Comparative Medicine, School of Medicine, University of California at
DavisSacramento, US
| | - Jelle Wesseling
- Department of Pathology, The Netherlands Cancer Institute - Antoni
van Leeuwenhoek Hospital (NKI-AvL)Amsterdam, The Netherlands
| | - Ryo Masada
- Graduate School of Pharmaceutical Sciences, Kyoto
UniversityKyoto, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto
UniversityKyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto
UniversityKyoto, Japan
| | - Fijs WB van Leeuwen
- Departments of Radiology and Nuclear Medicine, The Netherlands
Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL)Amsterdam, The Netherlands
- Department of Radiology, Interventional Molecular Imaging group,
Leiden University Medical Center (LUMC)Leiden, The Netherlands
| |
Collapse
|
48
|
Abstract
Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.
Collapse
|