1
|
Lin H, Kobayashi M, Kushiro K, Yanagie H, Shimazoe K, Takahashi H. In-vivo correlations of fluorescent or radioisotope glucose-analogs in imaging cancer metabolism. Nucl Med Commun 2024; 45:287-294. [PMID: 38247556 DOI: 10.1097/mnm.0000000000001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVE To investigate the impact of different tracer modifications on the imaging of cancer metabolism, focusing on the comparison of fluorescent glucose-analog tracers (2-NBDG and 2-DG-750) and the radiolabeled tracer 18F-FDG in both in-vitro and in-vivo settings. METHODS We conducted an in-vitro comparative study using four cancer cell lines, each with unique glucose uptake characteristics. The study involved direct comparison of three tracers: 2-NBDG, 2-DG-750 and 18F-FDG, examining their internalization behaviors, metabolic functionality and localization effects in cancer metabolism imaging. RESULTS The study revealed that each tracer exhibits distinct internalization behaviors correlated with imaging label size and type. 18F-FDG showed the highest uptake efficiency. Fluorescent molecules were found to accumulate in tumors primarily due to hydrophobic interactions and possible aggregation, indicating inefficiency in metabolism and suitability for imaging metabolic phenomena when compared to radiolabeled biomolecules. CONCLUSION Our findings demonstrate that despite certain impracticalities, nuclear imaging, particularly using radiolabeled biomolecules like 18F-FDG, offers significant potential for accurately capturing biological phenomena. This is crucial for future advancements in both clinical and research settings. The study emphasizes the limitations of fluorescent molecules in imaging metabolic activities due to their inefficient metabolism and aggregation tendencies.
Collapse
Affiliation(s)
- Hongchang Lin
- Departments of Nuclear Engineering and Management and
| | | | | | | | - Kenji Shimazoe
- Departments of Nuclear Engineering and Management and
- Bioengineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Takahashi
- Departments of Nuclear Engineering and Management and
- Bioengineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Ottobrini L, Martelli C, Lucignani G. Optical Imaging Agents. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Rudkouskaya A, Sinsuebphon N, Ochoa M, Chen SJ, Mazurkiewicz JE, Intes X, Barroso M. Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor. Theranostics 2020; 10:10309-10325. [PMID: 32929350 PMCID: PMC7481426 DOI: 10.7150/thno.45825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/25/2020] [Indexed: 12/31/2022] Open
Abstract
Rationale: Following an ever-increased focus on personalized medicine, there is a continuing need to develop preclinical molecular imaging modalities to guide the development and optimization of targeted therapies. Near-Infrared (NIR) Macroscopic Fluorescence Lifetime Förster Resonance Energy Transfer (MFLI-FRET) imaging offers a unique method to robustly quantify receptor-ligand engagement in live intact animals, which is critical to assess the delivery efficacy of therapeutics. However, to date, non-invasive imaging approaches that can simultaneously measure cellular drug delivery efficacy and metabolic response are lacking. A major challenge for the implementation of concurrent optical and MFLI-FRET in vivo whole-body preclinical imaging is the spectral crowding and cross-contamination between fluorescent probes. Methods: We report on a strategy that relies on a dark quencher enabling simultaneous assessment of receptor-ligand engagement and tumor metabolism in intact live mice. Several optical imaging approaches, such as in vitro NIR FLI microscopy (FLIM) and in vivo wide-field MFLI, were used to validate a novel donor-dark quencher FRET pair. IRDye 800CW 2-deoxyglucose (2-DG) imaging was multiplexed with MFLI-FRET of NIR-labeled transferrin FRET pair (Tf-AF700/Tf-QC-1) to monitor tumor metabolism and probe uptake in breast tumor xenografts in intact live nude mice. Immunohistochemistry was used to validate in vivo imaging results. Results: First, we establish that IRDye QC-1 (QC-1) is an effective NIR dark acceptor for the FRET-induced quenching of donor Alexa Fluor 700 (AF700). Second, we report on simultaneous in vivo imaging of the metabolic probe 2-DG and MFLI-FRET imaging of Tf-AF700/Tf-QC-1 uptake in tumors. Such multiplexed imaging revealed an inverse relationship between 2-DG uptake and Tf intracellular delivery, suggesting that 2-DG signal may predict the efficacy of intracellular targeted delivery. Conclusions: Overall, our methodology enables for the first time simultaneous non-invasive monitoring of intracellular drug delivery and metabolic response in preclinical studies.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Marien Ochoa
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sez-Jade Chen
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Joseph E. Mazurkiewicz
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Cellular and Molecular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
4
|
Maric T, Mikhaylov G, Khodakivskyi P, Bazhin A, Sinisi R, Bonhoure N, Yevtodiyenko A, Jones A, Muhunthan V, Abdelhady G, Shackelford D, Goun E. Bioluminescent-based imaging and quantification of glucose uptake in vivo. Nat Methods 2019; 16:526-532. [PMID: 31086341 PMCID: PMC6546603 DOI: 10.1038/s41592-019-0421-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
Glucose is a major source of energy for most living organisms, and its aberrant uptake is linked to many pathological conditions. However, our understanding of disease-associated glucose flux is limited owing to the lack of robust tools. To date, positron-emission tomography imaging remains the gold standard for measuring glucose uptake, and no optical tools exist for non-invasive longitudinal imaging of this important metabolite in in vivo settings. Here, we report the development of a bioluminescent glucose-uptake probe for real-time, non-invasive longitudinal imaging of glucose absorption both in vitro and in vivo. In addition, we demonstrate that the sensitivity of our method is comparable with that of commonly used 18F-FDG-positron-emission-tomography tracers and validate the bioluminescent glucose-uptake probe as a tool for the identification of new glucose transport inhibitors. The new imaging reagent enables a wide range of applications in the fields of metabolism and drug development.
Collapse
Affiliation(s)
- Tamara Maric
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Georgy Mikhaylov
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Pavlo Khodakivskyi
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arkadiy Bazhin
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Riccardo Sinisi
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Bonhoure
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Bâtiments G/H, Lausanne, Switzerland
| | - Aleksey Yevtodiyenko
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Anthony Jones
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Vishaka Muhunthan
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gihad Abdelhady
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David Shackelford
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elena Goun
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Zhang MK, Li CX, Wang SB, Liu T, Song XL, Yang XQ, Feng J, Zhang XZ. Tumor Starvation Induced Spatiotemporal Control over Chemotherapy for Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803602. [PMID: 30370690 DOI: 10.1002/smll.201803602] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Indexed: 06/08/2023]
Abstract
By integrating the characteristics of each therapy modality and material chemistry, a multitherapy modality is put forward: tumor starvation triggered synergism with sensitized chemotherapy. Following starvation-induced amplification of pathological abnormalities in tumors, chemotherapy is arranged to be locally activated and accurately reinforced to perfect multitherapy synergism from spatial and temporal perspectives. To this end, glucose oxidase (GOD) and a hypoxic prodrug of tirapazamine (TPZ) are loaded in acidity-decomposable calcium carbonate (CaCO3 ) nanoparticles concurrently tethered by hyaluronic acid. This hybrid nanotherapeutic shows a strong tendency to accumulate in tumors postinjection due to the cooperation between passive and active targeting mechanisms. The GOD-driven oxidation reaction deprives tumors of glucose for starvation therapy and concomitantly induces tumorous abnormality amplifications including elevated acidity and exacerbated hypoxia. Programmatically, the acidity amplification causes CaCO3 decomposition, offering not only spatial control over the liberation of embedded TPZ just within tumors but also the temporal control over timely chemotherapy initiation to match the occurrence of hypoxia amplification and thus benefiting perfect synergism between starvation therapy and chemotherapy.
Collapse
Affiliation(s)
- Ming-Kang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shi-Bo Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Tao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Lin Song
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, 430074, China
| | - Xiao-Quan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, 430074, China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
6
|
Verma A, Rich LJ, Vincent-Chong VK, Seshadri M. Visualizing the effects of metformin on tumor growth, vascularity, and metabolism in head and neck cancer. J Oral Pathol Med 2018; 47:484-491. [PMID: 29573032 DOI: 10.1111/jop.12705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The antidiabetic drug metformin (Met) is believed to inhibit tumor proliferation by altering the metabolism of cancer cells. In this study, we examined the effects of Met on tumor oxygenation, metabolism, and growth in head and neck squamous cell carcinoma (HNSCC) using non-invasive multimodal imaging. MATERIALS AND METHODS Severe combined immunodeficient (SCID) mice bearing orthotopic FaDu HNSCC xenografts were treated with Met (200 mg/kg, ip) once daily for 5 days. Tumor oxygen saturation (%sO2 ) and hemoglobin concentration (HbT) were measured using photoacoustic imaging (PAI). Fluorescence imaging was employed to measure intratumoral uptake of 2-deoxyglucosone (2-DG) following Met treatment while magnetic resonance imaging (MRI) was utilized to measure tumor volume. Correlative immunostaining of tumor sections for markers of proliferation (Ki67) and vascularity (CD31) was also performed. RESULTS At 5 days post-Met treatment, PAI revealed a significant increase (P < .05) in %sO2 and HbT levels in treated tumors compared to untreated controls. Fluorescence imaging at this time point revealed a 46% decrease in mean 2-DG uptake compared to controls. No changes in hemodynamic parameters were observed in mouse salivary gland tissue. A significant decrease in Ki-67 staining (P < .001) and MR-based tumor volume was also observed in Met-treated tumors compared to controls with no change in CD31 + vessel count following Met therapy. CONCLUSION Our results provide, for the first time, direct in vivo evidence of Met-induced changes in tumor microenvironmental parameters in HNSCC xenografts. Our findings highlight the utility of multimodal functional imaging for non-invasive mapping of the effects of Met in HNSCC.
Collapse
Affiliation(s)
- Aparajita Verma
- Department of Oral Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Laurie J Rich
- Department of Oral Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Head and Neck Surgery, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
7
|
Panagia M, Chen HH, Croteau D, Iris Chen YC, Ran C, Luptak I, Josephson L, Colucci WS, Sosnovik DE. Multiplexed Optical Imaging of Energy Substrates Reveals That Left Ventricular Hypertrophy Is Associated With Brown Adipose Tissue Activation. Circ Cardiovasc Imaging 2018; 11:e007007. [PMID: 29555834 PMCID: PMC5908227 DOI: 10.1161/circimaging.117.007007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/18/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Substrate utilization in tissues with high energetic requirements could play an important role in cardiometabolic disease. Current techniques to assess energetics are limited by high cost, low throughput, and the inability to resolve multiple readouts simultaneously. Consequently, we aimed to develop a multiplexed optical imaging platform to simultaneously assess energetics in multiple organs in a high throughput fashion. METHODS AND RESULTS The detection of 18F-Fluordeoxyglucose uptake via Cerenkov luminescence and free fatty acid uptake with a fluorescent C16 free fatty acid was tested. Simultaneous uptake of these agents was measured in the myocardium, brown/white adipose tissue, and skeletal muscle in mice with/without thoracic aortic banding. Within 5 weeks of thoracic aortic banding, mice developed left ventricular hypertrophy and brown adipose tissue activation with upregulation of β3AR (β3 adrenergic receptors) and increased natriuretic peptide receptor ratio. Imaging of brown adipose tissue 15 weeks post thoracic aortic banding revealed an increase in glucose (P<0.01) and free fatty acid (P<0.001) uptake versus controls and an increase in uncoupling protein-1 (P<0.01). Similar but less robust changes were seen in skeletal muscle, while substrate uptake in white adipose tissue remained unchanged. Myocardial glucose uptake was increased post-thoracic aortic banding but free fatty acid uptake trended to decrease. CONCLUSIONS A multiplexed optical imaging technique is presented that allows substrate uptake to be simultaneously quantified in multiple tissues in a high throughput manner. The activation of brown adipose tissue occurs early in the onset of left ventricular hypertrophy, which produces tissue-specific changes in substrate uptake that may play a role in the systemic response to cardiac pressure overload.
Collapse
Affiliation(s)
- Marcello Panagia
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Howard H Chen
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Dominique Croteau
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Yin-Ching Iris Chen
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Chongzhao Ran
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Ivan Luptak
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Lee Josephson
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Wilson S Colucci
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - David E Sosnovik
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
8
|
Zhu C, Martinez AF, Martin HL, Li M, Crouch BT, Carlson DA, Haystead TAJ, Ramanujam N. Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer. Sci Rep 2017; 7:13772. [PMID: 29062013 PMCID: PMC5653871 DOI: 10.1038/s41598-017-14226-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022] Open
Abstract
While the demand for metabolic imaging has increased in recent years, simultaneous in vivo measurement of multiple metabolic endpoints remains challenging. Here we report on a novel technique that provides in vivo high-resolution simultaneous imaging of glucose uptake and mitochondrial metabolism within a dynamic tissue microenvironment. Two indicators were leveraged; 2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) reports on glucose uptake and Tetramethylrhodamine ethyl ester (TMRE) reports on mitochondrial membrane potential. Although we demonstrated that there was neither optical nor chemical crosstalk between 2-NBDG and TMRE, TMRE uptake was significantly inhibited by simultaneous injection with 2-NBDG in vivo. A staggered delivery scheme of the two agents (TMRE injection was followed by 2-NBDG injection after a 10-minute delay) permitted near-simultaneous in vivo microscopy of 2-NBDG and TMRE at the same tissue site by mitigating the interference of 2-NBDG with normal glucose usage. The staggered delivery strategy was evaluated under both normoxic and hypoxic conditions in normal tissues as well as in a murine breast cancer model. The results were consistent with those expected for independent imaging of 2-NBDG and TMRE. This optical imaging technique allows for monitoring of key metabolic endpoints with the unique benefit of repeated, non-destructive imaging within an intact microenvironment.
Collapse
Affiliation(s)
- Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Amy F Martinez
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Hannah L Martin
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Martin Li
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - David A Carlson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
9
|
Tseng JC, Narayanan N, Ho G, Groves K, Delaney J, Bao B, Zhang J, Morin J, Kossodo S, Rajopadhye M, Peterson JD. Fluorescence imaging of bombesin and transferrin receptor expression is comparable to 18F-FDG PET in early detection of sorafenib-induced changes in tumor metabolism. PLoS One 2017; 12:e0182689. [PMID: 28792505 PMCID: PMC5549732 DOI: 10.1371/journal.pone.0182689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/21/2017] [Indexed: 12/23/2022] Open
Abstract
Physical measurement of tumor volume reduction is the most commonly used approach to assess tumor progression and treatment efficacy in mouse tumor models. However, it is relatively insensitive, and often requires long treatment courses to achieve gross physical tumor destruction. As alternatives, several non-invasive imaging methods such as bioluminescence imaging (BLI), fluorescence imaging (FLI) and positron emission tomography (PET) have been developed for more accurate measurement. As tumors have elevated glucose metabolism, 18F-fludeoxyglucose (18F-FDG) has become a sensitive PET imaging tracer for cancer detection, diagnosis, and efficacy assessment by measuring alterations in glucose metabolism. In particular, the ability of 18F-FDG imaging to detect drug-induced effects on tumor metabolism at a very early phase has dramatically improved the speed of decision-making regarding treatment efficacy. Here we demonstrated an approach with FLI that offers not only comparable performance to PET imaging, but also provides additional benefits, including ease of use, imaging throughput, probe stability, and the potential for multiplex imaging. In this report, we used sorafenib, a tyrosine kinase inhibitor clinically approved for cancer therapy, for treatment of a mouse tumor xenograft model. The drug is known to block several key signaling pathways involved in tumor metabolism. We first identified an appropriate sorafenib dose, 40 mg/kg (daily on days 0-4 and 7-10), that retained ultimate therapeutic efficacy yet provided a 2-3 day window post-treatment for imaging early, subtle metabolic changes prior to gross tumor regression. We then used 18F-FDG PET as the gold standard for assessing the effects of sorafenib treatment on tumor metabolism and compared this to results obtained by measurement of tumor size, tumor BLI, and tumor FLI changes. PET imaging showed ~55-60% inhibition of tumor uptake of 18F-FDG as early as days 2 and 3 post-treatment, without noticeable changes in tumor size. For comparison, two FLI probes, BombesinRSense™ 680 (BRS-680) and Transferrin-Vivo™ 750 (TfV-750), were assessed for their potential in metabolic imaging. Metabolically active cancer cells are known to have elevated bombesin and transferrin receptor levels on the surface. In excellent agreement with PET imaging, the BRS-680 imaging showed 40% and 79% inhibition on days 2 and 3, respectively, and the TfV-750 imaging showed 65% inhibition on day 3. In both cases, no significant reduction in tumor volume or BLI signal was observed during the first 3 days of treatment. These results suggest that metabolic FLI has potential preclinical application as an additional method for detecting drug-induced metabolic changes in tumors.
Collapse
Affiliation(s)
- Jen-Chieh Tseng
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
- * E-mail:
| | - Nara Narayanan
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
| | - Guojie Ho
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
| | - Kevin Groves
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
| | - Jeannine Delaney
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
| | - Bagna Bao
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
| | - Jun Zhang
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
| | - Jeffrey Morin
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
| | - Sylvie Kossodo
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
| | - Milind Rajopadhye
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
| | - Jeffrey D. Peterson
- Discovery & Analytical Solutions R&D, PerkinElmer Inc., Hopkinton, Massachusetts, United States of America
| |
Collapse
|
10
|
Martelli C, Dico AL, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget 2016; 7:48753-48787. [PMID: 27145373 PMCID: PMC5217050 DOI: 10.18632/oncotarget.9066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/10/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management.Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation.The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed.
Collapse
Affiliation(s)
- Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Umberto Veronesi Foundation, Milan, Italy
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Tecnomed Foundation, University of Milan-Bicocca, Monza, Italy
| | - Giovanni Lucignani
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centre of Molecular and Cellular Imaging-IMAGO, Milan, Italy
- Institute for Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
11
|
Abstract
The rise in multidrug resistant (MDR) bacteria has become a global crisis. Rapid and accurate diagnosis of infection will facilitate antibiotic stewardship and preserve our ability to treat and cure patients from bacterial infection. Direct in situ imaging of bacteria offers the prospect of accurately diagnosing disease and monitoring patient outcomes and response to treatment in real-time. There have been many recent advances in the field of optical imaging of infection; namely in specific probe and fluorophore design. This combined with the advances in imaging device technology render direct optical imaging of infection a feasible approach for accurate diagnosis in the clinic. Despite this, there are currently no licensed molecular probes for clinical optical imaging of infection. Here we report some of the most promising and interesting probes and approaches under development for this purpose, which have been evaluated in in vivo models within the laboratory setting.
Collapse
|
12
|
Türkcan S, Nguyen J, Vilalta M, Shen B, Chin FT, Pratx G, Abbyad P. Single-Cell Analysis of [18F]Fluorodeoxyglucose Uptake by Droplet Radiofluidics. Anal Chem 2015; 87:6667-73. [PMID: 26035453 DOI: 10.1021/acs.analchem.5b00792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiolabels can be used to detect small biomolecules with high sensitivity and specificity without interfering with the biochemical activity of the labeled molecule. For instance, the radiolabeled glucose analogue, [18F]fluorodeoxyglucose (FDG), is routinely used in positron emission tomography (PET) scans for cancer diagnosis, staging, and monitoring. However, despite their widespread usage, conventional radionuclide techniques are unable to measure the variability and modulation of FDG uptake in single cells. We present here a novel microfluidic technique, dubbed droplet radiofluidics, that can measure radiotracer uptake for single cells encapsulated into an array of microdroplets. The advantages of this approach are multiple. First, droplets can be quickly and easily positioned in a predetermined pattern for optimal imaging throughput. Second, droplet encapsulation reduces cell efflux as a confounding factor, because any effluxed radionuclide is trapped in the droplet. Last, multiplexed measurements can be performed using fluorescent labels. In this new approach, intracellular radiotracers are imaged on a conventional fluorescence microscope by capturing individual flashes of visible light that are produced as individual positrons, emitted during radioactive decay, traverse a scintillator plate placed below the cells. This method is used to measure the cell-to-cell heterogeneity in the uptake of tracers such as FDG in cell lines and cultured primary cells. The capacity of the platform to perform multiplexed measurements was demonstrated by measuring differential FDG uptake in single cells subjected to different incubation conditions and expressing different types of glucose transporters. This method opens many new avenues of research in basic cell biology and human disease by capturing the full range of stochastic variations in highly heterogeneous cell populations in a repeatable and high-throughput manner.
Collapse
Affiliation(s)
- Silvan Türkcan
- †Division of Medical Physics, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Julia Nguyen
- ‡Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Marta Vilalta
- §Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Bin Shen
- ∥Department of Radiology, Stanford University Medical Center, Stanford, California 94305, United States
| | - Frederick T Chin
- ∥Department of Radiology, Stanford University Medical Center, Stanford, California 94305, United States
| | - Guillem Pratx
- †Division of Medical Physics, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Paul Abbyad
- ‡Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| |
Collapse
|
13
|
Mann A, Semenenko I, Meir M, Eyal S. Molecular Imaging of Membrane Transporters' Activity in Cancer: a Picture is Worth a Thousand Tubes. AAPS JOURNAL 2015; 17:788-801. [PMID: 25823669 DOI: 10.1208/s12248-015-9752-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/09/2015] [Indexed: 01/22/2023]
Abstract
Molecular imaging allows the non-invasive assessment of membrane transporter expression and function in living subjects. Such technologies have the potential to become diagnostic and prognostic tools, allowing detection, localization, and prediction of response of tumors and their metastases to therapy. Beyond tumors, imaging can also help understand the role of transporters in adverse drug effects and drug clearance. Here, we review molecular imaging technologies that monitor transporter-mediated processes. We emphasize emerging probe substrates and potential clinical applications of imaging the function of membrane transporters in cancer.
Collapse
Affiliation(s)
- Aniv Mann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Room 613, Ein Kerem, Jerusalem, 91120, Israel
| | | | | | | |
Collapse
|
14
|
Tseng JC, Bailey D, Tupper T, Kung AL. Using glow stick chemistry for biological imaging. Mol Imaging Biol 2015; 16:478-87. [PMID: 24510470 DOI: 10.1007/s11307-014-0721-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE This study describes an imaging strategy based on glow stick chemistry to non-invasively image oxidative stress and reactive oxygen species (ROS) production in living animals. PROCEDURES Upon stimulation, phagocytes produce toxic levels of ROS to kill engulfed microorganisms. The mitochondrial respiratory chain continually generates low levels of superoxide (O2·(-)) that serve as a source for generation of downstream ROS, which function as regulatory signaling intermediaries. A ROS-reacting substrate, 2-methyl-6-[4-methoxyphenyl]-3,7-dihydroimidazo[1,2-a]pyrazin-3-one hydrochloride, was used as the chemical energy donor for generating energy transfer luminescence in phagosomes and mitochondria. RESULTS Using targeted photoluminescent dyes with specific subcellular localization that serve as chemical energy recipients, our imaging data demonstrate proof-of-concept for using glow stick chemistry to visualize ROS production associated with phagocytosis and mitochondrial respiration in living mice. CONCLUSIONS Glow stick imaging is a complementary hybrid of chemiluminescence and photoluminescence imaging, capable of generating red or far-red emission for deep tissue imaging.
Collapse
Affiliation(s)
- Jen-Chieh Tseng
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA,
| | | | | | | |
Collapse
|
15
|
Nakajima EC, Laymon C, Oborski M, Hou W, Wang L, Grandis JR, Ferris RL, Mountz JM, Van Houten B. Quantifying metabolic heterogeneity in head and neck tumors in real time: 2-DG uptake is highest in hypoxic tumor regions. PLoS One 2014; 9:e102452. [PMID: 25127378 PMCID: PMC4134191 DOI: 10.1371/journal.pone.0102452] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/02/2014] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Intratumoral metabolic heterogeneity may increase the likelihood of treatment failure due to the presence of a subset of resistant tumor cells. Using a head and neck squamous cell carcinoma (HNSCC) xenograft model and a real-time fluorescence imaging approach, we tested the hypothesis that tumors are metabolically heterogeneous, and that tumor hypoxia alters patterns of glucose uptake within the tumor. EXPERIMENTAL DESIGN Cal33 cells were grown as xenograft tumors (n = 16) in nude mice after identification of this cell line's metabolic response to hypoxia. Tumor uptake of fluorescent markers identifying hypoxia, glucose import, or vascularity was imaged simultaneously using fluorescent molecular tomography. The variability of intratumoral 2-deoxyglucose (IR800-2-DG) concentration was used to assess tumor metabolic heterogeneity, which was further investigated using immunohistochemistry for expression of key metabolic enzymes. HNSCC tumors in patients were assessed for intratumoral variability of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in clinical PET scans. RESULTS IR800-2-DG uptake in hypoxic regions of Cal33 tumors was 2.04 times higher compared to the whole tumor (p = 0.0001). IR800-2-DG uptake in tumors containing hypoxic regions was more heterogeneous as compared to tumors lacking a hypoxic signal. Immunohistochemistry staining for HIF-1α, carbonic anhydrase 9, and ATP synthase subunit 5β confirmed xenograft metabolic heterogeneity. We detected heterogeneous (18)F-FDG uptake within patient HNSCC tumors, and the degree of heterogeneity varied amongst tumors. CONCLUSION Hypoxia is associated with increased intratumoral metabolic heterogeneity. (18)F-FDG PET scans may be used to stratify patients according to the metabolic heterogeneity within their tumors, which could be an indicator of prognosis.
Collapse
Affiliation(s)
- Erica C. Nakajima
- Physician Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Howard Hughes Medical Fellow, Howard Hughes Medical Institute, Bethesda, Maryland, United States of America
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Charles Laymon
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew Oborski
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Weizhou Hou
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lin Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer R. Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robert L. Ferris
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - James M. Mountz
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bennett Van Houten
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Garofalakis A, Dubois A, Thézé B, Czarny B, Tavitian B, Ducongé F. Fusion of [(18)F]FDG PET with fluorescence diffuse optical tomography to improve validation of probes and tumor imaging. Mol Imaging Biol 2014; 15:316-25. [PMID: 22927057 PMCID: PMC3647087 DOI: 10.1007/s11307-012-0581-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose Given the progress of fluorescence diffuse optical tomography (fDOT) technology, here, we study the additional benefits provided by multimodal PET/fDOT imaging by comparing the biodistribution of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) in tumors with three fluorescent probes: a glucose analog, a protease activatable optical probe, and a ligand of αvβ3 integrin. Procedures Sequential fDOT/PET/computed tomography (CT) imaging of mice was performed with a custom multimodal mouse support that allows the subject to be transferred between the fDOT and the PET/CT scanners. Experiments were performed in xenografted tumor models derived from the human breast cancer line MDA-MB 231 and compared to ex vivo analysis. Results The three-dimensional signals showed that the fluorescent glucose analog is not colocalized with [18F]FDG, raising questions about its use as a surrogate probe of the PET tracer. Fusion of [18F]FDG with the other fluorescent probes showed evidence of high variability both for the protease activity and the αvβ3 integrin expression during tumor growth. Conclusion The added value of hybrid PET/fDOT over the two modalities was demonstrated for cross-validation of probes and for better characterization of tumor models.
Collapse
Affiliation(s)
- Anikitos Garofalakis
- CEA, Institut d'Imagerie Biomédicale, Service Hospitalier Frédéric Joliot, Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Rajaram N, Frees AE, Fontanella AN, Zhong J, Hansen K, Dewhirst MW, Ramanujam N. Delivery rate affects uptake of a fluorescent glucose analog in murine metastatic breast cancer. PLoS One 2013; 8:e76524. [PMID: 24204635 PMCID: PMC3799786 DOI: 10.1371/journal.pone.0076524] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/30/2013] [Indexed: 12/12/2022] Open
Abstract
We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO2 was imaged using the differential absorption properties of oxygenated [HbO2] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor.
Collapse
Affiliation(s)
- Narasimhan Rajaram
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| | - Amy E. Frees
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Andrew N. Fontanella
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Jim Zhong
- Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Katherine Hansen
- Department of Radiation Oncology, Duke University, Durham, North Carolina, United States of America
| | - Mark W. Dewhirst
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Department of Radiation Oncology, Duke University, Durham, North Carolina, United States of America
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
18
|
Wang J, Hwang K, Braas D, Dooraghi A, Nathanson D, Campbell DO, Gu Y, Sandberg T, Mischel P, Radu C, Chatziioannou AF, Phelps ME, Christofk H, Heath JR. Fast metabolic response to drug intervention through analysis on a miniaturized, highly integrated molecular imaging system. J Nucl Med 2013; 54:1820-4. [PMID: 23978446 DOI: 10.2967/jnumed.112.118497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED We report on a radiopharmaceutical imaging platform designed to capture the kinetics of cellular responses to drugs. METHODS A portable in vitro molecular imaging system comprising a microchip and a β-particle imaging camera permitted routine cell-based radioassays of small numbers of either suspended or adherent cells. We investigated the kinetics of responses of model lymphoma and glioblastoma cancer cell lines to (18)F-FDG uptake after drug exposure. Those responses were correlated with kinetic changes in the cell cycle or with changes in receptor tyrosine kinase signaling. RESULTS The platform enabled direct radioassays of multiple cell types and yielded results comparable to those from conventional approaches; however, the platform used smaller sample sizes, permitted a higher level of quantitation, and did not require cell lysis. CONCLUSION The kinetic analysis enabled by the platform provided a rapid (≈ 1 h) drug screening assay.
Collapse
Affiliation(s)
- Jun Wang
- NSB Cancer Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kossatz S, Béhé M, Mansi R, Saur D, Czerney P, Kaiser WA, Hilger I. Multifactorial diagnostic NIR imaging of CCK2R expressing tumors. Biomaterials 2013; 34:5172-80. [PMID: 23591397 DOI: 10.1016/j.biomaterials.2013.03.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/23/2013] [Indexed: 11/28/2022]
Abstract
Optical imaging-based diagnostics identify malignancies based on molecular changes instead of morphological criteria in a non-invasive, irradiation free process. The aim of this study was to improve imaging efficiency by the development of a new Cholecystokinin-2-receptor targeted fluorescent peptide that matches the clinical needs regarding biodistribution and pharmacokinetics while displaying superior target specificity. Furthermore we performed multifactorial imaging of Cholecystokinin-2-receptor and tumor metabolism, since simultaneous targeting of various tumor biomarkers could intensely increase tumor identification and characterization. Affinity and specificity of the fluorescent Cholecystokinin-2-receptor targeted minigastrin (dQ-MG-754) were tested in vitro. We conducted in vivo imaging of the dQ-MG-754 probe alone and in a multifactorial approach with a GLUT-1 targeted probe (IR800 2-DG) on subcutaneous xenograft bearing athymic nude mice up to 24 h after intravenous injection (n = 5/group), followed by ex vivo biodistribution analysis and histological examination. We found specific, high affinity binding (Kd = 1.77 nM ± 0.6 nM) of dQ-MG-754 to Cholecystokinin-2-receptor expressing cells and xenografts as well as favorable pharmacokinetics for fluorescence-guided endoscopy. We successfully performed multifactorial imaging for the simultaneous detection of the Cholecystokinin-2-receptor and GLUT-1 targeted probe. Prominent differences in uptake patterns of the two contrast agents could be detected. The results were validated by histological examinations. The multifactorial imaging approach presented in this study could facilitate cancer detection in diagnostic imaging and intraoperative and endoscopic applications. Especially the dQ-MG-754 probe bears great potential for translation to clinical endoscopy imaging, because it combines specific high affinity binding with renal elimination and a favorable biodistribution.
Collapse
Affiliation(s)
- Susanne Kossatz
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Radioluminescence microscopy: measuring the heterogeneous uptake of radiotracers in single living cells. PLoS One 2012; 7:e46285. [PMID: 23056276 PMCID: PMC3463617 DOI: 10.1371/journal.pone.0046285] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
Radiotracers play an important role in interrogating molecular processes both in vitro and in vivo. However, current methods are limited to measuring average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. Here we apply a new technique, termed radioluminescence microscopy, to visualize radiotracer uptake in single living cells, in a standard fluorescence microscopy environment. In this technique, live cells are cultured sparsely on a thin scintillator plate and incubated with a radiotracer. Light produced following beta decay is measured using a highly sensitive microscope. Radioluminescence microscopy revealed strong heterogeneity in the uptake of [(18)F]fluoro-deoxyglucose (FDG) in single cells, which was found consistent with fluorescence imaging of a glucose analog. We also verified that dynamic uptake of FDG in single cells followed the standard two-tissue compartmental model. Last, we transfected cells with a fusion PET/fluorescence reporter gene and found that uptake of FHBG (a PET radiotracer for transgene expression) coincided with expression of the fluorescent protein. Together, these results indicate that radioluminescence microscopy can visualize radiotracer uptake with single-cell resolution, which may find a use in the precise characterization of radiotracers.
Collapse
|
21
|
Tseng JC, Benink HA, McDougall MG, Chico-Calero I, Kung AL. In Vivo Fluorescent Labeling of Tumor Cells with the HaloTag® Technology. CURRENT CHEMICAL GENOMICS 2012; 6:48-54. [PMID: 23115613 PMCID: PMC3480697 DOI: 10.2174/1875397301206010048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 11/22/2022]
Abstract
Many fluorescent sensors are currently available for in vitro bio-physiological microscopic imaging. The ability to label cells in living animals with these fluorescent sensors would help translate some of these assays into in vivo applications. To achieve this goal, the first step is to establish a method for selectively labeling target cells with exogenous fluorophores. Here we tested whether the HaloTag® protein tagging system provides specific labeling of xenograft tumors in living animals. After systemic delivery of fluorophore-conjugated ligands, we performed whole animal planar fluorescent imaging to determine uptake in tag-expressing HCT116 xenografts. Our results demonstrate that HaloTag ligands containing red or near-infrared fluorophores have enhanced tumor uptake and are suitable for non-invasive in vivo imaging. Our proof-of-concept results establish feasibility for using HaloTag technology for bio-physiological imaging in living animals.
Collapse
Affiliation(s)
- Jen-Chieh Tseng
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|