1
|
Zhou Z, Zhu T, Zheng W, Zou Z, Shan Q, Chen Q, Wang G, Wang Y. LAT1 transporter as a target for breast cancer diagnosis and therapy. Eur J Med Chem 2025; 283:117064. [PMID: 39631100 DOI: 10.1016/j.ejmech.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer is the main cause of female malignant tumor death in China. Numerous cellular molecules are associated with the onset and progression of breast cancer. However, these molecules have proven ineffective for the diagnosis and treatment of the disease, indicating a need for the identification of new biomarkers. LAT1 (SLC7A5) plays a crucial role in mediating the uptake of amino acids into breast cancer cells, influencing proliferation, invasion, migration, drug resistance, and prognosis through the mTOR signaling pathway. Notably, LAT1 exhibits differential expression across various types of breast cancer, positioning it as a promising candidate for diagnostic and therapeutic applications. Recent advancements in LAT1-targeting strategies for breast cancer have been made, particularly with the rapid developments in small molecular inhibitors and nanotechnology. In this article, we review the structure and function of LAT1, its relationship with breast cancer, and LAT1-mediated diagnostic and treatment strategies. This article specifically focuses on the LAT1-targeting strategy in breast tumors, aiming to evaluate its potential role as a novel biomarker for diagnosis and treatment.
Collapse
Affiliation(s)
- Zheyang Zhou
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Tao Zhu
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Wenlong Zheng
- Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China; Pharmaceutical College, Guangxi University of Chinese Medicine, China
| | - Zhixiang Zou
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Qingfei Shan
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Qing Chen
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Gang Wang
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Yang Wang
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China.
| |
Collapse
|
2
|
Vindstad BE, Skjulsvik AJ, Pedersen LK, Berntsen EM, Solheim OS, Ingebrigtsen T, Reinertsen I, Johansen H, Eikenes L, Karlberg AM. Histomolecular Validation of [ 18F]-FACBC in Gliomas Using Image-Localized Biopsies. Cancers (Basel) 2024; 16:2581. [PMID: 39061219 PMCID: PMC11275162 DOI: 10.3390/cancers16142581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Gliomas have a heterogeneous nature, and identifying the most aggressive parts of the tumor and defining tumor borders are important for histomolecular diagnosis, surgical resection, and radiation therapy planning. This study evaluated [18F]-FACBC PET for glioma tissue classification. METHODS Pre-surgical [18F]-FACBC PET/MR images were used during surgery and image-localized biopsy sampling in patients with high- and low-grade glioma. TBR was compared to histomolecular results to determine optimal threshold values, sensitivity, specificity, and AUC values for the classification of tumor tissue. Additionally, PET volumes were determined in patients with glioblastoma based on the optimal threshold. [18F]-FACBC PET volumes and diagnostic accuracy were compared to ce-T1 MRI. In total, 48 biopsies from 17 patients were analyzed. RESULTS [18F]-FACBC had low uptake in non-glioblastoma tumors, but overall higher sensitivity and specificity for the classification of tumor tissue (0.63 and 0.57) than ce-T1 MRI (0.24 and 0.43). Additionally, [18F]-FACBC TBR was an excellent classifier for IDH1-wildtype tumor tissue (AUC: 0.83, 95% CI: 0.71-0.96). In glioblastoma patients, PET tumor volumes were on average eight times larger than ce-T1 MRI volumes and included 87.5% of tumor-positive biopsies compared to 31.5% for ce-T1 MRI. CONCLUSION The addition of [18F]-FACBC PET to conventional MRI could improve tumor classification and volume delineation.
Collapse
Affiliation(s)
- Benedikte Emilie Vindstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Anne Jarstein Skjulsvik
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Lars Kjelsberg Pedersen
- Department of Neurosurgery, Ophthalmology and Otorhinolaryngology, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Ole Skeidsvoll Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Tor Ingebrigtsen
- Department of Neurosurgery, Ophthalmology and Otorhinolaryngology, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Ingerid Reinertsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Health Research, SINTEF Digital, 7034 Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Anna Maria Karlberg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
3
|
Karlberg A, Pedersen LK, Vindstad BE, Skjulsvik AJ, Johansen H, Solheim O, Skogen K, Kvistad KA, Bogsrud TV, Myrmel KS, Giskeødegård GF, Ingebrigtsen T, Berntsen EM, Eikenes L. Diagnostic accuracy of anti-3-[ 18F]-FACBC PET/MRI in gliomas. Eur J Nucl Med Mol Imaging 2024; 51:496-509. [PMID: 37776502 PMCID: PMC10774221 DOI: 10.1007/s00259-023-06437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE The primary aim was to evaluate whether anti-3-[18F]FACBC PET combined with conventional MRI correlated better with histomolecular diagnosis (reference standard) than MRI alone in glioma diagnostics. The ability of anti-3-[18F]FACBC to differentiate between molecular and histopathological entities in gliomas was also evaluated. METHODS In this prospective study, patients with suspected primary or recurrent gliomas were recruited from two sites in Norway and examined with PET/MRI prior to surgery. Anti-3-[18F]FACBC uptake (TBRpeak) was compared to histomolecular features in 36 patients. PET results were then added to clinical MRI readings (performed by two neuroradiologists, blinded for histomolecular results and PET data) to assess the predicted tumor characteristics with and without PET. RESULTS Histomolecular analyses revealed two CNS WHO grade 1, nine grade 2, eight grade 3, and 17 grade 4 gliomas. All tumors were visible on MRI FLAIR. The sensitivity of contrast-enhanced MRI and anti-3-[18F]FACBC PET was 61% (95%CI [45, 77]) and 72% (95%CI [58, 87]), respectively, in the detection of gliomas. Median TBRpeak was 7.1 (range: 1.4-19.2) for PET positive tumors. All CNS WHO grade 1 pilocytic astrocytomas/gangliogliomas, grade 3 oligodendrogliomas, and grade 4 glioblastomas/astrocytomas were PET positive, while 25% of grade 2-3 astrocytomas and 56% of grade 2-3 oligodendrogliomas were PET positive. Generally, TBRpeak increased with malignancy grade for diffuse gliomas. A significant difference in PET uptake between CNS WHO grade 2 and 4 gliomas (p < 0.001) and between grade 3 and 4 gliomas (p = 0.002) was observed. Diffuse IDH wildtype gliomas had significantly higher TBRpeak compared to IDH1/2 mutated gliomas (p < 0.001). Adding anti-3-[18F]FACBC PET to MRI improved the accuracy of predicted glioma grades, types, and IDH status, and yielded 13.9 and 16.7 percentage point improvement in the overall diagnoses for both readers, respectively. CONCLUSION Anti-3-[18F]FACBC PET demonstrated high uptake in the majority of gliomas, especially in IDH wildtype gliomas, and improved the accuracy of preoperatively predicted glioma diagnoses. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID: NCT04111588, URL: https://clinicaltrials.gov/study/NCT04111588.
Collapse
Affiliation(s)
- Anna Karlberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway.
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | - Benedikte Emilie Vindstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Jarstein Skjulsvik
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medical and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karoline Skogen
- Department of Radiology and Nuclear Medicine, Oslo University Hospitals, Oslo, Norway
| | - Kjell Arne Kvistad
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
| | - Trond Velde Bogsrud
- PET-Centre, University Hospital of North Norway, Tromsø, Norway
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | - Guro F Giskeødegård
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tor Ingebrigtsen
- Department of Neurosurgery, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Erik Magnus Berntsen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Castello A, Albano D, Muoio B, Castellani M, Panareo S, Rizzo A, Treglia G, Urso L. Diagnostic Accuracy of PET with 18F-Fluciclovine ([ 18F]FACBC) in Detecting High-Grade Gliomas: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:3610. [PMID: 38132194 PMCID: PMC10742552 DOI: 10.3390/diagnostics13243610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND 18F-Fluciclovine ([18F]FACBC) has been recently proposed as a synthetic radiolabeled amino acid for positron emission tomography (PET) imaging in patients with brain neoplasms. Our aim is to evaluate the diagnostic performance of [18F]FACBC PET in high-grade glioma (HGG) patients, taking into account the literature data. METHODS A comprehensive literature search was performed. We included original articles evaluating [18F]FACBC PET in the detection of HGG before therapy and for the suspicion of tumor recurrence. Pooled sensitivity, specificity, positive and negative likelihood ratios (LR+ and LR-), and diagnostic odds ratios (DOR), including 95% confidence intervals (95% CI), were measured. Statistical heterogeneity and publication bias were also assessed. RESULTS ten studies were included in the review and eight in the meta-analysis (113 patients). Regarding the identification of HGG, the sensitivity of [18F]FACBC PET ranged between 85.7% and 100%, with a pooled estimate of 92.9% (95% CI: 84.4-96.9%), while the specificity ranged from 50% to 100%, with a pooled estimate of 70.7% (95% CI: 47.5-86.5%). The pooled LR+, LR-, and DOR of [18F]FACBC PET were 2.5, 0.14, and 37, respectively. No significant statistical heterogeneity or publication bias were found. CONCLUSIONS evidence-based data demonstrate the good diagnostic accuracy of [18F]FACBC PET for HGG detection. Due to the still limited data, further studies are warranted to confirm the promising role of [18F]FACBC PET in this context.
Collapse
Affiliation(s)
- Angelo Castello
- Department of Nuclear Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Domenico Albano
- Department of Nuclear Medicine, ASST Spedali Civili of Brescia and University of Brescia, 25123 Brescia, Italy;
| | - Barbara Muoio
- Division of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland;
| | - Massimo Castellani
- Department of Nuclear Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41124 Modena, Italy;
| | - Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, 10060 Turin, Italy;
| | - Giorgio Treglia
- Division of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland;
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
5
|
Bel’skaya LV, Gundyrev IA, Solomatin DV. The Role of Amino Acids in the Diagnosis, Risk Assessment, and Treatment of Breast Cancer: A Review. Curr Issues Mol Biol 2023; 45:7513-7537. [PMID: 37754258 PMCID: PMC10527988 DOI: 10.3390/cimb45090474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
This review summarizes the role of amino acids in the diagnosis, risk assessment, imaging, and treatment of breast cancer. It was shown that the content of individual amino acids changes in breast cancer by an average of 10-15% compared with healthy controls. For some amino acids (Thr, Arg, Met, and Ser), an increase in concentration is more often observed in breast cancer, and for others, a decrease is observed (Asp, Pro, Trp, and His). The accuracy of diagnostics using individual amino acids is low and increases when a number of amino acids are combined with each other or with other metabolites. Gln/Glu, Asp, Arg, Leu/Ile, Lys, and Orn have the greatest significance in assessing the risk of breast cancer. The variability in the amino acid composition of biological fluids was shown to depend on the breast cancer phenotype, as well as the age, race, and menopausal status of patients. In general, the analysis of changes in the amino acid metabolism in breast cancer is a promising strategy not only for diagnosis, but also for developing new therapeutic agents, monitoring the treatment process, correcting complications after treatment, and evaluating survival rates.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Ivan A. Gundyrev
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Denis V. Solomatin
- Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University, 644043 Omsk, Russia;
| |
Collapse
|
6
|
Gilardi L, Airò Farulla LS, Curigliano G, Corso G, Leonardi MC, Ceci F. FDG and Non-FDG Radiopharmaceuticals for PET Imaging in Invasive Lobular Breast Carcinoma. Biomedicines 2023; 11:biomedicines11051350. [PMID: 37239021 DOI: 10.3390/biomedicines11051350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Invasive lobular cancer (ILC) is the second most frequent histological type of breast cancer (BC) and includes a heterogeneous spectrum of diseases with unique characteristics, especially the infiltrative growth pattern and metastatic spread. [18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG-PET/CT) is extensively used in oncology and BC patient evaluation. Its role in ILCs is considered suboptimal due to its low FDG avidity. Therefore, ILCs could benefit from molecular imaging with non-FDG tracers that target other specific pathways, contributing to precision medicine. This narrative review aims to summarize the current literature on the use of FDG-PET/CT in ILC and to discuss future opportunities given by the development of innovative non-FDG radiotracers.
Collapse
Affiliation(s)
- Laura Gilardi
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lighea Simona Airò Farulla
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of New Drugs and Early Drug Development, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giovanni Corso
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Breast Surgery, IEO European Institute of Oncology, IRCCS, 20141 Milan, Italy
- European Cancer Prevention Organization (ECP), 20122 Milan, Italy
| | | | - Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
7
|
Zhang-Yin J, Girard A, Marchal E, Lebret T, Homo Seban M, Uhl M, Bertaux M. PET Imaging in Bladder Cancer: An Update and Future Direction. Pharmaceuticals (Basel) 2023; 16:ph16040606. [PMID: 37111363 PMCID: PMC10144644 DOI: 10.3390/ph16040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Molecular imaging with positron emission tomography is a powerful tool in bladder cancer management. In this review, we aim to address the current place of the PET imaging in bladder cancer care and offer perspectives on potential future radiopharmaceutical and technological advancements. A special focus is given to the following: the role of [18F] 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography in the clinical management of bladder cancer patients, especially for staging and follow-up; treatment guided by [18F]FDG PET/CT; the role of [18F]FDG PET/MRI, the other PET radiopharmaceuticals beyond [18F]FDG, such as [68Ga]- or [18F]-labeled fibroblast activation protein inhibitor; and the application of artificial intelligence.
Collapse
Affiliation(s)
- Jules Zhang-Yin
- Department of Nuclear Medicine, Clinique Sud Luxembourg, Vivalia, B-6700 Arlon, Belgium
| | - Antoine Girard
- Department of Nuclear Medicine, Amiens-Picardy University Hospital, 80054 Amiens, France
| | - Etienne Marchal
- Department of Nuclear Medicine, Amiens-Picardy University Hospital, 80054 Amiens, France
| | - Thierry Lebret
- Department of Urology, Foch Hospital, 92150 Suresnes, France
| | - Marie Homo Seban
- Department of Nuclear Medicine, Foch Hospital, 92150 Suresnes, France
| | - Marine Uhl
- Department of Urology and Renal Transplantation, Amiens-Picardy University Hospital, 80054 Amiens, France
| | - Marc Bertaux
- Department of Nuclear Medicine, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
8
|
Adediran OA, Lawal IO, Muzahir S, Bhave MA, Friend S, Fielder B, Meisel J, Torres MA, Styblo TM, Graham C, Holbrook A, Kalinsky K, Crowe RJ, Ulaner GA, Schuster DM. A Discordant Pattern of Uptake on 68 Ga-PSMA PET/CT Versus 18 F-Fluciclovine PET/CT in Radiation-Induced Hepatitis : Implications for Early Postradiotherapy Imaging-Based Response Assessment. Clin Nucl Med 2023; 48:e202-e203. [PMID: 36728139 DOI: 10.1097/rlu.0000000000004565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT A 62-year-old woman with right-sided invasive lobular breast carcinoma completed external beam radiotherapy 6 weeks before undergoing a 68 Ga-PSMA PET/CT and 18 F-fluciclovine PET/CT scan as part of an ongoing clinical trial (NCT04750473) assessing the performance of these molecular imaging modalities in invasive lobular breast carcinoma. The 68 Ga-PSMA PET/CT demonstrated a band-like area of increased radiotracer uptake in the dome of the right lobe of the liver anteriorly, whereas 18 F-fluciclovine PET/CT done a day later revealed photopenia in the corresponding area of the liver. The external beam radiotherapy plan confirmed that the radiotherapy field overlaid the region of the hepatic discordant radiotracer uptake on the PET/CT scans.
Collapse
Affiliation(s)
- Omotayo A Adediran
- From the Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | | | - Saima Muzahir
- From the Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Manali A Bhave
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Sarah Friend
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Bridget Fielder
- From the Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Jane Meisel
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Mylin A Torres
- Department of Radiation Oncology, Emory University, Atlanta, GA
| | | | - Cathy Graham
- Department of Surgery, Emory University, Atlanta, GA
| | - Anna Holbrook
- From the Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Kevin Kalinsky
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Ronald J Crowe
- Emory Centre for Systems Imaging Core, Emory University, Atlanta, GA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA
| | - David M Schuster
- From the Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| |
Collapse
|
9
|
Roach JR, Plaha P, McGowan DR, Higgins GS. The role of [ 18F]fluorodopa positron emission tomography in grading of gliomas. J Neurooncol 2022; 160:577-589. [PMID: 36434486 PMCID: PMC9758109 DOI: 10.1007/s11060-022-04177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Gliomas are the most commonly occurring brain tumour in adults and there remains no cure for these tumours with treatment strategies being based on tumour grade. All treatment options aim to prolong survival, maintain quality of life and slow the inevitable progression from low-grade to high-grade. Despite imaging advancements, the only reliable method to grade a glioma is to perform a biopsy, and even this is fraught with errors associated with under grading. Positron emission tomography (PET) imaging with amino acid tracers such as [18F]fluorodopa (18F-FDOPA), [11C]methionine (11C-MET), [18F]fluoroethyltyrosine (18F-FET), and 18F-FDOPA are being increasingly used in the diagnosis and management of gliomas. METHODS In this review we discuss the literature available on the ability of 18F-FDOPA-PET to distinguish low- from high-grade in newly diagnosed gliomas. RESULTS In 2016 the Response Assessment in Neuro-Oncology (RANO) and European Association for Neuro-Oncology (EANO) published recommendations on the clinical use of PET imaging in gliomas. However, since these recommendations there have been a number of studies performed looking at whether 18F-FDOPA-PET can identify areas of high-grade transformation before the typical radiological features of transformation such as contrast enhancement are visible on standard magnetic resonance imaging (MRI). CONCLUSION Larger studies are needed to validate 18F-FDOPA-PET as a non-invasive marker of glioma grade and prediction of tumour molecular characteristics which could guide decisions surrounding surgical resection.
Collapse
Affiliation(s)
- Joy R. Roach
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
- Department of Neurosurgery, Oxford University Hospital NHS FT, John Radcliffe Hospital, L3 West Wing, Oxford, OX3 9DU UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospital NHS FT, John Radcliffe Hospital, L3 West Wing, Oxford, OX3 9DU UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 7DQ UK
| | - Daniel R. McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
- Department of Medical Physics and Clinical Engineering, Oxford University Hospital NHS FT, Churchill Hospital, Oxford, OX3 7LE UK
| | - Geoff S. Higgins
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
- Department of Oncology, Oxford University Hospitals NHS FT, Oxford, UK
| |
Collapse
|
10
|
Narushima K, Nishii R, Okazumi S, Shimada H, Akutsu Y, Maeda T, Yasuda S, Yamada S, Shuto K, Tamura K, Yamazaki K, Shinoto M, Ishikawa H, Mori M, Matsubara H. [S-methyl- 11C]-L-methionine positron emission tomography/computed tomography imaging parameters to evaluate early response for esophageal cancer with neoadjuvant carbon ion radiotherapy. Sci Rep 2022; 12:13694. [PMID: 35953702 PMCID: PMC9372167 DOI: 10.1038/s41598-022-17962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to evaluate the uptake of the clinical effectiveness of [S-methyl-11C]-L-methionine positron emission tomography/computed tomography (MET PET/CT) in patients with esophageal cancer and to investigate MET PET/CT imaging parameters to assess early response for esophageal cancer with neoadjuvant carbon ion radiotherapy (CIRT). MET PET/CT scans were performed in nineteen patients before and 3 weeks after completion of CIRT. After Surgery, the effect of neoadjuvant CIRT was investigated by examining the relationship between each parameter of MET uptake and the histological assessment (grade and tumor residual ratio). Four parameters of MET uptake were the maximum and minimum standardized uptake values of pre and post CIRT (pre-SUVmax, pre-SUVmean, post-SUVmax, and post-SUVmean). MET PET/CT imaging of esophageal cancer was clearly demonstrated. The post-SUVmax was the most suitable parameter. When the cutoff value was set as post-SUVmax = 6.21, the sensitivity, the specificity, and the accuracy of Grades 3 were 100.0%, 63.6%, and 78.9%, respectively. And there was a positive relationship between the tumor residual ratio and post-SUVmax (R2 = 0.38, p < 0.005). MET PET/CT is clinically useful for the assessment of early response to neoadjuvant CIRT in esophageal cancer. Particularly, post-SUVmax is considered a promising PET imaging parameter.
Collapse
Affiliation(s)
- Kazuo Narushima
- Department of Surgery, Secomedic Hospital, Chiba, Japan
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), QST Hospital, Chiba, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| | - Shinichi Okazumi
- Department of Surgery, Toho University Sakura Medical Center, Chiba, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Toho University Graduate School of Medicine, Tokyo, Japan
| | | | - Takamasa Maeda
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), QST Hospital, Chiba, Japan
| | - Shigeo Yasuda
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), QST Hospital, Chiba, Japan
- Department of Radiology, Chiba Rosai Hospital, Chiba, Japan
| | - Shigeru Yamada
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), QST Hospital, Chiba, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Kentaro Tamura
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Kana Yamazaki
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Makoto Shinoto
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), QST Hospital, Chiba, Japan
| | - Hitoshi Ishikawa
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), QST Hospital, Chiba, Japan
| | - Mikito Mori
- Department of Surgery, Secomedic Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
11
|
Scarpelli ML, Healey DR, Mehta S, Quarles CC. Imaging Glioblastoma With 18F-Fluciclovine Amino Acid Positron Emission Tomography. Front Oncol 2022; 12:829050. [PMID: 35174096 PMCID: PMC8841434 DOI: 10.3389/fonc.2022.829050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionConventional methods of imaging brain tumors fail to assess metabolically active tumor regions, which limits their capabilities for tumor detection, localization, and response assessment. Positron emission tomography (PET) with 18F-fluciclovine (fluciclovine) provides regional assessment of amino acid uptake in tumors that could overcome some of the limitations of conventional imaging. However, the biological basis of enhanced fluciclovine uptake is insufficiently characterized in brain tumors, which confounds clinical interpretation and application. This study sought to address this gap by correlating multiple biologic quantities with fluciclovine PET uptake across a range of human glioblastoma xenograft models.MethodsThirty-one rats underwent orthotopic implantations with one of five different human glioblastoma cell lines. After tumors were established, fluciclovine PET and magnetic resonance imaging (MRI) scans were performed. The fluciclovine tumor-to-normal-brain (TN) uptake ratio was used to quantify fluciclovine uptake. MRI scans were used to assess tumor volume and gadolinium enhancement status. Histologic assessments quantified tumor cell proliferation, tumor cell density, and tumor cell amino acid transporters (LAT1 and ASCT2). Multivariate linear regression models related fluciclovine uptake with the other measured quantities.ResultsWithin the multivariate regression, the fluciclovine TN uptake ratio (measured 15 to 35 minutes after fluciclovine injection) was most strongly associated with tumor ASCT2 levels (β=0.64; P=0.001). The fluciclovine TN uptake ratio was also significantly associated with tumor volume (β=0.45; P=0.001) and tumor enhancement status (β=0.40; P=0.01). Tumor cell proliferation, tumor cell density, and LAT1 levels were not significantly associated with fluciclovine uptake in any of the multivariate models. In general, both enhancing and non-enhancing tumors could be visualized on fluciclovine PET images, with the median TN uptake ratio across the five tumor lines being 2.4 (range 1.1 to 8.9).ConclusionsIncreased fluciclovine PET uptake was associated with increased levels of the amino acid transporter ASCT2, suggesting fluciclovine PET may be useful for assessing brain tumor amino acid metabolism. Fluciclovine PET uptake was elevated in both enhancing and non-enhancing tumors but the degree of uptake was greater in larger tumors and tumors with enhancement, indicating these variables could confound fluciclovine metabolic measurements if not accounted for.
Collapse
Affiliation(s)
| | - Debbie R. Healey
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - C. Chad Quarles
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
- *Correspondence: C. Chad Quarles,
| |
Collapse
|
12
|
Galgano SJ, West JT, Rais-Bahrami S. Role of molecular imaging in the detection of localized prostate cancer. Ther Adv Urol 2022; 14:17562872221105018. [PMID: 35755177 PMCID: PMC9218890 DOI: 10.1177/17562872221105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular imaging of prostate cancer continues to grow, with recent inclusion of several positron emission tomography (PET) radiotracers into the recent National Comprehensive Cancer Network guidelines and the US Food and Drug Administration approval of prostate-specific membrane antigen (PSMA)-targeted radiotracers. While much of the work for many of these radiotracers is focused on systemic staging and restaging in both newly diagnosed high-risk prostate cancer and biochemically recurrent disease patients, the potential role of molecular imaging for the detection of localized prostate cancer has not yet been fully established. The primary aim of this article will be to present the potential role for molecular imaging in the detection of localized prostate cancer and discuss potential advantages and disadvantages to utilization of both PET/computed tomography (CT) and PET/magnetic resonance imaging (MRI) for this clinical indication of use.
Collapse
Affiliation(s)
- Samuel J Galgano
- Department of Radiology, The University of Alabama at Birmingham, 619 19th Street South, JT J779, Birmingham, AL 35294, USA
| | - Janelle T West
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soroush Rais-Bahrami
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Ellingson BM, Wen PY, Cloughesy TF. Therapeutic Response Assessment of High-Grade Gliomas During Early-Phase Drug Development in the Era of Molecular and Immunotherapies. Cancer J 2021; 27:395-403. [PMID: 34570454 PMCID: PMC8480435 DOI: 10.1097/ppo.0000000000000543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Several new therapeutic strategies have emerged over the past decades to address unmet clinical needs in high-grade gliomas, including targeted molecular agents and various forms of immunotherapy. Each of these strategies requires addressing fundamental questions, depending on the stage of drug development, including ensuring drug penetration into the brain, engagement of the drug with the desired target, biologic effects downstream from the target including metabolic and/or physiologic changes, and identifying evidence of clinical activity that could be expanded upon to increase the likelihood of a meaningful survival benefit. The current review article highlights these strategies and outlines how imaging technology can be used for therapeutic response evaluation in both targeted and immunotherapies in early phases of drug development in high-grade gliomas.
Collapse
Affiliation(s)
- Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - Timothy F. Cloughesy
- UCLA Neuro Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
14
|
Jimenez-Royo P, Bombardieri M, Ciurtin C, Kostapanos M, Tappuni AR, Jordan N, Saleem A, Fuller T, Port K, Pontarini E, Lucchesi D, Janiczek R, Galette P, Searle G, Patel N, Kershaw L, Gray C, Ratia N, van Maurik A, de Groot M, Wisniacki N, Bergstrom M, Tarzi R. Advanced imaging for quantification of abnormalities in the salivary glands of patients with primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 60:2396-2408. [PMID: 33221921 PMCID: PMC8121449 DOI: 10.1093/rheumatology/keaa624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/21/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To assess non-invasive imaging for detection and quantification of gland structure, inflammation and function in patients with primary Sjogren's syndrome (pSS) using PET-CT with 11C-Methionine (11C-MET; radiolabelled amino acid), and 18F-fluorodeoxyglucose (18F-FDG; glucose uptake marker), to assess protein synthesis and inflammation, respectively; multiparametric MRI evaluated salivary gland structural and physiological changes. METHODS In this imaging/clinical/histology comparative study (GSK study 203818; NCT02899377) patients with pSS and age- and sex-matched healthy volunteers underwent MRI of the salivary glands and 11C-MET PET-CT. Patients also underwent 18F-FDG PET-CT and labial salivary gland biopsies. Clinical and biomarker assessments were performed. Primary endpoints were semi-quantitative parameters of 11C-MET and 18F-FDG uptake in submandibular and parotid salivary glands and quantitative MRI measures of structure and inflammation. Clinical and minor salivary gland histological parameter correlations were explored. RESULTS Twelve patients with pSS and 13 healthy volunteers were included. Lower 11C-MET uptake in parotid, submandibular and lacrimal glands, lower submandibular gland volume, higher MRI fat fraction, and lower pure diffusion in parotid and submandibular glands were observed in patients vs healthy volunteer, consistent with reduced synthetic function. Disease duration correlated positively with fat fraction and negatively with 11C-MET and 18F-FDG uptake, consistent with impaired function, inflammation and fatty replacement over time. Lacrimal gland 11C-MET uptake positively correlated with tear flow in patients, and parotid gland 18F-FDG uptake positively correlated with salivary gland CD20+ B-cell infiltration. CONCLUSION Molecular imaging and MRI may be useful tools to non-invasively assess loss of glandular function, increased glandular inflammation and fat accumulation in pSS.
Collapse
Affiliation(s)
| | - Michele Bombardieri
- Experimental Medicine and Rheumatology, Queen Mary University of London, London
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology, University College London, London
| | - Michalis Kostapanos
- GlaxoSmithKline Clinical Unit Cambridge, Cambridge
- Department of Medicine, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Anwar R Tappuni
- Institute of Dentistry, Queen Mary University of London, London
| | - Natasha Jordan
- Rheumatology Department, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Azeem Saleem
- Invicro, Centre for Imaging Sciences, A Konica Minolta Company, London
- Faculty of Health Sciences, University of Hull, Hull
| | - Teresa Fuller
- Research and Development, GlaxoSmithKline, Stevenage
| | - Kathleen Port
- Research and Development, GlaxoSmithKline, Stevenage
| | - Elena Pontarini
- Experimental Medicine and Rheumatology, Queen Mary University of London, London
| | - Davide Lucchesi
- Experimental Medicine and Rheumatology, Queen Mary University of London, London
| | | | - Paul Galette
- Research and Development, GlaxoSmithKline, Stevenage
| | - Graham Searle
- Invicro, Centre for Imaging Sciences, A Konica Minolta Company, London
| | - Neel Patel
- Research and Development, GlaxoSmithKline, Stevenage
| | - Lucy Kershaw
- Centre for Inflammation Research, University of Edinburgh
- Edinburgh Imaging, University of Edinburgh, Edinburgh
| | - Calum Gray
- Edinburgh Imaging, University of Edinburgh, Edinburgh
| | - Nirav Ratia
- Research and Development, GlaxoSmithKline, Stevenage
| | | | - Marius de Groot
- Research and Development, GlaxoSmithKline, Stevenage
- GlaxoSmithKline Clinical Unit Cambridge, Cambridge
| | | | | | - Ruth Tarzi
- Research and Development, GlaxoSmithKline, Stevenage
| |
Collapse
|
15
|
Hoekstra RJ, Beulens A, Vrijhof EHJEJ, Wyndaele DNJ, Roef M, Brouwer LJM, Somford DM, Sedelaar M, van Basten JPA. Diagnostic accuracy of 18F-fluciclovine PET/CT in primary lymph node staging of prostate cancer. Nucl Med Commun 2021; 42:476-481. [PMID: 33323869 DOI: 10.1097/mnm.0000000000001352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION To determine preoperative diagnostic accuracy of 18F-fluciclovine PET/CT-scan in detection (or exclusion) of lymph node metastases (LNM) in men with prostate cancer (PCa) in comparison to the histopathological results of the extended pelvic lymph node dissection (e-PLND). METHODS A retrospective medical records-based cohort study, including 47 men with primary PCa who received 18F-fluciclovine PET/CT and subsequent e-PLND for lymph node staging. Incidence and number of visualized LNM, their locations and diameters on 18F-fluciclovine PET/CT were recorded in comparison to the histopathological results of the e-PLND as reference. Positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity and diagnostic accuracy of 18F-fluciclovine PET/CT were calculated on the basis of histopathology results after e-PLND. RESULTS Forty-seven men were eligible for analysis. Median lymph node yield was 19 (range 10-70). A total of 996 lymph nodes were removed, and 59 metastases were found in 21 cases (45%). Preoperative PET was issued 'positive' in 11 men and in 9 of them (82%) this was histopathologically confirmed resulting in a PPV of 82% (95% CI, 51-96). On the contrary, PET was issued 'negative' in 36 cases, but in 12 of them (33%) metastases were detected in the e-PLND specimen, resulting in an NPV of 67% (95% CI, 50-80). The patient-based sensitivity was 43% (95% CI, 24-64) and the patient-based specificity rate was 92% (95% CI, 75-99), whereas overall diagnostic accuracy was established to be 70% in the present cohort. CONCLUSION 18F-Fluciclovine PET/CT has a high specificity and positive predicted value for the presence of LNM in men with prostate cancer. However, the sensitivity and NPV seem to be limited to exclude the absence of LNM at a clinically acceptable level. Prospective evaluation is necessary to define patients who may benefit from 18F-fluciclovine PET/CT as a triage test for the indication for e-PLND.
Collapse
Affiliation(s)
- Robert J Hoekstra
- Department of Urology, Catharina Hospital Eindhoven, Eindhoven
- Department of Urology, Canisius Wilhelmina Hospital, Nijmegen
- Prosper Prostate Network
| | | | - Eric H J E J Vrijhof
- Department of Urology, Catharina Hospital Eindhoven, Eindhoven
- Prosper Prostate Network
| | - Dirk N J Wyndaele
- Department of Nuclear Medicine, Catharina Hospital Eindhoven, Eindhoven
| | - Mark Roef
- Department of Nuclear Medicine, Catharina Hospital Eindhoven, Eindhoven
| | | | - Diederik M Somford
- Department of Urology, Canisius Wilhelmina Hospital, Nijmegen
- Prosper Prostate Network
| | - Michiel Sedelaar
- Prosper Prostate Network
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
16
|
Imaging Inflammation with Positron Emission Tomography. Biomedicines 2021; 9:biomedicines9020212. [PMID: 33669804 PMCID: PMC7922638 DOI: 10.3390/biomedicines9020212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
The impact of inflammation on the outcome of many medical conditions such as cardiovascular diseases, neurological disorders, infections, cancer, and autoimmune diseases has been widely acknowledged. However, in contrast to neurological, oncologic, and cardiovascular disorders, imaging plays a minor role in research and management of inflammation. Imaging can provide insights into individual and temporospatial biology and grade of inflammation which can be of diagnostic, therapeutic, and prognostic value. There is therefore an urgent need to evaluate and understand current approaches and potential applications for imaging of inflammation. This review discusses radiotracers for positron emission tomography (PET) that have been used to image inflammation in cardiovascular diseases and other inflammatory conditions with a special emphasis on radiotracers that have already been successfully applied in clinical settings.
Collapse
|
17
|
Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2021; 11:604967. [PMID: 33584676 PMCID: PMC7873485 DOI: 10.3389/fimmu.2020.604967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, cancer immunotherapy experienced remarkable developments and it is nowadays considered a promising therapeutic frontier against many types of cancer, especially hematological malignancies. However, in most types of solid tumors, immunotherapy efficacy is modest, partly because of the limited accessibility of lymphocytes to the tumor core. This immune exclusion is mediated by a variety of physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate in the tumor microenvironment. At present there is no unified and integrated understanding about the role played by different postulated models of immune exclusion in human solid tumors. Systematically mapping immune landscapes or "topographies" in cancers of different histology is of pivotal importance to characterize spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing insights into mechanisms of immune exclusion. Spatially mapping immune cells also provides quantitative information, which could be informative in clinical settings, for example for the discovery of new biomarkers that could guide the design of patient-specific immunotherapies. In this review, we aim to summarize current standard and next generation approaches to define Cancer Immune Topographies based on published studies and propose future perspectives.
Collapse
Affiliation(s)
| | | | | | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
18
|
Parent EE, Patel D, Nye JA, Li Z, Olson JJ, Schuster DM, Goodman MM. [ 18F]-Fluciclovine PET discrimination of recurrent intracranial metastatic disease from radiation necrosis. EJNMMI Res 2020; 10:148. [PMID: 33284388 PMCID: PMC7721921 DOI: 10.1186/s13550-020-00739-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is often the primary treatment modality for patients with intracranial metastatic disease. Despite advances in magnetic resonance imaging, including use of perfusion and diffusion sequences and molecular imaging, distinguishing radiation necrosis from progressive tumor remains a diagnostic and clinical challenge. We investigated the sensitivity and specificity of 18F-fluciclovine PET to accurately distinguish radiation necrosis from recurrent intracranial metastatic disease in patients who had previously undergone SRS. METHODS Fluciclovine PET imaging was performed in 8 patients with a total of 15 lesions that had previously undergone SRS and had subsequent MRI and clinical features suspicious for recurrent disease. The SUVmax of each lesion and the contralateral normal brain parenchyma were summated and evaluated at four different time points (5 min, 10 min, 30 min, and 55 min). Lesions were characterized as either recurrent disease (11 of 15 lesions) or radiation necrosis (4 of 15 lesions) and confirmed with histopathological correlation (7 lesions) or through serial MRI studies (8 lesions). RESULTS Time activity curve analysis found statistically greater radiotracer accumulation for all lesions, including radiation necrosis, when compared to contralateral normal brain. While the mean and median SUVmax for recurrent disease were statistically greater than those of radiation necrosis at all time points, the difference was more significant at the earlier time points (p = 0.004 at 5 min-0.025 at 55 min). Using a SUVmax threshold of ≥ 1.3, fluciclovine PET demonstrated a 100% accuracy in distinguishing recurrent disease from radiation necrosis up to 30 min after injection and an accuracy of 87% (sensitivity = 0.91, specificity = 0.75) at the last time point of 55 min. However, tumor-to-background ratios (TBRmax) were not significantly different between recurrent disease and radiation necrosis at any time point due to variable levels of fluciclovine uptake in the background brain parenchyma. CONCLUSIONS Fluciclovine PET may play an important role in distinguishing active intracranial metastatic lesions from radiation necrosis in patients previously treated with SRS but needs to be validated in larger studies.
Collapse
Affiliation(s)
| | - Dhruv Patel
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Zhuo Li
- Department of Statistics, Mayo Clinic, Jacksonville, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - David M Schuster
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA.
| |
Collapse
|
19
|
223Ra-Dichloride Response Evaluation Using 18F-Fluciclovine PET/CT and Bone Scintigraphy in a Patient With Castration-Resistant Metastatic Prostate Cancer. Clin Nucl Med 2020; 45:e486-e488. [PMID: 32657864 DOI: 10.1097/rlu.0000000000003168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 66-year-old man was diagnosed with metastatic prostate cancer to the bones. The patient started Ra-dichloride (Xofigo) therapy in April 2019. Tc-MDP bone scan and F-fluciclovine (Axumin) PET/CT showed discordant but overall complementary findings that indicated disease progression after 5 doses of Xofigo therapy. The patient's prostate-specific antigen increased from 33.81 ng/mL at baseline before Xofigo therapy and up to 394.3 ng/mL after the fifth dose of Xofigo treatment. Because of disease progression, Xofigo therapy was discontinued.
Collapse
|
20
|
Abstract
An 85-year-old man with biochemical recurrence of prostate cancer after prostatectomy was imaged with F-fluciclovine PET/CT. Images incidentally revealed F-fluciclovine uptake in a dilated appendix with associated fat stranding, suggestive of acute appendicitis. The patient was then questioned about abdominal symptoms, and he reported severe right lower quadrant pain. He then underwent laparoscopic appendectomy with pathology confirming acute appendicitis.
Collapse
|
21
|
Kim EH, Siegel BA, Teoh EJ, Andriole GL. Prostate cancer recurrence in patients with negative or equivocal conventional imaging: A role for 18F-fluciclovine-PET/CT in delineating sites of recurrence and identifying patients with oligometastatic disease. Urol Oncol 2020; 39:365.e9-365.e16. [PMID: 33160848 DOI: 10.1016/j.urolonc.2020.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Despite improvements in overall survival, biochemical recurrence of prostate cancer, characterized by rising prostate-specific antigen (PSA) levels after curative intent primary therapy, remains common. With the advent of highly sensitive molecular imaging, men with limited metastatic disease burden, or oligometastatic prostate cancer, are increasingly being identified. The LOCATE trial (NCT02680041) assessed the impact of positron emission tomography (PET) with 18F-fluciclovine on management of men with prostate cancer recurrence after curative intent primary therapy and negative/equivocal conventional imaging. Here, we use LOCATE data to characterize the sites of disease recurrence and explore the potential for 18F-fluciclovine-PET/CT to evaluate oligometastatic disease. METHODS Eligible men (≥18 years; prior curative intent treatment of prostate cancer; recurrence based on rising PSA; negative/equivocal conventional imaging) underwent 18F-fluciclovine-PET/CT according to standard protocols. The primary outcome measure of the LOCATE trial was a revised management plan post-scan. We performed a secondary analysis of the LOCATE imaging data to characterize anatomical sites of disease recurrence and to explore the potential for 18F-fluciclovine-PET/CT to evaluate oligometastatic disease. Imaging results were stratified by baseline PSA levels and prior treatment(s) and the Fisher exact test used to analyze differences between groups. Oligometastatic disease was defined as 1-5 extraprostatic lesions (≤3 lesions in any single organ system) plus negative prostate/bed imaging (as a surrogate for primary tumor control). RESULTS Of 213 enrolled patients, 164 (77%) had undergone prostatectomy as their initial treatment; their median PSA was 0.57ng/ml. For the 49 patients with an intact prostate, the median PSA was 5.5ng/ml. The overall 18F-fluciclovine-PET/CT detection rate was 57%. Detection rates were 84% in men with intact prostates and 49% in those who had undergone prostatectomy, with the difference being attributable to prostate/bed findings (71% vs. 18%, respectively). The detection rate in lymph nodes was 29% and in bone was 11%. In total, 53/213 (25%) had oligometastatic disease. Twenty (38%) oligometastatic patients had PSA ≤1.0 ng/ml. Forty-two (79%) experienced a change to their management plan following the scan, commonly to target a lesion identified by 18F-fluciclovine-PET/CT. The majority of management changes (74%) involved a new treatment modality; however, 10 patients (24%) experienced a modification of the existing plan for radiotherapy to incorporate a boost to an area guided by the 18F-fluciclovine-PET/CT results. CONCLUSION Even at low PSA levels, 18F-fluciclovine-PET/CT identified a diverse pattern of recurrence missed with conventional imaging. One-quarter of men had oligometastatic disease, raising the potential for 18F-fluciclovine-PET/CT to guide targeted treatment of oligometastases.
Collapse
Affiliation(s)
- Eric H Kim
- Division of Urologic Surgery, Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO,.
| | - Barry A Siegel
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Eugene J Teoh
- Blue Earth Diagnostics Ltd, the Oxford Science Park, Robert Robinson Avenue, Oxford OX4 4GA, UK
| | - Gerald L Andriole
- Division of Urologic Surgery, Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
22
|
Pickel TC, Voll RJ, Yu W, Wang Z, Nye JA, Bacsa J, Olson JJ, Liebeskind LS, Goodman MM. Synthesis, Radiolabeling, and Biological Evaluation of the cis Stereoisomers of 1-Amino-3-Fluoro-4-(fluoro- 18F)Cyclopentane-1-Carboxylic Acid as PET Imaging Agents. J Med Chem 2020; 63:12008-12022. [PMID: 32946235 DOI: 10.1021/acs.jmedchem.0c01302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The non-natural cyclic amino acids (1S,3R,4S)-1-amino-3-fluoro-4-(fluoro-18F)cyclopentane-1-carboxylic acid ([18F]9) and (1S,3S,4R)-1-amino-3-fluoro-4-(fluoro-18F)cyclopentane-1-carboxylic acid ([18F]28) have been prepared in 10 and 1.7% decay corrected radiochemical yield, respectively, and in greater than 99% radiochemical purity. Cell assays in rat 9L gliosarcoma, human U87 ΔEGFR glioblastoma, and human DU145 androgen-independent prostate carcinoma tumor cells indicated that both compounds are substrates for amino acid transport primarily by system L, with some transport taking place via system ASC. In rats with 9L gliosarcoma, [18F]9 and [18F]28 provided high tumor to normal brain tissue ratios, with maximal ratios of 3.5 and 4.1, respectively. Biodistribution studies in healthy rats confirmed that both compounds are BBB permeable and that bladder accumulation is low until at least 5 min post injection.
Collapse
Affiliation(s)
- Thomas C Pickel
- Medicinal Chemistry, Biotherapeutic and Medicinal Science, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States.,Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ronald J Voll
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Weiping Yu
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - Zhaobin Wang
- Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jeffrey J Olson
- Department of Neurosurgery, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Lanny S Liebeskind
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, Georgia 30322, United States.,Center for Systems Imaging, Emory University, 1841 Clifton Rd NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
23
|
Positron Emission Tomography and Molecular Imaging of Head and Neck Malignancies. CURRENT RADIOLOGY REPORTS 2020. [DOI: 10.1007/s40134-020-00366-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Clinical application of Fluciclovine PET, choline PET and gastrin-releasing polypeptide receptor (bombesin) targeting PET in prostate cancer. Curr Opin Urol 2020; 30:641-648. [PMID: 32701717 DOI: 10.1097/mou.0000000000000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to explore the clinical application of different PET radiopharmaceuticals in prostate cancer (PCa), beyond inhibitors of the prostate-specific membrane antigen (PSMA). RECENT FINDINGS Choline PET represented in the last decades the standard of reference for PET imaging in PCa and has been recently included in clinical trials evaluating the efficacy of metastasis-directed therapy in oligo-metastatic disease. Fluciclovine, as synthetic amino acid, has been proposed for investigating PCa. The results obtained by the first prospective studies led to FDA approval in 2016 in patients with biochemical recurrence. Recently, phase II/III trials explored its accuracy compared with PSMA PET and its impact on patient management. Imaging the gastrin-releasing polypeptide receptor (GRPR) recently drawn attention. Radio-labelled GRPR antagonists have the potential to be used as theranostic agents. Further evaluation is needed to understand the relation between GRPR expression and hormonal-resistant PCa, and for tumors characterized by heterogeneity of receptors expressed (e.g. PSMA-negative) on their cell surface. SUMMARY Other new generation PET tracers may play an important role in PCa, namely in case of PSMA-negative phenotypes.
Collapse
|
25
|
Michaud L, Beattie BJ, Akhurst T, Dunphy M, Zanzonico P, Finn R, Mauguen A, Schöder H, Weber WA, Lassman AB, Blasberg R. 18F-Fluciclovine ( 18F-FACBC) PET imaging of recurrent brain tumors. Eur J Nucl Med Mol Imaging 2020; 47:1353-1367. [PMID: 31418054 PMCID: PMC7188736 DOI: 10.1007/s00259-019-04433-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 11/07/2022]
Abstract
PURPOSE The aim of our study was to investigate the efficacy of 18F-Fluciclovine brain PET imaging in recurrent gliomas, and to compare the utility of these images to that of contrast enhanced magnetic resonance imaging (MRI) and to [11C-methyl]-L-methionine (11C-Methionine) PET imaging. We also sought to gain insight into the factors affecting the uptake of 18F-FACBC in both tumors and normal brain, and specifically to evaluate how the uptake in these tissues varied over an extended period of time post injection. METHODS Twenty-seven patients with recurrent or progressive primary brain tumor (based on clinical and MRI/CT data) were studied using dynamic 18F-Fluciclovine brain imaging for up to 4 h. Of these, 16 patients also had 11C-Methionine brain scans. Visual findings, semi-quantitative analyses and pharmacokinetic modeling of a subset of the 18F-Fluciclovine images was conducted. The information derived from these analyses were compared to data from 11C-Methionine and to contrast-enhanced MRI. RESULTS 18F-Fluciclovine was positive for all 27 patients, whereas contrast MRI was indeterminate for three patients. Tumor 18F-Fluciclovine SUVmax ranged from 1.5 to 10.5 (average: 4.5 ± 2.3), while 11C-Methionine's tumor SUVmax ranged from 2.2 to 10.2 (average: 5.0 ± 2.2). Image contrast was higher with 18F-Fluciclovine compared to 11C-Methionine (p < 0.0001). This was due to 18F-Fluciclovine's lower background in normal brain tissue (0.5 ± 0.2 compared to 1.3 ± 0.4 for 11C-Methionine). 18F-Fluciclovine uptake in both normal brain and tumors was well described by a simple one-compartment (three-parameter: Vb,k1,k2) model. Normal brain was found to approach transient equilibrium with a half-time that varied greatly, ranging from 1.5 to 8.3 h (mean 2.7 ± 2.3 h), and achieving a consistent final distribution volume averaging 1.4 ± 0.2 ml/cc. Tumors equilibrated more rapidly (t1/2ranging from 4 to 148 min, average 57 ± 51 min), with an average distribution volume of 3.2 ± 1.1 ml/cc. A qualitative comparison showed that the rate of normal brain uptake of 11C-Methionine was much faster than that of 18F-Fluciclovine. CONCLUSION Tumor uptake of 18F-Fluciclovine correlated well with the established brain tumor imaging agent 11C-Methionine but provided significantly higher image contrast. 18F-Fluciclovine may be particularly useful when the contrast MRI is non-diagnostic. Based on the data gathered, we were unable to determine whether Fluciclovine uptake was due solely to recurrent tumor or if inflammation or other processes also contributed.
Collapse
Affiliation(s)
- Laure Michaud
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA.
| | - B J Beattie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Akhurst
- Peter MacCallum Cancer Centre, Victoria, Australia
| | - M Dunphy
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
| | - P Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R Finn
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
| | - A Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H Schöder
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
| | - W A Weber
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
- Department of Nuclear Medicine, Technical University, Munich, Germany
| | - A B Lassman
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - R Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
26
|
Lawal IO, Stoltz AC, Sathekge MM. Molecular imaging of cardiovascular inflammation and infection in people living with HIV infection. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00370-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Abstract
This review discusses nuclear imaging of inflammation using molecular probes beyond fluoro-d-glucose, is structured by cellular targets, and focuses on those tracers that have been successfully applied clinically.
Collapse
Affiliation(s)
- Malte Kircher
- Department of Nuclear Medicine, University Hospital Augsburg, Stenglinstr. 2, Würzburg 86156, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Augsburg, Stenglinstr. 2, Würzburg 86156, Germany.
| |
Collapse
|
28
|
Krekorian M, Fruhwirth GO, Srinivas M, Figdor CG, Heskamp S, Witney TH, Aarntzen EHJG. Imaging of T-cells and their responses during anti-cancer immunotherapy. Theranostics 2019; 9:7924-7947. [PMID: 31656546 PMCID: PMC6814447 DOI: 10.7150/thno.37924] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has proven to be an effective approach in a growing number of cancers. Despite durable clinical responses achieved with antibodies targeting immune checkpoint molecules, many patients do not respond. The common denominator for immunotherapies that have successfully been introduced in the clinic is their potential to induce or enhance infiltration of cytotoxic T-cells into the tumour. However, in clinical research the molecules, cells and processes involved in effective responses during immunotherapy remain largely obscure. Therefore, in vivo imaging technologies that interrogate T-cell responses in patients represent a powerful tool to boost further development of immunotherapy. This review comprises a comprehensive analysis of the in vivo imaging technologies that allow the characterisation of T-cell responses induced by anti-cancer immunotherapy, with emphasis on technologies that are clinically available or have high translational potential. Throughout we discuss their respective strengths and weaknesses, providing arguments for selecting the optimal imaging options for future research and patient management.
Collapse
Affiliation(s)
- Massis Krekorian
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, United Kingdom
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Timothy H Witney
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, United Kingdom
| | - Erik H J G Aarntzen
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Abstract
PURPOSE To retrospectively investigate the uptake of F-fluciclovine on PET/CT in patients with suspected recurrent high-grade glioma (HGG). METHODS Twenty-one patients were included. The standard of truth was histopathologic interpretation if available. When histopathology was not available or rebiopsy did not show signs of malignancy, clinical follow-up including MRI and clinical outcome was considered the standard of truth. RESULTS All 21 patients met the reference standard of either histopathologic proof of HGG recurrence (n = 10) or disease progression clinically and with tumor growth corresponding to the primary tumor sites on follow-up MRI (n = 11). Median time from PET/CT to death was 5 months (range, 1-20 months). Median time from primary diagnosis to death was 14.5 months (range, 6 to >400). Average SUVmax of the lesions was 8.3 ± 5.3 (SD) and 0.34 ± 0.13 for normal brain tissue. Median lesion-to-background ratio was 21.6 (range, 3.1-84.4). In 4 patients, F-fluciclovine PET/CT detected small satellite tumors that had not been reported on MR. CONCLUSIONS The uptake of F-fluciclovine in clinically and/or histopathologically confirmed recurrent HGG is high compared with the uptake reported for other amino acid PET tracers. Because of the high tumor uptake and thus high tracer contrast, small satellite tumors with a diameter below usual reported PET spatial resolution and not reported on MRI were detected in 4 patients. As no patients with confirmed treatment-related changes were included, we cannot as of yet ascertain the ability of F-fluciclovine PET to discriminate between recurrent HGG and treatment-related changes, for example, pseudoprogression and radionecrosis.
Collapse
|
30
|
Abstract
PURPOSE This pilot study aimed to evaluate the amino acid tracer F-FACBC with simultaneous PET/MRI in diagnostic assessment and neurosurgery of gliomas. MATERIALS AND METHODS Eleven patients with suspected primary or recurrent low- or high-grade glioma received an F-FACBC PET/MRI examination before surgery. PET and MRI were used for diagnostic assessment, and for guiding tumor resection and histopathological tissue sampling. PET uptake, tumor-to-background ratios (TBRs), time-activity curves, as well as PET and MRI tumor volumes were evaluated. The sensitivities of lesion detection and to detect glioma tissue were calculated for PET, MRI, and combined PET/MRI with histopathology (biopsies for final diagnosis and additional image-localized biopsies) as reference. RESULTS Overall sensitivity for lesion detection was 54.5% (95% confidence interval [CI], 23.4-83.3) for PET, 45.5% (95% CI, 16.7-76.6) for contrast-enhanced MRI (MRICE), and 100% (95% CI, 71.5-100.0) for combined PET/MRI, with a significant difference between MRICE and combined PET/MRI (P = 0.031). TBRs increased with tumor grade (P = 0.004) and were stable from 10 minutes post injection. PET tumor volumes enclosed most of the MRICE volumes (>98%) and were generally larger (1.5-2.8 times) than the MRICE volumes. Based on image-localized biopsies, combined PET/MRI demonstrated higher concurrence with malignant findings at histopathology (89.5%) than MRICE (26.3%). CONCLUSIONS Low- versus high-grade glioma differentiation may be possible with F-FACBC using TBR. F-FACBC PET/MRI outperformed MRICE in lesion detection and in detection of glioma tissue. More research is required to evaluate F-FACBC properties, especially in grade II and III tumors, and for different subtypes of gliomas.
Collapse
|
31
|
Tade FI, Sajdak RA, Gabriel M, Wagner RH, Savir-Baruch B. Best Practices for 18F-Fluciclovine PET/CT Imaging of Recurrent Prostate Cancer: A Guide for Technologists. J Nucl Med Technol 2019; 47:282-287. [DOI: 10.2967/jnmt.119.227116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023] Open
|
32
|
Jethanandani A, Chen MM, Gule-Monroe MK, Morrison WH, Lai SY, Johnson JM. Incidental detection of oropharyngeal cancer with fluciclovine PET. Head Neck 2019; 41:E141-E145. [PMID: 31046173 DOI: 10.1002/hed.25798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fluorine-18-labeled 1-amino-3-fluorocyclobutane-1-carboxylic acid (fluciclovine) is a synthetic amino acid radiopharmaceutical initially developed to improve noninvasive diagnosis of gliomas and currently FDA approved for prostate cancer imaging. Although fluciclovine positron emission tomography (PET) has proven to be efficacious in detecting multiple types of cancer, its ability to detect oropharyngeal squamous cell carcinoma (OPSCC) is largely unknown. METHODS We describe a case of incidental OPSCC detection with fluciclovine PET in a 66-year old male patient during workup for recurrent prostate adenocarcinoma. RESULTS Fluciclovine PET detected a left base of tongue (BOT) lesion, which was subsequently confirmed as invasive SCC on surgical pathology. CONCLUSION Given these findings, we discuss potential future directions for research with fluciclovine to overcome some of the known limitations of 18 [F]fluorodeoxyglucose in oncological imaging.
Collapse
Affiliation(s)
- Amit Jethanandani
- College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa M Chen
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria K Gule-Monroe
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William H Morrison
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Y Lai
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason M Johnson
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
33
|
Galgano SJ, Calderone CE, McDonald AM, Nix JW, deShazo M, Yang ES, McConathy JE, Rais-Bahrami S. Patient Demographics and Referral Patterns for [F-18]Fluciclovine-PET Imaging at a Tertiary Academic Medical Center. J Am Coll Radiol 2019; 16:315-320. [DOI: 10.1016/j.jacr.2018.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 11/25/2022]
|
34
|
Abstract
Amino acids are an alternate energy source to glucose, and amino acid metabolism is up-regulated in multiple malignancies, including breast cancers. Multiple amino acid radiotracers have been used to image breast cancer with unique strengths and weaknesses. 11C-methionine uptake correlates with S-phase fraction in breast cancer and may be useful for evaluation of treatment response. Invasive lobular breast cancers may demonstrate greater 18F-fluciclovine avidity than 18F-fluorodeoxyglucose. Thus, different histologic subtypes of breast cancer may use diverse metabolic pathways and may be better imaged by different tracers.
Collapse
Affiliation(s)
- Gary A Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical School, 525 East 68th Street, New York, NY 10065, USA.
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Room E152, 1364 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
35
|
Galgano SJ, Valentin R, McConathy J. Role of PET imaging for biochemical recurrence following primary treatment for prostate cancer. Transl Androl Urol 2018; 7:S462-S476. [PMID: 30363475 PMCID: PMC6178324 DOI: 10.21037/tau.2018.06.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is one of the most common cancers in men worldwide, and primary prostate cancer is typically treated with surgery, radiation, androgen deprivation, or a combination of these therapeutic modalities. Despite technical advances, approximately 30% of men will experience biochemical recurrent within 10 years of definitive treatment. Upon detection of a rise in serum prostate specific antigen (PSA), there is great need to accurately stage these patients to help guide further therapy. As a result, there are considerable efforts underway to establish the role of positron emission tomography (PET) in the diagnostic algorithm of biochemically recurrent prostate cancer. This manuscript provides an overview of PET tracers used for the detection and localization of prostate cancer in the setting of biochemical recurrence with a focus on PET tracers that are currently being used in clinical practice in the United States.
Collapse
Affiliation(s)
- Samuel J Galgano
- Department of Radiology, Section of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roberto Valentin
- Department of Radiology, Section of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan McConathy
- Department of Radiology, Section of Molecular Imaging and Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
36
|
Castellucci P, Nanni C, Ambrosini V. Nuclear Medicine Imaging of Prostate Cancer in the Elderly. Semin Nucl Med 2018; 48:541-547. [PMID: 30322480 DOI: 10.1053/j.semnuclmed.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Due to the increasing life expectancy, the diagnosis of malignancy and treatment of elderly patients is becoming more common. Prostate cancer is particularly frequent in this setting. Many different approaches are now available, but some of them imply significant risks or collateral effects. In those patients an accurate evaluation of risk-to-benefit ratio is needed, and functional imaging such as PET/CT is important for the clinician to make the appropriate choice. PET/CT in prostate cancer is a well-tolerated procedure that can be used to accurately assess the tumor extent during the entire clinical history of the disease. Nowadays there are several available radiopharmaceuticals for prostate cancer PET/CT imaging, each one with specific advantages and disadvantages. The two most promising and more widely employed in the clinical setting are 18F-Flucyclovine and 68Ga-PSMA. This paper will provide an overview of these two tracers for imaging prostate cancer in elderly patients.
Collapse
Affiliation(s)
- Paolo Castellucci
- Metropolitan Nuclear Medicine, AOU S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Cristina Nanni
- Metropolitan Nuclear Medicine, AOU S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Valentina Ambrosini
- Metropolitan Nuclear Medicine, AOU S.Orsola-Malpighi Hospital, Bologna, Italy; Department of Haematology and Oncology (DIMES), Alma Mater Studiorum, University of Bologna, S.Orsola-Malpighi Hospital, Bologna, Italy.
| |
Collapse
|
37
|
Parent EE, Benayoun M, Ibeanu I, Olson JJ, Hadjipanayis CG, Brat DJ, Adhikarla V, Nye J, Schuster DM, Goodman MM. [ 18F]Fluciclovine PET discrimination between high- and low-grade gliomas. EJNMMI Res 2018; 8:67. [PMID: 30046944 PMCID: PMC6060188 DOI: 10.1186/s13550-018-0415-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/27/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The ability to accurately and non-invasively distinguish high-grade glioma from low-grade glioma remains a challenge despite advances in molecular and magnetic resonance imaging. We investigated the ability of fluciclovine (18F) PET as a means to identify and distinguish these lesions in patients with known gliomas and to correlate uptake with Ki-67. RESULTS Sixteen patients with a total of 18 newly diagnosed low-grade gliomas (n = 6) and high grade gliomas (n = 12) underwent fluciclovine PET imaging after histopathologic assessment. Fluciclovine PET analysis comprised tumor SUVmax and SUVmean, as well as metabolic tumor thresholds (1.3*, 1.6*, 1.9*) to normal brain background (TBmax, and TBmean). Comparison was additionally made to the proliferative status of the tumor as indicated by Ki-67 values. Fluciclovine uptake greater than normal brain parenchyma was found in all lesions studied. Time activity curves demonstrated statistically apparent flattening of the curves for both high-grade gliomas and low-grade gliomas starting 30 min after injection, suggesting an influx/efflux equilibrium. The best semiquantitative metric in discriminating HGG from LGG was obtained utilizing a metabolic 1 tumor threshold of 1.3* contralateral normal brain parenchyma uptake to create a tumor: background (TBmean1.3) cutoff of 2.15 with an overall sensitivity of 97.5% and specificity of 95.5%. Additionally, using a SUVmax > 4.3 cutoff gave a sensitivity of 90.9% and specificity of 97.5%. Tumor SUVmean and tumor SUVmax as a ratio to mean normal contralateral brain were both found to be less relevant predictors of tumor grade. Both SUVmax (R = 0.71, p = 0.0227) and TBmean (TBmean1.3: R = 0.81, p = 0.00081) had a high correlation with the tumor proliferative index Ki-67. CONCLUSIONS Fluciclovine PET produces high-contrast images between both low-grade and high grade gliomas and normal brain by visual and semiquantitative analysis. Fluciclovine PET appears to discriminate between low-grade glioma and high-grade glioma, but must be validated with a larger sample size.
Collapse
Affiliation(s)
- Ephraim E. Parent
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd floor, Atlanta, GA 30329 USA
| | - Marc Benayoun
- Department of Radiology, Massachusetts General Hospital, Boston, MA USA
| | - Ijeoma Ibeanu
- Department of Radiology, Texas Tech University Health Sciences Center Foster School of Medicine, El Paso, TX USA
| | - Jeffrey J. Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA USA
| | | | - Daniel J. Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Vikram Adhikarla
- Department of Information Sciences, City of Hope National Medical Center, Duarte, CA USA
| | - Jonathon Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd floor, Atlanta, GA 30329 USA
| | - David M. Schuster
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd floor, Atlanta, GA 30329 USA
| | - Mark M. Goodman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd floor, Atlanta, GA 30329 USA
| |
Collapse
|
38
|
Selective modification of fluciclovine ( 18F) transport in prostate carcinoma xenografts. Amino Acids 2018; 50:1301-1305. [PMID: 29905905 DOI: 10.1007/s00726-018-2600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
We investigated if previously demonstrated inhibition of fluciclovine (18F) in vitro could be replicated in a PC3-Luc xenograft mouse model. Following intratumoral injection of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH), alpha-(methylamino)isobutyric acid (MeAIB) or saline, fluciclovine PET tumor-to-background activity was 43.6 (± 5.4)% and 25.3 (± 5.2)% lower in BCH (n = 6) and MeAIB (n = 5) injected PC3 Luc xenografts, respectively, compared to saline-injected controls (n = 2). Partial inhibition of fluciclovine uptake by BCH and MeAIB can be demonstrated in vivo similar to previous in vitro modeling.
Collapse
|
39
|
Goodman MM, Yu W, Jarkas N. Synthesis and biological properties of radiohalogenated α,α-disubstituted amino acids for PET and SPECT imaging of amino acid transporters (AATs). J Labelled Comp Radiopharm 2018; 61:272-290. [PMID: 29143354 DOI: 10.1002/jlcr.3584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/27/2017] [Accepted: 10/30/2017] [Indexed: 11/08/2022]
Abstract
Fluorine-18 and iodine-123 labeled nonnatural alicyclic and methyl branched disubstituted α,α-amino acids are a diverse and useful class of tumor imaging agents suitable for positron emission tomography and single photon emission computed tomography. These tracers target the increased expression of the cell membrane amino acid transporter systems L, ASC, and A exhibited by many human tumor cells. The most established clinical use for these radiolabeled amino acids is imaging primary and recurrent gliomas and primary, recurrent, and metastatic prostate cancer. This review focuses on the synthesis, radiolabeling, and amino acid transport mechanism of a series of nonnatural fluorine-18 and iodine-123 labeled analogs of 1-aminocyclobutane-1-carboxylic acid, 1-aminocyclopentane-1-carboxylic acid, α-aminoisobutyric acid, and α-methylaminoisobutyric acid.
Collapse
Affiliation(s)
- Mark M Goodman
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, GA, USA
| | - Weiping Yu
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, GA, USA
| | - Nashwa Jarkas
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, GA, USA
| |
Collapse
|
40
|
Zanoni L, Bossert I, Matti A, Schiavina R, Pultrone C, Fanti S, Nanni C. A review discussing fluciclovine ( 18F) PET/CT imaging in the detection of recurrent prostate cancer. Future Oncol 2018; 14:1101-1115. [PMID: 29359581 DOI: 10.2217/fon-2017-0446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A significant number of patients radically treated for prostate cancer (PCa) will develop prostate-specific antigen recurrence (27-53%). Localizing the anatomical site of relapse is critical, in order to achieve the optimal treatment management. To date the diagnostic accuracy of standard imaging is low. Several desirable features have been identified for the amino-acid-based PET agent, fluciclovine (18F) including: long 18F half-life which allows more practical use in centers without a cyclotron onsite; acting as a substrate for amino acid transporters upregulated in PCa or associated with malignant phenotype; lacking of incorporation into protein; and limited urinary excretion. Fluciclovine (18F) is currently approved both in USA and Europe with specific indication in adult men with suspected recurrent PCa based on elevated prostate-specific antigen following prior treatment.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Irene Bossert
- Nuclear Medicine, Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy
| | - Antonella Matti
- Nuclear Medicine, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Riccardo Schiavina
- Department of Urology, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Cristian Pultrone
- Department of Urology, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
41
|
Teoh EJ, McGowan DR, Schuster DM, Tsakok MT, Gleeson FV, Bradley KM. Bayesian penalised likelihood reconstruction (Q.Clear) of 18F-fluciclovine PET for imaging of recurrent prostate cancer: semi-quantitative and clinical evaluation. Br J Radiol 2018; 91:20170727. [PMID: 29303359 PMCID: PMC6190769 DOI: 10.1259/bjr.20170727] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective: 18F-Fluciclovine (FACBC) is an amino acid PET radiotracer approved for recurrent prostate cancer imaging. We investigate the use of Bayesian penalised likelihood (BPL) reconstruction for 18F-fluciclovine PET. Methods: 15 18F-fluciclovine scans were reconstructed using ordered subset expectation maximisation (OSEM), OSEM + point spread function (PSF) modelling and BPL using β-values 100–600. Lesion maximum standardised uptake value (SUVmax), organ SUVmean and standard deviation were measured. Deidentified reconstructions (OSEM, PSF, BPL using β200–600) from 10 cases were visually analysed by two readers who indicated their most and least preferred reconstructions, and scored overall image quality, noise level, background marrow image quality and lesion conspicuity. Results: Comparing BPL to OSEM, there were significant increments in lesion SUVmax and signal-to-background up to β400, with highest gain in β100 reconstructions (mean ΔSUVmax 3.9, p < 0.0001). Organ noise levels increased on PSF, β100 and β200 reconstructions. Across BPL reconstructions, there was incremental reduction in organ noise with increasing β, statistically significant beyond β300–500 (organ-dependent). Comparing with OSEM and PSF, lesion signal-to-noise was significantly increased in BPL reconstructions where β ≥ 300 and ≥ 200 respectively. On visual analysis, β 300 had the first and second highest scores for image quality, β500 and β600 equal highest scores for marrow image quality and least noise, PSF and β 200 had first and second highest scores for lesion conspicuity. For overall preference, one reader preferred β 300 in 9/10 cases and the other preferred β 200 in all cases. Conclusion: BPL reconstruction of 18F-fluciclovine PET images improves signal-to-noise ratio, affirmed by overall reader preferences. On balance, β300 is suggested for 18F-fluciclovine whole body PET image reconstruction using BPL. Advances in knowledge: The optimum β is different to that previously published for 18F-fluorodeoxyglucose, and has practical implications for a relatively new tracer in an environment with modern reconstruction technologies.
Collapse
Affiliation(s)
- Eugene J Teoh
- 1 Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK.,2 Department of Oncology, University of Oxford , Oxford , UK
| | - Daniel R McGowan
- 2 Department of Oncology, University of Oxford , Oxford , UK.,3 Department of Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK
| | - David M Schuster
- 4 Department of Radiology and Imaging Sciences, Emory University , Atlanta, GA , USA
| | - Maria T Tsakok
- 1 Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK
| | - Fergus V Gleeson
- 1 Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK.,2 Department of Oncology, University of Oxford , Oxford , UK
| | - Kevin M Bradley
- 1 Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK
| |
Collapse
|
42
|
Evans JD, Jethwa KR, Ost P, Williams S, Kwon ED, Lowe VJ, Davis BJ. Prostate cancer–specific PET radiotracers: A review on the clinical utility in recurrent disease. Pract Radiat Oncol 2018; 8:28-39. [DOI: 10.1016/j.prro.2017.07.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 01/08/2023]
|
43
|
Teoh EJ, Tsakok MT, Bradley KM, Hyde K, Subesinghe M, Gleeson FV. Recurrent Malignant Melanoma Detected on 18F-Fluciclovine PET/CT Imaging for Prostate Cancer. Clin Nucl Med 2017; 42:803-804. [PMID: 28806256 DOI: 10.1097/rlu.0000000000001789] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A 66-year-old man presented with biochemical recurrence of prostate cancer and underwent F-fluciclovine PET/CT to detect sites of recurrence. He had a history of resected truncal stage IIIC malignant melanoma, with bilateral axillary node involvement on sentinel node biopsy, in complete remission for 3 years. F-fluciclovine PET/CT demonstrated an incidental fluciclovine-avid right axillary node (SUVmax = 4.3). Diagnostic sampling confirmed recurrent malignant melanoma.
Collapse
Affiliation(s)
- Eugene J Teoh
- From the *Department of Radiology, Churchill Hospital; †Department of Oncology, University of Oxford; and ‡Department of Clinical Oncology, Churchill Hospital, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Dadone-Montaudié B, Ambrosetti D, Dufour M, Darcourt J, Almairac F, Coyne J, Virolle T, Humbert O, Burel-Vandenbos F. [18F] FDOPA standardized uptake values of brain tumors are not exclusively dependent on LAT1 expression. PLoS One 2017; 12:e0184625. [PMID: 28937983 PMCID: PMC5609741 DOI: 10.1371/journal.pone.0184625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
[18F]-FDOPA is a labeled amino acid (AA) analog used for positron emission tomography (PET) which is gaining increasing interest in the evaluation of brain tumors (BT). The AA-transporter LAT1 has been shown to be involved in [18F]-FDOPA uptake. The aim of this study was to determine whether the [18F]-FDOPA uptake was correlated with level of LAT1 expression in BT. Twenty-eight BT (including 19 gliomas and 9 metastases) were investigated by [18F]-FDOPA-PET prior to surgery and by anti-LAT1 immunohistochemistry on surgical specimens. The quantitative [18F]-FDOPA measured parameters were SUVmax, SUVmean and SUVpeak. LAT1 expression was quantified using a score (0 to 400). A significant [18F]-FDOPA uptake was associated with a LAT1 score ≥ 100 (p = 0.02) but there was no linear correlation between intensity of [18F]-FDOPA uptake and score of LAT1 expression whatever the parameters considered. LAT1 expression alone is not sufficient to explain variation of intensity of [18F]-FDOPA uptake in BT.
Collapse
Affiliation(s)
- Bérengère Dadone-Montaudié
- Department of Pathology, University Hospital, Nice, France
- UCA, Université Côte d’Azur, Nice-Sophia-Antipolis, France
| | - Damien Ambrosetti
- Department of Pathology, University Hospital, Nice, France
- UCA, Université Côte d’Azur, Nice-Sophia-Antipolis, France
| | - Maxime Dufour
- UCA, Université Côte d’Azur, Nice-Sophia-Antipolis, France
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Nice, France
- TIRO–UMR E 4320, University of Nice-Sophia-Antipolis, Nice, France
| | - Jacques Darcourt
- UCA, Université Côte d’Azur, Nice-Sophia-Antipolis, France
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Nice, France
- TIRO–UMR E 4320, University of Nice-Sophia-Antipolis, Nice, France
| | - Fabien Almairac
- UCA, Université Côte d’Azur, Nice-Sophia-Antipolis, France
- Department of Neurosurgery, University Hospital, Nice, France
- UMR CNRS 7277-UMR INSERM 1091, Institute of Biology Valrose, University of Nice-Sophia-Antipolis, Nice, France
| | - John Coyne
- Department of Pathology, University Hospital, Nice, France
- UCA, Université Côte d’Azur, Nice-Sophia-Antipolis, France
| | - Thierry Virolle
- UCA, Université Côte d’Azur, Nice-Sophia-Antipolis, France
- UMR CNRS 7277-UMR INSERM 1091, Institute of Biology Valrose, University of Nice-Sophia-Antipolis, Nice, France
| | - Olivier Humbert
- UCA, Université Côte d’Azur, Nice-Sophia-Antipolis, France
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Nice, France
- TIRO–UMR E 4320, University of Nice-Sophia-Antipolis, Nice, France
| | - Fanny Burel-Vandenbos
- Department of Pathology, University Hospital, Nice, France
- UCA, Université Côte d’Azur, Nice-Sophia-Antipolis, France
- UMR CNRS 7277-UMR INSERM 1091, Institute of Biology Valrose, University of Nice-Sophia-Antipolis, Nice, France
- * E-mail:
| |
Collapse
|
45
|
Wallitt KL, Khan SR, Dubash S, Tam HH, Khan S, Barwick TD. Clinical PET Imaging in Prostate Cancer. Radiographics 2017; 37:1512-1536. [PMID: 28800286 DOI: 10.1148/rg.2017170035] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostate cancer is the second most common cancer in men worldwide, with a wide spectrum of biologic behavior ranging from indolent low-risk disease to highly aggressive castration-resistant prostate cancer. Conventional imaging with computed tomography, magnetic resonance imaging, and bone scintigraphy is limited for the detection of nodal disease and distant bone metastases. In addition, advances in the available therapeutic options, both localized and systemic, drive the requirement for precise diagnostic and prognostic tools to refine the individual therapeutic approach at various times in the management of patients with prostate cancer. Positron emission tomography (PET) has a rapidly evolving role in the assessment of prostate cancer, particularly in the scenario of biochemical relapse. Fluorine 18 (18F) fluorodeoxyglucose, the most widely available PET tracer, has limitations, particularly in indolent prostate cancer. In the past decade, several PET tracers with specific molecular targets have reached the clinical domain. These tracers include 18F-sodium fluoride, which is a bone-specific biomarker of osteoblastic activity; 18F-choline and carbon 11-choline, which are directed at cell membrane metabolism; gallium 68-prostate-specific membrane antigen ligands; and, more recently, an amino acid analog, 18F-fluciclovine (anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid; also known as FACBC), which is also directed at cell membrane turnover. The mechanisms of actions of the clinically available PET tracers are reviewed, as well as their role in the imaging of prostate cancer with reference to relevant guidelines and the technical and imaging pearls and pitfalls of these tracers. ©RSNA, 2017.
Collapse
Affiliation(s)
- Kathryn L Wallitt
- From the Departments of Nuclear Medicine (K.L.W., S.D., H.H.T.) and Radiology (S.R.K., S.K., T.D.B.), Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, England
| | - Sairah R Khan
- From the Departments of Nuclear Medicine (K.L.W., S.D., H.H.T.) and Radiology (S.R.K., S.K., T.D.B.), Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, England
| | - Suraiya Dubash
- From the Departments of Nuclear Medicine (K.L.W., S.D., H.H.T.) and Radiology (S.R.K., S.K., T.D.B.), Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, England
| | - Henry H Tam
- From the Departments of Nuclear Medicine (K.L.W., S.D., H.H.T.) and Radiology (S.R.K., S.K., T.D.B.), Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, England
| | - Sameer Khan
- From the Departments of Nuclear Medicine (K.L.W., S.D., H.H.T.) and Radiology (S.R.K., S.K., T.D.B.), Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, England
| | - Tara D Barwick
- From the Departments of Nuclear Medicine (K.L.W., S.D., H.H.T.) and Radiology (S.R.K., S.K., T.D.B.), Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, England
| |
Collapse
|
46
|
Oka S, Kanagawa M, Doi Y, Schuster DM, Goodman MM, Yoshimura H. PET Tracer 18F-Fluciclovine Can Detect Histologically Proven Bone Metastatic Lesions: A Preclinical Study in Rat Osteolytic and Osteoblastic Bone Metastasis Models. Am J Cancer Res 2017; 7:2048-2064. [PMID: 28656060 PMCID: PMC5485422 DOI: 10.7150/thno.19883] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/08/2017] [Indexed: 12/22/2022] Open
Abstract
18F-Fluciclovine (trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid; anti-18F-FACBC) is a positron emission tomography (PET) tracer for diagnosing cancers (e.g., prostate and breast cancer). The most frequent metastatic organ of these cancers is bone. Fluciclovine-PET can visualize bony lesions in clinical practice; however, such lesions have not been described histologically. Methods: We investigated the potential of 14C-fluciclovine in aiding the visualization of osteolytic and osteoblastic bone metastases (with histological analyses), compared with 3H-2-deoxy-2-fluoro-D-glucose (3H-FDG), 3H-choline chloride (3H-choline), and 99mTc-hydroxymethylene diphosphonate (99mTc-HMDP) by using triple-tracer autoradiography in rat breast cancer osteolytic (on day 12 ± 1 postinjection of MRMT-1) and prostate cancer osteoblastic (on day 20 ± 3 postinjection of AT6.1) metastatic models. Results: The distribution patterns of 14C-fluciclovine, 3H-FDG, and 3H-choline, but not 99mTc-HMDP, were similar in both models, and the lesions where these tracers accumulated were, histologically, typical osteolytic and osteoblastic lesions. 99mTc-HMDP accumulated mostly in osteoblastic lesions. 14C-fluciclovine could visualize the osteolytic lesions as early as day 6 postinjection of MRMT-1. However, differential distributions in 14C-fluciclovine and 3H-FDG existed, based on histological differences: low 14C-fluciclovine and high 3H-FDG accumulation in osteolytic lesions with inflammation. In the osteoblastic metastatic model, visualization of osteoblastic lesions with 14C-fluciclovine was not clear, yet clearer than with 3H-FDG. Although half of the osteoblastic lesions with 14C-fluciclovine accumulation showed negligible 3H-choline accumulation in comparison, they were histologically similar to lesions with marked 14C-fluciclovine and 3H-choline accumulation. Conclusion: These results suggest that fluciclovine-PET can visualize true osteolytic and osteoblastic bone metastatic lesions.
Collapse
|
47
|
Fasting Enhances the Contrast of Bone Metastatic Lesions in 18F-Fluciclovine-PET: Preclinical Study Using a Rat Model of Mixed Osteolytic/Osteoblastic Bone Metastases. Int J Mol Sci 2017; 18:ijms18050934. [PMID: 28468238 PMCID: PMC5454847 DOI: 10.3390/ijms18050934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
18F-fluciclovine (trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid) is an amino acid positron emission tomography (PET) tracer used for cancer staging (e.g., prostate and breast). Patients scheduled to undergo amino acid-PET are usually required to fast before PET tracer administration. However, there have been no reports addressing whether fasting improves fluciclovine-PET imaging. In this study, the authors investigated the influence of fasting on fluciclovine-PET using triple-tracer autoradiography with 14C-fluciclovine, [5,6-3H]-2-fluoro-2-deoxy-d-glucose (3H-FDG), and 99mTc-hydroxymethylene diphosphonate (99mTc-HMDP) in a rat breast cancer model of mixed osteolytic/osteoblastic bone metastases in which the animals fasted overnight. Lesion accumulation of each tracer was evaluated using the target-to-background (muscle) ratio. The mean ratios of 14C-fluciclovine in osteolytic lesions were 4.6 ± 0.8 and 2.8 ± 0.6, respectively, with and without fasting, while those for 3H-FDG were 6.9 ± 2.5 and 5.1 ± 2.0, respectively. In the peri-tumor bone formation regions (osteoblastic), where 99mTc-HMDP accumulated, the ratios of 14C-fluciclovine were 4.3 ± 1.4 and 2.4 ± 0.7, respectively, and those of 3H-FDG were 6.2 ± 3.8 and 3.3 ± 2.2, respectively, with and without fasting. These results suggest that fasting before 18F-fluciclovine-PET improves the contrast between osteolytic and osteoblastic bone metastatic lesions and background, as well as 18F-FDG-PET.
Collapse
|
48
|
Wakabayashi T, Iuchi T, Tsuyuguchi N, Nishikawa R, Arakawa Y, Sasayama T, Miyake K, Nariai T, Narita Y, Hashimoto N, Okuda O, Matsuda H, Kubota K, Ito K, Nakazato Y, Kubomura K. Diagnostic Performance and Safety of Positron Emission Tomography Using 18F-Fluciclovine in Patients with Clinically Suspected High- or Low-grade Gliomas: A Multicenter Phase IIb Trial. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2017; 5:10-21. [PMID: 28840134 PMCID: PMC5221680 DOI: 10.22038/aojnmb.2016.7869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The study objective was to assess the diagnostic performance of positron emission tomography (PET) for gliomas using the novel tracer 18F-fluciclovine (anti-[18F]FACBC) and to evaluate the safety of this tracer in patients with clinically suspected gliomas. METHODS Anti-[18F]FACBC was administered to 40 patients with clinically suspected high- or low-grade gliomas, followed by PET imaging. T1-weighted, contrast-enhanced T1-weighted, and fluid-attenuated inversion recovery (or T2-weighted) magnetic resonance imaging (MRI) scans were obtained to plan for the tissue collection. Tissues were collected from either "areas visualized using anti-[18F]FACBC PET imaging but not using contrast-enhanced T1-weighted imaging" or "areas visualized using both anti-[18F]FACBC-PET imaging and contrast-enhanced T1-weighted imaging" and were histopathologically examined to assess the diagnostic accuracy of anti-[18F]FACBC-PET for gliomas. RESULTS The positive predictive value of anti-[18F]FACBC-PET imaging for glioma in areas visualized using anti-[18F]FACBC-PET imaging, but not visualized using contrast-enhanced T1-weighted images, was 100.0% (26/26), and the value in areas visualized using both contrast-enhanced T1-weighted imaging and anti-[18F]FACBC-PET imaging was 87.5% (7/8). Twelve adverse events occurred in 7 (17.5%) of the 40 patients who received anti-[18F]FACBC. Five events in five patients were considered to be adverse drug reactions; however, none of the events were serious, and all except one resolved spontaneously without treatment. CONCLUSION This Phase IIb trial showed that anti-[18F]FACBC-PET imaging was effective for the detection of gliomas in areas not visualized using contrast-enhanced T1-weighted MRI and the tracer was well tolerated.
Collapse
Affiliation(s)
- Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University, Graduate School of Medicine, Aichi, Japan
| | - Toshihiko Iuchi
- Division of Neurological Surgery, Chiba Cancer Center, Chiba, Japan
| | - Naohiro Tsuyuguchi
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama International Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Sasayama
- Department of Neurosurgery, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Osamu Okuda
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuo Kubota
- Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kimiteru Ito
- Department of Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Kan Kubomura
- Clinical Development Department, Nihon Medi-Physics Co., Ltd., Tokyo, Japan
| |
Collapse
|
49
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
50
|
Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med 2016; 30:608-618. [DOI: 10.1007/s12149-016-1102-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/11/2016] [Indexed: 02/01/2023]
|