1
|
Li D, Patel CB, Xu G, Iagaru A, Zhu Z, Zhang L, Cheng Z. Visualization of Diagnostic and Therapeutic Targets in Glioma With Molecular Imaging. Front Immunol 2020; 11:592389. [PMID: 33193439 PMCID: PMC7662122 DOI: 10.3389/fimmu.2020.592389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023] Open
Abstract
Gliomas, particularly high-grade gliomas including glioblastoma (GBM), represent the most common and malignant types of primary brain cancer in adults, and carry a poor prognosis. GBM has been classified into distinct subgroups over the years based on cellular morphology, clinical characteristics, biomarkers, and neuroimaging findings. Based on these classifications, differences in therapeutic response and patient outcomes have been established. Recently, the identification of complex molecular signatures of GBM has led to the development of diverse targeted therapeutic regimens and translation into multiple clinical trials. Chemical-, peptide-, antibody-, and nanoparticle-based probes have been designed to target specific molecules in gliomas and then be visualized with multimodality molecular imaging (MI) techniques including positron emission tomography (PET), single-photon emission computed tomography (SPECT), near-infrared fluorescence (NIRF), bioluminescence imaging (BLI), and magnetic resonance imaging (MRI). Thus, multiple molecules of interest can now be noninvasively imaged to guide targeted therapies with a potential survival benefit. Here, we review developments in molecular-targeted diagnosis and therapy in glioma, MI of these targets, and MI monitoring of treatment response, with a focus on the biological mechanisms of these advanced molecular probes. MI probes have the potential to noninvasively demonstrate the pathophysiologic features of glioma for diagnostic, treatment, and response assessment considerations for various targeted therapies, including immunotherapy. However, most MI tracers are in preclinical development, with only integrin αVβ3 and isocitrate dehydrogenase (IDH)-mutant MI tracers having been translated to patients. Expanded international collaborations would accelerate translational research in the field of glioma MI.
Collapse
Affiliation(s)
- Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Chirag B. Patel
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
- Division of Neuro-Oncology, Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Guofan Xu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Andrei Iagaru
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
2
|
Iommelli F, De Rosa V, Terlizzi C, Fonti R, Del Vecchio S. Preclinical Imaging in Targeted Cancer Therapies. Semin Nucl Med 2019; 49:369-381. [PMID: 31470932 DOI: 10.1053/j.semnuclmed.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Preclinical imaging with radiolabeled probes can provide noninvasive tools to test the efficacy of targeted agents in tumors harboring specific genetic alterations and to identify imaging parameters that can be used as pharmacodynamics markers in cancer patients. The present review will primarily focus on preclinical imaging studies that can accelerate the clinical approval of targeted agents and promote the development of imaging biomarkers for clinical applications. Since only subgroups of patients may benefit from treatment with targeted anticancer agents, the identification of a patient population expressing the target is of primary importance for the success of clinical trials. Preclinical imaging studies tested the ability of new radiolabeled compounds to recognize mutant, amplified, or overexpressed targets and some of these tracers were transferred to the clinical setting. More common tracers such as 18F-Fluorothymidine and 18F-Fluorodeoxyglucose were employed in animal models to test the inhibition of the target and downstream pathways through the evaluation of early changes of proliferation and glucose metabolism allowing the identification of sensitive and resistant tumors. Furthermore, since the majority of patients treated with targeted anticancer agents will invariably develop resistance, preclinical imaging studies were performed to test the efficacy of reversal agents to overcome resistance. These studies provided consistent evidence that imaging with radiolabeled probes can monitor the reversal of drug resistance by newly designed alternative compounds. Finally, despite many difficulties and challenges, preclinical imaging studies targeting the expression of immune checkpoints proved the principle that it is feasible to select patients for immunotherapy based on imaging findings. In conclusion, preclinical imaging can be considered as an integral part of the complex translational process that moves a newly developed targeted agent from laboratory to clinical application intervening in all clinically relevant steps including patient selection, early monitoring of drug effects and reversal of drug resistance.
Collapse
Affiliation(s)
- Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Cristina Terlizzi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Rosa Fonti
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
3
|
Fumarola C, Petronini PG, Alfieri R. Impairing energy metabolism in solid tumors through agents targeting oncogenic signaling pathways. Biochem Pharmacol 2018. [PMID: 29530507 DOI: 10.1016/j.bcp.2018.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell metabolic reprogramming is one of the main hallmarks of cancer and many oncogenic pathways that drive the cancer-promoting signals also drive the altered metabolism. This review focuses on recent data on the use of oncogene-targeting agents as potential modulators of deregulated metabolism in different solid cancers. Many drugs, originally designed to inhibit a specific target, then have turned out to have different effects involving also cell metabolism, which may contribute to the mechanisms underlying the growth inhibitory activity of these drugs. Metabolic reprogramming may also represent a way by which cancer cells escape from the selective pressure of targeted drugs and become resistant. Here we discuss how targeting metabolism could emerge as a new effective strategy to overcome such resistance. Finally, accumulating evidence indicates that cancer metabolic rewiring may have profound effects on tumor-infiltrating immune cells. Modulating cancer metabolic pathways through oncogene-targeting agents may not only restore more favorable conditions for proper lymphocytes activation, but also increase the persistence of memory T cells, thereby improving the efficacy of immune-surveillance.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
4
|
Maynard J, Emmas SA, Ble FX, Barjat H, Lawrie E, Hancox U, Polanska UM, Pritchard A, Hudson K. The use of 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) as a non-invasive pharmacodynamic biomarker to determine the minimally pharmacologically active dose of AZD8835, a novel PI3Kα inhibitor. PLoS One 2017; 12:e0183048. [PMID: 28806782 PMCID: PMC5555689 DOI: 10.1371/journal.pone.0183048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/30/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The phosphatidyl inositol 3 kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) signal transduction pathway is frequently de-regulated and activated in human cancer and is an important therapeutic target. AZD8835 is a PI3K inhibitor, with selectivity against PI3K α and δ isoforms, which is currently in Phase 1 clinical trials. 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) is a non-invasive pharmacodynamic imaging biomarker that has become an integral part of drug development. It has been used widely with PI3K inhibitors both clinically and pre-clinically because of the role of the PI3K pathway in glucose metabolism. In this study we investigated the potential of 18F-FDG PET as a non-invasive pharmacodynamic biomarker for AZD8835. We sought to understand if 18F-FDG PET could determine the minimally effective dose of AZD8835 and correlate with other pharmacodynamic biomarkers for validation of its use in clinical development. 18F-FDG PET scans were performed in nude mice in the BT474C breast xenograft model. Mice were fasted prior to imaging and static 18F-FDG PET was performed. Treatment groups received AZD8835 by oral gavage at a dose volume of 10ml/kg. Treatment groups received either 3, 6, 12.5, 25 or 50mg/kg AZD8835. Tumour growth was monitored throughout the study, and at the end of the imaging procedure, tumours were taken and a full pharmacodynamic analysis was performed. RESULTS Results showed that AZD8835 reduced 18F-FDG uptake at a dose of 12.5, 25 and 50mg/kg with no significant reduction at doses of 3 and 6mg/kg. These results were consistent with other pharmacodynamics biomarkers measured and show 18F-FDG PET as a sensitive biomarker with the ability to determine the minimal effective dose of AZD8835. CONCLUSIONS Our pre-clinical studies support the use of 18F-FDG PET imaging as a sensitive and non- invasive pharmacodynamic biomarker (understanding the role of PI3K signalling in glucose uptake) for AZD8835 with a decrease in 18F-FDG uptake observed at only two hours post treatment. The decrease in 18F-FDG uptake was dose dependent and data showed excellent PK/PD correlation. This data supports and parallels observations obtained with this class of compounds in patients.
Collapse
Affiliation(s)
- Juliana Maynard
- Personalised Healthcare & Biomarkers, AstraZeneca, Cheshire, United Kingdom
- * E-mail:
| | - Sally-Ann Emmas
- Personalised Healthcare & Biomarkers, AstraZeneca, Cheshire, United Kingdom
| | | | - Herve Barjat
- Personalised Healthcare & Biomarkers, AstraZeneca, Cheshire, United Kingdom
| | - Emily Lawrie
- Drug Safety and Metabolism iMED, AstraZeneca, Cheshire, United Kingdom
| | - Urs Hancox
- Oncology Imed, Astrazenenca, Cheshire, United Kingdom
| | | | | | - Kevin Hudson
- Oncology Imed, Astrazenenca, Cheshire, United Kingdom
| |
Collapse
|
5
|
Molecularly targeted therapies in cancer: a guide for the nuclear medicine physician. Eur J Nucl Med Mol Imaging 2017; 44:41-54. [PMID: 28396911 PMCID: PMC5541087 DOI: 10.1007/s00259-017-3695-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
Abstract
Molecular imaging continues to influence every aspect of cancer care including detection, diagnosis, staging and therapy response assessment. Recent advances in the understanding of cancer biology have prompted the introduction of new targeted therapy approaches. Precision medicine in oncology has led to rapid advances and novel approaches optimizing the use of imaging modalities in cancer care, research and development. This article focuses on the concept of targeted therapy in cancer and the challenges that exist for molecular imaging in cancer care.
Collapse
|
6
|
Xu W, Yu S, Xin J, Guo Q. 18F-FLT and 18F-FDG PET-CT imaging in the evaluation of early therapeutic effects of chemotherapy on Walker 256 tumor-bearing rats. Exp Ther Med 2017; 12:4154-4158. [PMID: 28101193 DOI: 10.3892/etm.2016.3869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/13/2016] [Indexed: 01/04/2023] Open
Abstract
The present study aimed to evaluate the early therapeutic effects of chemotherapy on Walker 256 tumor-bearing Wistar rats via F-18-fluoro-3'-deoxy-3'-L-fluorothymidine (18F-FLT) and F-18-fluoro-deoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) imaging. Walker 256 tumor-bearing Wistar rats were subjected to 18F-FLT and 18F-FDG PET-CT imaging prior to and 24 and 48 h after epirubicin chemotherapy. 18F-FLT and 18F-FDG uptake [tumor/muscle (T/M)], the percentage of injected dose per gram (% ID/g), and the Ki-67 labeling index (LI-Ki-67) were quantitatively determined for each rat prior to and following epirubicin chemotherapy. The correlation between % ID/g and tumor LI-Ki-67 was analyzed. Both 18F-FLT and 18F-FDG tumor uptake decreased significantly at 24 and 48 h after chemotherapy (P<0.01 and P<0.05, respectively). LI-Ki-67 also significantly reduced 24 and 48 h after chemotherapy (P<0.001). Furthermore, 18F-FLT and 18F-FDG T/M tumor uptake correlated positively with LI-Ki-67 before and after chemotherapy (r=0.842 and 0.813, respectively). During the early post-chemotherapy stage, 18F-FLT and 18F-FDG uptake in Walker 256 tumors reduced significantly, which correlated positively with the tumor cell proliferative activity.
Collapse
Affiliation(s)
- Weina Xu
- Department of Nuclear Medicine, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| | - Shupeng Yu
- Department of Nuclear Medicine, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| | - Jun Xin
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| |
Collapse
|
7
|
Schelhaas S, Heinzmann K, Bollineni VR, Kramer GM, Liu Y, Waterton JC, Aboagye EO, Shields AF, Soloviev D, Jacobs AH. Preclinical Applications of 3'-Deoxy-3'-[ 18F]Fluorothymidine in Oncology - A Systematic Review. Theranostics 2017; 7:40-50. [PMID: 28042315 PMCID: PMC5196884 DOI: 10.7150/thno.16676] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/16/2016] [Indexed: 11/05/2022] Open
Abstract
The positron emission tomography (PET) tracer 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) has been proposed to measure cell proliferation non-invasively in vivo. Hence, it should provide valuable information for response assessment to tumor therapies. To date, [18F]FLT uptake has found limited use as a response biomarker in clinical trials in part because a better understanding is needed of the determinants of [18F]FLT uptake and therapy-induced changes of its retention in the tumor. In this systematic review of preclinical [18F]FLT studies, comprising 174 reports, we identify the factors governing [18F]FLT uptake in tumors, among which thymidine kinase 1 plays a primary role. The majority of publications (83 %) report that decreased [18F]FLT uptake reflects the effects of anticancer therapies. 144 times [18F]FLT uptake was related to changes in proliferation as determined by ex vivo analyses. Of these approaches, 77 % describe a positive relation, implying a good concordance of tracer accumulation and tumor biology. These preclinical data indicate that [18F]FLT uptake holds promise as an imaging biomarker for response assessment in clinical studies. Understanding of the parameters which influence cellular [18F]FLT uptake and retention as well as the mechanism of changes induced by therapy is essential for successful implementation of this PET tracer. Hence, our systematic review provides the background for the use of [18F]FLT in future clinical studies.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | | | - Vikram R Bollineni
- European Organization for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Gerbrand M Kramer
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Yan Liu
- European Organization for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | | | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, UK
| | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Dmitry Soloviev
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.; Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
8
|
Lin F, de Gooijer MC, Hanekamp D, Chandrasekaran G, Buil LCM, Thota N, Sparidans RW, Beijnen JH, Würdinger T, van Tellingen O. PI3K-mTOR Pathway Inhibition Exhibits Efficacy Against High-grade Glioma in Clinically Relevant Mouse Models. Clin Cancer Res 2016; 23:1286-1298. [PMID: 27553832 DOI: 10.1158/1078-0432.ccr-16-1276] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 11/16/2022]
Abstract
Purpose: The PI3K-AKT-mTOR signaling pathway is frequently activated in glioblastoma and offers several druggable targets. However, clinical efficacy of PI3K/mTOR inhibitors in glioblastoma has not yet been demonstrated. Insufficient drug delivery may limit the efficacy of PI3K/mTOR inhibitors against glioblastoma. The presence of the efflux transporters ABCB1/Abcb1 (P-glycoprotein, MDR1) and ABCG2/Abcg2 (BCRP) at the blood-brain barrier (BBB) restricts the brain penetration of many drugs.Experimental Design: We used in vitro drug transport assays and performed pharmacokinetic/pharmacodynamic studies in wild-type and ABC-transporter knockout mice. The efficacy of PI3K-mTOR inhibition was established using orthotopic allograft and genetically engineered spontaneous glioblastoma mouse models.Results: The mTOR inhibitors rapamycin and AZD8055 are substrates of ABCB1, whereas the dual PI3K/mTOR inhibitor NVP-BEZ235 and the PI3K inhibitor ZSTK474 are not. Moreover, ABCG2 transports NVP-BEZ235 and AZD8055, but not ZSTK474 or rapamycin. Concordantly, Abcb1a/b-/-;Abcg2-/- mice revealed increased brain penetration of rapamycin (13-fold), AZD8055 (7.7-fold), and NVP-BEZ235 (4.5-fold), but not ZSTK474 relative to WT mice. Importantly, ABC transporters limited rapamycin brain penetration to subtherapeutic levels, while the reduction in NVP-BEZ235 brain penetration did not prevent target inhibition. NVP-BEZ235 and ZSTK474 demonstrated antitumor efficacy with improved survival against U87 orthotopic gliomas, although the effect of ZSTK474 was more pronounced. Finally, ZSTK474 prolonged overall survival in Cre-LoxP conditional transgenic Pten;p16Ink4a/p19Arf;K-Rasv12;LucR mice, mainly by delaying tumor onset.Conclusions: PI3K/mTOR inhibitors with weak affinities for ABC transporters can achieve target inhibition in brain (tumors), but have modest single-agent efficacy and combinations with (BBB penetrable) inhibitors of other activated pathways may be required. Clin Cancer Res; 23(5); 1286-98. ©2016 AACR.
Collapse
Affiliation(s)
- Fan Lin
- Department of Bio-Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital), Amsterdam, the Netherlands
| | - Mark C de Gooijer
- Department of Bio-Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital), Amsterdam, the Netherlands
| | - Diana Hanekamp
- Department of Bio-Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital), Amsterdam, the Netherlands
| | - Gayathri Chandrasekaran
- Department of Bio-Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital), Amsterdam, the Netherlands
| | - Levi C M Buil
- Department of Bio-Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital), Amsterdam, the Netherlands
| | - Nishita Thota
- Department of Bio-Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital), Amsterdam, the Netherlands
| | - Rolf W Sparidans
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, the Netherlands.,Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, Utrecht, the Netherlands
| | - Tom Würdinger
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Molecular Neurogenetics Unit, Departments of Neurology and Radiology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts
| | - Olaf van Tellingen
- Department of Bio-Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital), Amsterdam, the Netherlands.
| |
Collapse
|
9
|
You W, Wang Z, Li H, Shen H, Xu X, Jia G, Chen G. Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats. J Neurol Sci 2016; 367:224-31. [PMID: 27423593 DOI: 10.1016/j.jns.2016.06.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
Here, we aimed to study the role and underlying mechanism of mTOR in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experiment 1, the time course of mTOR activation in the cortex following SAH. Experiment 2, the role of mTOR in SAH-induced EBI. Adult SD rats were divided into four groups: sham group (n=18), SAH+vehicle group (n=18), SAH+rapamycin group (n=18), SAH+AZD8055 group (n=18). Experiment 3, we incubated enriched microglia with OxyHb. Rapamycin and AZD8055 were also used to demonstrate the mTOR's role on microglial polarization in vitro. The phosphorylation levels of mTOR and its substrates were significantly increased and peaked at 24h after SAH. Rapamycin or AZD8055 markedly decreased the phosphorylation levels of mTOR and its substrates and the activation of microglia in vivo, and promoted the microglial polarization from M1 phenotype to M2 phenotype. In addition, administration of rapamycin and AZD8055 following SAH significantly ameliorated EBI, including neuronal apoptosis, neuronal necrosis, brain edema and blood-brain barrier permeability. Our findings suggested that the rapamycin and AZD8055 could attenuate the development of EBI in this SAH model, possibly through inhibiting the activation of microglia by mTOR pathway.
Collapse
Affiliation(s)
- Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Genlai Jia
- Department of Neurosurgery, The People's Hospital of Rugao, Jiangsu, Rugao 226500, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China.
| |
Collapse
|
10
|
Maynard J, Emmas SA, Blé FX, Barjat H, Lawrie E, Hancox U, Oakes D, Polanska UM, Barry ST. The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) as a pathway-specific biomarker with AZD8186, a PI3Kβ/δ inhibitor. EJNMMI Res 2016; 6:62. [PMID: 27515445 PMCID: PMC4980858 DOI: 10.1186/s13550-016-0220-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 11/24/2022] Open
Abstract
Background The phosphatidylinositol 3 kinase (PI3K) signalling pathway is frequently altered in human cancer and a promising therapeutic target. AZD8186 (AstraZeneca) is a PI3Kβ/δ inhibitor, currently in phase 1 clinical trials. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) is often used as a biomarker for inhibitors targeting the PI3K axis because of the association of this pathway with glucose metabolism. In this study, we assessed if 18F-FDG PET could be used as a pharmacodynamic marker to monitor PI3Kβ inhibition by AZD8186, and hence have potential as a clinical biomarker of PI3Kβ pathway activation, and for patient selection. 18F-FDG PET scans were performed in nude mice bearing 786-0 renal, U87-MG glioma, and BT474C breast xenograft models. Mice were fasted prior to imaging and static 18F-FDG PET imaging was performed. Tumour growth was monitored throughout each study, and at the end of the imaging procedure, tumours were taken and a full pharmacodynamic analysis performed. Results Results showed that in PTEN null tumour xenograft models, 786-0 and U87-MG, the PI3Kβ inhibitor AZD8186 reduces 18F-FDG uptake at a dose of 50 mg/kg, the same dose which causes tumour inhibition, while it has no impact in a PI3Kα mutant tumour xenograft BT474C. Consistent with the change in 18F-FDG uptake, AZD8186 also modulated AKT and associated glucose pathway biomarkers in the PTEN null tumour xenografts but not in PTEN wild-type tumours. Conclusions Our pre-clinical studies support the use of 18F-FDG PET imaging as a sensitive and non-invasive pharmacodynamic biomarker for use in clinical studies with AZD8186. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0220-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Maynard
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, SK10 4TG, UK.
| | - Sally-Ann Emmas
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Francois-Xavier Blé
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Hervé Barjat
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Emily Lawrie
- Drug Safety and Metabolism IMED, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Urs Hancox
- Oncology IMED, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Deborah Oakes
- Oncology IMED, AstraZeneca, Alderley Park, SK10 4TG, UK
| | | | - Simon T Barry
- Oncology IMED, AstraZeneca, Alderley Park, SK10 4TG, UK
| |
Collapse
|
11
|
Positron emission tomography of high-grade gliomas. J Neurooncol 2016; 127:415-25. [PMID: 26897013 DOI: 10.1007/s11060-016-2077-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
High-grade gliomas [HGG (WHO grades III-IV)] are almost invariably fatal. Imaging of HGG is important for orientating diagnosis, prognosis and treatment planning and is crucial for development of novel, more effective therapies. Given the potentially unlimited number of usable tracing molecules and the elevated number of available radionuclides, PET allows gathering multiple informations on HGG including data on tissue metabolism and drug pharmacokinetics. PET studies on the diagnosis, prognosis and treatment of HGG carried out by most frequently used tracers and radionuclides ((11)C and (18)F) and published in 2014 have been reviewed. These studies demonstrate that a thorough choice of tracers may confer elevated diagnostic and prognostic power to PET imaging of HGG. They also suggest that a combination of PET and MRI may give the most complete and reliable imaging information on HGG and that research on hybrid PET/MRI may be paying back in terms of improved diagnosis, prognosis and treatment planning of these deadly tumours.
Collapse
|
12
|
|
13
|
Buijsen J, van den Bogaard J, Jutten B, Belgers E, Sosef M, Leijtens JW, Beets GL, Jansen RL, Riedl RG, Clarijs R, Lammering G, Lambin P. A phase I–II study on the combination of rapamycin and short course radiotherapy in rectal cancer. Radiother Oncol 2015; 116:214-20. [DOI: 10.1016/j.radonc.2015.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 11/27/2022]
|