1
|
Pu Y, Li L, Peng H, Liu L, Heymann D, Robert C, Vallette F, Shen S. Drug-tolerant persister cells in cancer: the cutting edges and future directions. Nat Rev Clin Oncol 2023; 20:799-813. [PMID: 37749382 DOI: 10.1038/s41571-023-00815-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Drug-tolerant persister (DTP) cell populations were originally discovered in antibiotic-resistant bacterial biofilms. Similar populations with comparable features have since been identified among cancer cells and have been linked with treatment resistance that lacks an underlying genomic alteration. Research over the past decade has improved our understanding of the biological roles of DTP cells in cancer, although clinical knowledge of the role of these cells in treatment resistance remains limited. Nonetheless, targeting this population is anticipated to provide new treatment opportunities. In this Perspective, we aim to provide a clear definition of the DTP phenotype, discuss the underlying characteristics of these cells, their biomarkers and vulnerabilities, and encourage further research on DTP cells that might improve our understanding and enable the development of more effective anticancer therapies.
Collapse
Affiliation(s)
- Yi Pu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Li
- Lung Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Haoning Peng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - François Vallette
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France.
- Nantes Université, INSERM, U1307, CRCI2NA, Nantes, France.
| | - Shensi Shen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Currie C, Bjerknes C, Myklebust TÅ, Framroze B. Assessing the Potential of Small Peptides for Altering Expression Levels of the Iron-Regulatory Genes FTH1 and TFRC and Enhancing Androgen Receptor Inhibitor Activity in In Vitro Prostate Cancer Models. Int J Mol Sci 2023; 24:15231. [PMID: 37894914 PMCID: PMC10607736 DOI: 10.3390/ijms242015231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Recent research highlights the key role of iron dyshomeostasis in the pathogenesis of prostate cancer (PCa). PCa cells are heavily dependent on bioavailable iron, which frequently results in the reprogramming of iron uptake and storage pathways. Although advanced-stage PCa is currently incurable, bioactive peptides capable of modulating key iron-regulatory genes may constitute a means of exploiting a metabolic adaptation necessary for tumor growth. Recent annual increases in PCa incidence have been reported, highlighting the urgent need for novel treatments. We examined the ability of LNCaP, PC3, VCaP, and VCaP-EnzR cells to form colonies in the presence of androgen receptor inhibitors (ARI) and a series of iron-gene modulating oligopeptides (FT-001-FT-008). The viability of colonies following treatment was determined with clonogenic assays, and the expression levels of FTH1 (ferritin heavy chain 1) and TFRC (transferrin receptor) were determined with quantitative polymerase chain reaction (PCR). Peptides and ARIs combined significantly reduced PCa cell growth across all phenotypes, of which two peptides were the most effective. Colony growth suppression generally correlated with the magnitude of concurrent increases in FTH1 and decreases in TFRC expression for all cells. The results of this study provide preliminary insight into a novel approach at targeting iron dysmetabolism and sensitizing PCa cells to established cancer treatments.
Collapse
Affiliation(s)
- Crawford Currie
- HBC Immunology Inc., 1455 Adams Drive, Suite, Menlo Park, CA 2043, USA;
- Hofseth Biocare, Keiser Wilhelmsgate 24, 6003 Ålesund, Norway;
| | - Christian Bjerknes
- Hofseth Biocare, Keiser Wilhelmsgate 24, 6003 Ålesund, Norway;
- Department for Health Sciences, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 6025 Ålesund, Norway
| | - Tor Åge Myklebust
- Department of Registration, Cancer Registry of Norway, 0379 Oslo, Norway;
- Department of Research and Innovation, Møre og Romsdal Hospital Trust, 6026 Ålesund, Norway
| | - Bomi Framroze
- HBC Immunology Inc., 1455 Adams Drive, Suite, Menlo Park, CA 2043, USA;
- GPH Biotech LLC, 1455 Adams Drive, Menlo Park, CA 94025, USA
| |
Collapse
|
3
|
Gonciarz RL, Sakhamuri S, Hooshdaran N, Kumar G, Kim H, Evans MJ, Renslo AR. Elevated labile iron in castration-resistant prostate cancer is targetable with ferrous iron-activatable antiandrogen therapy. Eur J Med Chem 2023; 249:115110. [PMID: 36708680 PMCID: PMC10210592 DOI: 10.1016/j.ejmech.2023.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Clinical responses to second generation androgen signaling inhibitors (e.g., enzalutamide) in metastatic castration-resistant prostate cancer (mCRPC) are variable and transient, and are associated with dose limiting toxicities, including rare but severe CNS effects. We hypothesized that changes to iron metabolism coincident with more advanced disease might be leveraged for tumor-selective delivery of antiandrogen therapy. Using the recently described chemical probes SiRhoNox and 18F-TRX in mCRPC models, we found elevated Fe2+ to be a common feature of mCRPC in vitro and in vivo. We next synthesized ferrous-iron activatable drug conjugates of second and third-generation antiandrogens and found these conjugates possessed comparable or enhanced antiproliferative activity across mCRPC cell line models. Mouse pharmacokinetic studies showed that these prototype antiandrogen conjugates are stable in vivo and limited exposure to conjugate or free antiandrogen in the brain. Our results reveal elevated Fe2+ to be a feature of mCRPC that might be leveraged to improve the tolerability and efficacy of antiandrogen therapy.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, United States
| | - Sasank Sakhamuri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Nima Hooshdaran
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Garima Kumar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Hyunjung Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, United States.
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, United States; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, United States.
| |
Collapse
|
4
|
Suilamo S, Li XG, Lankinen P, Oikonen V, Tolvanen T, Luoto P, Viitanen R, Saraste A, Seppänen M, Pirilä L, Hohenthal U, Roivainen A. 68Ga-Citrate PET of Healthy Men: Whole-Body Biodistribution Kinetics and Radiation Dose Estimates. J Nucl Med 2022; 63:1598-1603. [PMID: 35273093 PMCID: PMC9536698 DOI: 10.2967/jnumed.122.263884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
68Ga-citrate has one of the simplest chemical structures of all 68Ga-radiopharmaceuticals, and its clinical use is justified by the proven medical applications using its isotope-labeled compound 67Ga-citrate. To support broader application of 68Ga-citrate in medical diagnosis, further research is needed to gain clinical data from healthy volunteers. In this work, we studied the biodistribution of 68Ga-citrate and subsequent radiation exposure from it in healthy men. Methods: 68Ga-citrate was prepared with an acetone-based radiolabeling procedure compliant with good manufacturing practices. Six healthy men (age 41 ± 12 y, mean ± SD) underwent sequential whole-body PET/CT scans after an injection of 204 ± 8 MBq of 68Ga-citrate. Serial arterialized venous blood samples were collected during PET imaging, and the radioactivity concentration was measured with a γ-counter. Urinary voids were collected and measured. The MIRD bladder-voiding model with a 3.5-h voiding interval was used. A model using a 70-kg adult man and the MIRD schema was used to estimate absorbed doses in target organs and effective doses. Calculations were performed using OLINDA/EXM software, version 2.0. Results: Radioactivity clearance from the blood was slow, and relatively high radioactivity concentrations were observed over the whole of the 3-h measuring period. Although radioactivity excretion via urine was rather slow (biologic half-time, 69 ± 24 h), the highest decay-corrected concentrations in urinary bladder contents were measured at the 90- and 180-min time points. Moderate concentrations were also seen in kidneys, liver, and spleen. The source organs showing the largest residence times were muscle, liver, lung, and heart contents. The heart wall received the highest absorbed dose, 0.077 ± 0.008 mSv/MBq. The mean effective dose (International Commission on Radiological Protection publication 103) was 0.021 ± 0.001 mSv/MBq. Conclusion: PET imaging with 68Ga-citrate is associated with modest radiation exposure. A 200-MBq injection of 68Ga-citrate results in an effective radiation dose of 4.2 mSv, which is in the same range as other 68Ga-labeled tracers. This suggests the feasibility of clinical studies using 68Ga-citrate imaging in humans and the possibility of performing multiple scans in the same subjects across the course of a year.
Collapse
Affiliation(s)
- Sami Suilamo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Petteri Lankinen
- Department of Orthopaedics and Traumatology, Turku University Hospital and University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Tuula Tolvanen
- Department of Medical Physics, Turku University Hospital, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pauliina Luoto
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| | - Marko Seppänen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Laura Pirilä
- Department of Rheumatology and Clinical Immunology, Division of Medicine, Turku University Hospital; Turku, Finland
- Department of Medicine, University of Turku, Turku, Finland; and
| | - Ulla Hohenthal
- Department of Infectious Diseases, Division of Medicine, Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland;
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Jiang H, Muir RK, Gonciarz RL, Olshen AB, Yeh I, Hann BC, Zhao N, Wang YH, Behr SC, Korkola JE, Evans MJ, Collisson EA, Renslo AR. Ferrous iron-activatable drug conjugate achieves potent MAPK blockade in KRAS-driven tumors. J Exp Med 2022; 219:e20210739. [PMID: 35262628 PMCID: PMC8916116 DOI: 10.1084/jem.20210739] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
KRAS mutations drive a quarter of cancer mortality, and most are undruggable. Several inhibitors of the MAPK pathway are FDA approved but poorly tolerated at the doses needed to adequately extinguish RAS/RAF/MAPK signaling in the tumor cell. We found that oncogenic KRAS signaling induced ferrous iron (Fe2+) accumulation early in and throughout mutant KRAS-mediated transformation. We converted an FDA-approved MEK inhibitor into a ferrous iron-activatable drug conjugate (FeADC) and achieved potent MAPK blockade in tumor cells while sparing normal tissues. This innovation allowed sustainable, effective treatment of tumor-bearing animals, with tumor-selective drug activation, producing superior systemic tolerability. Ferrous iron accumulation is an exploitable feature of KRAS transformation, and FeADCs hold promise for improving the treatment of KRAS-driven solid tumors.
Collapse
Affiliation(s)
- Honglin Jiang
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Ryan K. Muir
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Adam B. Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Iwei Yeh
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Departments of Pathology and Dermatology, University of California, San Francisco, San Francisco, CA
| | - Byron C. Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Ning Zhao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Yung-hua Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Spencer C. Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - James E. Korkola
- Center for Spatial Systems Biomedicine, Oregon Health & Sciences University, Portland, OR
| | - Michael J. Evans
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Eric A. Collisson
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Adam R. Renslo
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
6
|
Wang Z, Hou Y, Cai L, Chen Y. The Evaluation of 68Ga-Citrate PET/CT Imaging for Dihydroartemisinin in the Treatment of Rheumatoid Arthritis. Mol Imaging Biol 2021; 23:30-37. [PMID: 32840716 DOI: 10.1007/s11307-020-01534-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE We aimed to use 68Ga-citrate, a labeled product of gallium (iron analog), combined with positron emission tomography/computed tomography (PET/CT) to non-invasively evaluate the potential of the iron-responsive product dihydroartemisinin (DHA) in the treatment of rheumatoid arthritis. PROCEDURES From the establishment of chicken II collagen-induced arthritis (CIA) rat model over 40 days, 20 rats with one-to-one corresponding arthritis index (AI) scores were randomly divided into two groups. One group received oral DHA (at a dose of 1.5 ml/(kg day), containing 20 mg DHA per 1 ml) for 15 days; the other group received stroke-physiological saline solution (SSS, 1.5 ml/(kg day) for 15 days. 68Ga-citrate micro-PET/CT imaging was performed on day 0 (D0), day 5 (D5), day 10 (D10), and day 15 (D15) of oral administration. After data reconstruction, the cross-sectional length "d" of the ankle joint of each rat was measured on the transverse CT, and the SUVmax of the ankle joint and muscle background was measured for statistical analysis. After micro-PET/CT collection, the ankle joint tissue was observed by HE staining. RESULTS The ankle joint swelling in the DHA group was significantly suppressed, but the SSS group showed no significant suppression. 68Ga-citrate micro-PET/CT imaging results and microscope observation confirmed this finding. Statistical analysis indicated that the time tendency of AI score (Binteraction = 0.495, P < 0.001) and T/NT (Binteraction = 1.345, P < 0.001) were discrepant between DHA and SSS groups. The AI score and T/NT of the DHA group gradually increased with time, while the SSS group score gradually decreased. Furthermore, the Spearman correlation coefficient was used to describe the relationship between "d" and T/NT, which was positively correlated (r = 0.855, P < 0.001). CONCLUSIONS This study showed that the anti-inflammatory effect of the iron-responsive product DHA in arthritis can be monitored by an iron-like radioactive tracer (68Ga-citrate).
Collapse
Affiliation(s)
- Zi Wang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University/Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, People's Republic of China
| | - Yu Hou
- Department of Neurosurgery, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Liang Cai
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University/Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University/Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China.
| |
Collapse
|
7
|
Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020; 82:94-119. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.
Collapse
|
8
|
Zheng H, Zhu Y, Shao X, Cai A, Dong B, Xue W, Gao H. Distinct Metabolic Signatures of Hormone-Sensitive and Castration-Resistant Prostate Cancer Revealed by a 1H NMR-Based Metabolomics of Biopsy Tissue. J Proteome Res 2020; 19:3741-3749. [PMID: 32702989 DOI: 10.1021/acs.jproteome.0c00282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Aimin Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
9
|
Imberti C, Adumeau P, Blower JE, Al Salemee F, Baguña Torres J, Lewis JS, Zeglis BM, Terry SYA, Blower PJ. Manipulating the In Vivo Behaviour of 68Ga with Tris(Hydroxypyridinone) Chelators: Pretargeting and Blood Clearance. Int J Mol Sci 2020; 21:E1496. [PMID: 32098299 PMCID: PMC7073083 DOI: 10.3390/ijms21041496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Pretargeting is widely explored in immunoPET as a strategy to reduce radiation exposure of non-target organs and allow the use of short-lived radionuclides that would not otherwise be compatible with the slow pharmacokinetic profiles of antibodies. Here we investigate a pretargeting strategy based on gallium-68 and the chelator THPMe as a high-affinity pair capable of combining in vivo. After confirming the ability of THPMe to bind 68Ga in vivo at low concentrations, the bifunctional THPMe-NCS was conjugated to a humanised huA33 antibody targeting the A33 glycoprotein. Imaging experiments performed in nude mice bearing A33-positive SW1222 colorectal cancer xenografts compared pretargeting (100 μg of THPMe-NCS-huA33, followed after 24 h by 8-10 MBq of 68Ga3+) with both a directly labelled radioimmunoconjugate (89Zr-DFO-NCS-huA33, 88 μg, 7 MBq) and a 68Ga-only negative control (8-10 MBq of 68Ga3+). Imaging was performed 25 h after antibody administration (1 h after 68Ga3+ administration for negative control). No difference between pretargeting and the negative control was observed, suggesting that pretargeting via metal chelation is not feasible using this model. However, significant accumulation of "unchelated" 68Ga3+ in the tumour was found (12.9 %ID/g) even without prior administration of THPMe-NCS-huA33, though tumour-to-background contrast was impaired by residual activity in the blood. Therefore, the 68Ga-only experiment was repeated using THPMe (20 μg, 1 h after 68Ga3+ administration) to clear circulating 68Ga3+, producing a three-fold improvement of the tumour-to-blood activity concentration ratio. Although preliminary, these results highlight the potential of THPMe as a 68Ga clearing agent in imaging applications with gallium citrate.
Collapse
Affiliation(s)
- Cinzia Imberti
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Pierre Adumeau
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10021, USA
| | - Julia E. Blower
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Fahad Al Salemee
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Julia Baguña Torres
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10021, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samantha Y. A. Terry
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Philip J. Blower
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
10
|
Seo Y, Khalighi MM, Wangerin KA, Deller TW, Wang YH, Jivan S, Kohi MP, Aggarwal R, Flavell RR, Behr SC, Evans MJ. Quantitative and Qualitative Improvement of Low-Count [ 68Ga]Citrate and [ 90Y]Microspheres PET Image Reconstructions Using Block Sequential Regularized Expectation Maximization Algorithm. Mol Imaging Biol 2020; 22:208-216. [PMID: 30993558 PMCID: PMC6800603 DOI: 10.1007/s11307-019-01347-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE There are several important positron emission tomography (PET) imaging scenarios that require imaging with very low photon statistics, for which both quantitative accuracy and visual quality should not be neglected. For example, PET imaging with the low photon statistics is closely related to active efforts to significantly reduce radiation exposure from radiopharmaceuticals. We investigated two examples of low-count PET imaging: (a) imaging [90Y]microsphere radioembolization that suffers the very small positron emission fraction of Y-90's decay processes, and (b) cancer imaging with [68Ga]citrate with uptake time of 3-4 half-lives, necessary for visualizing tumors. In particular, we investigated a type of penalized likelihood reconstruction algorithm, block sequential regularized expectation maximization (BSREM), for improving both image quality and quantitative accuracy of these low-count PET imaging cases. PROCEDURES The NEMA/IEC Body phantom filled with aqueous solution of Y-90 or Ga-68 was scanned to mimic the low-count scenarios of corresponding patient data acquisitions on a time-of-flight (TOF) PET/magnetic resonance imaging system. Contrast recovery, background variation, and signal-to-noise ratio were evaluated in different sets of count densities using both conventional TOF ordered subset expectation (TOF-OSEM) and TOF-BSREM algorithms. The regularization parameter, beta, in BSREM that controls the tradeoff between image noise and resolution was evaluated to find a value for improved confidence in image interpretation. Visual quality assessment of the images obtained from patients administered with [68Ga]citrate (n = 6) was performed. We also made preliminary visual image quality assessment for one patient with [90Y]microspheres. In Y-90 imaging, the effect of 511-keV energy window selection for minimizing the number of random events was also evaluated. RESULTS Quantitatively, phantom images reconstructed with TOF-BSREM showed improved contrast recovery, background variation, and signal-to-noise ratio values over images reconstructed with TOF-OSEM. Both phantom and patient studies of delayed imaging of [68Ga]citrate show that TOF-BSREM with beta = 500 gives the best tradeoff between image noise and image resolution based on visual assessment by the readers. The NEMA-IQ phantom study with [90Y]microspheres shows that the narrow energy window (460-562 keV) recovers activity concentrations in small spheres better than the regular energy window (425-650 keV) with the beta value of 2000 using the TOF-BSREM algorithm. For the images obtained from patients with [68Ga]citrate using TOF-BSREM with beta = 500, the visual analogue scale (VAS) was improved by 17 % and the Likert score was increased by 1 point on average, both in comparison to corresponding scores for images reconstructed using TOF-OSEM. CONCLUSION Our investigation shows that the TOF-BSREM algorithm improves the image quality and quantitative accuracy in low-count PET imaging scenarios. However, the beta value in this algorithm needed to be adjusted for each radiopharmaceutical and counting statistics at the time of scans.
Collapse
Affiliation(s)
- Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA.
- Department of Radiation Oncology, University of California, San Francisco, CA, USA.
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, California, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Mohammad Mehdi Khalighi
- GE Healthcare, Waukesha, WI, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | | | - Salma Jivan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA
| | - Maureen P Kohi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA
| | - Rahul Aggarwal
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Spencer C Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
Zheng H, Dong B, Ning J, Shao X, Zhao L, Jiang Q, Ji H, Cai A, Xue W, Gao H. NMR-based metabolomics analysis identifies discriminatory metabolic disturbances in tissue and biofluid samples for progressive prostate cancer. Clin Chim Acta 2019; 501:241-251. [PMID: 31758937 DOI: 10.1016/j.cca.2019.10.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most common cancers in men, but its metabolic characteristics during tumor progression are still far from being fully understood. METHODS The metabolic profiles of matched tissue, serum and urine samples from the same patients were analyzed using a 1H NMR-based metabolomics approach. We identified several important metabolites that significantly altered at different stages of PCa, including benign prostatic hyperplasia (BPH), early PCa (EPC), advanced PCa (APC), metastatic PCa (MPC) and castration-resistant PCa (CRPC). Metabolic correlation networks among tissue, serum and urine samples were examined using Pearson's correlation. RESULTS The changes in metabolic phenotypes during the progression of PCa were more noticeable in tissue samples when compared with serum and urine samples. Herein we identified a series of important metabolic disturbances, including decreased trends of citrate, creatinine, acetate, leucine, valine, glycine, lysine, histidine, glutamine and choline as well as increased trends of uridine and formate. These metabolites are mainly implicated in energy metabolism, amino acid metabolism, choline and fatty acid metabolism as well as uridine metabolism. We also found that energy metabolism in tumor tissues was positively associated with amino acid metabolism in serum and urine. Additionally, CRPC patients had a peculiar metabolic phenotype, especially decreased amino acid metabolism in serum. CONCLUSIONS The present study characterizes metabolic disturbances in both tissue and biofluid samples during PCa progression and provides potential diagnostic biomarkers and therapeutic targets for PCa.
Collapse
Affiliation(s)
- Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Ning
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiaoying Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hui Ji
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Aimin Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
12
|
Behr SC, Villanueva-Meyer JE, Li Y, Wang YH, Wei J, Moroz A, Lee JK, Hsiao JC, Gao KT, Ma W, Cha S, Wilson DM, Seo Y, Nelson SJ, Chang SM, Evans MJ. Targeting iron metabolism in high-grade glioma with 68Ga-citrate PET/MR. JCI Insight 2018; 3:93999. [PMID: 30385712 DOI: 10.1172/jci.insight.93999] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
Noninvasive tools that target tumor cells could improve the management of glioma. Cancer generally has a high demand for Fe(III), an essential nutrient for a variety of biochemical processes. We tested whether 68Ga-citrate, an Fe(III) biomimetic that binds to apo-transferrin in blood, detects glioma in preclinical models and patients using hybrid PET/MRI. Mouse PET/CT studies showed that 68Ga-citrate accumulates in subcutaneous U87MG xenografts in a transferrin receptor-dependent fashion within 4 hours after injection. Seventeen patients with WHO grade III or IV glioma received 3.7-10.2 mCi 68Ga-citrate and were imaged with PET/MR 123-307 minutes after injection to establish that the radiotracer can localize to human tumors. Multiple contrast-enhancing lesions were PET avid, and tumor to adjacent normal white matter ratios were consistently greater than 10:1. Several contrast-enhancing lesions were not PET avid. One minimally enhancing lesion and another tumor with significantly reduced enhancement following bevacizumab therapy were PET avid. Advanced MR imaging analysis of one patient with contrast-enhancing glioblastoma showed that metabolic hallmarks of viable tumor spatially overlaid with 68Ga-citrate accumulation. These early data underscore that high-grade glioma may be detectable with a radiotracer that targets Fe(III) transport.
Collapse
Affiliation(s)
- Spencer C Behr
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | | | - Yan Li
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Junnian Wei
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Anna Moroz
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA.,Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Julia Kl Lee
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Jeffrey C Hsiao
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Kenneth T Gao
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Wendy Ma
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center.,Department of Bioengineering and Therapeutic Sciences
| | - Susan M Chang
- Helen Diller Family Comprehensive Cancer Center.,Department of Neurological Surgery, and
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center.,Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| |
Collapse
|
13
|
Yang B, Liao GQ, Wen XF, Chen WH, Cheng S, Stolzenburg JU, Ganzer R, Neuhaus J. Nuclear magnetic resonance spectroscopy as a new approach for improvement of early diagnosis and risk stratification of prostate cancer. J Zhejiang Univ Sci B 2018; 18:921-933. [PMID: 29119730 DOI: 10.1631/jzus.b1600441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) is the second most common male cancer worldwide and the fifth leading cause of death from cancer in men. Early detection and risk stratification is the most effective way to improve the survival of PCa patients. Current PCa biomarkers lack sufficient sensitivity and specificity to cancer. Metabolite biomarkers are evolving as a new diagnostic tool. This review is aimed to evaluate the potential of metabolite biomarkers for early detection, risk assessment, and monitoring of PCa. Of the 154 identified publications, 27 and 38 were original papers on urine and serum metabolomics, respectively. Nuclear magnetic resonance (NMR) is a promising method for measuring concentrations of metabolites in complex samples with good reproducibility, high sensitivity, and simple sample processing. Especially urine-based NMR metabolomics has the potential to be a cost-efficient method for the early detection of PCa, risk stratification, and monitoring treatment efficacy.
Collapse
Affiliation(s)
- Bo Yang
- Department of Urology, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Guo-Qiang Liao
- Department of Urology, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xiao-Fei Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei-Hua Chen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jens-Uwe Stolzenburg
- Department of Urology, University Hospital of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Roman Ganzer
- Department of Urology, University Hospital of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Jochen Neuhaus
- Department of Urology, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.,Division of Urology, Research Laboratory, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Mari Aparici C, Behr SC, Seo Y, Kelley RK, Corvera C, Gao KT, Aggarwal R, Evans MJ. Imaging Hepatocellular Carcinoma With 68Ga-Citrate PET: First Clinical Experience. Mol Imaging 2018; 16:1536012117723256. [PMID: 28893116 PMCID: PMC5598799 DOI: 10.1177/1536012117723256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
While cross-sectional imaging with computed tomography (CT) and magnetic resonance imaging is the primary method for diagnosing hepatocellular carcinoma (HCC), they provide little biological insight into this molecularly heterogeneous disease. Nuclear imaging tools that can detect molecular subsets of tumors could greatly improve diagnosis and management of HCC. To this end, we conducted a patient study to determine whether HCC can be resolved using 68Ga-citrate positron emission tomography (PET). One patient with recurrent HCC was injected with 300 MBq of 68Ga-citrate and imaged with PET/CT 249 minutes post injection. Four (28%) of 14 hepatic lesions were avid for 68Ga-citrate. One extrahepatic lesion was not PET avid. The average maximum standardized uptake value (SUVmax) for the lesions was 7.2 (range: 6.2-8.4), while the SUVmax of the normal liver parenchyma was 4.7 and blood pool was 5.7. The avid lesions were not significantly larger than the quiescent lesions, and a prior contrast CT showed uniform enhancement among the lesions, suggesting that tumor signals are due to specific binding of the radiotracer to the transferrin receptor, rather than enhanced vascularity in the tumor microenvironment. Further studies are required in a larger patient cohort to verify the molecular basis of radiotracer uptake and the clinical utility of this tool.
Collapse
Affiliation(s)
- Carina Mari Aparici
- 1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Spencer C Behr
- 1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Youngho Seo
- 1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.,2 Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - R Kate Kelley
- 2 Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Corvera
- 3 Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kenneth T Gao
- 1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Rahul Aggarwal
- 2 Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Evans
- 1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.,2 Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,4 Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Aro E, Seppänen M, Mäkelä KT, Luoto P, Roivainen A, Aro HT. PET/CT to detect adverse reactions to metal debris in patients with metal-on-metal hip arthroplasty: an exploratory prospective study. Clin Physiol Funct Imaging 2017; 38:847-855. [PMID: 29280283 DOI: 10.1111/cpf.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/23/2017] [Indexed: 11/30/2022]
Abstract
Metal-on-metal (MoM) bearings in total hip arthroplasties and hip resurfacing arthroplasties have recently shown a new type of complication: adverse reactions to metal debris (ARMD). ARMD is characterized by local severe inflammation and tissue necrosis leading to implant failures. The gluteal muscle region is important for the patient outcome after revision surgery. This prospective positron emission tomography/computed tomography (PET/CT) study was undertaken to evaluate the characteristics of 2-deoxy-2-[18 F]fluoro-d-glucose ([18 F]FDG) and [68 Ga]Gallium citrate ([68 Ga]Citrate) PET/CT in ARMD patients. [18 F]FDG and [68 Ga]Citrate PET/CT were performed in 18 hip arthroplasty patients: 12 ARMD patients (with 16 MoM hips) and six arthroplasty controls without ARMD. Tracer uptake was evaluated visually, and maximum standardized uptake (SUVmax ) was measured in the gluteal muscle region. ARMD severity was graded by metal artefact reduction sequence-magnetic resonance imaging (MARS-MRI). Periprosthetic [18 F]FDG uptake was observed in 15 of 16 hips, [68 Ga]Citrate uptake in three of 16 hips, respectively. The distribution of tracer uptake resembled infection in three hips. In the gluteal muscle region, the SUVmax of [18 F]FDG was significantly greater in hips with moderate and severe ARMD compared with the controls (P = 0·009 for [18 F]FDG and P = 0·217 for [68 Ga]Citrate). In patients who needed revision surgery, an intraoperative finding of gluteal muscle necrosis was associated with increased local SUVmax as detected by preoperative [18 F]FDG (P = 0·039), but not by [68 Ga]Citrate (P = 0·301). In conclusion, the inflammatory reaction to metal debris in hip arthroplasty patients is best visualized with [18 F]FDG.
Collapse
Affiliation(s)
- Erik Aro
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, Turku University Hospital and University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine and Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Marko Seppänen
- Department of Clinical Physiology and Nuclear Medicine and Turku PET Centre, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Keijo T Mäkelä
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Hannu T Aro
- Orthopaedic Research Unit, Department of Orthopaedic Surgery and Traumatology, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
16
|
Aggarwal R, Behr SC, Paris PL, Truillet C, Parker MFL, Huynh LT, Wei J, Hann B, Youngren J, Huang J, Premasekharan G, Ranatunga N, Chang E, Gao KT, Ryan CJ, Small EJ, Evans MJ. Real-Time Transferrin-Based PET Detects MYC-Positive Prostate Cancer. Mol Cancer Res 2017; 15:1221-1229. [PMID: 28592703 PMCID: PMC5581675 DOI: 10.1158/1541-7786.mcr-17-0196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023]
Abstract
Noninvasive biomarkers that detect the activity of important oncogenic drivers could significantly improve cancer diagnosis and management of treatment. The goal of this study was to determine whether 68Ga-citrate (which avidly binds to circulating transferrin) can detect MYC-positive prostate cancer tumors, as the transferrin receptor is a direct MYC target gene. PET imaging paired with 68Ga-citrate and molecular analysis of preclinical models, human cell-free DNA (cfDNA), and clinical biopsies were conducted to determine whether 68Ga-citrate can detect MYC-positive prostate cancer. Importantly, 68Ga-citrate detected human prostate cancer models in a MYC-dependent fashion. In patients with castration-resistant prostate cancer, analysis of cfDNA revealed that all patients with 68Ga-citrate avid tumors had a gain of at least one MYC copy number. Moreover, biopsy of two PET avid metastases showed molecular or histologic features characteristic of MYC hyperactivity. These data demonstrate that 68Ga-citrate targets prostate cancer tumors with MYC hyperactivity. A larger prospective study is ongoing to demonstrate the specificity of 68Ga-citrate for tumors with hyperactive MYC.Implications: Noninvasive measurement of MYC activity with quantitative imaging modalities could substantially increase our understanding of the role of MYC signaling in clinical settings for which invasive techniques are challenging to implement or do not characterize the biology of all tumors in a patient. Moreover, measuring MYC activity noninvasively opens the opportunity to study changes in MYC signaling in patients under targeted therapeutic conditions thought to indirectly inhibit MYC. Mol Cancer Res; 15(9); 1221-9. ©2017 AACR.
Collapse
Affiliation(s)
- Rahul Aggarwal
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Spencer C Behr
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Pamela L Paris
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Charles Truillet
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Matthew F L Parker
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Loc T Huynh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Junnian Wei
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Jack Youngren
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, North Carolina
| | - Gayatri Premasekharan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Nimna Ranatunga
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Emily Chang
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California
| | - Kenneth T Gao
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Charles J Ryan
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Eric J Small
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Michael J Evans
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| |
Collapse
|
17
|
Fuchigami T, Ono H, Oyadomari K, Iwatake M, Hayasaka D, Akbari M, Yui K, Nishi K, Kudo T, Yoshida S, Haratake M, Nakayama M. Development of a 68Ge/ 68Ga Generator System Using Polysaccharide Polymers and Its Application in PET Imaging of Tropical Infectious Diseases. ACS OMEGA 2017; 2:1400-1407. [PMID: 30023633 PMCID: PMC6044706 DOI: 10.1021/acsomega.7b00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 06/08/2023]
Abstract
Gallium-68 (68Ga) is a positron emitter for clinical positron emission tomography (PET) applications that can be produced by a 68Ge/68Ga generator without cyclotron. However, commercially available 68Ge/68Ga generator systems require multiple steps for the preparation of 68Ga radiopharmaceuticals and are sometimes plagued by metallic impurities in the 68Ga eluent. We developed a 68Ge/68Ga generator system using polysaccharide-based adsorbents and direct application of the generator-eluted 68Ga-citrate to PET imaging of tropical infectious diseases. N-Methylglucamine (MG) as a 68Ge-adsorbing unit (Sepha-MGs) was introduced to a series of Sephadex G-10, G-15, G-25, G-50, and G-75. In the batch method, over 97% of the 68Ge in the solution was adsorbed onto the Sepha-MG series within 15 min. In particular, 68Ge was effectively adsorbed on the Sepha(15)-MG packed columns and 70-80% of the 68Ga was eluted by 1 mL of 0.1 M trisodium citrate with low 68Ge contamination (<0.001%). The chemical form of the generator-eluted 68Ga solution was identified as 68Ga-citrate. In PET studies, affected regions in mice infected with Leishmania and severe fever with thrombocytopenia syndrome virus were clearly visualized using the 68Ga-citrate. Sepha-MGs are useful adsorbents for 68Ge/68Ga generator systems with high 68Ga elution efficiency and minimal 68Ge breakthrough. These results indicated that eluted 68Ga-citrate can be directly used for PET imaging of infectious sites in mice. This novel generator system may be useful for straightforward PET imaging of infection in clinical practice.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department
of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hokuto Ono
- Department
of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kohta Oyadomari
- Department
of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mayumi Iwatake
- Department
of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Daisuke Hayasaka
- Department
of Virology, Institute of Tropical Medicine, Leading Graduate
School Program and Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Masoud Akbari
- Division
of Immunology, Department of Molecular Microbiology and Immunology,
Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Katsuyuki Yui
- Division
of Immunology, Department of Molecular Microbiology and Immunology,
Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kodai Nishi
- Department
of Virology, Institute of Tropical Medicine, Leading Graduate
School Program and Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takashi Kudo
- Department
of Virology, Institute of Tropical Medicine, Leading Graduate
School Program and Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Sakura Yoshida
- Department
of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mamoru Haratake
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-2 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Morio Nakayama
- Department
of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
18
|
Truillet C, Cunningham JT, Parker MFL, Huynh LT, Conn CS, Ruggero D, Lewis JS, Evans MJ. Noninvasive Measurement of mTORC1 Signaling with 89Zr-Transferrin. Clin Cancer Res 2016; 23:3045-3052. [PMID: 28007777 DOI: 10.1158/1078-0432.ccr-16-2448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022]
Abstract
Purpose: mTOR regulates many normal physiological processes and when hyperactive can drive numerous cancers and human diseases. However, it is very challenging to detect and quantify mTOR signaling noninvasively in clinically relevant animal models of disease or man. We hypothesized that a nuclear imaging tool measuring intracellular mTOR activity could address this unmet need.Experimental Design: Although the biochemical activity of mTOR is not directly amenable to nuclear imaging probe development, we show that the transferrin receptor can be used to indirectly measure intracellular changes in mTOR activity.Results: After verifying that the uptake of radiolabeled transferrin (the soluble ligand of the transferrin receptor) is stimulated by active mTORC1 in vitro, we showed that 89Zr-labeled transferrin (Tf) can measure mTORC1 signaling dynamics in normal and cancerous mouse tissues with PET. Finally, we show that 89Zr-Tf can detect the upregulation of mTORC1 by tumor cells to escape the antitumor effects of a standard-of-care antiandrogen, which is to our knowledge the first example of applying PET to interrogate the biology of treatment resistant cancer.Conclusions: In summary, we have developed the first quantitative assay to provide a comprehensive measurement of mTOR signaling dynamics in vivo, in specific normal tissues, and during tumor development in genetically engineered animal models using a nuclear imaging tool that is readily translatable to man. Clin Cancer Res; 23(12); 3045-52. ©2016 AACR.
Collapse
Affiliation(s)
- Charles Truillet
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - John T Cunningham
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Matthew F L Parker
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Loc T Huynh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Crystal S Conn
- Department of Urology, University of California San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Davide Ruggero
- Department of Urology, University of California San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Jason S Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York. .,Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|