1
|
Esmaeili Nasrabadi A, Ramavandi B, Bonyadi Z, Farjadfard S, Fattahi M. Landfill leachates as a significant source for emerging pollutants of phthalic acid esters: Identification, occurrence, characteristics, fate, and transport. CHEMOSPHERE 2024; 356:141873. [PMID: 38593958 DOI: 10.1016/j.chemosphere.2024.141873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 μg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.
Collapse
Affiliation(s)
- Afsaneh Esmaeili Nasrabadi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sima Farjadfard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
2
|
Clemente E, Domingues E, Quinta-Ferreira RM, Leitão A, Martins RC. Solar photo-Fenton and persulphate-based processes for landfill leachate treatment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169471. [PMID: 38145668 DOI: 10.1016/j.scitotenv.2023.169471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Landfilling is the most usual solid waste management strategy for solid residues disposal. However, it entails several drawbacks such as the generation of landfill leachate that seriously threaten human life and the environment due to their toxicity and carcinogenic character. Among various technologies, solar photo-Fenton and sulphate-based processes have proven to be suitable for the treatment of these polluted streams. This review critically summarises the last three decades of studies in this field. It is found that the solar homogeneous photo-Fenton process should be preferably used as a pre- and post-treatment of biological technologies and as a standalone treatment for young, medium, and mature leachates, respectively. Studies on heterogeneous solar photo-Fenton process are lacking so that this technology may be scaled-up for industrial applications. Sulphate radicals are attractive for removing both COD and ammonia. However, no study has been reported on solar sulphate activation for landfill leachate treatment. This review discusses the main advances and challenges on treating landfill leachate through solar AOPs, it compares solar photo-Fenton and solar persulphate-based treatments, indicates the future research directions and contributes for a better understanding of these technologies towards sustainable treatment of landfill leachate in sunny and not-so-sunny regions.
Collapse
Affiliation(s)
- E Clemente
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal; LESRA - Laboratory of Separation, Reaction and Environmental Engineering, Faculty of Engineering, Agostinho Neto University, Av. Ho Chi Min no 201, Luanda, Angola
| | - E Domingues
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - R M Quinta-Ferreira
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - A Leitão
- LESRA - Laboratory of Separation, Reaction and Environmental Engineering, Faculty of Engineering, Agostinho Neto University, Av. Ho Chi Min no 201, Luanda, Angola
| | - R C Martins
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal.
| |
Collapse
|
3
|
Ateş H, Argun ME. Fate of phthalate esters in landfill leachate under subcritical and supercritical conditions and determination of transformation products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:292-301. [PMID: 36410146 DOI: 10.1016/j.wasman.2022.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The hypothesis of this study is that the complex organic load of landfill leachate could be reduced by supercritical water oxidation (SCWO) in a single stage, but this operation could lead to the formation of some undesired by-products of phthalate esters (PAEs). In this context, the fate of selected PAEs, butyl benzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), was investigated during the oxidation of leachate under subcritical and supercritical conditions. Experiments were conducted at various temperatures (250-500 °C), pressures (10-35 MPa), residence times (2-18 min) and dimensionless oxidant doses (DOD: 0.2-2.3). The SCWO process decreased the leachate's chemical oxygen demand (COD) from 34,400 mg/L to 1,120 mg/L (97%). Removal efficiencies of DEHP and DNOP with longer chains were higher than BBP. The DEHP, DNOP and BBP compounds were removed in the range of -35 to 100%, -18 to 92%, and 28 to 36%, respectively, by the SCWO process. Many non-target PAEs were qualitatively detected in the raw leachate apart from the selected PAEs. Besides, 97% of total PAEs including both target and non-target PAEs was mineralized at 15 MPa, 300 °C and 5 min. Although PAEs were highly mineralized during SCWO of the leachate, aldehyde, ester, amide and amine-based phthalic substances were frequently detected as by-products. These by-products have transformed into higher molecular weight by-products with binding reactions as a result of complex SCWO process chemistry. It has also been determined that some non-target PAEs such as 1,2-benzenedicarboxylic acid bis(2-methylpropyl)ester and bis(2-ethylhexyl) isophthalate can transform to the DEHP. Therefore, the suggested pathway in this study for PAEs degradation during the SCWO of the leachate includes substitution and binding reactions as well as an oxidation reaction.
Collapse
Affiliation(s)
- Havva Ateş
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Türkiye.
| | - Mehmet Emin Argun
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Türkiye.
| |
Collapse
|
4
|
Han Y, Hu LX, Liu T, Liu J, Wang YQ, Zhao JH, Liu YS, Zhao JL, Ying GG. Non-target, suspect and target screening of chemicals of emerging concern in landfill leachates and groundwater in Guangzhou, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155705. [PMID: 35523323 DOI: 10.1016/j.scitotenv.2022.155705] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Landfill sites have been regarded as a significant source of chemicals of emerging concern (CECs) in groundwater. However, our understanding about the compositions of CECs in landfill leachate and adjacent groundwater is still very limited. Here we investigated the CECs in landfill leachates and groundwater of Guangzhou in South China by target, suspect and non-target analysis using high-resolution mass spectrometry (HRMS). A variety of CECs (n = 242), including pharmaceuticals (n = 64), pharmaceutical intermediates (n = 18), personal care products (n = 9), food additives (n = 18), industrial chemicals (n = 82, e.g., flame retardants, plasticizers, antioxidants and catalysts), pesticides (n = 26), transformation products (n = 8) and other organic compounds (n = 17) were (tentatively) identified by non-target and suspect screening. 142 CECs were quantitated with target analysis, and among them 37, 24 and 27 CECs were detected respectively in the raw leachate (272-1780 μg/L), treated leachate (0.25-0.81 μg/L) and groundwater (0.10-53.7 μg/L). The CECs in the raw leachates were efficiently removed with the removal efficiencies greater than 88.7%. Acesulfame, bisphenol F and ketoprofen were the most abundant compounds in both treated leachate and groundwater. The CECs in groundwater was found most likely to be originated from the landfill sites. Our results highlight the importance of non-target screening in identifying CECs, and reveal the contamination risk of groundwater by landfill leachate.
Collapse
Affiliation(s)
- Yu Han
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jing Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Qing Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jia-Hui Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
5
|
Pisharody L, Gopinath A, Malhotra M, Nidheesh PV, Kumar MS. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. CHEMOSPHERE 2022; 287:132216. [PMID: 34517234 DOI: 10.1016/j.chemosphere.2021.132216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Landfilling is the most prominently adopted disposal technique for managing municipal solid waste across the globe. However, the main drawback associated with this method is the generation of leachate from the landfill site. Leachate, a highly concentrated liquid consisting of both organic and inorganic components arises environmental issues as it contaminates the nearby aquifers. Landfill leachate treatment by conventional methods is not preferred as the treatment methods are not much effective to remove these pollutants. Advanced oxidation processes (AOPs) based on both hydroxyl and sulfate radicals could be a promising method to remove the micropollutants completely or convert them to non-toxic compounds. The current review focuses on the occurrence of micropollutants in landfill leachate, their detection methods and removal from landfill leachate using AOPs. Pharmaceuticals and personal care products occur in the range of 10-1 to more than 100 μg L-1 whereas phthalates were found below the detectable limit to 384 μg L-1, pesticides in the order of 10-1 μg L-1 and polyaromatic hydrocarbons occur in concentration from 10-2 to 114.7 μg L-1. Solid-phase extraction is the most preferred method for extracting micropollutants from leachate and liquid chromatography (LC) - mass spectrophotometer (MS) for detecting the micropollutants. Limited studies have been focused on AOPs as a potential method for the degradation of micropollutants in landfill leachate. The potential of Fenton based techniques, electrochemical AOPs and ozonation are investigated for the removal of micropollutants from leachate whereas the applicability of photocatalysis for the removal of a wide variety of micropollutants from leachate needs in-depth studies.
Collapse
Affiliation(s)
- Lakshmi Pisharody
- The Zuckerberg Institute of Water Research, Ben-Gurion University, Israel
| | - Ashitha Gopinath
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Milan Malhotra
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
6
|
de Morais E Silva L, Alves VM, Dantas ERB, Scotti L, Lopes WS, Muratov EN, Scotti MT. Chemical safety assessment of transformation products of landfill leachate formed during the Fenton process. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126438. [PMID: 34182425 DOI: 10.1016/j.jhazmat.2021.126438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Organic chemicals identified in raw landfill leachate (LL) and their transformation products (TPs), formed during Fenton treatment, were analyzed for chemical safety following REACH guidelines. The raw LL was located in the metropolitan region of Campina Grande, in northeast Brazil. We elucidated 197 unique chemical structures, including 154 compounds that were present in raw LL and 82 compounds that were detected in the treated LL, totaling 39 persistent compounds and 43 TPs. In silico models were developed to identify and prioritize the potential level of hazard/risk these compounds pose to the environment and society. The models revealed that the Fenton process improved the biodegradability of TPs. Still, a slight increase in ecotoxicological effects was observed among the compounds in treated LL compared with those present in raw LL. No differences were observed for aryl hydrocarbon receptor (AhR) and antioxidant response element (ARE) mutagenicity. Similar behavior among both raw and treated LL samples was observed for biodegradability; Tetrahymena pyriformis, Daphnia magna, Pimephales promelas and ARE, AhR, and Ames mutagenicity. Overall, our results suggest that raw and treated LL samples have similar activity profiles for all endpoints other than biodegradability.
Collapse
Affiliation(s)
- Luana de Morais E Silva
- Post-Graduate Program in Science and Environmental Technology, Department of Sanitary and Environmental Engineering, State University of Paraíba, 58429-500 Campina Grande, Paraíba, Brazil
| | - Vinicius M Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Edilma R B Dantas
- Post-Graduate Program in Science and Environmental Technology, Department of Sanitary and Environmental Engineering, State University of Paraíba, 58429-500 Campina Grande, Paraíba, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil; Teaching and Research Management - University Hospital, Federal University of Paraíba-Campus I, 58051-970 João Pessoa, Paraíba, Brazil
| | - Wilton Silva Lopes
- Post-Graduate Program in Science and Environmental Technology, Department of Sanitary and Environmental Engineering, State University of Paraíba, 58429-500 Campina Grande, Paraíba, Brazil
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
7
|
Carbajo J, Silveira J, Pliego G, Zazo J, Casas J. Increasing Photo-Fenton process Efficiency: The effect of high temperatures. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Ateş H, Argun ME. Advanced oxidation of landfill leachate: Removal of micropollutants and identification of by-products. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125326. [PMID: 33611035 DOI: 10.1016/j.jhazmat.2021.125326] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate contains several macropollutants and micropollutants that cannot be removed efficiently by conventional treatment processes. Therefore, an advanced oxidation process is a promising step in post or pre-treatment of leachate. In this study, the effects of Fenton and ozone oxidation on the removal of 16 emerging micropollutants including polycyclic aromatic hydrocarbons (PAHs), phthalates, alkylphenols and pesticides were investigated. The Fenton and ozone oxidation of the leachate were performed with four (reaction time: 20-90 min, Fe(II) dose: 0.51-2.55 g/L, H2O2 dose: 5.1-25.5 g/L and pH: 3-5) and two (ozonation time: 10-130 min and pH: 4-10) independent variables, respectively. Among these operating conditions, reaction time played more significant role (p-value < 0.05) in eliminating di-(2-Ethylhexyl) phthalate, 4-nonylphenol and 4-tert-octylphenol for both processes. The results showed that Fenton and ozone oxidation processes had a high degradation potential for micropollutants except for the PAHs including four and more rings. Removal efficiencies of micropollutants by ozone and Fenton oxidation were determined in the range of 5-100%. Although the removal efficiencies of chemical oxygen demand (COD) and some micropollutants such as phthalates were found much higher in the Fenton process than ozonation, the degradation products occurred during the Fenton oxidation were a higher molecular weight. Moreover, the oxidation intermediates for the both processes were found as mainly benzaldehyde, pentanoic acid and hydro cinnamic acid as well as derivatives of naphthalenone and naphthalenediol. Also, acid ester with higher molecular weight, naphthalene-based and phenolic compounds were detected in the Fenton oxidation.
Collapse
Affiliation(s)
- Havva Ateş
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Turkey.
| | - Mehmet Emin Argun
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Turkey
| |
Collapse
|
9
|
Argun ME, Akkuş M, Ateş H. Investigation of micropollutants removal from landfill leachate in a full-scale advanced treatment plant in Istanbul city, Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141423. [PMID: 32818893 DOI: 10.1016/j.scitotenv.2020.141423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Although the levels of micropollutants in landfill leachate and municipal wastewater are well-established, the individual removal mechanisms and the fate of micropollutants throughout a landfill leachate treatment plant (LTP) were seldom investigated. Therefore, the determination of the removal efficiencies and the fates of micropollutants in a full-scale leachate treatment plant located in the largest city of Turkey were aimed in this study. Some important processes, such as equalization pond, bioreactor, ultrafiltration (UF) and nanofiltration (NF), are being operated in the treatment plant. Landfill leachate was characterized as an intense pollution source of macro and micropollutants compared to other water types. Chemical oxygen demand (COD), NH3, suspended solids (SS) and electrical conductivity (EC) values of the landfill leachate (and their removal efficiencies in the treatment plant) were determined as 18,656 ± 12,098 mg/L (98%), 3090 ± 845 mg/L (99%), 4175 ± 1832 mg/L (95%) and 31 ± 2 mS/cm (51%), respectively. Within the scope of the study, the most frequently and abundantly detected micropollutants in the treatment plant were found as heavy metals (8 ± 1.7 mg/L), VOCs (38 ± 2 μg/L), alkylphenols (9 ± 3 μg/L) and phthalates (8 ± 3 μg/L) and the overall removal efficiencies of these micropollutants ranged from -11% to 100% in the treatment processes. The main removal mechanism of VOCs in the aerobic treatment process has been found as the volatilization due to Henry constants greater than 100 Pa·m3/mol. However, the molecular weight cut off restriction of UF membrane has caused to less or negative removal efficiencies for some VOCs. The biological treatment unit which consists of sequential anoxic and oxic units (A/O) was found effective on the removal of PAHs (62%) and alkylphenols (87%). It was inferred that both NO3 accumulation in anoxic reactor, high hydraulic retention time (HRT) and sludge retention time (SRT) in aerobic reactor provide higher biodegradation and volatilization efficiencies as compared to the literature. Membrane processes were more effective on the removal of alkylphenols (60-80%) and pesticides (59-74%) in terms of influent and effluent loads of each unit. Removal efficiencies for Cu, Ni and Cr, which were the dominant heavy metals, were determined as 92, 91 and 51%, respectively and the main removal mechanism for heavy metals has thought to be coprecipitation of suspended solids by microbial biopolymers in the bioreactor and the separation of colloids during membrane filtration. Total effluent loads of the LTP for VOCs, semi volatiles and heavy metals were 1.0 g/day, 5.2 g/day and 1.5 kg/day, respectively. It has been concluded that the LTP was effectively removing both conventional pollutants and micropollutants with the specific operation costs of 0.27 $/(kg of removed COD), 0.13 $/(g of removed VOCs), 0.35 $/(g of removed SVOCs) and 2.6 $/(kg of removed metals).
Collapse
Affiliation(s)
- Mehmet Emin Argun
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Konya, Turkey.
| | - Mehmet Akkuş
- Konya Technical University, Institution of Graduate Education, Department of Environmental Engineering, Konya, Turkey
| | - Havva Ateş
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Konya, Turkey
| |
Collapse
|
10
|
Chen W, He C, Gu Z, Wang F, Li Q. Molecular-level insights into the transformation mechanism for refractory organics in landfill leachate when using a combined semi-aerobic aged refuse biofilter and chemical oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140502. [PMID: 32887006 DOI: 10.1016/j.scitotenv.2020.140502] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Landfill leachate contains high concentrations of complex organic matter (OM) that can severely impact the ecological environment. If landfill leachate is to be treated using a combined "biological + advanced treatment" process, the molecular information of OM must be investigated to optimize the operation parameters of the combined process and maximize the removal of organic pollutants. This study applied ultra-high resolution mass spectroscopy to investigate the degradation and transformation characteristics of refractory OM in mature landfill leachate at the molecular level (m/z = 150-800) during biological treatment (i.e., semi-aerobic aged refuse biofilter, SAARB) and subsequent chemical oxidation (i.e., the Fenton process and ozonation). After SAARB treatment, the polycyclic aromatics (aromatic index, AI > 0.66) and polyphenol (0.66 ≥ AI > 0.50) contents increased, and the highly unsaturated phenolic compounds (AI ≤ 0.50 and H/C < 1.5), which have a high bioavailability, were mostly removed. Compared with raw leachate, SAARB effluent (i.e., SAARB leachate) contained fewer organics with short carbon chains, more organics with long carbon chains, an elevated condensation degree for organics and, thus, a considerably reduced biodegradability. Although both the Fenton and ozonation processes could remove many of the polycyclic aromatics and polyphenols, ozone produced considerable amounts of aliphatic compounds with high bioavailability. Compared to ozonation, the Fenton process utilized the hydroxyl radical to non-selectively react with OM and produced better mineralization results.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Fan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
11
|
Gursoy-Haksevenler BH, Arslan-Alaton I. Effects of treatment on the characterization of organic matter in wastewater: a review on size distribution and structural fractionation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:799-828. [PMID: 33031062 DOI: 10.2166/wst.2020.403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since it is difficult to analyze the components of organic matter in complex effluent matrices individually, the use of more collective, but at the same time, specific wastewater characterization methods would be more appropriate to evaluate changes in effluent characteristics during wastewater treatment. For this purpose, size distribution and structural (resin) fractionation tools have recently been proposed to categorize wastewater. There are several case studies available in the scientific literature being devoted to the application of these fractionation methods. This paper aimed to review the most relevant studies dealing with the evaluation of changes in wastewater characteristics using size distribution and structural (resin) fractionation tools. According to these studies, sequential filtration-ultrafiltration procedures, as well as XAD resins, are frequently employed for size and structural fractionations, respectively. This review focuses on the most relevant publications including biological treatment processes, as well as chemical treatment methods such as coagulation-flocculation, electrocoagulation, the Fenton's reagent and ozonation. This study aims at providing an insight into the possible treatment mechanisms and details the understanding what structural features of wastewater components enabled or prevented efficient treatment (removal) or targeted pollutants.
Collapse
Affiliation(s)
- B Hande Gursoy-Haksevenler
- Faculty of Political Science, Department of Political Science and Public Administration, Marmara University, 34820 Beykoz, Istanbul, Turkey E-mail:
| | - Idil Arslan-Alaton
- School of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
12
|
Ruiz-Delgado A, Plaza-Bolaños P, Oller I, Malato S, Agüera A. Advanced evaluation of landfill leachate treatments by low and high-resolution mass spectrometry focusing on microcontaminant removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121372. [PMID: 31610347 DOI: 10.1016/j.jhazmat.2019.121372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Conventional wastewater treatments are not usually effective in the remediation of specific landfill leachates due to their high content in toxic and recalcitrant compounds. Advanced and intensive treatments are needed for the decontamination and possible recycling of these effluents. Here, the combination of advanced oxidation processes (solar photo-Fenton) and an aerobic biological reactor have been applied to treat urban landfill leachates. The effectiveness of the proposed treatment line was also evaluated considering the removal of organic microcontaminants (OMCs) identified in the different phases, which is an innovative practice. The analytical strategy included: (i) a target approach (115 analytes) by liquid chromatography-mass spectrometry (LC-MS/MS); and two suspect approaches using (ii) LC-high-resolution MS (database with >1300 compounds) and (iii) gas-chromatography-MS (database with >900 compounds). OMCs on the treated landfill leachate was reduced up to 94% of the initial concentration. 8 target compounds (mainly pharmaceuticals) out of 115 target analytes represented 85% of the OMC concentration in the raw leachate: cotinine, diclofenac, gabapentin, ketoprofen, lidocaine, mecoprop, nicotine and trigonelline. 3 non-previously reported OMCs were confirmed: di-n-nonyl phthalate, o-phenylphenol and tonalide. Leachate partially oxidized by solar photo-Fenton process can be successfully incorporated to biological systems to complete the treatment by means of specifically adapted biomass.
Collapse
Affiliation(s)
- A Ruiz-Delgado
- CIESOL (Solar Energy Research Center), Joint Centre University of Almeria-CIEMAT, Carretera de Sacramento s/n, E-04120, Almeria, Spain; Plataforma Solar de Almería-CIEMAT, Carretera de Senés Km 4, E-04200, Tabernas, Almeria, Spain
| | - P Plaza-Bolaños
- CIESOL (Solar Energy Research Center), Joint Centre University of Almeria-CIEMAT, Carretera de Sacramento s/n, E-04120, Almeria, Spain; Department of Chemistry and Physics, University of Almeria, Carretera de Sacramento s/n, E-04120, Almeria, Spain.
| | - I Oller
- CIESOL (Solar Energy Research Center), Joint Centre University of Almeria-CIEMAT, Carretera de Sacramento s/n, E-04120, Almeria, Spain; Plataforma Solar de Almería-CIEMAT, Carretera de Senés Km 4, E-04200, Tabernas, Almeria, Spain
| | - S Malato
- CIESOL (Solar Energy Research Center), Joint Centre University of Almeria-CIEMAT, Carretera de Sacramento s/n, E-04120, Almeria, Spain; Plataforma Solar de Almería-CIEMAT, Carretera de Senés Km 4, E-04200, Tabernas, Almeria, Spain
| | - A Agüera
- CIESOL (Solar Energy Research Center), Joint Centre University of Almeria-CIEMAT, Carretera de Sacramento s/n, E-04120, Almeria, Spain; Department of Chemistry and Physics, University of Almeria, Carretera de Sacramento s/n, E-04120, Almeria, Spain
| |
Collapse
|
13
|
Lovato M, Buffelli JR, Abrile M, Martín C. Kinetics and efficiency of ozone for treatment of landfill leachate including the effect of previous microbiological treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4474-4487. [PMID: 29557042 DOI: 10.1007/s11356-018-1710-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
The application of conventional physicochemical and microbiological techniques for the removal of organic pollutants has limitations for its utilization on wastewaters as landfill leachates because of their high concentration of not easily biodegradable organic compounds. The use of ozone-based technologies is an alternative and complementary treatment for this type of wastewaters. This paper reports the study of the degradation of landfill leachates from different stages of a treatment plant using ozone and ozone + UV. The experimental work included the determination of the temporal evolution of COD, TOC, UV254, and color. Along the experimental runs, the instantaneous off-gas ozone concentration was measured. The reaction kinetics follows a global second order expression with respect to COD and ozone concentrations. A kinetic model which takes into account the gas liquid mass transfer coupled with the chemical reaction was developed, and the corresponding parameters of the reacting system were determined. The mathematical model is able to appropriately simulate COD and ozone concentrations but exhibiting limitations when varying the leachate type. The potential application of ozone was verified, although the estimated efficiencies for COD removal and ozone consumption as well as the effect of UV radiation show variations on their trends. In this sense, it is interesting to note that the relative ozone yield has significant oscillations as the reaction proceeds. Finally, the set of experimental results demonstrates the crucial importance of the selection of process conditions to improve ozone efficiencies. This approach should consider variations in the ozone supply in order to minimize losses as well as the design of exhaustion methods as multiple stage reactors using chemical engineering design tools.
Collapse
Affiliation(s)
- María Lovato
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET-Universidad Nacional del Litoral, Guemes 3450, 3000, Santa Fe, Argentina
| | - José Real Buffelli
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET-Universidad Nacional del Litoral, Guemes 3450, 3000, Santa Fe, Argentina
| | - Mariana Abrile
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET-Universidad Nacional del Litoral, Guemes 3450, 3000, Santa Fe, Argentina
| | - Carlos Martín
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET-Universidad Nacional del Litoral, Guemes 3450, 3000, Santa Fe, Argentina.
| |
Collapse
|
14
|
Cui Y, Wu Q, Yang M, Cui F. Three-dimensional excitation-emission matrix fluorescence spectroscopy and fractions of dissolved organic matter change in landfill leachate by biological treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:793-799. [PMID: 26341332 DOI: 10.1007/s11356-015-5226-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
The water quality improvement of landfill leachate after sequencing batch reactor (SBR) activated sludge process were evaluated by chemical oxygen demand (COD), dissolved organic matter (DOM) fractions, and three-dimensional excitation-emission matrix (EEM), from which the new understanding was obtained. The results indicated that less than 14% COD was removed by SBR. The EEM of leachate and SBR effluent showed that HPO-A and TPI-A were appeared in the peak C, while the HPI, HPO-N, and TPI-N could not be found due to dilution. Although humic acid appeared in peak C, not all the organic materials in peak C are humic acid. And because landfill leachate is a kind of complicated wastewater, therefore, only EEM cannot efficiently reflect the water quality.
Collapse
Affiliation(s)
- Yanrui Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Qing Wu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Mengsi Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Fengling Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
15
|
Oturan N, van Hullebusch ED, Zhang H, Mazeas L, Budzinski H, Le Menach K, Oturan MA. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12187-12196. [PMID: 26378656 DOI: 10.1021/acs.est.5b02809] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, electrochemical advanced oxidation processes have been shown to be an effective alternative for the removal of refractory organic compounds from water. This study is focused on the effective removal of recalcitrant organic matter (micropollutants, humic substances, etc.) present in municipal solid waste landfill leachates. A mixture of eight landfill leachates has been studied by the electro-Fenton process using a Pt or boron-doped diamond (BDD) anode and a carbon felt cathode or by the anodic oxidation process with a BDD anode. These processes exhibit great oxidation ability due to the in situ production of hydroxyl radicals ((•)OH), a highly powerful oxidizing species. Both electrochemical processes were shown to be efficient in the removal of dissolved total organic carbon (TOC) from landfill leachates. Regarding the electro-Fenton process, the replacement of the classical anode Pt by the anode BDD allows better performance in terms of dissolved TOC removal. The occurrence and removal yield of 19 polycyclic aromatic hydrocarbons, 15 volatile organic compounds, 7 alkylphenols, 7 polychlorobiphenyls, 5 organochlorine pesticides, and 2 polybrominated diphenyl ethers in landfill leachate were also investigated. Both electrochemical processes allow one to reach a quasicomplete removal (about 98%) of these organic micropollutants.
Collapse
Affiliation(s)
- Nihal Oturan
- Laboratoire Géomatériaux et Environnement, Université Paris-Est, EA 4508, UPEM , 5 Boulevard Descartes, Marne-la-Vallée 77454 Cedex 2, France
| | - Eric D van Hullebusch
- Laboratoire Géomatériaux et Environnement, Université Paris-Est, EA 4508, UPEM , 5 Boulevard Descartes, Marne-la-Vallée 77454 Cedex 2, France
| | - Hui Zhang
- Department of Environmental Engineering, Wuhan University , P.O. Box C319 Luoyu Road 129#, Wuhan 430079, China
| | - Laurent Mazeas
- Hydrosystems and Bioprocesses Research Unit, IRSTEA , 1 Rue Pierre-Gilles de Gennes, CS 10030, Antony F-92761 Cedex, France
| | - Hélène Budzinski
- Environnements et Paléoenvironnements Océaniques et Continentaux, EPOC-UMR 5805 CNRS, Laboratoire de Physico-et Toxico-Chimie de l'environnement (LPTC), Université de Bordeaux, Bâtiment A12, 351 Cours de la Libération, 33405 Talence, France
| | - Karyn Le Menach
- Environnements et Paléoenvironnements Océaniques et Continentaux, EPOC-UMR 5805 CNRS, Laboratoire de Physico-et Toxico-Chimie de l'environnement (LPTC), Université de Bordeaux, Bâtiment A12, 351 Cours de la Libération, 33405 Talence, France
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement, Université Paris-Est, EA 4508, UPEM , 5 Boulevard Descartes, Marne-la-Vallée 77454 Cedex 2, France
| |
Collapse
|
16
|
Lovato ME, Gilliard MB, Cassano AE, Martín CA. Kinetics of the degradation of n-butyl benzyl phthalate using O₃/UV, direct photolysis, direct ozonation and UV effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:909-917. [PMID: 24687792 DOI: 10.1007/s11356-014-2796-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
The aim of this work is to study the degradation kinetics of the endocrine disruptor benzyl butyl phthalate using ozone and UV radiation. The model comprises four parallel subsystems that are identified and isolated: (1) direct photolysis, (2) direct ozonation in the absence of hydroxyl radicals, (3) complete ozonation (direct + indirect oxidation), and (4) ozone + UV. To determine the nature of ozone attacks and the influence of ·OH radicals on O3 activity, two sets of experiments were performed: (i) conventional ozonation and (ii) the same ozonation experiments in the presence of tert-butanol as radical scavenger, where only the reactions involving molecular ozone are present. The explored variables were (i) ozone concentration, (ii) incident radiation rate at the reactor windows, (iii) reaction pH, and (iv) the presence of radical scavengers. Major intermediates of BBP degradation were identified. Degradation kinetics was correctly modeled by a pseudo-second-order kinetic model based on the sum of all the effects occurring during the treatment. The corresponding kinetic constants were obtained, and the relative contributions of each of the considered subsystems were evaluated.
Collapse
Affiliation(s)
- María E Lovato
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (UNL-CONICET), Güemes 3450, 3000, Santa Fe, Argentina
| | | | | | | |
Collapse
|
17
|
Kalmykova Y, Moona N, Strömvall AM, Björklund K. Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters. WATER RESEARCH 2014; 56:246-57. [PMID: 24686091 DOI: 10.1016/j.watres.2014.03.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 05/20/2023]
Abstract
Landfill leachates are repeatedly found contaminated with organic pollutants, such as alkylphenols (APs), phthalates and polycyclic aromatic hydrocarbons (PAHs) at levels exceeding water quality standards. It has been shown that these pollutants may be present in the colloidal and truly dissolved phase in contaminated water, making particle separation an inefficient removal method. The aim of this study was to investigate sorption and degradation of petroleum hydrocarbons (PHCs), selected APs, bisphenol A (BPA), phthalates and PAHs from landfill leachate using sand, granulated activated carbon (GAC) and peat moss filters. A pilot plant was installed at an inactive landfill with mixed industrial and household waste and samples were collected before and after each filter during two years. Leachate pre-treated in oil separator and sedimentation pond failed to meet water quality standards in most samples and little improvement was seen after the sand filter. These techniques are based on particle removal, whereas the analysed pollutants are found, to varying degrees, bound to colloids or dissolved. However, even highly hydrophobic compounds expected to be particle-bound, such as the PHCs and high-molecular weight PAHs, were poorly removed in the sand filter. The APs and BPA were completely removed by the GAC filter, while mass balance calculations indicate that 50-80% of the investigated phenols were removed in the peat filter. Results suggest possible AP degradation in peat filters. No evidence of phthalate degradation in the landfill, pond or the filters was found. The PHCs were completely removed in 50% and 35% of the measured occasions in the GAC and peat filters, respectively. The opposite trend was seen for removal of PAHs in GAC (50%) and peat (63%). Oxygenated PAHs with high toxicity were found in the leachates but not in the pond sediment. These compounds are likely formed in the pond water, which is alarming because sedimentation ponds are commonly used treatment techniques. The oxy-PAHs were effectively removed in the GAC, and especially the peat filter. It was hypothesized that dissolved compounds would adsorb equally well to the peat and GAC filters. This was not completely supported as the GAC filter was in general more efficient than peat.
Collapse
Affiliation(s)
- Yuliya Kalmykova
- Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Nashita Moona
- Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Ann-Margret Strömvall
- Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Karin Björklund
- Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|