1
|
Mishra J, Botlaguduru VSV. Characterization of stormwater runoff in the powai region of Mumbai. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:577. [PMID: 40261457 DOI: 10.1007/s10661-025-14028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Urban stormwater runoff could be a significant non-point source of surface water pollution during India's monsoon season (June - September). This study aims to characterize the stormwater runoff in the Powai region of Mumbai and investigate interlinkages between precipitation characteristics and runoff quality. The levels of conventional water quality parameters (physical, chemical, microbiological) and emerging contaminants in the runoff were determined. Runoff samples were collected from various outfall locations (SL1, SL2, SL3, SL4 and SL5) which drain into the Powai Lake. Runoff sampling was conducted for ten storm events spread over the 2022 and 2023 monsoon seasons. Two outfall locations (SL4, SL5) convey runoff originating primarily from an institutional township, and have reported the lowest organic loads and fecal contamination. However, runoff within the township contains elevated levels of metals such as iron, lead and Aluminum. In addition, emerging contaminants such as phthalates, pesticides, pharmaceuticals and personal care products were detected in the runoff. The runoff outside the township (SL1, SL2, SL3) had low DO levels and highest mean concentrations of TSS, BOD, and oil and grease. The potential mixture of untreated sewage with runoff was identified as the probable cause for low DO, which was further substantiated by the high fecal coliform loads (1600 MPN/100 mL). The findings from this study identify runoff as one of the dominant causes of degrading water quality and will serve as a reference to further scientific efforts in quantifying the pollutant loads, and development of export coefficients for the Powai Lake watershed.
Collapse
Affiliation(s)
- Jyoti Mishra
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | |
Collapse
|
2
|
Teixeira C, Rodrigues S, Amorim J, Diogo BS, Pinto I, Carvalho AP, Antunes SC, Teles LO. Comprehensive machine learning assessment of zebrafish behaviour and biochemical markers in response to caffeine exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02873-0. [PMID: 40108086 DOI: 10.1007/s10646-025-02873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Environmental exposure to caffeine (CAF) poses potential risks to aquatic ecosystems, affecting non-target species. This study investigated the chronic effects of environmentally relevant CAF concentrations, ranging from 0.16-50 µg/L, on zebrafish behaviour. A Kohonen-type artificial neural network classified zebrafish behaviour into nine behavioural classes based on a set of movement descriptors (mean meander, mean velocity, instantaneous velocity, distance to centre point, mean angular velocity and instantaneous acceleration), while a comprehensive analysis integrated behavioural classes previously defined and biochemical markers of oxidative stress, lipid peroxidation, reserve energy content, energetic pathways, and neurotoxicity. The discriminant analysis demonstrated that behaviour descriptors and biomarkers individually explained 38% and 67% of data variation, respectively, while the combination resulted in 19 models with 100% correct diagnosis. One of the models (Model A) seemed to suit the best dose-response relationship, incorporating key biomarkers including superoxide dismutase, catalase, glutathione peroxidase activities, and behavioural characteristics such as movement distance and velocity. This suggested methodology offers a different approach to evaluating CAF's ecological impact, highlighting behavioural analysis as a valuable complement to traditional ecotoxicological assessments. This study provides a novel framework for understanding organism-level responses to environmental stressors (e.g., several anthropogenic compounds), utilising Mahalanobis distance as an integrative response index. This approach shows promise for broader application in assessing the impact of various aquatic contaminants on aquatic organisms (from bacteria to fish), potentially extending to pharmaceuticals, pesticides, and industrial pollutants.
Collapse
Affiliation(s)
- Cláudia Teixeira
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal.
| | - Sara Rodrigues
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - João Amorim
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bárbara S Diogo
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ivo Pinto
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- UMIB, Unidade Multidisciplinar de Investigação Biomédica - Instituto Ciências Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - António Paulo Carvalho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Sara C Antunes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Luís Oliva Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
3
|
Sridhar D, Parimalarenganayaki S. Evaluation of sources, spatial and temporal distribution, ecological and health risk associated with CAF (Caffeine) and DEET (N, N-diethyl-meta-toluamide) contamination in the urban groundwater parts of Vellore city, Tamilnadu, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:44. [PMID: 39777560 DOI: 10.1007/s10653-024-02351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Urban environments are heavily influenced by various activities, leading to contamination of water sources by emerging contaminants (ECs). Among these, caffeine (CAF) and N, N-diethyl-meta-toluamide (DEET) are notable ECs frequently found in domestic sewage due to human activities. Despite extensive research on emerging contaminants, limited studies have focused on the seasonal variations, human health and ecological risks of CAF and DEET in urban groundwater, particularly in Indian cities. This study aimed to analyze the occurrence, spatial distribution, ecological and health risks of CAF and DEET in groundwater in Vellore city, Tamil Nadu, India. A total of 96 groundwater samples were collected across four seasons in 2022 and analyzed using Hichrom HPLC in an 844 UV/VIS compact Ion Chromatography system. CAF and DEET were detected in 95% and 96% of samples, with mean concentrations of 34 μg/L and 30 μg/L, respectively. Contamination levels were higher during the Southwest Monsoon (SWM) and Northeast Monsoon (NEM) seasons. Health risk assessments for children, women, and men showed that CAF posed significant risks, particularly to children during the NEM season, followed by women and men. Although DEET exhibited lower health risks overall, children remained the most vulnerable group. Statistical analysis confirmed significant differences in exposure levels, with children showing the highest variations. Ecological risk assessment revealed that 96.88% of samples containing CAF posed moderate ecological risks, while 6.25% of DEET samples fell into the same category. This study highlights the widespread presence of CAF and DEET in urban groundwater and their associated health and ecological risks. The findings emphasize the need for effective strategies to monitor and mitigate EC contamination in urban water systems.
Collapse
Affiliation(s)
- Daggupati Sridhar
- School of Civil Engineering, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | | |
Collapse
|
4
|
Gómez-Navarro O, De Girolamo AM, Lorenz AW, Khadhar S, Debieche TH, Gentile F, Chiron S, Pérez S. Characterization of anthropogenic impacts in Mediterranean intermittent rivers with chemical, ecological and hydrological indicators. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135951. [PMID: 39342859 DOI: 10.1016/j.jhazmat.2024.135951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Water scarcity in the Mediterranean area has increased the number of intermittent rivers, whose flow ceases either occasionally or totally. Key elements to characterize their dynamics are water quality, hydrological, and ecological status, when wastewater effluents dominate flow. Regarding water quality, pharmaceuticals are major pollutants, and serve as indicators of wastewater presence. Intermittent rivers are biodiversity hotspots where their hydrological regime may suffer alterations associated with wastewater effluents, making them harder to characterize than perennial streams. This study aimed to integratively characterize intermittent rivers through chemical, ecological and hydrological status calculating respective indices in twenty Mediterranean intermittent wastewater-impacted rivers located in Spain, France, Italy, Algeria and Tunisia. Pharmaceuticals were used as indicators assessing their frequency of PNEC exceedance and detection; while two ecological indicators and one hydrological indicator were used to evaluate wastewater stress on catchments. All indicators displayed a noticeable decline from upper to lower parts of the rivers, proving the effect of anthropogenic stressors on the aquatic environment. The Tunisian catchment displayed the most compromised conditions across all indicators, and the Algerian site even though low concentrations were detected, five compounds exceeded PNEC thresholds. This highlights the need for increased dedication and the adoption of water pollution solutions.
Collapse
Affiliation(s)
| | - Anna Maria De Girolamo
- Water Research Institute, National Research Council, Viale F. De Blasio 5, Bari 70132, Italy
| | - Armin W Lorenz
- Department of Aquatic Ecology, Faculty for Biology, University of Duisburg-Essen, Germany
| | - Samia Khadhar
- Laboratory of Georesources, Technopole of Borj Cedria, University Carthage, Soliman, Tunisia
| | - Taha-Hocine Debieche
- Geological Engineering Laboratory (LGG), Faculty of Nature and Life Sciences, University of Jijel, Algeria
| | - Francesco Gentile
- Department Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Serge Chiron
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, Montpellier 34093, France
| | - Sandra Pérez
- ONHEALTH, IDAEA-CSIC, C/Jordi Girona 18-26, Barcelona 08034, Spain.
| |
Collapse
|
5
|
Alqarni AM. Analytical Methods for the Determination of Pharmaceuticals and Personal Care Products in Solid and Liquid Environmental Matrices: A Review. Molecules 2024; 29:3900. [PMID: 39202981 PMCID: PMC11357415 DOI: 10.3390/molecules29163900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Among the various compounds regarded as emerging contaminants (ECs), pharmaceuticals and personal care products (PPCPs) are of particular concern. Their continuous release into the environment has a negative global impact on human life. This review summarizes the sources, occurrence, persistence, consequences of exposure, and toxicity of PPCPs, and evaluates the various analytical methods used in the identification and quantification of PPCPs in a variety of solid and liquid environmental matrices. The current techniques of choice for the analysis of PPCPs are state-of-the-art liquid chromatography coupled to mass spectrometry (LC-MS) or tandem mass spectrometry (LC-MS2). However, the complexity of the environmental matrices and the trace levels of micropollutants necessitate the use of advanced sample treatments before these instrumental analyses. Solid-phase extraction (SPE) with different sorbents is now the predominant method used for the extraction of PPCPs from environmental samples. This review also addresses the ongoing analytical method challenges, including sample clean-up and matrix effects, focusing on the occurrence, sample preparation, and analytical methods presently available for the determination of environmental residues of PPCPs. Continuous development of innovative analytical methods is essential for overcoming existing limitations and ensuring the consistency and diversity of analytical methods used in investigations of environmental multi-class compounds.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
6
|
Lenaker PL, Pronschinske MA, Corsi SR, Stokdyk JP, Olds HT, Dila DK, McLellan SL. A multi-marker assessment of sewage contamination in streams using human-associated indicator bacteria, human-specific viruses, and pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172505. [PMID: 38636851 DOI: 10.1016/j.scitotenv.2024.172505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Human sewage contaminates waterways, delivering excess nutrients, pathogens, chemicals, and other toxic contaminants. Contaminants and various sewage indicators are measured to monitor and assess water quality, but these analytes vary in their representation of sewage contamination and the inferences about water quality they support. We measured the occurrence and concentration of multiple microbiological (n = 21) and chemical (n = 106) markers at two urban stream locations in Milwaukee, Wisconsin, USA over two years. Five-day composite water samples (n = 98) were collected biweekly, and sewage influent samples (n = 25) were collected monthly at a Milwaukee, WI water reclamation facility. We found the vast majority of markers were not sensitive enough to detect sewage contamination. To compare analytes for monitoring applications, five consistently detected human sewage indicators were used to evaluate temporal patterns of sewage contamination, including microbiological (pepper mild mottle virus, human Bacteroides, human Lachnospiraceae) and chemical (acetaminophen, metformin) markers. The proportion of human sewage in each stream was estimated using the mean influent concentration from the water reclamation facility and the mean concentration of all stream samples for each sewage indicator marker. Estimates of instream sewage pollution varied by marker, differing by up to two orders of magnitude, but four of the five sewage markers characterized Underwood Creek (mean proportions of human sewage ranged 0.0025 % - 0.075 %) as less polluted than Menomonee River (proportions ranged 0.013 % - 0.14 %) by an order of magnitude more. Chemical markers correlated with each other and yielded higher estimates of sewage pollution than microbial markers, which exhibited greater temporal variability. Transport, attenuation, and degradation processes can influence chemical and microbial markers differently and cause variation in human sewage estimates. Given the range of potential human and ecological health effects of human sewage contamination, robust characterization of sewage contamination that uses multiple lines of evidence supports monitoring and research applications.
Collapse
Affiliation(s)
- Peter L Lenaker
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA.
| | - Matthew A Pronschinske
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Steven R Corsi
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Joel P Stokdyk
- U.S. Geological Survey, Laboratory for Infectious Disease and the Environment, 2615 Yellowstone Dr., Marshfield, WI 54449, USA
| | - Hayley T Olds
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Deborah K Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA
| |
Collapse
|
7
|
Linge KL, Gruchlik Y, Busetti F, Ryan U, Joll CA. Use of micropollutant indicator ratios to characterize wastewater treatment plant efficiency and to identify wastewater impact on groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120822. [PMID: 38599088 DOI: 10.1016/j.jenvman.2024.120822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Contamination by wastewater has been traditionally assessed by measuring faecal coliforms, such as E. coli and entereococci. However, using micropollutants to track wastewater input is gaining interest. In this study, we identified nine micropollutant indicators that could be used to characterize water quality and wastewater treatment efficiency in pond-based wastewater treatment plants (WWTPs) of varying configuration. Of 232 micropollutants tested, nine micropollutants were detected in treated wastewater at concentrations and frequencies suitable to be considered as indicators for treated wastewater. The nine indicators were then classified as stable (carbamazepine, sucralose, benzotriazole, 4+5-methylbenzotriazole), labile (atorvastatin, naproxen, galaxolide) or intermediate/uncertain (gemfibrozil, tris(chloropropyl)phosphate isomers) based on observed removals in the pond-based WWTPs and correlations between micropollutant and dissolved organic carbon removal. The utility of the selected indicators was evaluated by assessing the wastewater quality in different stages of wastewater treatment in three pond-based WWTPs, as well as selected groundwater bores near one WWTP, where treated wastewater was used to irrigate a nearby golf course. Ratios of labile to stable indicators provided insight into the treatment efficiency of different facultative and maturation ponds and highlighted the seasonal variability in treatment efficiency for some pond-based WWTPs. Additionally, indicator ratios of labile to stable indicators identified potential unintended release of untreated wastewater to groundwater, even with the presence of micropollutants in other groundwater bores related to approved reuse of treated wastewater.
Collapse
Affiliation(s)
- Kathryn L Linge
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia.
| | - Yolanta Gruchlik
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia
| | - Francesco Busetti
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia
| | - Una Ryan
- Harry Butler Institute, College of Science, Health, Education and Engineering, Murdoch University, 90 South Street, Murdoch, Perth, Australia
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, Australia
| |
Collapse
|
8
|
Tong X, Goh SG, Mohapatra S, Tran NH, You L, Zhang J, He Y, Gin KYH. Predicting Antibiotic Resistance and Assessing the Risk Burden from Antibiotics: A Holistic Modeling Framework in a Tropical Reservoir. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6781-6792. [PMID: 38560895 PMCID: PMC11025116 DOI: 10.1021/acs.est.3c10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Predicting the hotspots of antimicrobial resistance (AMR) in aquatics is crucial for managing associated risks. We developed an integrated modeling framework toward predicting the spatiotemporal abundance of antibiotics, indicator bacteria, and their corresponding antibiotic-resistant bacteria (ARB), as well as assessing the potential AMR risks to the aquatic ecosystem in a tropical reservoir. Our focus was on two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), and on Escherichia coli (E. coli) and its variant resistant to sulfamethoxazole-trimethoprim (EC_SXT). We validated the predictive model using withheld data, with all Nash-Sutcliffe efficiency (NSE) values above 0.79, absolute relative difference (ARD) less than 25%, and coefficient of determination (R2) greater than 0.800 for the modeled targets. Predictions indicated concentrations of 1-15 ng/L for SMX, 0.5-5 ng/L for TMP, and 0 to 5 (log10 MPN/100 mL) for E. coli and -1.1 to 3.5 (log10 CFU/100 mL) for EC_SXT. Risk assessment suggested that the predicted TMP could pose a higher risk of AMR development than SMX, but SMX could possess a higher ecological risk. The study lays down a hybrid modeling framework for integrating a statistic model with a process-based model to predict AMR in a holistic manner, thus facilitating the development of a better risk management framework.
Collapse
Affiliation(s)
- Xuneng Tong
- Department
of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Shin Giek Goh
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Sanjeeb Mohapatra
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Ngoc Han Tran
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Luhua You
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Jingjie Zhang
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
- Northeast
Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Shenzhen
Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen518055,China
| | - Yiliang He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department
of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
- NUS
Environmental Research Institute, National
University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| |
Collapse
|
9
|
Li X, Li L, Tang L, Mei J, Fu J. Unveiling combined ecotoxicity: Interactions and impacts of engineered nanoparticles and PPCPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170746. [PMID: 38342466 DOI: 10.1016/j.scitotenv.2024.170746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Emerging contaminants such as engineered nanoparticles (ENPs), pharmaceuticals and personal care products (PPCPs) are of great concern because of their wide distribution and incomplete removal in conventional wastewater and soil treatment processes. The production and usage of ENPs and PPCPs inevitably result in their coexistence in different environmental media, thus posing various risks to organisms in aquatic and terrestrial ecosystems. However, the existing literature on the physicochemical interactions between ENPs and PPCPs and their effects on organisms is rather limited. Therefore, this paper summarized the ecotoxicity of combined ENPs and PPCPs by discussing: (1) the interactions between ENPs and PPCPs, including processes such as aggregation, adsorption, transformation, and desorption, considering the influence of environmental factors like pH, ionic strength, dissolved organic matter, and temperature; (2) the effects of these interactions on bioaccumulation, bioavailability and biotoxicity in organisms at different trophic levels; (3) the impacted of ENPs and PPCPs on cellular-level biological process. This review elucidated the potential ecological hazards associated with the interaction of ENPs and PPCPs, and serves as a foundation for future investigations into the ecotoxicity and mode of action of ENPs, PPCPs, and their co-occurring metabolites.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Jingting Mei
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
10
|
Andrade HND, Oliveira JFD, Siniscalchi LAB, Costa JDD, Fia R. Global insight into the occurrence, treatment technologies and ecological risk of emerging contaminants in sanitary sewers: Effects of the SARS-CoV-2 coronavirus pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171075. [PMID: 38402973 DOI: 10.1016/j.scitotenv.2024.171075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The SARS-CoV-2 pandemic caused changes in the consumption of prescribed/non-prescribed drugs and the population's habits, influencing the detection and concentration of emerging contaminants (ECs) in sanitary sewage and harming environmental and health risks. Therefore, the present work sought to discuss current literature data on the effects of the "COVID-19 pandemic factor" on the quality of raw sewage produced over a five-year period (2018-2019: pre-pandemic; 2020-2022: during the pandemic) and biological, physical, chemical and hybrid treatment technologies, influencing factors in the removal of ECs and potential ecological risks (RQs). Seven hundred thirty-one publications correlating sewage and COVID-19 were identified: 184 pre-pandemic and 547 during the pandemic. Eight classes and 37 ECs were detected in sewage between 2018 and 2022, with the "COVID-19 pandemic factor" promoting an increase in estrogens (+31,775 %), antibiotics (+19,544 %), antiepileptics and antipsychotics (+722 %), pesticides (+200 %), analgesics, anti-inflammatories and anticoagulants (+173 %), and stimulant medications (+157 %) in sanitary sewage. Among the treatment systems, aerated reactors integrated into biomembranes removed >90 % of cephalexin, clarithromycin, ibuprofen, estrone, and 17β-estradiol. The absorption, adsorption, and biodegradation mechanisms of planted wetland systems contributed to better cost-benefit in reducing the polluting load of sewage ECs in the COVID-19 pandemic, individually or integrated into the WWTP. The COVID-19 pandemic factor increased the potential ecological risks (RQs) for aquatic organisms by 40 %, with emphasis on clarithromycin and sulfamethoxazole, which changed from negligible risk and low risk to (very) high risk and caffeine with RQ > 2500. Therefore, it is possible to suggest that the COVID-19 pandemic intensified physiological, metabolic, and physical changes to different organisms in aquatic biota by ECs during 2020 and 2022.
Collapse
Affiliation(s)
- Heloisa Nascimento de Andrade
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Jacineumo Falcão de Oliveira
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil.
| | | | - Joseane Dunga da Costa
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Ronaldo Fia
- Department of Environmental Engineering, Federal University of Lavras, UFLA, Minas Gerais 37200-000, Brazil
| |
Collapse
|
11
|
Dixit A, Pandey H, Rana R, Kumar A, Herojeet R, Lata R, Mukhopadhyay R, Mukherjee S, Sarkar B. Ecological and human health risk assessment of pharmaceutical compounds in the Sirsa River of Indian Himalayas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123668. [PMID: 38442820 DOI: 10.1016/j.envpol.2024.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The Baddi-Barotiwala-Nalagarh (BBN) region of Indian Himalayas is one of the most important pharmaceutical industrial clusters in Asia. This study investigated the distribution, and ecological and human health risks of four most frequently used pharmaceuticals [ciprofloxacin (CIP), norfloxacin (NOR), cetirizine (CTZ) and citalopram oxalate (ECP)] when co-occurring with metal ions in the Sirsa river water of the BBN region. The concentration range of the selected pharmaceuticals was between 'not detected' to 50 μgL-1 with some exception for CIP (50-100 μgL-1) and CTZ (100-150 μgL-1) in locations directly receiving wastewater discharges. A significant correlation was found between the occurrences of NOR and Al (r2 = 0.65; p = 0.01), and CTZ and K (r2 = 0.50; p = 0.01) and Mg (r2 = 0.50; p = 0.01). A high-level ecological risk [risk quotient (RQ) > 1] was observed for algae from all the pharmaceuticals. A medium-level risk (RQ = 0.01-0.1) was observed for Daphnia from CIP, NOR and ECP, and a high-level risk from CTZ. A low-level risk was observed for fishes from CIP and NOR, whereas CTZ and ECP posed a high-level risk to fishes. The overall risk to ecological receptors was in the order: CTZ > CIP > ECP > NOR. Samples from the river locations receiving water from municipal drains or situated near landfill and pharmaceutical factories exhibited RQ > 1 for all pharmaceuticals. The average hazard quotient (HQ) values for the compounds followed the order: CTZ (0.18) > ECP (0.15) > NOR (0.001) > CIP (0.0003) for children (0-6 years); ECP (0.49) > CTZ (0.29) > NOR (0.005) > CIP (0.001) for children (7-17 years), and ECP (0.34) > CTZ (0.21) > NOR (0.007) > CIP (0.001) for adults (>17 years). The calculated risk values did not readily confirm the status of water as safe or unsafe because the values of predicted no-effect concentration (PNEC) would depend on various other environmental factors such as quality of the toxicity data, and species sensitivity and distribution, which warrants further research.
Collapse
Affiliation(s)
- Arohi Dixit
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Himanshu Pandey
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rajiv Rana
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Anil Kumar
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; School of Health Sciences, Amity University Punjab, Mohali, 140306, India
| | - Rajkumar Herojeet
- Department of Environmental Studies, Post Graduate Government College, Sector 11, Chandigarh, India
| | - Renu Lata
- G.B. Pant National Institute of Himalayan Environment, Mohal-Kullu, 175126, Himachal Pradesh, India
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, 15213, United States; Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Santanu Mukherjee
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA14YQ, United Kingdom; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
12
|
Bhagat J, Singh N, Shimada Y. Southeast Asia's environmental challenges: emergence of new contaminants and advancements in testing methods. FRONTIERS IN TOXICOLOGY 2024; 6:1322386. [PMID: 38469037 PMCID: PMC10925796 DOI: 10.3389/ftox.2024.1322386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Emerging contaminants, including pharmaceuticals, personal care products, microplastics, and per- and poly-fluoroalkyl substances, pose a major threat to both ecosystems and human health in Southeast Asia. As this region undergoes rapid industrialization and urbanization, the increasing presence of unconventional pollutants in water bodies, soil, and various organisms has become an alarming concern. This review comprehensively examines the environmental challenges posed by emerging contaminants in Southeast Asia and recent progress in toxicity testing methods. We discuss the diverse range of emerging contaminants found in Southeast Asia, shedding light on their causes and effects on ecosystems, and emphasize the need for robust toxicological testing methods. This review is a valuable resource for researchers, policymakers, and environmental practitioners working to mitigate the impacts of emerging contaminants and secure a sustainable future for Southeast Asia.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Tsu, Mie, Japan
| | - Nisha Singh
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
13
|
Yu X, Wang Y, Watson P, Yang X, Liu H. Application of passive sampling device for exploring the occurrence, distribution, and risk of pharmaceuticals and pesticides in surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168393. [PMID: 37963530 DOI: 10.1016/j.scitotenv.2023.168393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
Pharmaceuticals and pesticides are compounds of high concern in surface waters around the world. However, few studies have used passive sampling methods to screen and detect these compounds in natural waters. In this study, a self-developed passive sampler was employed to measure pharmaceuticals and pesticides in the rivers of Nanjing, China. A total of 41 pharmaceuticals and 11 pesticides were detected, among which antibiotic and insecticide were the predominant classes, respectively. Valproic acid, caffeine and triclosan from the pharmaceuticals, and isoprocarb and imidacloprid from the pesticides were found frequently with high concentrations. At most sampling sites, the concentration ratios of caffeine versus carbamazepine exceeded 10, and even above 50, indicating relatively poor efficiency of wastewater treatment, or possibly the direct discharge of raw sewage, or other unknown source of pollution. It was found that the concentrations and ecological risks in the northern area of Yangtze River were higher than those in the southern area of Yangtze River, implying that economic development and population density were not the main contributors to the discovered pollution. The total concentration of pharmaceuticals and pesticides in Qinhuai River increased gradually with the direction of water flow, demonstrating the success of water diversion project in flushing and scouring pollutants.
Collapse
Affiliation(s)
- Xinzhi Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaqi Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peter Watson
- Los Alamos National Laboratory, Los Alamos 87545, NM, United States
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
14
|
Singh A, Chaurasia D, Khan N, Singh E, Chaturvedi Bhargava P. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121552. [PMID: 37075921 DOI: 10.1016/j.envpol.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The prevalence of antibiotic traces in the aquatic matrices is a concern due to the emanation of antibiotic resistance which requires a multifaceted approach. One of the potential sources is the wastewater treatment plants with a lack of advance infrastructure leading to the dissemination of contaminants. Continuous advancements in economic globalization have facilitated the application of several conventional, advanced, and hybrid techniques for the mitigation of rising antibiotic traces in the aquatic matrices that have been thoroughly scrutinized in the current paper. Although the implementation of existing mitigation techniques is associated with several limiting factors and barriers which require further research to enhance their removal efficiency. The review further summarizes the application of the microbial processes to combat antibiotic persistence in wastewater establishing a sustainable approach. However, hybrid technologies are considered as most efficient and environmental-benign due to their higher removal efficacy, energy-efficiency, and cost-effectiveness. A brief elucidation has been provided for the mechanism responsible for lowering antibiotic concentration in wastewater through biodegradation and biotransformation. Overall, the current review presents a comprehensive approach for antibiotic mitigation using existing methods however, policies and measures should be implemented for continuous monitoring and surveillance of antibiotic persistence in aquatic matrices to reduce their potential risk to humans and the environment.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
15
|
Muangmora R, Kemacheevakul P, Chuangchote S. Fiberglass cloth coated by coffee ground waste-derived carbon quantum dots/titanium dioxide composite for removal of caffeine and other pharmaceuticals from water. Heliyon 2023; 9:e17693. [PMID: 37455966 PMCID: PMC10338977 DOI: 10.1016/j.heliyon.2023.e17693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Coffee ground waste from the coffee beverage preparation is mainly discarded and consequently ends up in landfill, which cause the contamination of caffeine in various environmental compartments. This study focuses on the upcycling of coffee-ground waste to carbon quantum dots (CQDs) for use as a modifying material to improve the visible light activity of titanium dioxide (TiO2). The CQD solution was synthesized by hydrothermal method, which has an average size of 2.80 ± 0.63 nm. The CQDs/TiO2 photocatalysts were prepared by combining CQD solutions at various amounts with sol-gel TiO2 and then coated on the fiberglass cloths (FGCs). The photocatalytic application mainly focuses on the removal of caffeine from the water. The photocatalytic experiment was preliminary run in a simple batch reactor under visible light. The 5CQDs/TiO2 coated FGC (5 mL of CQD solution/g of Ti-based on sol-gel) showed the best performance, and it was selected for the removal of caffeine and other pharmaceuticals (i.e., carbamazepine and ibuprofen) in the recirculating reactor. The removals of caffeine, carbamazepine, and ibuprofen after irradiation for 9 h were 82%, 88%, and 84%, respectively. The residual concentrations were significantly lower than the reported toxicity levels based on specific species. The changes in total organic carbon were observed, indicating the mineralization of pharmaceuticals in water. The 5CQDs/TiO2 coated FGC showed good flexible performance. No obvious loss of activity was observed for five runs. The actual wastewater from the coffee pot cleaning process was also tested. The removal was 80% for caffeine and 86% for color in the unit of the American Dye Manufacturers Institute (ADMI).
Collapse
Affiliation(s)
- Rattana Muangmora
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
| | - Patiya Kemacheevakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- Research Center of Advanced Materials for Energy and Environmental Technology (MEET), King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Surawut Chuangchote
- Research Center of Advanced Materials for Energy and Environmental Technology (MEET), King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- Department of Tool and Materials Engineering, Faculty of Engineering, King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
| |
Collapse
|
16
|
Tyre KN, Brewton RA, Kreiger LB, Lapointe BE. Widespread human waste pollution in surface waters observed throughout the urbanized, coastal communities of Lee County, Florida, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162716. [PMID: 36921859 DOI: 10.1016/j.scitotenv.2023.162716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 05/17/2023]
Abstract
The coastal communities of Lee County, Florida, USA have grown rapidly since the 1970s. In this county, drainage ditches, canals, creeks, and the Caloosahatchee River Estuary often have high concentrations of nutrients and bacteria limiting their designated uses. Septic systems have previously been identified as a major pollution source in some areas of Lee County; therefore, this study sought to identify the extent of this issue throughout the county. To accomplish this, surface water samples were collected at 25 ditch, creek, or canal sites suspected of human waste contamination from septic systems in various drainage basins throughout Lee County during January 2020-January 2021. Water samples were analyzed for nutrients, dual stable nitrate isotopes (δ15N-NO3-, δ18O-NO3-), fecal indicator bacteria (enterococci, Escherichia coli), a molecular tracer of human waste (HF183), and chemical tracers of human waste (the artificial sweetener sucralose, pharmaceuticals). Particulate organic matter (POM) and macrophytes were also collected and analyzed for stable carbon (δ13C) and nitrogen (δ15N) isotopes, as well as elemental composition (C:N:P). To broaden the assessment of stable isotope values and C:N:P, archived macrophyte samples from 2019 were also included in analyses. Ammonium concentrations were high (> 4.3 μM) in 55 % of samples. Fecal bacteria were high in 66 % of samples. HF183 was detected in 50 % of samples and positively correlated with enterococci (r = 0.32). Sucralose concentrations were high (> 380 ng/L) in 54 % of samples, while carbamazepine was detected in 40 % of samples. Human waste N sources were indicated by δ15N > 3.00 ‰ at 44 % of sites by δ15N-NO3-, 68 % of sites by POM, and at 100 % of sites where macrophyte samples were collected. This large-scale study provides evidence of widespread human waste pollution throughout Lee County and can help guide infrastructure improvements to promote sustainable development. These findings should be applicable to urbanized regions globally that are experiencing declines in water quality and harmful algal blooms due to development with inadequate infrastructure.
Collapse
Affiliation(s)
- Kevin N Tyre
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 N US Highway 1, Fort Pierce, FL 34946, United States of America; Geosyntec Consultants, 3504 Lake Lynda Dr., Suite 155, Orlando, FL 32817, United States of America
| | - Rachel A Brewton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 N US Highway 1, Fort Pierce, FL 34946, United States of America.
| | - Lisa B Kreiger
- Lee County Department of Natural Resources, 1500 Monroe Street, Fort Myers, FL 33901, United States of America
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 N US Highway 1, Fort Pierce, FL 34946, United States of America
| |
Collapse
|
17
|
Li D, Zheng Q, Thomas KV, Dang AK, Binh VN, Anh NTK, Thai PK. Use of artificial sweeteners and caffeine in a population of Hanoi: An assessment by wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161515. [PMID: 36634775 DOI: 10.1016/j.scitotenv.2023.161515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Monitoring the consumption of artificial sweeteners in the population is essential to help public health authorities understand the level of sugar consumption. There is a gap in knowledge of patterns and levels of artificial sweetener consumption in Vietnam. Using wastewater-based epidemiology (WBE), this study aims to evaluate the use of artificial sweeteners in an urban population in Hanoi, Vietnam. A total of 184 wastewater samples were collected at two sampling sites in an urban canal, receiving sewage from over 400,000 people in three different periods between 2018 and 2020. The population normalized per capita consumption of the five detected artificial sweeteners varied from 0.87 mg d-1 p-1 (sucralose) to 5.2 mg d-1 p-1 (aspartame). The daily consumption of artificial sweeteners was found to be stable throughout the week, however the consumption of artificial sweeteners was influenced by season with higher consumption in summer. Significant correlations (p < 0.01) were found among levels of artificial sweeteners and caffeine in urban canal samples, suggesting these chemicals had common sources. Population-weighted consumption load of artificial sweeteners and caffeine was compared in Vietnam, China and Australia, and the per capita consumption load mainly depended on the habitual of tea/coffee drinking in different countries. This was the first study that provided information on the artificial sweetener consumption by wastewater analysis in Vietnam. However, several sources of uncertainty (sample collection, population estimation, other sources of artificial sweeteners in wastewater, etc.) were acknowledged in this study. Further investigations on the spatial-temporal variation of artificial sweetener consumption with more intensive sampling scheme in Vietnam are recommended.
Collapse
Affiliation(s)
- Dandan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia.
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Anh Kim Dang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia; Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi 100000, Viet Nam
| | - Vu Ngan Binh
- Department of Analytical Chemistry and Toxicology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Viet Nam
| | - Nguyen Thi Kieu Anh
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi 100000, Viet Nam
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
18
|
Au CK, Jason Chan KK, Chan W, Zhang X. Occurrence and stability of PCMX in water environments and its removal by municipal wastewater treatment processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130550. [PMID: 37055964 DOI: 10.1016/j.jhazmat.2022.130550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 06/19/2023]
Abstract
Para-chloro-meta-xylenol (PCMX) is a synthetic antiseptic used extensively to control the spread of germs and viruses, and as a result, enormous amount of PCMX could be discharged to water environments through drainage. To investigate the extent of PCMX contamination, water samples were collected from rivers and coastal waters in Hong Kong, and PCMX concentrations were determined by a newly developed method using liquid chromatography-tandem mass spectrometry combined with stable isotope-dilution. We discovered widespread PCMX pollution in the water environment. Then, we revealed for the first time that PCMX in wastewater is not effectively removed by chemically enhanced primary treatment (CEPT), one of the wastewater treatment processes used in Hong Kong (∼75% of wastewater) and other megacities around the world. This suggests that the CEPT effluent or the primary treatment effluent is an unintended continuous source of pollution for PCMX in water environments. Finally, we found that PCMX was relatively stable in the water environment and could pose a risk to aquatic organisms. These findings underscore the importance of raising public awareness of the environmental consequences from overuse of PCMX-based disinfectants and the need to reevaluate the various wastewater treatment processes in removing PCMX.
Collapse
Affiliation(s)
- Chun-Kit Au
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China
| | - K K Jason Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, The Hong Kong Special Administrative Region of China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, The Hong Kong Special Administrative Region of China
| |
Collapse
|
19
|
Ohta N, Kobayashi M, Kawase Y. Removal of pharmaceutically active compounds (PhACs) by zero-valent iron: quantification of removal mechanisms consisting of degradation, adsorption and co-precipitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38819-38831. [PMID: 36586022 DOI: 10.1007/s11356-022-25047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The removal mechanisms of carbamazepine (CBZ), which is one of pharmaceutically active compounds, using zero-valent iron (ZVI) were quantified by defining three fractions, namely "degradation", "adsorption", and "co-precipitation". The maximum total organic carbon (TOC) removal was obtained at pH 4. The results demonstrate that the adsorption on the ZVI surface is dominant in the TOC removal of CBZ for 4 ≤ pH ≤ 6 while the degradation by oxidative and reductive reactions is efficient exclusively for pH ≤ 3. TOC removal was not obtained for pH ≥ 8. The most dominant mechanism in the removal of CBZ by ZVI is the adsorption onto the iron oxides/hydroxides layer formed on ZVI surface rather than the degradation by oxidative and reductive reactions including Fenton and Fenton-like reactions for pH ≥ 4. A novel kinetic model for removal of CBZ by ZVI was developed to simulate the dynamic concentration profiles of CBZ, TOC, total Fe ions, and dissolved oxygen linked closely with each other and the contributions of degradation, adsorption, and co-precipitation in TOC removal of CBZ. Reasonable agreement between experimental data and model predictions suggests the applicability of the proposed kinetic model to quantitatively analyze the mechanisms of CBZ removal by ZVI.
Collapse
Affiliation(s)
- Naoki Ohta
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Maki Kobayashi
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Yoshinori Kawase
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan.
| |
Collapse
|
20
|
Serna-Galvis EA, Silva-Agredo J, Hernández F, Botero-Coy AM, Torres-Palma RA. Methods involved in the treatment of four representative pharmaceuticals in hospital wastewater using sonochemical and biological processes. MethodsX 2023; 10:102128. [PMID: 36974326 PMCID: PMC10038785 DOI: 10.1016/j.mex.2023.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
A primary pollution source by pharmaceuticals is hospital wastewater (HWW). Herein, the methods involved in the action of a biological system (BS, aerobic activated sludge) or a sonochemical treatment (US, 375 kHz and 30.8 W), for degrading four relevant pharmaceuticals (azithromycin, ciprofloxacin, paracetamol, and valsartan) in HWW, are shown. Before treatment of HWW, the correct performance of BS was assessed using glucose as a reference substance, monitoring oxygen consumption, and organic carbon removal. Meanwhile, for US, a preliminary test using ciprofloxacin in distilled water was carried out. The determination of risk quotients (RQ) and theoretical analyses about reactive moieties on these target substances are also presented. For both, the degradation of the pharmaceuticals and the calculation of RQ, analyses were performed by LC-MS/MS. The BS action decreased the concentration of paracetamol and valsartan by ∼96 and 86%, respectively. However, a poor action on azithromycin (2% removal) was found, whereas ciprofloxacin concentration increased ∼20%; leading to an RQ value of 1.61 (high risk) for the pharmaceuticals mixture. The analyses using a biodegradation pathway predictor (EAWAG-BDD methodology) revealed that the amide group on paracetamol and alkyl moieties on valsartan could experience aerobic biotransformations. In turn, US action decreased the concentration of the four pharmaceuticals (removals > 60% for azithromycin, ciprofloxacin, and paracetamol), diminishing the environmental risk (RQ: 0.51 for the target pharmaceuticals mixture). Atomic charge analyses (based on the electronegativity equalization method) were performed, showing that the amino-sugar on azithromycin; piperazyl ring, and double bond close to the two carbonyls on ciprofloxacin, acetamide group on paracetamol, and the alkyl moieties bonded to the amide group of valsartan are the most susceptible moieties to attacks by sonogenerated radicals. The LC-MS/MS analytical methodology, RQ calculations, and theoretical analyses allowed for determining the degrading performance of BS and US toward the target pollutants in HWW.•Biological and sonochemical treatments as useful methods for degrading 4 representative pharmaceuticals are presented.•Sonochemical treatment had higher degrading action than the biological one on the target pharmaceuticals.•Methodologies for risk environmental calculation and identification of moieties on the pharmaceuticals susceptible to radical attacks are shown.
Collapse
|
21
|
Kumar M, Sridharan S, Sawarkar AD, Shakeel A, Anerao P, Mannina G, Sharma P, Pandey A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160031. [PMID: 36372172 DOI: 10.1016/j.scitotenv.2022.160031] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical and personnel care products (PPCPs) from wastewater are a potential hazard to the human health and wildlife, and their occurrence in wastewater has caught the concern of researchers recently. To deal with PPCPs, various treatment technologies have been evolved such as physical, biological, and chemical methods. Nevertheless, modern and efficient techniques such as advance oxidation processes (AOPs) demand expensive chemicals and energy, which ultimately leads to a high treatment cost. Therefore, integration of chemical techniques with biological processes has been recently suggested to decrease the expenses. Furthermore, combining ozonation with activated carbon (AC) can significantly enhance the removal efficiency. There are some other emerging technologies of lower operational cost like photo-Fenton method and solar radiation-based methods as well as constructed wetland, which are promising. However, feasibility and practicality in pilot-scale have not been estimated for most of these advanced treatment technologies. In this context, the present review work explores the treatment of emerging PPCPs in wastewater, via available conventional, non-conventional, and integrated technologies. Furthermore, this work focused on the state-of-art technologies via an extensive literature search, highlights the limitations and challenges of the prevailing commercial technologies. Finally, this work provides a brief discussion and offers future research directions on technologies needed for treatment of wastewater containing PPCPs, accompanied by techno-economic feasibility assessment.
Collapse
Affiliation(s)
- Manish Kumar
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440 010, India
| | - Adnan Shakeel
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
22
|
Khamayseh MM, Kidak R. Equilibrium, kinetics, and thermodynamics study on the biosorption of reactive levofloxacin antibiotic on Pithophora macroalgae in aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:301. [PMID: 36645500 DOI: 10.1007/s10661-023-10925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Since untreated wastewater from hospitals and residential areas is being discharged directly into surface waterways, pharmaceutical contaminants have been shown to be higher in many countries. Therefore, the development of novel and effective techniques to extract antibiotic substances from wastewater is of utmost importance. The present work aims at the use of green Pithophora macroalgae to remove levofloxacin antibiotic from an aqueous solution through biosorption. Biosorption is an economical and eco-friendly method for treating wastewater. The macroalgae were dried, grounded, and used as biosorbent to remove the levofloxacin (LVX) antibiotics from the aqueous solution. The influence of operating conditions such as initial antibiotic concentration, biosorbent dosage, agitation speed, pH, and temperature was studied. The biosorbent was characterized by FTIR, SEM, and point zero charge. The experimental data were evaluated using Langmuir and Freundlich isotherms. The experimental data best fit the Freundlich isotherm model (R2 = 0.969), while the kinetic model for the experiment follows the pseudo-second-order (R2 = 0.998) with a maximum biosorption capacity of 17.8 mg/g. Maximized removal of LVX occurs at favorable conditions of 298 K temperature, 150 mg/L initial concentration of antibiotic, 0.5 g sorbent dose, and 6.5 pH. The calculated thermodynamic parameters reveal that the biosorption of LVX antibiotics occurs by an endothermic process. This study deduces that Pithophora macroalgae biomass proved to be an effective biosorbent for biosorption of LVX antibiotics and may be a novel alternative method for antibiotics removal from aqueous solutions.
Collapse
Affiliation(s)
- Murad M Khamayseh
- Faculty of Engineering, Department of Environmental Sciences, Cyprus International University, Nicosia, Turkey.
| | - Rana Kidak
- Faculty of Engineering, Department of Environmental Sciences, Cyprus International University, Nicosia, Turkey
| |
Collapse
|
23
|
Labad F, Ginebreda A, Criollo R, Vázquez-Suñé E, Pérez S, Jurado A. Occurrence, data-based modelling, and risk assessment of emerging contaminants in an alluvial aquifer polluted by river recharge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120504. [PMID: 36283472 DOI: 10.1016/j.envpol.2022.120504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
This research presents the occurrence and fate of 121 contaminants of emerging concern (CECs) in an urban aquifer polluted by river recharge through a data-base modelling. Afterwards, risk quotients (RQs) are computed to determine the risk posed by CECs to human health. To this end, groundwater and river water samples were collected in four campaigns conducted from February to May 2021. Results show that 46 CECs are ubiquitous in groundwater and their concentrations vary several orders of magnitude, ranging from below the limit of quantification to 44.5·103 ng/L for iopamidol. Transformation products (TPs) are usually detected at lower concentrations than those of the parent substances but there are some exceptions (i.e., fipronil sulphide, fipronil sulfone and O-desmethylvenlafaxine). River concentrations are higher than those detected in groundwater for some CECs, indicating the occurrence of natural attenuation processes when river water infiltrates the aquifer. A data-based advection-reaction modelling is proposed and tested for ca. 40 substances with detection frequencies higher than 90%. It provides useful quantitative information regarding the dynamic behaviour of the variables monitored, expressed in terms of characteristic length, entropy and synchronized state contribution. Finally, risk quotients (RQs) are used to assess the human health risk posed by the ubiquitous CECs in groundwater. Most CECs do not pose any risk to the different life stages considered, as the RQs evaluated are lower than 0.01. However, the pharmaceuticals valsartan and its TP valsartan acid show RQs higher than 1, indicating that these substances might be harmful to human beings.
Collapse
Affiliation(s)
- Francesc Labad
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Antoni Ginebreda
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Rotman Criollo
- Mediterranean Institute for Advanced Studies (IMEDEA), Spanish National Research Council (CSIC), Miquel Marquès, 21, 07190, Esporles, Spain
| | - Enric Vázquez-Suñé
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Sandra Pérez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Anna Jurado
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
24
|
Linhoff B. Deciphering natural and anthropogenic nitrate and recharge sources in arid region groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157345. [PMID: 35882321 DOI: 10.1016/j.scitotenv.2022.157345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Recently, the subsoils of ephemeral stream (arroyos) floodplains in the northern Chihuahuan Desert were discovered to contain large naturally occurring NO3- reservoirs (floodplain: ~38,000 kg NO3-N/ha; background: ~60 kg NO3-N/ha). These reservoirs may be mobilized through land use change or natural stream channel migration which makes differentiating between anthropogenic and natural groundwater NO3- sources challenging. In this study, the fate and sources of NO3- were investigated in an area with multiple NO3- sources such as accidental sewer line releases and sewage lagoons as well as natural reservoirs of subsoil NO3-. To differentiate sources, this study used a large suite of geochemical tools including δ15N[NO3], δ18O[NO3], δ15N[N2], δ13C[DIC], 14C, tritium (3H), dissolved gas concentrations, major ion chemistry, and contaminants of emerging concern (CEC) including artificial sweeteners. NO3- at sites with the highest concentrations (25 to 229 mg/L NO3-N) were determined to be largely sourced from naturally occurring subsoil NO3- based on δ15N[NO3] (<8 ‰) and mass ratios of Cl-/Br- (〈100) and NO3-/Cl- (>1.5). Anthropogenic NO3- was deciphered using mass ratios of Cl-/Br- (>120) and NO3-/Cl- (<1), δ15N[NO3] (>8 ‰), and CEC detections. Nitrogen isotope analyses indicated that denitrification is fairly limited in the field area. CEC were detected at 67 % of sites including 3H dead sites (<1 pCi/L) with low percent modern carbon-14 (PMC; <30 %). Local supply wells are 3H dead with low PMC; as 3H does not re-equilibrate and 14C is very slow to re-equilibrate during recirculation through infrastructure, sites with low PMC, 3H < 1 pCi/L, and CEC detections were interpreted as locations with substantial anthropogenic groundwater recharge. Neotame was used to identify locations of very recent (<15 years before present) or ongoing wastewater influxes to the aquifer. This work shows the important influence of naturally occurring subsoil NO3- reservoirs on groundwater in arid regions and the major contribution of artificial recharge.
Collapse
Affiliation(s)
- Benjamin Linhoff
- U.S. Geological Survey, New Mexico Water Science Center, Albuquerque, NM, United States of America.
| |
Collapse
|
25
|
Wu D, Sui Q, Mei X, Yu X, Gu Y, Zhao W. Non-antibiotics matter: Evidence from a one-year investigation of livestock wastewater from six farms in East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157418. [PMID: 35850340 DOI: 10.1016/j.scitotenv.2022.157418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Livestock wastewater is an important source of pharmaceuticals in aquatic environments; however, most related studies only focused on antibiotics. This study investigated 18 pharmaceutical active compounds (PhACs), including 12 antibiotics and 6 non-antibiotics, in livestock wastewater during a one-year survey of six livestock farms in East China. The results showed that four non-antibiotic PhACs-caffeine, N,N-diethyl-m-toluamide, gemfibrozil, and diclofenac-exhibited high detection frequencies (80% to 97%), high concentrations (median 0.43 to 3.79 μg/L), poor removal efficiencies (3% to 53%), and high environmental risks. A ranking system was developed to prioritize PhACs based on their occurrence, removal, and environmental risks in livestock wastewater; diclofenac, N,N-diethyl-m-toluamide, sulfamethazine, sulfadiazine, and gemfibrozil, were identified as the top five priority PhACs that should be considered first. Finally, a preliminary source apportionment protocol using four priority PhACs was proposed to trace the emission originating from treated and untreated livestock wastewater and to indicate the major contributor (cattle or swine farms) in the region. To the best of our knowledge, this is the first long-term investigation on the pollution characteristics of non-antibiotics in livestock wastewater in China, and our findings highlight the importance of considering non-antibiotics and the prioritized PhACs for the pollution control of PhACs in livestock wastewater.
Collapse
Affiliation(s)
- Dongquan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuebing Mei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
26
|
Silori R, Shrivastava V, Singh A, Sharma P, Aouad M, Mahlknecht J, Kumar M. Global groundwater vulnerability for Pharmaceutical and Personal care products (PPCPs): The scenario of second decade of 21st century. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115703. [PMID: 35932733 DOI: 10.1016/j.jenvman.2022.115703] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The global production of PPCPs have increased by multiple folds promoting excessive exposure of its metabolites to humans via different aquatic systems. The higher residence time of toxic precursors of these metabolites pose direct human health risk. Among the different aquatic systems, the contamination of groundwater by PPCPs is the most concerning threat. This threat is especially critical considering the lesser oxidizing potential of the groundwater as compared to freshwater/river water. A major challenge also arises due to excessive dependency of the world's population on groundwater, which is exponentially increasing with time. This makes the identification and characterization of spatial contamination hotspots highly probabilistic as compared to other freshwater systems. The situation is more vulnerable in developing countries where there is a reported inadequacy of wastewater treatment facilities, thereby forcing the groundwater to behave as the only available sequestrating sink for all these contaminants. With increased consumption of antibiotics and other pharmaceuticals compounds, these wastes have proven capability in terms of enhancing the resistance among the biotic community of the soil systems, which ultimately can become catastrophic and carcinogenic in near future. Recent studies are supporting the aforementioned concern where compounds like diclofenac (analgesic) have attained a concentration of 1.3 mgL-1 in the aquifer systems of Delhi, India. The situation is far worse for developed nations where prolonged and indiscriminate usage of antidepressants and antibiotics have life threating consequences. It has been confirmed that certain compounds like ofloxacin (antibiotics) and bis-(2-ethylhexyl)phthalate are present in some of the most sensitive wells/springs of the United States and Mexico. The current trend of the situation has been demonstrated by integrating a comparative approach of the published literatures in last three years. This review provides first-hand information report for formulating a directive policy framework for tackling PPCPs issues in the groundwater system.
Collapse
Affiliation(s)
- Rahul Silori
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Vikalp Shrivastava
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Ashwin Singh
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, Gujarat, India
| | - Pradeep Sharma
- Department of Environmental Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Marwan Aouad
- College of Engineering, Applied Science University (ASU), Kingdom of Bahrain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
27
|
Sun Y, O'Connell DW. Application of visible light active photocatalysis for water contaminants: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10781. [PMID: 36195318 PMCID: PMC9828070 DOI: 10.1002/wer.10781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Organic water pollutants are ubiquitous in the natural environment arising from domestic products as well as current and legacy industrial processes. Many of these organic water pollutants are recalcitrant and only partially degraded using conventional water and wastewater treatment processes. In recent decades, visible light active photocatalyst has gained attention as a non-conventional alternative for the removal of organic pollutants during water treatment, including industrial wastewater and drinking water treatment. This paper reviews the current state of research on the use of visible light active photocatalysts, their modified methods, efficacy, and pilot-scale applications for the degradation of organic pollutants in water supplies and waste streams. Initially, the general mechanism of the visible light active photocatalyst is evaluated, followed by an overview of the major synthesis techniques. Because few of these photocatalysts are commercialized, particular attention was given to summarizing the different types of visible light active photocatalysts developed to the pilot-scale stage for practical application and commercialization. The organic pollutant degradation ability of these visible light active photocatalysts was found to be considerable and in many cases comparable with existing and commercially available advanced oxidation processes. Finally, this review concludes with a summary of current achievements and challenges as well as possible directions for further research. PRACTITIONER POINTS: Visible light active photocatalysis is a promising advanced oxidation process (AOP) for the reduction of organic water pollutants. Various mechanisms of photocatalysis using visible light active materials are identified and discussed. Many recent photocatalysts are synthesized from renewable materials that are more sustainable for applications in the 21st century. Only a small number of pilot-scale applications exist and these are outlined in this review.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Civil and Environmental EngineeringTrinity College DublinDublin 2Ireland
| | - David W. O'Connell
- Department of Civil and Environmental EngineeringTrinity College DublinDublin 2Ireland
| |
Collapse
|
28
|
Li D, Zheng Q, Wang Z, Ren Y, Thomas KV, Thai PK. Young population consume twice as much artificial sweetener than the general population - A wastewater-based assessment in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156200. [PMID: 35618133 DOI: 10.1016/j.scitotenv.2022.156200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Understanding artificial sweetener consumption patterns and levels in different demographics is important for formulating public health policies on controlling sugar consumption. There is a considerable knowledge gap with respect to the pattern of artificial sweetener consumption in China. To narrow this gap, wastewater analysis was used to assess the temporal patterns of consumption of seven artificial sweeteners in an urban population and a university town in a megacity in South China over a one-year period. Daily influent wastewater samples were collected from an urban catchment and weekly samples collected from a university sub-catchment. Population normalized per capita consumption of the four detected artificial sweeteners (cyclamate, acesulfame, sucralose and saccharin) in the university catchment (1.0-5.9 mg d-1 p-1) was much higher than those in urban catchment (0.5-1.3 mg d-1 p-1), indicating younger population consume more artificial sweeteners than the general population. The daily consumption of artificial sweeteners was found to be stable throughout the week in the urban catchment. Time-series analysis showed that an average increase in temperature of 1 °C was associated with an increase consumption of 33 μg d-1 p-1 for acesulfame, 15 μg d-1 p-1 for sucralose and 14 μg d-1 p-1 for saccharin. This was the first study that objectively quantified the greater consumption of artificial sweeteners (proxy for consumption of artificially sweetened food and beverages) in a younger age group when compared to the general population, which could potentially pose a risk of health related diseases.
Collapse
Affiliation(s)
- Dandan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Zhe Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Yuan Ren
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
29
|
Wei Y, Li Y, Wang Y, Luo X, Du F, Liu W, Xie L, Chen J, Ren Z, Hou S, Wang S, Fu S, Dang Y, Li P, Liu X. The microbial diversity in industrial effluents makes high-throughput sequencing-based source tracking of the effluents possible. ENVIRONMENTAL RESEARCH 2022; 212:113640. [PMID: 35688222 DOI: 10.1016/j.envres.2022.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
In order to explore the microbial diversity in industrial effluents, and on this basis, to verify the feasibility of tracking industrial effluents in sewer networks based on sequencing data, we collected 28 sewage samples from the industrial effluents relative to four factories in Shenzhen, China, and sequenced the 16S rRNA genes to profile the microbial compositions. We identified 5413 operational taxonomic units (OTUs) in total, and found that microbial compositions were highly diverse among samples from different locations in the sewer system, with only 107 OTUs shared by 90% of the samples. These shared OTUs were enriched in the phylum of Proteobacteria, the families of Comamonadaceae and Pseudomonadaceae, as well as the genus of Pseudomonas, with both degradation related and pathogenic bacteria. More importantly, we found differences in microbial composition among samples relevant to different factories, and identified microbial markers differentiating effluents from these factories, which can be used to track the sources of the effluents. This study improved our understanding of microbial diversity in industrial effluents, proved the feasibility of industrial effluent source tracking based on sequencing data, and provided an alternative technique solution for environmental surveillance and management.
Collapse
Affiliation(s)
- Yan Wei
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Ping An Digital Information Technology (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Yumeng Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yayu Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xinyue Luo
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Feirong Du
- Ping An Digital Information Technology (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Weifang Liu
- Shenzhen Howay Technology Co., Ltd., Shenzhen 518000, China
| | - Li Xie
- Shenzhen Howay Technology Co., Ltd., Shenzhen 518000, China
| | | | - Ziwei Ren
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shiqi Hou
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Sunhaoyu Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shaojie Fu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengsong Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Beijing, Beijing 100101, China.
| |
Collapse
|
30
|
Pronschinske MA, Corsi SR, DeCicco LA, Furlong ET, Ankley GT, Blackwell BR, Villeneuve DL, Lenaker PL, Nott MA. Prioritizing Pharmaceutical Contaminants in Great Lakes Tributaries Using Risk-Based Screening Techniques. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2221-2239. [PMID: 35852176 PMCID: PMC9542422 DOI: 10.1002/etc.5403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 05/31/2023]
Abstract
In a study of 44 diverse sampling sites across 16 Great Lakes tributaries, 110 pharmaceuticals were detected of 257 monitored. The present study evaluated the ecological relevance of detected chemicals and identified heavily impacted areas to help inform resource managers and guide future investigations. Ten pharmaceuticals (caffeine, nicotine, albuterol, sulfamethoxazole, venlafaxine, acetaminophen, carbamazepine, gemfibrozil, metoprolol, and thiabendazole) were distinguished as having the greatest potential for biological effects based on comparison to screening-level benchmarks derived using information from two biological effects databases, the ECOTOX Knowledgebase and the ToxCast database. Available evidence did not suggest substantial concern for 75% of the monitored pharmaceuticals, including 147 undetected pharmaceuticals and 49 pharmaceuticals with screening-level alternative benchmarks. However, because of a lack of biological effects information, screening values were not available for 51 detected pharmaceuticals. Samples containing the greatest pharmaceutical concentrations and having the highest detection frequencies were from Lake Erie, southern Lake Michigan, and Lake Huron tributaries. Samples collected during low-flow periods had higher pharmaceutical concentrations than those collected during increased-flow periods. The wastewater-treatment plant effluent content in streams correlated positively with pharmaceutical concentrations. However, deviation from this correlation demonstrated that secondary factors, such as multiple pharmaceutical sources, were likely present at some sites. Further research could investigate high-priority pharmaceuticals as well as those for which alternative benchmarks could not be developed. Environ Toxicol Chem 2022;41:2221-2239. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Steven R. Corsi
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Laura A. DeCicco
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Edward T. Furlong
- Laboratory & Analytical Services DivisionUS Geological SurveyDenverColoradoUSA
| | - Gerald T. Ankley
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Brett R. Blackwell
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Daniel L. Villeneuve
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Peter L. Lenaker
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Michelle A. Nott
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| |
Collapse
|
31
|
Hong AJ, Lee J, Cha Y, Zoh KD. Propiconazole degradation and its toxicity removal during UV/H 2O 2 and UV photolysis processes. CHEMOSPHERE 2022; 302:134876. [PMID: 35551935 DOI: 10.1016/j.chemosphere.2022.134876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Propiconazole (PRO) is a triazole fungicide that is frequently detected in the water. In this study, we investigated the kinetics and degradation mechanism of PRO during the UV photolysis and UV/H2O2 processes. PRO was removed by the pseudo-first-order kinetics in both processes. The removal of PRO was enhanced by increasing H2O2 concentration in the UV/H2O2 process. The highest removal under neutral conditions, and lower removal of PRO were observed in acidic and alkaline pHs in the UV/H2O2 process. The presence of natural water ingredients such as Cl-, NO3-, humic acid acted as radical scavengers, but HCO3- ion acted as both radical promoter and scavenger in the UV/H2O2 process. The transformation products (TPs) of PRO during both processes were identified using LC-QTOF/MS. Four TPs ([M+H]+ = 238, 256, 306, and 324) were identified during UV photolysis, and six TPs ([M+H]+ = 238, 256, 306, 324, 356, and 358) were identified in the UV/H2O2 process. Among the identified TPs, TP with [M+H]+ values of 356 and 358 were newly identified in the UV/H2O2 process. In addition, ionic byproducts, such as Cl-, NO3-, formate (HCOO-), and acetate (CH3COO-), were newly identified, indicating that significant mineralization was achieved in the UV/H2O2 process. Based on the identified TPs and ionic byproducts, the degradation mechanisms of PRO during two processes were proposed. The major reactions in both processes were ring cleavage and cyclization, and hydroxylation by OH radicals. The Microtox test with Vibrio fischeri showed that, while the toxicity of the reaction solution increased first, then gradually decreased during UV photolysis, the UV/H2O2 process initially increased toxicity at 10 min due to the production of TPs, but toxicity was completely removed as the reaction progressed. The results obtained in this study imply that the UV/H2O2 process is an effective treatment for eliminating PRO, its TPs, and the resulting toxicity in water.
Collapse
Affiliation(s)
- Ae-Jung Hong
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Jaewon Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Youngho Cha
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
32
|
Modelling and optimization of psychoactive pharmaceutical caffeine removal by electrochemical oxidation process: A comparative study between response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Khan S, Naushad M, Govarthanan M, Iqbal J, Alfadul SM. Emerging contaminants of high concern for the environment: Current trends and future research. ENVIRONMENTAL RESEARCH 2022; 207:112609. [PMID: 34968428 DOI: 10.1016/j.envres.2021.112609] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/11/2023]
Abstract
Wastewater is contaminated water that must be treated before it may be transferred into other rivers and lakes in order to prevent further groundwater pollution. Over the last decade, research has been conducted on a wide variety of contaminants, but the emerging contaminants are those caused primarily by micropollutants, endocrine disruptors (EDs), pesticides, pharmaceuticals, hormones, and toxins, as well as industrially-related synthetic dyes and dye-containing hazardous pollutants. Most emerging pollutants did not have established guidelines, but even at low concentrations they could have harmful effects on humans and aquatic organisms. In order to combat the above ecological threats, huge efforts have been done with a view to boosting the effectiveness of remediation procedures or developing new techniques for the detection, quantification and efficiency of the samples. The increase of interest in biotechnology and environmental engineering gives an opportunity for the development of more innovative ways to water treatment remediation. The purpose of this article is to provide an overview of emerging sources of contaminants, detection technologies, and treatment strategies. The goal of this review is to evaluate adsorption as a method for treating emerging pollutants, as well as sophisticated and cost-effective approaches for treating emerging contaminants.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Sulaiman M Alfadul
- King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| |
Collapse
|
34
|
Kumar M, Ngasepam J, Dhangar K, Mahlknecht J, Manna S. Critical review on negative emerging contaminant removal efficiency of wastewater treatment systems: Concept, consistency and consequences. BIORESOURCE TECHNOLOGY 2022; 352:127054. [PMID: 35351567 DOI: 10.1016/j.biortech.2022.127054] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Emerging contaminants (ECs) are not completely removed by wastewater treatment owing to their capabilities of making complexes, toxic derivatives, byproduct formation, and dynamic partitioning. Negative contaminant removal i.e., higher concentrations (up to 5731%) of these ECs in the effluent with respect to the influent sampled on the same occasions, is globally prevalent in almost all types of treatment systems. Conventional WWTPs showed the highest negative removal (NR) for Carbamazepine, and Carbadox. Conjugation-deconjugation, types of WWTPs, transformations, leaching, operational parameters, sampling schemes, and nature of substance governs the NR efficiencies. Among the various categories of micropollutants, pesticides and beta-blockers are reported to exhibit the maximum percentage of NR, posing threat to human and the environment. With > 200% of NR for beta-blockers, low blood-pressure related symptoms may likely to get more prevalent in the near future. Study red-flags this phenomenon of negative removal that needs urgent attention.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | | | - Kiran Dhangar
- Discipline of Civil Engineering, IIT Gandhinagar, Gujarat 382355, India
| | - Jurgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Sur Monterrey 64849, Mexico
| | - Suvendu Manna
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
35
|
Kan X, Feng S, Mei X, Sui Q, Zhao W, Lyu S, Sun S, Zhang Z, Yu G. Quantitatively identifying the emission sources of pharmaceutically active compounds (PhACs) in the surface water: Method development, verification and application in Huangpu River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152783. [PMID: 34990669 DOI: 10.1016/j.scitotenv.2021.152783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 05/13/2023]
Abstract
Recognizing the main sources of pharmaceutically active compounds (PhACs) found in surface waters has been a challenge to the effective control of PhAC contamination from the sources. In the present study, a novel method based on Characteristic Matrix (ChaMa) model of indicator PhACs to quantitatively identify the contribution of multiple emission sources was developed, verified, and applied in Huangpu River, Shanghai. Carbamazepine (CBZ), caffeine (CF) and sulfadiazine (SDZ) were proposed as indicators. Their occurrence patterns in the corresponding emission sources and the factor analysis of their composition in the surface water samples were employed to construct the ChaMa model and develop the source apportionment method. Samples from typical emission sources were collected and analyzed as hypothetical surface water samples, to verify the method proposed. The results showed that the calculated contribution proportions of emission sources to the corresponding source samples were 45%-85%, proving the feasibility of the method. Finally, the method was applied to different sections in Huangpu River, and the results showed that livestock wastewater was the dominant emission source, accounting for 55%-73% in the upper reach of Huangpu River. Untreated municipal wastewater was dominant in the middle and lower reaches of Huangpu River, accounting for 76%-94%. This novel source apportionment method allows the quantitative identification of the contribution of multiple PhAC emission sources. It can be replicated in other regions where the occurrence of localized indicators was available, and will be helpful to control the contamination of PhACs in the water environment from the major sources.
Collapse
Affiliation(s)
- Xiping Kan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengya Feng
- School of Mathematics, East China University of Science and Technology, Shanghai 200237, China
| | - Xuebing Mei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuying Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ziwei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127284. [PMID: 34655870 DOI: 10.1016/j.jhazmat.2021.127284] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in wastewater, and thus, the environment. In this study, current knowledge about the occurrence and fate of PPCPs in aquatic systems-including wastewater treatment plants (WWTPs) and natural waters around the world-is critically reviewed to inform the state of the science and highlight existing knowledge gaps. Excretion by humans is the primary route of PPCPs entry into municipal wastewater systems, but significant contributions also occur through emissions from hospitals, PPCPs manufacturers, and agriculture. Abundance of PPCPs in raw wastewater is influenced by several factors, including the population density and demography served by WWTPs, presence of hospitals and drugs manufacturers in the sewershed, disease burden of the population served, local regulations, and climatic conditions. Based on the data obtained from WWTPs, analgesics, antibiotics, and stimulants (e.g., caffeine) are the most abundant PPCPs in raw wastewater. In conventional WWTPs, most removal of PPCPs occurs during secondary treatment, and overall removal exceeds 90% for treatable PPCPs. Regardless, the total PPCP mass discharged with effluent by an average WWTP into receiving waters (7.35-20,160 g/day) is still considerable, because potential adverse effects of some PPCPs (such as ibuprofen) on aquatic organisms occur within measured concentrations found in surface waters.
Collapse
Affiliation(s)
- Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
| | - Jie Xue
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yixin Zhao
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Alicia A Taylor
- Ecological and Biological Sciences Practice, Exponent, Inc., Oakland, CA 94612, USA
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yian Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yurong Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA
| |
Collapse
|
37
|
Transformation Products of Emerging Pollutants Explored Using Non-Target Screening: Perspective in the Transformation Pathway and Toxicity Mechanism—A Review. TOXICS 2022; 10:toxics10020054. [PMID: 35202240 PMCID: PMC8874687 DOI: 10.3390/toxics10020054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
The scientific community has increasingly focused on forming transformation products (TPs) from environmental organic pollutants. However, there is still a lot of discussion over how these TPs are generated and how harmful they are to living terrestrial or aquatic organisms. Potential transformation pathways, TP toxicity, and their mechanisms require more investigation. Non-target screening (NTS) via high-resolution mass spectrometry (HRMS) in model organisms to identify TPs and the formation mechanism on various organisms is the focus of this review. Furthermore, uptake, accumulation process, and potential toxicity with their detrimental consequences are summarized in various organisms. Finally, challenges and future research initiatives, such as performing NTS in a model organism, characterizing and quantifying TPs, and evaluating future toxicity studies on TPs, are also included in this review.
Collapse
|
38
|
Dos Santos JA, Quadra GR, Almeida RM, Soranço L, Lobo H, Rocha VN, Bialetzki A, Reis JL, Roland F, Barros N. Sublethal effects of environmental concentrations of caffeine on a neotropical freshwater fish. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:161-167. [PMID: 34773559 DOI: 10.1007/s10646-021-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Caffeine is a contaminant frequently detected in water bodies. Growth trends in both human population and caffeine consumption per capita are expected to exacerbate the occurrence of caffeine in freshwaters. Yet the effects of caffeine on native fish fauna are poorly understood. We exposed larvae of an endemic Neotropical catfish (Rhamdia quelen) to a range of caffeine concentrations for 30 days. We found that larvae exposed to the highest concentration (16 mg L-1) showed skeletal deformations and reduced growth. We further compiled measured environmental concentrations of caffeine in surface freshwater globally and performed a risk assessment. Our analysis points to a low risk to R. quelen and equally sensitive fish species in ~90% of the freshwater ecosystems considered in our analysis. The risk quotient is higher in freshwater ecosystems of South and Central America, where R. quelen is endemic. Although the ecotoxicological risk is currently low in most places, increased caffeine consumption, exacerbated by the lack of sanitation, is expected to increase caffeine concentrations in many parts of the world, posing a threat of sublethal morphological effects to local fish species.
Collapse
Affiliation(s)
- Joyce Andreia Dos Santos
- Programa de Pós-graduação em Ecologia - UFJF, Instituto de Ciências Biológicas - ICB, Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil.
- Laboratorio de Ecologia Aquática/Universidade Federal de Juiz de Fora. Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil.
| | - Gabrielle Rabelo Quadra
- Programa de Pós-graduação em Ecologia - UFJF, Instituto de Ciências Biológicas - ICB, Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
- Laboratorio de Ecologia Aquática/Universidade Federal de Juiz de Fora. Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Rafael M Almeida
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
- School of Earth, Environmental, and Marine Scinences, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Laís Soranço
- Programa de Pós-graduação em Ecologia - UFJF, Instituto de Ciências Biológicas - ICB, Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
- Laboratorio de Ecologia Aquática/Universidade Federal de Juiz de Fora. Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Haroldo Lobo
- Departamento de Medicina Veterinária - Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, Brazil
| | - Vinicius Novaes Rocha
- Departamento de Medicina Veterinária - Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, Brazil
| | - Andréa Bialetzki
- Laboratório de Ictioplâncton/Nupélia (Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura)/UEM/ Universidade Estadual de Maringá. Av. Colombo, 5790, Bloco G-80, Maringá, CEP 87020-900, Paraná, Brazil
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais (PEA)/Departamento de Biologia/UEM, Universidade Estadual de Maringá. Av. Colombo, 5790, Bloco G-80, Maringá, CEP 87020-900, Paraná, Brazil
| | - Janildo Ludolf Reis
- Departamento de Medicina Veterinária - Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, Brazil
| | - Fábio Roland
- Programa de Pós-graduação em Ecologia - UFJF, Instituto de Ciências Biológicas - ICB, Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
- Laboratorio de Ecologia Aquática/Universidade Federal de Juiz de Fora. Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Nathan Barros
- Programa de Pós-graduação em Ecologia - UFJF, Instituto de Ciências Biológicas - ICB, Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
- Laboratorio de Ecologia Aquática/Universidade Federal de Juiz de Fora. Campus Universitário, Bairro São Pedro, CEP 36036-900, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
39
|
Silori R, Tauseef SM. A Review of the Occurrence of Pharmaceutical Compounds as Emerging Contaminants in Treated Wastewater and Aquatic Environments. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412918666211119142030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In recent years, pharmaceutical compounds have emerged as potential contaminants in
the aquatic matrices of the environment. High production, consumption, and limited removal
through conventional treatment processes/wastewater treatment plants (WWTPs) are the major
causes for the occurrence of pharmaceutical compounds in wastewater and aquatic environments
worldwide. A number of studies report adverse health effects and risks to aquatic life and the ecosystem because of the presence of pharmaceutical compounds in the aquatic environment. This paper provides a state-of-the-art review of the occurrence of pharmaceutical compounds in treated
wastewater from various WWTPs, surface water and groundwater bodies. Additionally, this review
provides comprehensive information and pointers for research in wastewater treatment and waterbodies management.
Collapse
Affiliation(s)
- Rahul Silori
- HSE and Civil Engineering Department, UPES, Dehradun, 248001, Uttarakhand, India
| | | |
Collapse
|
40
|
Lopez C, Nnorom MA, Tsang YF, Knapp CW. Pharmaceuticals and personal care products' (PPCPs) impact on enriched nitrifying cultures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60968-60980. [PMID: 34165737 PMCID: PMC8580922 DOI: 10.1007/s11356-021-14696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
The impact of pharmaceutical and personal care products (PPCPs) on the performance of biological wastewater treatment plants (WWTPs) has been widely studied using whole-community approaches. These contaminants affect the capacity of microbial communities to transform nutrients; however, most have neither honed their examination on the nitrifying communities directly nor considered the impact on individual populations. In this study, six PPCPs commonly found in WWTPs, including a stimulant (caffeine), an antimicrobial agent (triclosan), an insect repellent ingredient (N,N-diethyl-m-toluamide (DEET)) and antibiotics (ampicillin, colistin and ofloxacin), were selected to assess their short-term toxic effect on enriched nitrifying cultures: Nitrosomonas sp. and Nitrobacter sp. The results showed that triclosan exhibited the greatest inhibition on nitrification with EC50 of 89.1 μg L-1. From the selected antibiotics, colistin significantly affected the overall nitrification with the lowest EC50 of 1 mg L-1, and a more pronounced inhibitory effect on ammonia-oxidizing bacteria (AOB) compared to nitrite-oxidizing bacteria (NOB). The EC50 of ampicillin and ofloxacin was 23.7 and 12.7 mg L-1, respectively. Additionally, experimental data suggested that nitrifying bacteria were insensitive to the presence of caffeine. In the case of DEET, moderate inhibition of nitrification (<40%) was observed at 10 mg L-1. These findings contribute to the understanding of the response of nitrifying communities in presence of PPCPs, which play an essential role in biological nitrification in WWTPs. Knowing specific community responses helps develop mitigation measures to improve system resilience.
Collapse
Affiliation(s)
- Carla Lopez
- Centre for Water, Environment, Sustainability & Public Health, Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
| | - Mac-Anthony Nnorom
- Centre for Water, Environment, Sustainability & Public Health, Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong.
| | - Charles W Knapp
- Centre for Water, Environment, Sustainability & Public Health, Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK.
| |
Collapse
|
41
|
Corsi SR, De Cicco LA, Hansen AM, Lenaker PL, Bergamaschi BA, Pellerin BA, Dila DK, Bootsma MJ, Spencer SK, Borchardt MA, McLellan SL. Optical Properties of Water for Prediction of Wastewater Contamination, Human-Associated Bacteria, and Fecal Indicator Bacteria in Surface Water at Three Watershed Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13770-13782. [PMID: 34591452 DOI: 10.1021/acs.est.1c02644] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Relations between spectral absorbance and fluorescence properties of water and human-associated and fecal indicator bacteria were developed for facilitating field sensor applications to estimate wastewater contamination in waterways. Leaking wastewater conveyance infrastructure commonly contaminates receiving waters. Methods to quantify such contamination can be time consuming, expensive, and often nonspecific. Human-associated bacteria are wastewater specific but require discrete sampling and laboratory analyses, introducing latency. Human sewage has fluorescence and absorbance properties different than those of natural waters. To assist real-time field sensor development, this study investigated optical properties for use as surrogates for human-associated bacteria to estimate wastewater prevalence in environmental waters. Three spatial scales were studied: Eight watershed-scale sites, five subwatershed-scale sites, and 213 storm sewers and open channels within three small watersheds (small-scale sites) were sampled (996 total samples) for optical properties, human-associated bacteria, fecal indicator bacteria, and, for selected samples, human viruses. Regression analysis indicated that bacteria concentrations could be estimated by optical properties used in existing field sensors for watershed and subwatershed scales. Human virus occurrence increased with modeled human-associated bacteria concentration, providing confidence in these regressions as surrogates for wastewater contamination. Adequate regressions were not found for small-scale sites to reliably estimate bacteria concentrations likely due to inconsistent local sanitary sewer inputs.
Collapse
Affiliation(s)
- Steven R Corsi
- U.S. Geological Survey, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Laura A De Cicco
- U.S. Geological Survey, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Angela M Hansen
- United States Geological Survey, 6000 J Street, Placer Hall, Sacramento, California 95819, United States
| | - Peter L Lenaker
- U.S. Geological Survey, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Brian A Bergamaschi
- United States Geological Survey, 6000 J Street, Placer Hall, Sacramento, California 95819, United States
| | - Brian A Pellerin
- United States Geological Survey, 12201 Sunrise Valley Dr., Reston, Virginia 20192, United States
| | - Debra K Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Melinda J Bootsma
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Susan K Spencer
- U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, Wisconsin 54449, United States
| | - Mark A Borchardt
- U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, Wisconsin 54449, United States
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
42
|
Majumder A, Saidulu D, Gupta AK, Ghosal PS. Predicting the trend and utility of different photocatalysts for degradation of pharmaceutically active compounds: A special emphasis on photocatalytic materials, modifications, and performance comparison. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112858. [PMID: 34052613 DOI: 10.1016/j.jenvman.2021.112858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/01/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The rapid rise in the healthcare sector has led to an increase in pharmaceutically active compounds (PhACs) in different aqueous bodies. The toxicity of the PhACs and their ability to persist after conventional treatment processes have escalated research in the field of photocatalytic treatment. Although different photocatalysts have been successful in degrading PhACs, their inherent drawbacks have severely limited their application on a large scale. A substantial amount of research has been aimed at overcoming the high cost of the photocatalytic material, low quantum yield, the formation of toxic end products, etc. Hence, to further research in this field, researchers must have a fair idea of the current trends in the application of different photocatalysts. In this article, the trends in the use of various photocatalysts for the removal of different PhACs have been circumscribed. The performance of different groups of photocatalysts to degrade PhACs from synthetic and real wastewater has been addressed. The drawbacks and advantages of these materials have been compared, and their future in the field of PhACs removal has been predicted using S-curve analysis. Zinc and titanium-based photocatalysts were efficient under UV irradiation, while bismuth and graphene-based materials exhibited exemplary performance in visible light. However, iron-based compounds were found to have the most promising future, which may be because of their magnetic properties, easy availability, low bandgap, etc. Different modification techniques, such as morphology modification, doping, heterojunction formation, etc., have also been discussed. This study may help researchers to clarify the current research status in the field of photocatalytic treatment of PhACs and provide valuable information for future research.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| |
Collapse
|
43
|
Alfonso-Muniozguren P, Serna-Galvis EA, Bussemaker M, Torres-Palma RA, Lee J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. ULTRASONICS SONOCHEMISTRY 2021; 76:105656. [PMID: 34274706 PMCID: PMC8319449 DOI: 10.1016/j.ultsonch.2021.105656] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/01/2023]
Abstract
Contaminants of emerging concern (CEC) such as pharmaceuticals commonly found in urban and industrial wastewater are a potential threat to human health and have negative environmental impact. Most wastewater treatment plants cannot efficiently remove these compounds and therefore, many pharmaceuticals end up in aquatic ecosystems, inducing problems such as toxicity and antibiotic-resistance. This review reports the extent of pharmaceutical removal by individual processes such as bioreactors, advanced oxidation processes and membrane filtration systems, all of which are not 100% efficient and can lead to the direct discharge of pharmaceuticals into water bodies. Also, the importance of understanding biotransformation of pharmaceutical compounds during biological and ultrasound treatment, and its impact on treatment efficacy will be reviewed. Different combinations of the processes above, either as an integrated configuration or in series, will be discussed in terms of their degradation efficiency and scale-up capabilities. The trace quantities of pharmaceutical compounds in wastewater and scale-up issues of ultrasound highlight the importance of membrane filtration as a concentration and volume reduction treatment step for wastewater, which could subsequently be treated by ultrasound.
Collapse
Affiliation(s)
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia
| | - Madeleine Bussemaker
- Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Judy Lee
- Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom.
| |
Collapse
|
44
|
Nava-Andrade K, Carbajal-Arízaga GG, Obregón S, Rodríguez-González V. Layered double hydroxides and related hybrid materials for removal of pharmaceutical pollutants from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112399. [PMID: 33774560 DOI: 10.1016/j.jenvman.2021.112399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/23/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals and their by-products are recalcitrant contaminants in water. Moreover, the high consumption of these drugs has many detrimental effects on body waters and ecosystems. In this timely review, the advances in molecular engineering of layered double hydroxides (LDH) that have been used for the removal of pharmaceutical pollutants are discussed. The approach starts from the strategies to obtain homogeneous synthesis of LDH that allow the doping and/or surface functionalization of different metals and oxides, producing heterojunction systems as well as composites with carbon and silica-based materials with high surface area. Adsorption is considered as a traditional removal of pharmaceutical pollutants, so the kinetic and mechanism of this phenomenon are analyzed based on pH, temperature, ionic strength, in order to obtain new insights for the formation of multifunctional LDH. Advanced oxidation methodologies, mainly heterogeneous photocatalysis and Fenton-like processes, stand out as the more efficient even to obtain the mineralization of the drugs. The LDH have the advantage of structural memory that favors regeneration processes. The reconstruction of calcined LDH can be used to improve drug removal, through a combination of adsorption capacity/catalytic activity. A meticulous analysis of the persistence, toxicity and bioaccumulation of the most common pharmaceuticals has allowed us to highlight the ability of the LDH to remove recalcitrant drugs at relatively low concentrations (ppm, ppb), in contrast to other mixed oxide nanostructures and homogeneous oxidation processes. In this sense, the mechanism of drug removal by LDH is discussed based on the importance of the use of composites, scavenger agents, Fenton and electro-Fenton processes, membranes, thin films and coatings, among others. In addition, the ecotoxicity of LDH is also reviewed to indicate that these layered structures can exhibit biocompatibility or high toxicity depending on the adsorbed drug and ions/metals that compose them. Undoubtedly, the LDH have a unique flexible structure with adsorption capacity and catalytic activity, facts that explain the important reasons for their extensive use in the environmental remediation of pharmaceutical pollutants from water.
Collapse
Affiliation(s)
- K Nava-Andrade
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco, Mexico.
| | - G G Carbajal-Arízaga
- Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco, Mexico.
| | - S Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455, Nuevo León, Mexico.
| | - V Rodríguez-González
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Materiales Avanzados, Camino a la Presa San José 2055, Lomas 4ta, Sección, 78216, San Luis Potosí, Mexico.
| |
Collapse
|
45
|
Kobayashi J, Kuroda K, Miyamoto C, Uchiyama Y, Sankoda K, Nakajima D. Evaluating sewer exfiltration in groundwater by pharmaceutical tracers after the 2016 Kumamoto earthquakes, Japan. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125183. [PMID: 33858117 DOI: 10.1016/j.jhazmat.2021.125183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
In April 2016, a series of earthquakes (M 7.3 on the Japan Meteorological Agency scale) occurred in Kumamoto, Japan causing serious damage to underground sewerage networks. In this study, we evaluated sewer exfiltration in groundwater in the Kumamoto area after the earthquakes by using multiple tracers. We used 14 pharmaceuticals, including carbamazepine and crotamiton, and anthropogenic Gd as tracers, and we measured concentrations of these tracers from September 2016 to November 2017 seasonally. The detection frequency of caffeine, carbamazepine, crotamiton, ibuprofen, and anthropogenic Gd ranged from 29% to 45%, and the concentrations of the pharmaceuticals in the groundwater were lower than those in previous studies. The median of all pharmaceutical concentrations did not decrease, whereas the median of the sum of crotamiton and carbamazepine concentrations, which are quantitative sewage markers, decreased with time. The sewer exfiltration rates in September 2016 estimated using carbamazepine, crotamiton, and anthropogenic Gd were 0.59 ± 0.27%, 0.66 ± 0.47%, and 0.11 ± 0.18% of sewage dry weather flow, respectively, indicating that the effect of the earthquakes on sewer exfiltration was small, probably because the damaged sewers were quickly repaired. This study demonstrated that a multiple-tracer approach is useful for evaluating sewer exfiltration after major earthquakes.
Collapse
Affiliation(s)
- Jun Kobayashi
- Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto 862-8502, Japan.
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; Fukushima Branch, National Institute for Environmental Studies, 10-2 Fukasaku, Miharu, Tamura 963-7700, Fukushima, Japan
| | - Chinatsu Miyamoto
- Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto 862-8502, Japan
| | - Yukiko Uchiyama
- Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto 862-8502, Japan
| | - Kenshi Sankoda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Daisuke Nakajima
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506, Ibaraki, Japan
| |
Collapse
|
46
|
Bisognin RP, Wolff DB, Carissimi E, Prestes OD, Zanella R. Occurrence and fate of pharmaceuticals in effluent and sludge from a wastewater treatment plant in Brazil. ENVIRONMENTAL TECHNOLOGY 2021; 42:2292-2303. [PMID: 31810406 DOI: 10.1080/09593330.2019.1701561] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
A wide variety of pharmaceuticals are discharged in water courses on a daily basis due to their incomplete removal from effluent in treatment plants. The aim of the current study was to assess the occurrence, fate and removal of pharmaceuticals from effluent and sludge samples collected in the biggest sanitary sewer plant in Southern Brazil. In total, 13 pharmaceuticals were detected in the influent through UHPLC-MS/M - paracetamol and caffeine recorded the highest concentrations, 137.98 and 35.29 µg L-1, respectively. The treated effluent presented 11 compounds. Antibiotics were the class recording the widest diversity; metronidazole showed the lowest concentration (0.023 µg L-1) and sulfamethoxazole presented the highest concentration (1.374 µg L-1) in influent samples. Seven pharmaceuticals were absorbed by the sludge; among them, one finds caffeine, ciprofloxacin and ofloxacin, which were quantified both in the effluent and in the sludge. On the other hand, doxycycline, fenbendazole, norfloxacin and tetracycline were only detected in sludge samples - their concentrations ranged from 0.026 to 5.034 mg kg-1. Clindamycin, oxytetracycline, sulfathiazole and trimethoprim concentrations increased throughout the treatment. There were high paracetamol and caffeine removal rates (>97%), and it may have happened due to degradation, photodegradation or chemical reaction. Ciprofloxacin and ofloxacin removal rate exceeded 83% mainly due to their sorption by sludge. Finally, the mass balance analysis highlighted high pharmaceutical loads (511.466 g d-1) discharged into recipient waterbodies. This outcome demands broadening the removal of these pharmaceuticals from sewage.
Collapse
Affiliation(s)
| | - Delmira Beatriz Wolff
- Post-Graduate Program in Civil Engineering, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Elvis Carissimi
- Post-Graduate Program in Civil Engineering, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Renato Zanella
- LARP - Laboratory of Pesticide Residue Analysis, UFSM, Santa Maria, Brazil
| |
Collapse
|
47
|
Trejo-Castillo R, El Kassis EG, Cuervo-López F, Texier AC. Cometabolic biotransformation of benzotriazole in nitrifying batch cultures. CHEMOSPHERE 2021; 270:129461. [PMID: 33412355 DOI: 10.1016/j.chemosphere.2020.129461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/05/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Benzotriazole (BT) is a corrosion inhibitor widely distributed in aquatic environments. Little is known about the cometabolic capacity of stabilized nitrifying sludge to biotransform BT. The contribution of the nitrification process in the simultaneous oxidation of ammonium and biotransformation of BT (5 mg/L) was evaluated in 49 d batch cultures inoculated with a sludge produced in steady-state nitrification. The nitrifying sludge could consume BT in the obligate presence of ammonium. A higher cometabolic biotransformation capacity was obtained by increasing the initial ammonium concentration (100-300 mg N/L), reaching 2.3- and 5.8-fold increases for efficiency and specific rate of BT removal. At 300 mg NH4+-N/L, the sludge biotransform 40.8% of BT and 77.6% of ammonium which was completely oxidized into nitrate. In assays with allylthiourea added as specific inhibitor of ammonium monooxygenase (AMO), it was shown that the totality of BT cometabolic biotransformation was associated with the AMO activity. The addition of acetate did not favor heterotrophic biotransformation of BT. BT provoked inhibitory effects on nitrification. This is the first study showing the role of ammonium oxidizing bacteria in the cometabolic biotransformation of BT and their potential use for cometabolism application in treatment of wastewater contaminated with ammonium and BT.
Collapse
Affiliation(s)
- Rubén Trejo-Castillo
- UAM-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco 186, Col. Vicentina, C.P., 09340, Ciudad de México, Mexico
| | - Elie Girgis El Kassis
- UPAEP, Departamento de Ciencias Biológicas, 11 Poniente 2316, Col. Barrio de Santiago, C.P., 72410, Puebla, Mexico
| | - Flor Cuervo-López
- UAM-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco 186, Col. Vicentina, C.P., 09340, Ciudad de México, Mexico
| | - Anne-Claire Texier
- UAM-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco 186, Col. Vicentina, C.P., 09340, Ciudad de México, Mexico.
| |
Collapse
|
48
|
Pharmaceutical and Personal Care Products in Different Matrices: Occurrence, Pathways, and Treatment Processes. WATER 2021. [DOI: 10.3390/w13091159] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The procedures for analyzing pharmaceuticals and personal care products (PPCPs) are typically tedious and expensive and thus, it is necessary to synthesize all available information from previously conducted research. An extensive collection of PPCP data from the published literature was compiled to determine the occurrence, pathways, and the effectiveness of current treatment technologies for the removal of PPCPs in water and wastewater. Approximately 90% of the compiled published papers originated from Asia, Europe, and the North American regions. The incomplete removal of PPCPs in different water and wastewater treatment processes was widely reported, thus resulting in the occurrence of PPCP compounds in various environmental compartments. Caffeine, carbamazepine, diclofenac, ibuprofen, triclosan, and triclocarban were among the most commonly reported compounds detected in water and solid matrices. Trace concentrations of PPCPs were also detected on plants and animal tissues, indicating the bioaccumulative properties of some PPCP compounds. A significant lack of studies regarding the presence of PPCPs in animal and plant samples was identified in the review. Furthermore, there were still knowledge gaps on the ecotoxicity, sub-lethal effects, and effective treatment processes for PPCPs. The knowledge gaps identified in this study can be used to devise a more effective research paradigm and guidelines for PPCP management.
Collapse
|
49
|
Li D, Yao Y, Sun H. Emission and Mass Load of Artificial Sweeteners from a Pig Farm to Its Surrounding Environment: Contribution of Airborne Pathway and Biomonitoring Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2307-2315. [PMID: 33539083 DOI: 10.1021/acs.est.0c05326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An investigation was conducted by determining artificial sweeteners (ASs) in 80 samples from various environmental matrices, including dry deposition, rainfall, soil, leaf, and bark samples around a pig farm in Tianjin, China. Saccharin, cyclamate, and acesulfame were predominant in dry deposition and rainfall samples. Spatially, the distribution of ASs showed a consistent trend of farm center > downwind sites > upwind sites > reference site. The annual total mass loads of saccharin (70%), cyclamate (25%), and acesulfame (5%) via dry deposition and precipitation within a 5 km radius of the pig farm were estimated at 3.9 and 6.2 kg in the average-case and worst-case scenarios, respectively, accounting for 12-18% of the overall emission, indicating that pig farms are a significant source of ASs to the atmosphere and to the vicinal environment via dry and wet deposition. The distribution trends of ASs in tree bark and leaves were similar and tree bark performed better in passively biomonitoring the AS contamination. Overall, pig farms were predicted to release 65-114, 22-38, 2.0-3.5, and 0.6-1.1 tons by feed application in China, Europe, Latin America, and North America, respectively, to the vicinal environment via dry deposition and precipitation.
Collapse
Affiliation(s)
- Dandan Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
50
|
Poopipattana C, Suzuki M, Furumai H. Impact of long-duration CSO events under different tidal change conditions on distribution of microbial indicators and PPCPs in Sumida river estuary of Tokyo Bay, Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7212-7225. [PMID: 33029770 DOI: 10.1007/s11356-020-11046-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The Sumida river estuary of Tokyo bay is often affected by fecal contamination from combined sewer overflows (CSOs). This study monitored the surface water quality from the upstream of the Sumida river to the estuary in October 2017, June 2018, and July 2018 after three long-duration rainfall events. Several types of sewage markers, including fecal bacteria and two types of bacteriophages as microbial markers, and five pharmaceuticals and personal care products (PPCPs) as chemical markers were used to evaluate fecal contamination. CSO discharge was estimated separately from pumping stations and overflow chambers. The dominant contribution from overflow chambers was estimated to be as high as 86 - 91% of total discharge volume indicating their significance in controlling CSO pollution. High concentrations of sewage marker were observed in a wide area due to CSO discharge of more than 30 h in all 3 events. Escherichia coli was found to be as high as 4.00 - 4.57 log10 (CFU/100 mL). Meanwhile, caffeine showed the highest concentration of 2105 ng/L among PPCPs. It was found to be a useful indicator of recent contamination that captured a unique spatial distribution tendency. On the other hand, crotamiton, a conservative PPCP, was found to be highly diluted and might not be appropriate for tracking pollutants under heavy rainfall events. The effect of CSO discharge pattern and tidal change on the distribution of sewage markers, including dispersion degree and pollutants travel time, was described. CSO pollutants were found to accumulate in the river mouth areas during high tide before being discharged into the estuary.
Collapse
Affiliation(s)
- Chomphunut Poopipattana
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| | - Motoaki Suzuki
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|