1
|
Chaudhary S, Sindhu SS. Iron sensing, signalling and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop biofortification for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112496. [PMID: 40222392 DOI: 10.1016/j.plantsci.2025.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Iron is very crucial micronutrient prerequisite for growth of all cellular organisms including plants, microbes, animals and humans. Though iron (Fe) is present in abundance in earth's crust, but most of its forms present in soil are biologically unavailable, thus putting a constraint to utilize it. Plants and microorganisms maintain iron homeostasis to balance the supply of enough Fe for metabolism from their surrounding environments and to avoid excessive toxic levels. Microorganisms and plants employ different strategies for sensing, signaling, transportation and uptake of Fe under different types of stressed environments. Microbial communities present in soil and vicinity of roots contribute in biogeochemical cycling and uptake of different nutrients including Fe resulting into improved soil fertility and plant health. In this review, the regulation of iron uptake and transport under different kinds of biotic and abiotic stresses is described. In addition, the insights have been provided for enhancing bioavailability of Fe in sustainable agriculture practices. The inoculation of different crop plants with iron solubilizing microbes improved bioavailablilty of Fe in soil and increased plant growth and crop yield. Insights were provided about possible role of recent bioengineering techniques to improve Fe availability and uptake by plants. However, well-planned and large-scale field trials are required before recommending particular iron solubilizing microbes as biofertilizers for increasing Fe availability, improving plant development and crop yields in sustainable agriculture.
Collapse
Affiliation(s)
- Suman Chaudhary
- CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004, India.
| |
Collapse
|
2
|
Flores-Sánchez ID, Sandoval-Villa M, Uscanga-Mortera E. Nutrient Uptake of Two Semidomesticated Jaltomata Schltdl. Species for Their Cultivation. PLANTS (BASEL, SWITZERLAND) 2025; 14:1124. [PMID: 40219191 PMCID: PMC11991384 DOI: 10.3390/plants14071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 04/14/2025]
Abstract
The nutrient uptake of a species under cultivated conditions is important for program fertilization. The Jaltomata genus has two semidomesticated species, J. procumbens and J. tlaxcala, used as food and considered with potential for their study in controlled environments. The objective of this research was to determine nutrient uptake curves of these species in a greenhouse and using hydroponics. The research was carried out at the Colegio de Postgraduados, Campus Montecillo, Texcoco, State of Mexico, from August to November 2020. The treatments included the following: two species and three electrical conductivity levels: 1, 2, and 3 dS m-1. Nutrients in leaf and total dry matter (TDM) were determined. Variability between species and phenological stages on the nutrient concentration and accumulation of TDM was observed. For macronutrients, J. procumbens concentrated in descending order more P from the vegetative stage (4.21-2.43 g kg-1 dry matter), and Mg until fructification (4.92-3.26 g kg-1 dry matter), for K it was higher at vegetative (52.29 g kg-1 dry matter) and harvesting stages (26.05 g kg-1 dry matter), and N (23.92 g kg-1 dry matter) at flowering; J. tlaxcala concentrated more Ca from fructification (10.10-13.85 g kg-1 dry matter). For micronutrients, J. tlaxcala concentrated more Fe from the vegetative stage (157.7-207.5 mg kg-1 dry matter), B and Zn at 23.3-38.4 and 26.04-28.45 mg kg-1 dry matter, respectively, from flowering, and Mn (108.4-232.28 mg kg-1 dry matter) from fructification. The main structures of TDM accumulation by vegetative stage in J. procumbens were the leaf and root (vegetative and flowering), root and stem (fructification), and reproductive structures and root (harvesting); in J. tlaxcala, the main structures were the leaf and root (vegetative), root and leaf (flowering and fructification), and root and reproductive structures (harvesting). Due to this variability, specific fertilization programs are required for each species.
Collapse
Affiliation(s)
- Ignacio Darío Flores-Sánchez
- Postgraduate in Edaphology, Colegio de Postgraduados, Mexico-Texcoco Highway, km 36.5, Montecillo, Texcoco 56264, Mexico;
| | - Manuel Sandoval-Villa
- Postgraduate in Edaphology, Colegio de Postgraduados, Mexico-Texcoco Highway, km 36.5, Montecillo, Texcoco 56264, Mexico;
| | - Ebandro Uscanga-Mortera
- Postgraduate in Botany, Colegio de Postgraduados, Mexico-Texcoco Highway, km 36.5, Montecillo, Texcoco 56264, Mexico;
| |
Collapse
|
3
|
Gonzalez MA, Cazón JP, Ruscitti M. Environmental monitoring of La Concordia mine (Salta province, Argentina): assessing heavy metal bioaccumulation and physiological responses of Parastrephia quadrangularis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:189. [PMID: 39853502 DOI: 10.1007/s10661-025-13653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
The Puna region is distinguished by its extreme environmental conditions and highly valuable mining resources. However, the unregulated management of mine tailings poses a significant threat to the ecological integrity of this region. This study assesses the environmental impacts of mine tailings at La Concordia mine (Salta province, Argentina) and examines the physiological and biochemical adaptations of Parastrephia quadrangularis (Meyen) Cabrera that enable its survival under this extreme conditions. Our findings reveal that prolonged weathering of mine tailings results in the generation of acid mine drainage characterized by low pH levels (< 3.5) and elevated concentrations of As, Fe, Cu, Pb, and Zn. These levels exceed drinking water standards by 5-10 times for As, 6-13 times for Zn, 80-120 times for Pb, 20-380 times for Fe, and 4-10 times for Cu. Soil analyses highlight low pH, high salinity, and elevated concentrations of Zn (310 mg kg-1), Pb (153 mg kg-1), and Cu (128 mg kg-1). Despite these harsh environmental conditions, 7 plant species where identified, with Parastrephia quadrangularis being the only species present at the most polluted site. This species exhibits high heavy metal bioaccumulation and robust tolerance mechanisms against heavy metal-induced oxidative damage, as evidenced by stable total chlorophylls and malondialdehyde content, and increased levels of carotenoids, proline, and phenolic compounds. These findings emphasize Parastrephia quadrangularis as a promising candidate for revegetation and phytostabilization for sustainable mine closure programs in La Puna region.
Collapse
Affiliation(s)
- Matias A Gonzalez
- Instituto de Fisiología Vegetal (INFIVE-CCT La Plata), La Plata, Buenos Aires, Argentina.
| | - Josefina Plaza Cazón
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CCT La Plata), La Plata, Buenos Aires, Argentina
| | - Marcela Ruscitti
- Instituto de Fisiología Vegetal (INFIVE-CCT La Plata), La Plata, Buenos Aires, Argentina
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de La Provincia de Buenos Aires (UNNOBA), Junín, Buenos Aires, Argentina
| |
Collapse
|
4
|
Karcheva Z, Georgieva Z, Anev S, Petrova D, Paunov M, Zhiponova M, Chaneva G. Modulation of Zn Ion Toxicity in Pisum sativum L. by Phycoremediation. PLANTS (BASEL, SWITZERLAND) 2025; 14:215. [PMID: 39861569 PMCID: PMC11769046 DOI: 10.3390/plants14020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, Coelastrella sp. BGV (Chlorophyta) and Arthronema africanum Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn2⁺) and protect higher plants. Hydroponically grown pea (Pisum sativum L.) seedlings were subjected to ZnSO4 treatment for 7 days in either a nutrient medium (Knop) or a microalgal suspension. The effects of increasing Zn2⁺ concentrations were evaluated through solution parameters, microalgal dry weight, pea growth (height, biomass), and physiological parameters, including leaf gas exchange, chlorophyll content, and normalized difference vegetation index (NDVI). Zinc accumulation in microalgal and plant biomass was also analyzed. The results revealed that microalgae increased pH and oxygen levels in the hydroponic medium while enhancing Zn accumulation in pea roots. At low ZnSO4 concentrations (2-5 mM), microalgal suspensions stimulated pea growth and photosynthetic performance. However, higher ZnSO4 levels (10-15 mM) caused Zn accumulation, leading to nutrient deficiencies and growth suppression in microalgae, which ultimately led to physiological disturbances in peas. Coelastrella sp. BGV exhibited greater tolerance to Zn stress and provided a stronger protective effect when co-cultivated with peas, highlighting its potential for phycoremediation applications.
Collapse
Affiliation(s)
- Zornitsa Karcheva
- Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria; (Z.G.); (D.P.)
| | - Zhaneta Georgieva
- Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria; (Z.G.); (D.P.)
| | - Svetoslav Anev
- Department Dendrology, Faculty of Forestry, University of Forestry, 10 Sveti Kliment Ohridski Blvd., 1756 Sofia, Bulgaria;
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria; (Z.G.); (D.P.)
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria; (Z.G.); (D.P.)
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria; (Z.G.); (D.P.)
| |
Collapse
|
5
|
Huang H, Yamaji N, Huang S, Ma JF. Uptake and Accumulation of Cobalt Is Mediated by OsNramp5 in Rice. PLANT, CELL & ENVIRONMENT 2025; 48:3-14. [PMID: 39222021 PMCID: PMC11615428 DOI: 10.1111/pce.15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cobalt (Co) contamination in soils potentially affects human health through the food chain. Although rice (Oryza sativa) as a staple food is a major dietary source of human Co intake, it is poorly understood how Co is taken up by the roots and accumulated in rice grain. In this study, we physiologically characterized Co accumulation and identified the transporter for Co2+ uptake in rice. A dose-dependent experiment showed that Co mainly accumulated in rice roots. Further analysis with LA-ICP-MS showed Co deposited in most tissue of the roots, including exodermis, endodermis and stele region. Co accumulation analysis using mutants defective in divalent cation uptake showed that Co2+ uptake in rice is mediated by the Mn2+/Cd2+/Pb2+ transporter OsNramp5, rather than OsIRT1 for Fe2+ and OsZIP9 for Zn2+. Knockout of OsNramp5 enhanced tolerance to Co toxicity. Heterologous expression of OsNramp5 showed transport activity for Co2+ in Saccharomyces cerevisiae. Co2+ uptake was inhibited by either Mn2+ or Cd2+ supply. At the reproductive stage, the Co concentration in the straw and grains of the OsNramp5 knockout lines was decreased by 41%-48% and 28%-36%, respectively, compared with that of the wild-type rice. The expression level of OsNramp5 in the roots was not affected by Co2+. Taken together, our results indicate that OsNramp5 is a major transporter for Co2+ uptake in rice, which ultimately mediates Co accumulation in the grains.
Collapse
Affiliation(s)
- Hengliang Huang
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Naoki Yamaji
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Sheng Huang
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Jian Feng Ma
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| |
Collapse
|
6
|
Naqqash T, Aziz A, Baber M, Shahid M, Sajid M, Emanuele R, Gaafar ARZ, Hodhod MS, Haider G. Metal-tolerant morganella morganii isolates can potentially mediate nickel stress tolerance in Arabidopsis by upregulating antioxidative enzyme activities. PLANT SIGNALING & BEHAVIOR 2024; 19:2318513. [PMID: 38526224 DOI: 10.1080/15592324.2024.2318513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPRs) have been utilized to immobilize heavy metals, limiting their translocation in metal contaminated settings. However, studies on the mechanisms and interactions that elucidate how PGPRs mediate Nickel (Ni) tolerance in plants are rare. Thus, in this study we investigated how two pre-characterized heavy metal tolerant isolates of Morganella morganii (ABT9 and ABT3) improve Ni stress tolerance in Arabidopsis while enhancing its growth and yield. Arabidopsis seedlings were grown for five weeks in control/Ni contaminated (control, 1.5 mM and 2.5 mM) potted soil, in the presence or absence of PGPRs. Plant growth characteristics, quantum yield, and antioxidative enzymatic activities were analyzed to assess the influence of PGPRs on plant physiology. Oxidative stress tolerance was quantified by measuring MDA accumulation in Arabidopsis plants. As expected, Ni stress substantially reduced plant growth (shoot and root fresh weight by 53.25% and 58.77%, dry weight by 49.80% and 57.41% and length by 47.16% and 64.63% over control), chlorophyll content and quantum yield (by 40.21% and 54.37% over control). It also increased MDA content by 84.28% at higher (2.5 mM) Ni concentrations. In contrast, inoculation with M. morganii led to significant improvements in leaf chlorophyll, quantum yield, and Arabidopsis biomass production. The mitigation of adverse effects of Ni stress on biomass observed in M. morganii-inoculated plants was attributed to the enhancement of antioxidative enzyme activities compared to Ni-treated plants. This upregulation of the antioxidative defense mechanism mitigated Ni-induced oxidative stress, leading to improved performance of the photosynthetic machinery, which, in turn, enhanced chlorophyll content and quantum yield. Understanding the underlying mechanisms of these tolerance-inducing processes will help to complete the picture of PGPRs-mediated defense signaling. Thus, it suggests that M. morganii PGPRs candidate can potentially be utilized for plant growth promotion by reducing oxidative stress via upregulating antioxidant defense systems in Ni-contaminated soils and reducing Ni metal uptake.
Collapse
Affiliation(s)
- Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Aeman Aziz
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Baber
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Radicetti Emanuele
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S Hodhod
- Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City, Egypt
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
7
|
Macar TK, Macar O. A study on the effect of Hypericum perforatum L. extract on vanadium toxicity in Allium cepa L. Sci Rep 2024; 14:28486. [PMID: 39557924 PMCID: PMC11574246 DOI: 10.1038/s41598-024-79535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
The growth of industrialization growth the risk of vanadium (V) contamination. The objective of this study was to examine the impact of 200 µg L- 1 VCI3 -induced toxicity as well as the potential protective effect of 187.5 mg L- 1 and 375 mg L- 1Hypericum perforatum (H. perforatum) extracts against this toxicity on the Allium cepa (A. cepa) model organism. For this purpose, a series of investigations were conducted on the growth physiology alterations (germination percentage, root elongation, weight gain), cytogenetic alterations (mitotic index, micronucleus, chromosomal aberrations), biochemical alterations (malondialdehyde, superoxide dismutase, catalase) and defects in meristematic tissue in A. cepa. In addition, the phenolic compound content of H. perforatum extract was determined by the LC/MS-MS method. V application negatively affected all the investigated parameters and caused a serious phytotoxic and genotoxic effect as well as oxidative stress in A. cepa. Conversely, no statistical difference was observed between the parameters of the groups treated with H. perforatum extract and those of the control group. The administration of H. perforatum extract combined with V resulted in a notable enhancement in germination percentage, root elongation, weight gain, mitotic index value, chlorophyll a level and chlorophyll b level. Additionally, it led to a reduction in micronucleus and chromosomal aberrations frequencies, as well as meristematic tissue defects. Furthermore, LC/MS-MS analysis demonstrated that H. perforatum extract contains phenolic compounds, including catechin, epicatechin, quercetin, oleuropein and rutin, which confer antioxidant properties to the extract. The study provided clear evidence that H. perforatum extract attenuates the toxic effects of V in A. cepa, which can be attributed to its high content of bioactive phenols. The findings of the study indicate that H. perforatum extract may serve as a protective natural agent for daily use against heavy metal toxicity.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, Giresun, 28400, Turkey
| | - Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, Giresun, 28400, Turkey.
| |
Collapse
|
8
|
Sánchez S, Baragaño D, Gallego JR, López-Antón MA, Forján R, González A. Valorization of steelmaking slag and coal fly ash as amendments in combination with Betula pubescens for the remediation of a highly As- and Hg-polluted mining soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172297. [PMID: 38588736 DOI: 10.1016/j.scitotenv.2024.172297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Soil pollution by As and Hg is a pressing environmental issue given their persistence. The intricate removal processes and subsequent accumulation of these elements in soil adversely impact plant growth and pose risks to other organisms in the food chain and to underground aquifers. Here we assessed the effectiveness of non-toxic industrial byproducts, namely coal fly ash and steelmaking slag, as soil amendments, both independently and in conjunction with an organic fertilizer. This approach was coupled with a phytoremediation technique involving Betula pubescens to tackle soil highly contaminated. Greenhouse experiments were conducted to evaluate amendments' impact on the growth, physiology, and biochemistry of the plant. Additionally, a permeable barrier made of byproducts was placed beneath the soil to treat leachates. The application of the byproducts reduced pollutant availability, the production of contaminated leachates, and pollutant accumulation in plants, thereby promoting plant development and survival. Conversely, the addition of the fertilizer alone led to an increase in As accumulation in plants and induced the production of antioxidant compounds such as carotenoids and free proline. Notably, all amendments led to increased thiolic compound production without affecting chlorophyll synthesis. While fertilizer application significantly decreased parameters associated with oxidative stress, such as hydrogen peroxide and malondialdehyde, no substantial reduction was observed after byproduct application. Thermal desorption analysis of the byproducts revealed Hg immobilization mechanisms, thereby indicating retention of this metalloid in the form of Hg chloride. In summary, the revalorization of industrial byproducts in the context of the circular economy holds promise for effectively immobilizing metal(loid)s in heavily polluted soils. Additionally, this approach can be enhanced through synergies with phytoremediation.
Collapse
Affiliation(s)
- S Sánchez
- Department of Organisms and Systems Biology, Area of Plant Physiology IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Asturias, Spain; Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Campus de Mieres, Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - D Baragaño
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain.
| | - J R Gallego
- Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Campus de Mieres, Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain
| | - M A López-Antón
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011 Oviedo, Spain
| | - R Forján
- Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Campus de Mieres, Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Asturias, Spain; Plant Production Area, Department of Biology of Organisms and Systems Biology, University of Oviedo, 33600 Mieres, Spain
| | - A González
- Department of Organisms and Systems Biology, Area of Plant Physiology IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
9
|
Adhikari A, Kwon EH, Khan MA, Shaffique S, Kang SM, Lee IJ. Enhanced use of chemical fertilizers and mitigation of heavy metal toxicity using biochar and the soil fungus Bipolaris maydis AF7 in rice: Genomic and metabolomic perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115938. [PMID: 38218102 DOI: 10.1016/j.ecoenv.2024.115938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Chemical fertilizers are the primary source of crop nutrition; however, their increasing rate of application has created environmental hazards, such as heavy metal toxicity and eutrophication. The synchronized use of chemical fertilizers and eco-friendly biological tools, such as microorganisms and biochar, may provide an efficient foundation to promote sustainable agriculture. Therefore, the current study aimed to optimize the nutrient uptake using an inorganic fertilizer, sulfate of potash (SOP) from the plant growth-promoting fungus Bipolaris maydis AF7, and biochar under heavy metal toxicity conditions in rice. Bioassay analysis showed that AF7 has high resistance to heavy metals and a tendency to produce gibberellin, colonize the fertilizer, and increase the intake of free amino acids. In the plant experiment, the co-application of AF7 +Biochar+MNF+SOP significantly lowered the heavy metal toxicity, enhanced the nutrient uptake in the rice shoots, and improved the morphological attributes (total biomass). Moreover, the co-application augmented the glucose and sucrose levels, whereas it significantly lowered the endogenous phytohormone levels (salicylic acid and jasmonic acid) in the rice shoots. The increase in nutrient content aligns with the higher expression of the OsLSi6, PHT1, and OsHKT1 genes. The plant growth traits and heavy metal tolerance of AF7 were validated by whole-genome sequencing that showed the presence of the heavy metal tolerance and detoxification protein, siderophore iron transporter, Gibberellin cluster GA4 desaturase, and DES_1 genes, as well as others that regulate glucose, antioxidants, and amino acids. Because the AF7 +biochar+inorganic fertilizer works synergistically, nutrient availability to the crops could be improved, and heavy metal toxicity and environmental hazards could be minimized.
Collapse
Affiliation(s)
- Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Muhammad Aaqil Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
10
|
Yılmaz H, Kalefetoğlu Macar T, Macar O, Çavuşoğlu K, Yalçın E. DNA fragmentation, chromosomal aberrations, and multi-toxic effects induced by nickel and the modulation of Ni-induced damage by pomegranate seed extract in Allium cepa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110826-110840. [PMID: 37794225 DOI: 10.1007/s11356-023-30193-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
This study was designed to assess the recovery effect of pomegranate seed extract (PSEx) against nickel (Ni)-induced damage in Allium cepa. Except for the control group treated with tap water, five experimental groups were exposed to 265 mg L-1 PSEx, 530 mg L-1 PSEx, 1 mg L-1 NiCI2, 265 mg L-1 PSEx + 1 mg L-1 NiCI2, and 530 mg L-1 PSEx + 1 mg L-1 NiCI2, respectively. The toxicity of Ni was examined through the analysis of physiological (germination percentage, weight gain, and root length), cytotoxicity (mitotic index), genotoxicity (micronucleus, chromosomal anomalies, and Comet test), and biochemical (malondialdehyde, proline, chlorophyll a and chlorophyll b contents, the activities of superoxide dismutase and catalase) parameters. Meristematic cell defects were also investigated. The NiCl2-DNA interaction was evaluated through spectral shift analysis. Values of all physiological parameters, mitotic index scores, and chlorophyll contents decreased while micronucleus frequency, DNA tail percentage, chromosomal anomalies, proline, MDA, and enzyme activities increased following Ni administration. According to the tail DNA percentage scale, Ni application caused "high damage" to DNA. Ni-induced chromosomal anomalies were fragment, sticky chromosome, vagrant chromosome, bridge, unbalanced chromatin distribution, reverse polarization, and nucleus with bud. NiCl2-DNA interaction caused a hyperchromic shift in the UV/Vis spectrum of DNA by spectral profile analysis. Ni exposure impaired root meristems as evidenced by the formation of epidermis cell damage, flattened cell nucleus, thickened cortex cell wall, and blurry vascular tissue. Substantial recovery was seen in all parameters with the co-administration of PSEx and Ni. Recovery effects in the parameters were 18-51% and 41-84% in the 265 mg L-1 PSEx + 1 mg L-1 NiCI2 and 530 mg L-1 PSEx + 1 mg L-1 NiCI2 groups, respectively. The Comet scale showed that PSEx applied with Ni reduced DNA damage from "high" to "moderate." Ni-induced thickened cortex cell wall and blurry vascular tissue damage disappeared completely when 530 mg L-1 PSEx was mixed with Ni. PSEx successfully reduced the negative effects of Ni, which can be attributed to its content of antioxidants and bioactive ingredients.
Collapse
Affiliation(s)
- Hüseyin Yılmaz
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Türkiye
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Türkiye.
| | - Oksal Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Türkiye
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Türkiye
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Türkiye
| |
Collapse
|
11
|
Brandalise JN, Guidoni LLC, Martins GA, Lopes ER, Nardino M, Bobrowski VL, Nadaleti WC, da Silva FMR, Lucia T, Corrêa ÉK. Environmental implications of combustion of rice husk at high temperatures and for an extended period for energy generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102222-102230. [PMID: 37667116 DOI: 10.1007/s11356-023-29588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The most common alternative for the management and valorization of rice processing waste is the combustion of rice husk (RH) for energy generation. The environmental risk assessment of the ash generated during the combustion of the RH to obtain energy has remained understudied. Disposal of rice husk ash (RHA) on agricultural land is the most common outcome, which could pose a risk to both natural ecosystems and human health. The objective of this study was to characterize the physicochemical composition and the phytotoxicity, cytotoxicity, and genotoxicity of RHA obtained from three distinct combustion processes. The evaluation processes were 800-900 °C in up to 5 min (I), 800-900 °C in 15-20 min (II), and 600-700 °C in 15-20 min (III). Furthermore, the content, pH, and concentrations of Al, Cd, Cu, Fe, Mg, Mn, Mo, Na, Ni, and Ti present in the ashes were determined. The germination index for two vegetable seeds was subsequently evaluated. By measuring the mitotic index and frequency of chromosomal aberrations, the cytotoxicity and genotoxicity were determined. It was observed that RHA produced by combustion of RH at higher combustion temperatures for an extended period exhibited different physicochemical properties, in addition to higher levels of phytotoxicity, cytotoxicity, and genotoxicity.
Collapse
Affiliation(s)
| | - Lucas Lourenço Castiglioni Guidoni
- PPGB, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Rua Benjamin Constant, 989, sala 200-Porto, Pelotas, RS, 96010-450, Brazil.
| | | | - Emanoelli Restane Lopes
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Maicon Nardino
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Thomaz Lucia
- Fibra, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Érico Kunde Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
12
|
Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159563. [PMID: 36265627 DOI: 10.1016/j.scitotenv.2022.159563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, human industrial practices and certain activities have caused the widespread spread of emerging contaminants throughout the environmental matrix, even in trace amounts, which constitute a serious threat to human health and environmental ecology, and have therefore attracted the attention of research scholars. Different traditional techniques are used to monitor water pollutants, However, they still have some disadvantages such as high costs, ecological problems and treatment times, and require technicians and researchers to operate them effectively. There is therefore an urgent need to develop simple, inexpensive and highly sensitive methods to sense and detect these toxic environmental contaminants. Optical fiber microfluidic coupled sensors offer different advantages over other detection technologies, allowing manipulation of light through controlled microfluidics, precise detection results and good stability, and have therefore become a logical device for screening and identifying environmental contaminants. This paper reviews the application of fiber optic microfluidic sensors in emerging environmental contaminant detection, focusing on the characteristics of different emerging contaminant types, different types of fiber optic microfluidic sensors, methodological principles of detection, and specific emerging contaminant detection applications. The optical detection methods in fiber optic microfluidic chips and their respective advantages and disadvantages are analyzed in the discussion. The applications of fiber optic biochemical sensors in microfluidic chips, especially for the detection of emerging contaminants in the aqueous environment, such as personal care products, endocrine disruptors, and perfluorinated compounds, are reviewed. Finally, the prospects of fiber optic microfluidic coupled sensors in environmental detection and related fields are foreseen.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - DanYu Xu
- Tianjin Academy of Eco-enviromental Sciences, Tianjin 300191, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
13
|
Zanelli D, Candotto Carniel F, Fortuna L, Pavoni E, Jehová González V, Vázquez E, Prato M, Tretiach M. Interactions of airborne graphene oxides with the sexual reproduction of a model plant: When production impurities matter. CHEMOSPHERE 2023; 312:137138. [PMID: 36343732 DOI: 10.1016/j.chemosphere.2022.137138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The increasing use of graphene-related materials (GRMs) in everyday-life products raises concerns for their possible release into the environment and consequent impact on organisms. GRMs have widely varying effects on plants and, according to recent evidences, graphene oxide (GO) has the potential to interfere with the sexual reproduction owing to its acidic properties and production residues. Here, stigmas of the model plant Cucurbita pepo (summer squash) were subjected to simulated dry depositions of GO and GO purified from production residues (PGO). Stigmas were then hand-pollinated and GRM deposition was checked by ESEM and confocal microscopy. Analysis of stigma integrity, pH homeostasis and pollen-stigma interactions did not reveal negative effects. Fruit and seed production were not affected, but GO depositions of 22.1 ± 7.2 ng mm-2 affected the normal development of seeds, decreasing seed dimensions, seed germination and germination speed. The elemental analysis revealed that GO has significant quantities of production residues, such as strong acids and oxidants, while PGO has only traces, which justifies the differences observed in the effects caused by the two materials. Our results show that GO depositions of up to 11.1 ± 3.6 ng mm-2, which fall within the variation range of total dry particulate matter depositions reported in the literature, are safe for reproduction of C. pepo. This is the first "safety" limit ever recorded for depositions of "out-of-the-box" GO concerning the reproduction of a seed plant. If confirmed for wind-pollinated species, it might be considered for policymaking of GRMs emissions in the air.
Collapse
Affiliation(s)
- Davide Zanelli
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | | | - Lorenzo Fortuna
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Elena Pavoni
- Department of Mathematics and Geosciences, University of Trieste, 34128, Trieste, Italy
| | - Viviana Jehová González
- Department of Organic Chemistry, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Department of Organic Chemistry, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain; Department of Organic Chemistry, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha, 13071, Ciudad Real, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013, Bilbao, Spain
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
14
|
Thomas J, Archana G. Differential influence of heavy metals on plant growth promoting attributes of beneficial microbes and their ability to promote growth of Vigna radiata (mung bean). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Dobrikova A, Apostolova E, Adamakis IDS, Hanć A, Sperdouli I, Moustakas M. Combined Impact of Excess Zinc and Cadmium on Elemental Uptake, Leaf Anatomy and Pigments, Antioxidant Capacity, and Function of Photosynthetic Apparatus in Clary Sage ( Salvia sclarea L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182407. [PMID: 36145808 PMCID: PMC9500708 DOI: 10.3390/plants11182407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 05/12/2023]
Abstract
Clary sage (Salvia sclarea L.) is a medicinal plant that has the potential to be used for phytoextraction of zinc (Zn) and cadmium (Cd) from contaminated soils by accumulating these metals in its tissues. Additionally, it has been found to be more tolerant to excess Zn than to Cd stress alone; however, the interactive effects of the combined treatment with Zn and Cd on this medicinal herb, and the protective strategies of Zn to alleviate Cd toxicity have not yet been established in detail. In this study, clary sage plants grown hydroponically were simultaneously exposed to Zn (900 µM) and Cd (100 μM) for 8 days to obtain more detailed information about the plant responses and the role of excess Zn in mitigating Cd toxicity symptoms. The leaf anatomy, photosynthetic pigments, total phenolic and anthocyanin contents, antioxidant capacity (by DPPH and FRAP analyses), and the uptake and distribution of essential elements were investigated. The results showed that co-exposure to Zn and Cd leads to an increased leaf content of Fe and Mg compared to the control, and to increased leaf Ca, Mn, and Cu contents compared to plants treated with Cd only. This is most likely involved in the defense mechanisms of excess Zn against Cd toxicity to protect the chlorophyll content and the functions of both photosystems and the oxygen-evolving complex. The data also revealed that the leaves of clary sage plants subjected to the combined treatment have an increased antioxidant capacity attributed to the higher content of polyphenolic compounds. Furthermore, light microscopy indicated more alterations in the leaf morphology after Cd-only treatment than after the combined treatment. The present study shows that excess Zn could mitigate Cd toxicity in clary sage plants.
Collapse
Affiliation(s)
- Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter, Thermi, 57001 Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
16
|
Chorianopoulou SN, Bouranis DL. The Role of Sulfur in Agronomic Biofortification with Essential Micronutrients. PLANTS 2022; 11:plants11151979. [PMID: 35956455 PMCID: PMC9370111 DOI: 10.3390/plants11151979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
Sulfur (S) is an essential macronutrient for plants, being necessary for their growth and metabolism and exhibiting diverse roles throughout their life cycles. Inside the plant body, S is present either in one of its inorganic forms or incorporated in an organic compound. Moreover, organic S compounds may contain S in its reduced or oxidized form. Among others, S plays roles in maintaining the homeostasis of essential micronutrients, e.g., iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn). One of the most well-known connections is homeostasis between S and Fe, mainly in terms of the role of S in uptake, transportation, and distribution of Fe, as well as the functional interactions of S with Fe in the Fe-S clusters. This review reports the available information describing the connections between the homeostasis of S and Fe, Cu, Zn, and Mn in plants. The roles of S- or sulfur-derived organic ligands in metal uptake and translocation within the plant are highlighted. Moreover, the roles of these micronutrients in S homeostasis are also discussed.
Collapse
|
17
|
Rather BA, Mir IR, Masood A, Anjum NA, Khan NA. Ethylene-nitrogen synergism induces tolerance to copper stress by modulating antioxidant system and nitrogen metabolism and improves photosynthetic capacity in mustard. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49029-49049. [PMID: 35212900 DOI: 10.1007/s11356-022-19380-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to test the efficiency of ethylene (Eth; 200 µL L-1 ethephon) in presence or absence of nitrogen (N; 80 mg N kg-1 soil) in protecting photosynthetic apparatus from copper (Cu; 100 mg Cu kg-1 soil) stress in mustard (Brassica juncea L.) and to elucidate the physio-biochemical modulation for Eth plus N-induced Cu tolerance. Elevated Cu-accrued reductions in photosynthesis and growth were accompanied by significantly higher Cu accumulation in leaves and oxidative stress with reduced assimilation of N and sulfur (S). Ethylene in coordination with N considerably reduced Cu accumulation, lowered lipid peroxidation, lignin accumulation, and contents of reactive oxygen species (hydrogen peroxide, H2O2, and superoxide anion, O2•-), and mitigated the negative effect of Cu on N and S assimilation, accumulation of non-protein thiols and phytochelatins, enzymatic, and non-enzymatic antioxidants (activity of ascorbate peroxidase, APX, and glutathione reductase, GR; content of reduced glutathione, GSH, and ascorbate, AsA), cell viability, photosynthesis, and growth. Overall, the effect of ethylene-nitrogen synergism was evident on prominently mitigating Cu stress and protecting photosynthesis. The approach of supplementing ethylene with N may be used as a potential tool to restrain Cu stress, and protect photosynthesis and growth of mustard plants.
Collapse
Affiliation(s)
- Bilal A Rather
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Iqbal R Mir
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Naser A Anjum
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
18
|
Roccotiello E, Nicosia E, Pierdonà L, Marescotti P, Ciardiello MA, Giangrieco I, Mari A, Zennaro D, Dozza D, Brancucci M, Mariotti M. Tomato (Solanum lycopersicum L.) accumulation and allergenicity in response to nickel stress. Sci Rep 2022; 12:5432. [PMID: 35361841 PMCID: PMC8971441 DOI: 10.1038/s41598-022-09107-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Vegetables represent a major source of Ni exposure. Environmental contamination and cultural practices can increase Ni amount in tomato posing significant risk for human health. This work assesses the tomato (Solanum lycopersicum L.) response to Ni on the agronomic yield of fruits and the related production of allergens. Two cultivars were grown in pots amended with Ni 0, 30, 60, 120, and 300 mg kg−1, respectively. XRF and ICP-MS analyses highlighted the direct increase of fruit Ni content compared to soil Ni, maintaining a stable biomass. Leaf water content increased at Ni 300 mg kg−1. Total protein content and individual allergenic components were investigated using biochemical (RP-HPLC and N-terminal amino acid sequencing) and immunological (inhibition tests of IgE binding by SPHIAa assay on the FABER testing system) methodologies. Ni affected the fruit tissue concentration of pathogenesis-related proteins and relevant allergens (LTP, profilin, Bet v 1-like protein and TLP). This study elucidates for the first time that tomato reacts to exogenous Ni, uptaking the metal while changing its allergenic profiles, with potential double increasing of exposure risks for consumers. This evidence highlighted the importance of adequate choice of low-Ni tomato cultivars and practices to reduce Ni uptake by potentially contaminated matrices.
Collapse
Affiliation(s)
- Enrica Roccotiello
- Department of Earth Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy.
| | - Elena Nicosia
- Regione Liguria, Dipartimento Salute e Servizi Sociali, Settore Tutela della Salute negli Ambienti di Vita e di Lavoro Via Fieschi 17, Piano U8, 16121, Genoa, Italy
| | - Lorenzo Pierdonà
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Kamýcká 129, Suchdol, 16500, Prague, Czech Republic
| | - Pietro Marescotti
- Department of Earth Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| | | | - Ivana Giangrieco
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy.,Allergy Data Laboratories (ADL), Latina, Italy
| | - Adriano Mari
- Allergy Data Laboratories (ADL), Latina, Italy.,Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Danila Zennaro
- Allergy Data Laboratories (ADL), Latina, Italy.,Associated Centers for Molecular Allergology (CAAM), Rome, Italy
| | - Denise Dozza
- IREN Laboratori S.P.a, Via SS. Giacomo E Filippo 7, 16122, Genoa, Italy
| | | | - Mauro Mariotti
- Department of Earth Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| |
Collapse
|
19
|
Xu J, Hu C, Wang M, Zhao Z, Zhao X, Cao L, Lu Y, Cai X. Changeable effects of coexisting heavy metals on transfer of cadmium from soils to wheat grains. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127182. [PMID: 34537640 DOI: 10.1016/j.jhazmat.2021.127182] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and other heavy metals usually coexist in soils. Effects of coexisting heavy metals on the accumulation and transfer of Cd in field soils by wheat remain poorly understood. Here we revealed changeable effects of coexisting Pb, Zn and Cu on the Cd transfer from soils to wheat grains. Soil burdens of Cd were found to exhibit positive correlations (r = 0.459-0.946) with those of coexisting Pb, Zn and Cu (particularly Pb). Effects of three coexisting metals on to the uptake of Cd by wheat varied in the directions and/or extents with types of metals and transfer processes of Cd. Coexisting Zn inhibited the uptake of Cd by wheat grains to higher extent than Pb and Cu. Soil Zn, along with soil Cd, soil pH and soil Ca, was used to construct the predictive model of grain Cd (R2 = 0.868). External verifications of the model on 572 datasets of large representation performed well. The predictive accuracy was about 54%, 73% and 89% for a factor of 1, 2 and 5 above and below the ideal fit, respectively. This finding has practical interest in risk assessments and remediation measures of Cd-contaminated soil sites in regional scales.
Collapse
Affiliation(s)
- Jiahui Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Canyang Hu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Maolin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zongsheng Zhao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Xiaoxue Zhao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Liu Cao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Yifu Lu
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Xiyun Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
20
|
Elemental Profiles of Legumes and Seeds in View of Chemometric Approach. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The study aimed to evaluate fourteen elements’ profiles of legumes and oilseeds, of various geographical origins, available on the Polish market. They were determined by flame atomic absorption spectrometry (F-AAS) and spectrophotometric method (phosphorus) in 90 analytical samples. In general, legumes were characterized with lower mean concentrations of Ca, Mg, Na, P, Zn, Cu, Fe, Mn, and Cr than oilseeds. However, the concentrations ranges within each group differed significantly (p < 0.05). Calcium content varied between 6.2 and 243.5 mg/100 g in legumes and 38.4 and 2003 mg/100 g in oilseeds. In the case of Fe, its concentration was between 1.99 mg/100 g and 10.5 mg/100 g in legumes, and 2.05 mg and 12.15 mg/100 g in seeds. All the samples were characterized with Pb concentration below the LOQ (30 µg/100 g). In the case of Cd, its presence (>LOQ, 9 µg/100 g) was confirmed in one sample of legumes (soybean) and five samples of seeds (poppy seeds, roasted linseeds, hulled wheat, linseed, and sunflower seeds). The detected Cd content in every sample, except for soybean and hulled wheat, exceeded the permissible European standards. According to Kruskal-Wallis test results, Mg, Na, K, P, Zn, Cu, Mn, Cr, and Cd content depended on the type of the analyzed product, while in the case of botanical provenance such relationship was recorded for most of the analyzed components, except for Fe, Cr, and Co. Factor and cluster analyses classified the analyzed samples in view of their botanical species and type based on their mineral composition.
Collapse
|
21
|
Liu Z, Meng J, Sun Z, Su J, Luo X, Song J, Li P, Sun Y, Yu C, Peng X. Zinc application after low temperature stress promoted rice tillers recovery: Aspects of nutrient absorption and plant hormone regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111104. [PMID: 34895541 DOI: 10.1016/j.plantsci.2021.111104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Low temperature during the vegetative stage depresses rice tillering. Zinc (Zn) can promote rice tiller growth and improve plant resistance to abiotic stress. Consequently, Zn application after low temperature might be an effective approach to promote rice tiller recovery. A water culture experiment with treatments of two temperatures (12 °C and 20 °C) and three Zn concentrations (0.08 μM, 0.15 μM and 0.31 μM ZnSO4·7H2O) was conducted to determine by analyzing rice tiller growth, nutrient absorption and hormones metabolism. The results showed that low temperature reduced rice tiller numbers and leaf age, decreased as well. Increasing Zn application after low temperature could enhance not only rice tiller growth rate but also N metabolism and tillering recovery, and correlation analysis showed a significantly positive correlation between tiller increment and Zn and N accumulation after low temperature. In addition, higher cytokinin (CTK)/auxin (IAA) ratio was maintained by promoted synthesis of CTK and IAA as well as enhanced IAA transportation from tiller buds to other parts with increased Zn application after cold stress, which resulted in accelerated germination and growth of tiller buds. These results highlighted that Zn application after low temperature promoted rice tiller recovery by increasing N and Zn accumulation and maintaining hormones balance.
Collapse
Affiliation(s)
- Zhilei Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Germplasm Innovation, Physiology and Ecology of Grain Crop in Cold Region (Northeast Agricultural University), Ministry of Education, Harbin, 150030, China
| | - Jingrou Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zefeng Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jinkai Su
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyu Luo
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiamei Song
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Germplasm Innovation, Physiology and Ecology of Grain Crop in Cold Region (Northeast Agricultural University), Ministry of Education, Harbin, 150030, China
| | - Yankun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Cailian Yu
- The School of Material Science and Chemical Engineering,Harbin University of Science and Technology, Harbin, 150040, China
| | - Xianlong Peng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Germplasm Innovation, Physiology and Ecology of Grain Crop in Cold Region (Northeast Agricultural University), Ministry of Education, Harbin, 150030, China.
| |
Collapse
|
22
|
Xiao Y, Ma J, Xian J, Peijnenburg WJGM, Du Y, Tian D, Xiao H, He Y, Luo L, Deng O, Tu L. Copper accumulation and physiological markers of soybean (Glycine max) grown in agricultural soil amended with copper nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113088. [PMID: 34923329 DOI: 10.1016/j.ecoenv.2021.113088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Copper-based nanoparticles (NPs) display a strong potential to replace copper salts (e.g., CuSO4) for application in agricultures as antimicrobial agents or nutritional amendments. Yet, their effects on crop quality are still not comprehensively understood. In this study, the Cu contents in soybeans grown in soils amended with Cu NPs and CuSO4 at 100-500 mg Cu/kg and the subsequent effects on the plant physiological markers were determined. The Cu NPs induced 29-89% at the flowering stage (on Day 40) and 100-165% at maturation stage (on Day 100) more Cu accumulation in soybeans than CuSO4. The presence of particle aggregates in the root cells with deformation upon the Cu NP exposure was observed by transmission electron microscopy. The Cu NPs at 100 and 200 mg/kg significantly improved the plant height and biomass, yet significantly inhibited at 500 mg/kg, compared to the control. In leaves chlorophyll-b was more sensitive than chlorophyll-a and carotenoids to the Cu NP effect. The Cu NPs significantly decreased the root nitrogen and phosphorus contents, while they significantly increased the leaf potassium content in comparison with control. Our results imply that cautious use of Cu NPs in agriculture is warranted due to relatively high uptake of Cu and altered nutrient quality in soybeans.
Collapse
Affiliation(s)
- Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Jun Ma
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Junren Xian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, P. O. Box 1, 3720 BA Bilthoven, The Netherlands; Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands
| | - Ying Du
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Dong Tian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lihua Tu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
23
|
Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R. A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules 2021; 12:43. [PMID: 35053191 PMCID: PMC8774178 DOI: 10.3390/biom12010043] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Heavy metal (HM) toxicity has become a global concern in recent years and is imposing a severe threat to the environment and human health. In the case of plants, a higher concentration of HMs, above a threshold, adversely affects cellular metabolism because of the generation of reactive oxygen species (ROS) which target the key biological molecules. Moreover, some of the HMs such as mercury and arsenic, among others, can directly alter the protein/enzyme activities by targeting their -SH group to further impede the cellular metabolism. Particularly, inhibition of photosynthesis has been reported under HM toxicity because HMs trigger the degradation of chlorophyll molecules by enhancing the chlorophyllase activity and by replacing the central Mg ion in the porphyrin ring which affects overall plant growth and yield. Consequently, plants utilize various strategies to mitigate the negative impact of HM toxicity by limiting the uptake of these HMs and their sequestration into the vacuoles with the help of various molecules including proteins such as phytochelatins, metallothionein, compatible solutes, and secondary metabolites. In this comprehensive review, we provided insights towards a wider aspect of HM toxicity, ranging from their negative impact on plant growth to the mechanisms employed by the plants to alleviate the HM toxicity and presented the molecular mechanism of HMs toxicity and sequestration in plants.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726 Szeged, Hungary;
- Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Nisha Nisha
- Department of Integrated Plant Protection, Faculty of Horticultural Science, Plant Protection Institute, Szent István University, 2100 Godollo, Hungary;
| | - Bushra Ejaz
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - M. Iqbal R. Khan
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - Manu Kumar
- Department of Life Science, Dongguk University, Seoul 10326, Korea;
| | - Pramod W. Ramteke
- Department of Life Sciences, Mandsaur University, Mandsaur 458001, India;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
24
|
Suszek-Łopatka B, Maliszewska-Kordybach B, Klimkowicz-Pawlas A, Smreczak B. The multifactorial assessment of the Zn impact on high and low temperature stress towards wheat seedling growth under diverse moisture conditions (optimal and wet) in three soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126087. [PMID: 34492901 DOI: 10.1016/j.jhazmat.2021.126087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 05/08/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic activities leading to chemical contamination of soil and global climate change may increase the level of stress for plants. Recent decades studies (mainly two-factors) have reported that the ecotoxicity of soil contaminants could be modified by climate factors. To date, little is known about: the combined climate-chemical stress on plants; the interaction of chemicals with high soil moisture conditions; the impact of soil properties on the combined climate-chemical stress and questions regarding the response of organisms to combined effect of all key factors influencing the ecotoxicity of chemicals under field conditions remain unanswered. Our study sought to fill the knowledge gap on the multifactorial interaction of four main factors encounter in polluted areas (soil chemical contamination: heavy metal (Zn); temperature: 10, 23, 35 °C, moisture: 55, 80%WHC; soil properties). The assessment of combined effect of multiple stressors based on the multiple ANCOVA model (n = 108; adjusted R2 = 0.68) and calculated indicators showed: 1) all studied factors significantly interacted and influenced the phytotoxic effect of Zn; 2) Zn modified the plant response to temperature stress depending on moisture conditions and soil properties. This study improves methods for assessing the hazardous effects of soil chemical contamination in the real environment.
Collapse
Affiliation(s)
- Beata Suszek-Łopatka
- Institute of Soil Science and Plant Cultivation - State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Pulawy, Poland.
| | - Barbara Maliszewska-Kordybach
- Institute of Soil Science and Plant Cultivation - State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Pulawy, Poland.
| | - Agnieszka Klimkowicz-Pawlas
- Institute of Soil Science and Plant Cultivation - State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Pulawy, Poland.
| | - Bożena Smreczak
- Institute of Soil Science and Plant Cultivation - State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Pulawy, Poland.
| |
Collapse
|
25
|
Jute Responses and Tolerance to Abiotic Stress: Mechanisms and Approaches. PLANTS 2021; 10:plants10081595. [PMID: 34451640 PMCID: PMC8398869 DOI: 10.3390/plants10081595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022]
Abstract
Jute (Corchorus spp.) belongs to the Malvaceae family, and there are two species of jute, C. capsularis and C. olitorious. It is the second-largest natural bast fiber in the world according to production, which has diverse uses not only as a fiber but also as multiple industrial materials. Because of climate change, plants experience various stressors such as salt, drought, heat, cold, metal/metalloid toxicity, and flooding. Although jute is particularly adapted to grow in hot and humid climates, it is grown under a wide variety of climatic conditions and is relatively tolerant to some environmental adversities. However, abiotic stress often restricts its growth, yield, and quality significantly. Abiotic stress negatively affects the metabolic activities, growth, physiology, and fiber yield of jute. One of the major consequences of abiotic stress on the jute plant is the generation of reactive oxygen species, which lead to oxidative stress that damages its cellular organelles and biomolecules. However, jute’s responses to abiotic stress mainly depend on the plant’s age and type and duration of stress. Therefore, understanding the abiotic stress responses and the tolerance mechanism would help plant biologists and agronomists in developing climate-smart jute varieties and suitable cultivation packages for adverse environmental conditions. In this review, we summarized the best possible recent literature on the plant abiotic stress factors and their influence on jute plants. We described the possible approaches for stress tolerance mechanisms based on the available literature.
Collapse
|
26
|
Blood, Hair and Feces as an Indicator of Environmental Exposure of Sheep, Cow and Buffalo to Cobalt: A Health Risk Perspectives. SUSTAINABILITY 2021. [DOI: 10.3390/su13147873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Exposure to toxic metals (TMs) such as cobalt (Co) can cause lifelong carcinogenic disorders and mutagenic outcomes. TMs enter ground water and rivers from human activity, anthropogenic contamination, and the ecological environment. The present study was conducted to evaluate the influence of sewage water irrigation on cobalt (Co) toxicity and bioaccumulation in a soil-plant environment and to assess the health risk of grazing livestock via forage consumption. Cobalt is a very necessary element for the growth of plants and animals; however, higher concentrations have toxic impacts. Measurement of Co in plant, soil and water samples was conducted via wet digestion method using an atomic absorption spectrophotometer. The Co pollution severity was examined in soil, forage crops (Sorghum bicolor Kuntze, Sesbania bispinosa (Jacq.) W. Wight, Cynodon dactylon (L.) Pers., Suaeda fruticosa (L.) Forssk. and Tribulus terrestris L.) in blood, hair and feces of sheep, cow and buffalo from district Toba-Tek-Singh, Punjab, Pakistan. Three sites were selected for investigation of Co level in soil and forage samples. Highest concentration of Co was 0.65 and 0.35 mg/kg occurring in S. bicolor at site I. The sheep blood, cow hair and sheep feces samples showed highest concentrations of 0.545, 0.549 and 0.548 mg/kg, respectively at site I and site II. Bioconcentration factor, pollution load index, enrichment factor and daily intake were found to be higher (0.667, 0.124, 0.12 and 0.0007 mg/kg) in soil, S. bicolor, S. fruticosa and in buffalo, respectively, at site I. It was concluded that forage species irrigated with wastewater are safe for consumption of livestock. However, though the general values were lower than the permissible maximum limit, it was observed that the bioaccumulation in the forage species was higher. Therefore, soil and food chain components should be avoided from trace metal contamination, and other means of nonconventional water resources should be employed for forages irrigation.
Collapse
|
27
|
Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:260-278. [PMID: 34020167 DOI: 10.1016/j.plaphy.2021.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
Heavy metal (HM) accumulation in the agricultural soil and its toxicity is a major threat for plant growth and development. HMs disrupt functional integrity of the plants, induces altered phenological and physiological responses and slashes down qualitative crop yield. Chemical messengers such as phytohormones, plant growth regulators and gasotransmitters play a crucial role in regulating plant growth and development under metal toxicity in plants. Understanding the intricate network of these chemical messengers as well as interactions of genes/metabolites/proteins associated with HM toxicity in plants is necessary for deciphering insights into the regulatory circuit involved in HM tolerance. The present review describes (a) the role of chemical messengers in HM-induced toxicity mitigation, (b) possible crosstalk between phytohormones and other signaling cascades involved in plants HM tolerance and (c) the recent advancements in biotechnological interventions including genetic engineering, genome editing and omics approaches to provide a step ahead in making of improved plant against HM toxicities.
Collapse
Affiliation(s)
| | | | | | | | - Sofi Javed Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
28
|
Natural Seed Limitation and Effectiveness of Forest Plantations to Restore Semiarid Abandoned Metal Mining Areas in SE Spain. FORESTS 2021. [DOI: 10.3390/f12050548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The natural regeneration of forests in mining areas is typically hampered by edaphic stress. Semiarid conditions add a climatic stress that challenges the restoration of these harsh ecosystems. This is the case of Tetraclinisarticulata (Vahl) Masters mixed forests in the Western Mediterranean region colonizing mining structures abandoned three decades ago. We studied the factors controlling the natural establishment of nine shrub and tree species key in these forests in eight metal mine tailings in SE Spain. In addition, we assessed the success of reintroducing 1480 individuals of the nine species 15 months after planting in one of the tailings. Specifically, we analyzed the effect of (i) species identity in terms of sapling survival, growth, nutritional status and metal bioaccumulation, and (ii) adding organic amendments into the planting holes on the same parameters. Our results indicated that natural colonization is a recent process, with seedling cohorts that vary up to two orders of magnitude among species and a practical absence of adult plants in most species excepting T. articulata. We identified seed limitation as a key factor controlling seedling density, which was significantly explained by the distance from the border of the tailing to the closest adult out of the tailing. Soil metal concentration did not have any explanatory power on the density of naturally-established seedlings, whereas soil fertility was relevant only for Rhamnus lycioides L. Overall survival of planted individuals was over 80%, survival and growth remarkably differing among species. Organic amendments had neutral or negative effects on plant survival, but significantly increased the growth of survivors despite their modest effects on leaf nutrient contents. Most species showed high metal bioaccumulation, which was exacerbated by organic amendments. We discuss how biodiversity conservation programs can benefit from the affordable and successful plantation of stress-tolerant local species, but come at the expense of potential metal transfer through trophic webs.
Collapse
|
29
|
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. BIOLOGY 2021; 10:267. [PMID: 33810535 PMCID: PMC8066271 DOI: 10.3390/biology10040267] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The stationary life of plants has led to the evolution of a complex gridded antioxidant defence system constituting numerous enzymatic components, playing a crucial role in overcoming various stress conditions. Mainly, these plant enzymes are superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR), which work as part of the antioxidant defence system. These enzymes together form a complex set of mechanisms to minimise, buffer, and scavenge the reactive oxygen species (ROS) efficiently. The present review is aimed at articulating the current understanding of each of these enzymatic components, with special attention on the role of each enzyme in response to the various environmental, especially abiotic stresses, their molecular characterisation, and reaction mechanisms. The role of the enzymatic defence system for plant health and development, their significance, and cross-talk mechanisms are discussed in detail. Additionally, the application of antioxidant enzymes in developing stress-tolerant transgenic plants are also discussed.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Harish
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lav Sharma
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Francisco Roberto Quiroz-Figueroa
- Laboratorio de Fitomejoramiento Molecular, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes no. 250, Col. San Joachín, C.P., 81101 Guasave, Mexico;
| | - Mukesh Meena
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, NH 11C, Kant Kalwar, Jaipur 303002, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| |
Collapse
|
30
|
Montvydienė D, Jagminas A, Jurgelėnė Ž, Kazlauskas M, Butrimienė R, Žukauskaitė Z, Kazlauskienė N. Toxicological effects of different-sized Co-Fe (CoFe 2O 4) nanoparticles on Lepidium sativum L.: towards better understanding of nanophytotoxicity. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:277-291. [PMID: 33471270 DOI: 10.1007/s10646-020-02340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Due to their widespread therapeutic and agricultural applicability and usefulness in removing metals and metalloids from water, cobalt ferrite nanoparticles (NPs) are currently receiving increasing attention from researchers. However, their potential phytotoxicity is still poorly understood. Thus, the aim of the current study was to assess the effects of synthesized cobalt ferrite (CoFe2O4) NPs on biological (morphological, physiological, and biochemical) parameters of edible plant garden-cress (Lepidium sativum L.), depending on particle size and concentrations. In this study, physical characteristics of cobalt ferrite NPs were determined. Increased total content of Co and Fe in L. sativum tissues and their transfer from roots to above-ground parts of seedlings, which depended on the size of NP (15 < 5 < 1.65 nm), indicated that plants had been exposed to Co ferrite NPs. The relative growth of roots, biomass of roots and above-ground parts of seedlings, amounts of chlorophylls a and b, carotenoids, and malondialdehyde (MDA) were determined. The dependence of the tested garden-cress parameters on the size and concentrations of NPs was revealed. Our data showed that the content of MDA in test plants in some cases increased up to 2.5 folds in comparison to control. The increase of the content of chlorophyll b pigment and MDA in test plants is an appropriate indicator of the impact of cobalt ferrite NPs. The findings of our study into toxicological effects of Co-Fe (CoFe2O4) NPs on L. sativum are expected to deepen the knowledge of the nanophytotoxicity of ferromagnetic NPs and their potential application in biomedicine and agriculture.
Collapse
Affiliation(s)
- D Montvydienė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania.
| | - A Jagminas
- State Research Institute Centre for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257, Vilnius, Lithuania
| | - Ž Jurgelėnė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - M Kazlauskas
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - R Butrimienė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Z Žukauskaitė
- State Research Institute Centre for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257, Vilnius, Lithuania
| | - N Kazlauskienė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| |
Collapse
|
31
|
Dobrikova A, Apostolova E, Hanć A, Yotsova E, Borisova P, Sperdouli I, Adamakis IDS, Moustakas M. Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc. PLANTS (BASEL, SWITZERLAND) 2021; 10:194. [PMID: 33494177 PMCID: PMC7909794 DOI: 10.3390/plants10020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 05/03/2023]
Abstract
In recent years, due to the development of industrial and agricultural production, heavy metal contamination has attracted increasing attention. Aromatic and medicinal plant Salvia sclarea L. (clary sage) is classified to zinc (Zn) accumulators and considered as a potential plant for the phytoremediation of heavy metal polluted soils. In this study, an adaptation of clary sage to 900 µM (excess) Zn exposure for eight days in a hydroponic culture was investigated. The tolerance mechanisms under excess Zn exposure were assessed by evaluating changes in the nutrient uptake, leaf pigment and phenolic content, photosynthetic activity and leaf structural characteristics. The uptake and the distribution of Zn, as well as some essential elements such as: Ca, Mg, Fe, Mn and Cu, were examined by inductively coupled plasma mass spectrometry. The results revealed that Salvia sclarea is a Zn-accumulator plant that tolerates significantly high toxic levels of Zn in the leaves by increasing the leaf contents of Fe, Ca and Mn ions to protect the photosynthetic function and to stimulate the photosystem I (PSI) and photosystem II (PSII) activities. The exposure of clary sage to excess Zn significantly increased the synthesis of total phenolics and anthocyanins in the leaves; these play an important role in Zn detoxification and protection against oxidative stress. The lipid peroxidation and electrolyte leakage in leaves, used as clear indicators for heavy metal damage, were slightly increased. All these data highlight that Salvia sclarea is an economically interesting plant for the phytoextraction and/or phytostabilization of Zn-contaminated soils.
Collapse
Affiliation(s)
- Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Ekaterina Yotsova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Preslava Borisova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.A.); (E.Y.); (P.B.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter, Thermi, 57001 Thessaloniki, Greece;
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
32
|
Li H, Liu Y, Qin H, Lin X, Tang D, Wu Z, Luo W, Shen Y, Dong F, Wang Y, Feng T, Wang L, Li L, Chen D, Zhang Y, Murray JD, Chao D, Chong K, Cheng Z, Meng Z. A rice chloroplast-localized ABC transporter ARG1 modulates cobalt and nickel homeostasis and contributes to photosynthetic capacity. THE NEW PHYTOLOGIST 2020; 228:163-178. [PMID: 32464682 DOI: 10.1111/nph.16708] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Transport and homeostasis of transition metals in chloroplasts, which are accurately regulated to ensure supply and to prevent toxicity induced by these metals, are thus crucial for chloroplast function and photosynthetic performance. However, the mechanisms that maintain the balance of transition metals in chloroplasts remain largely unknown. We have characterized an albino-revertible green 1 (arg1) rice mutant. ARG1 encodes an evolutionarily conserved protein belonging to the ATP-binding cassette (ABC) transporter family. Protoplast transfection and immunogold-labelling assays showed that ARG1 is localized in the envelopes and thylakoid membranes of chloroplasts. Measurements of metal contents, metal transport, physiological and transcriptome changes revealed that ARG1 modulates cobalt (Co) and nickel (Ni) transport and homeostasis in chloroplasts to prevent excessive Co and Ni from competing with essential metal cofactors in chlorophyll and metal-binding proteins acting in photosynthesis. Natural allelic variation in ARG1 between indica and temperate japonica subspecies of rice is coupled with their different capabilities for Co transport and Co content within chloroplasts. This variation underpins the different photosynthetic capabilities in these subspecies. Our findings link the function of the ARG1 transporter to photosynthesis, and potentially facilitate breeding of rice cultivars with improved Co homeostasis and consequently improved photosynthetic performance.
Collapse
Affiliation(s)
- Haixiu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huihui Qin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelei Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengjing Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yaling Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tingting Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Laiyun Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Doudou Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Daiyin Chao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
33
|
Rather BA, Mir IR, Sehar Z, Anjum NA, Masood A, Khan NA. The outcomes of the functional interplay of nitric oxide and hydrogen sulfide in metal stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:523-534. [PMID: 32836198 DOI: 10.1016/j.plaphy.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 05/24/2023]
Abstract
Phytotoxicity of metals constraints plants health, metabolism and productivity. The sustainable approaches for minimizing major metals-accrued phytotoxicity have been least explored. The gasotransmitters signaling molecules such as nitric oxide (NO) and hydrogen sulfide (H2S) play a significant role in the mitigation of major consequences of metals stress. Versatile gaseous signaling molecules, NO and H2S are involved in the regulation of various physiological processes in plants and their tolerance to abiotic stresses. However, literature available on NO or H2S stand alone, and the major insights into the roles of NO and/or H2S in plant tolerance, particularly to metals, remained unclear. Given above, this paper aimed to (a) briefly overview metals and highlight their major phytotoxicity; (b) appraises literature reporting potential mechanisms underlying the roles of NO and H2S in plant-metal tolerance; (c) crosstalk on NO and H2S in relation to plant metal tolerance. Additionally, major aspects so far unexplored in the current context have also been mentioned.
Collapse
Affiliation(s)
- Bilal A Rather
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Iqbal R Mir
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naser A Anjum
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
34
|
Lukatkin AS, Bashmakov DI, Al Harbawee WEQ, Teixeira da Silva JA. Assessment of physiological and biochemical responses of Amaranthus retroflexus seedlings to the accumulation of heavy metals with regards to phytoremediation potential. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:219-230. [PMID: 32841043 DOI: 10.1080/15226514.2020.1807904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this research was to assess, under laboratory conditions, how the accumulation of four heavy metals (HMs) (lead (Pb), copper (Cu), nickel (Ni), and zinc (Zn)), prepared as aqueous solutions from 1 μM to 1 mM, affected biochemical and physiological parameters of Amaranthus retroflexus seedlings. Seedlings showed considerably high resistance to all investigated HMs and no significant oxidative stress in leaves. After chronic exposure to high doses of any of the HMs, seedlings remained viable, but with slightly slower axial growth. We propose the use of biochemical indices (lipid peroxidation (LPO) intensity; level of total peroxides) as criteria to assess the adaptive potential of amaranth plants to HMs. These indices had very high correlation coefficients (r) with the accumulation of HMs in A. retroflexus roots, stems and leaves: 0.86-0.89 for malone dialdehyde (MDA) content for Ni and Zn, and 0.79-0.94 for total peroxides (for Cu, Pb, and maximum in Ni). At 1 mM of any HM, seedlings accumulated Pb and Ni at levels of HM-hyperaccumulating species. If soil is contaminated (in terms of maximum permissible concentration, MPC) by Pb (8.2 ± 2.2 MPC) or Ni (3.5 ± 1.0 MPC) (equivalent to 1 mM of the HM in solution), A. retroflexus is a strong candidate for the phytoremediation of Pb- and Ni-contaminated soils.
Collapse
Affiliation(s)
- Alexander S Lukatkin
- Department of Botany, Physiology and Ecology of Plants, National Research Mordovia State University, Saransk, Russia
| | - Dmitry I Bashmakov
- Department of Botany, Physiology and Ecology of Plants, National Research Mordovia State University, Saransk, Russia
| | - Waad E Q Al Harbawee
- Department of Botany, Physiology and Ecology of Plants, National Research Mordovia State University, Saransk, Russia
| | | |
Collapse
|
35
|
Effects of zinc and molybdenum on European Bluestar (Amsonia orientalis): An in vitro study. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
This study aimed to investigate the effects of possible zinc (Zn) and molybdenum (Mo) contaminations on the critically endangered European Bluestar (Amsonia orientalis). The effects of Zn and Mo were tested in a dose-dependent manner on in vitro cultures. Zn at 0.1 mM in the medium inhibited root development whereas Mo showed the same effect only at ≥2.5 mM concentration. Gradual inhibition of shoot development was observed after treatment with both metals. Protein contents were also negatively affected by increasing metal concentrations, while proline levels increased gradually. Successive increases in metal concentrations resulted in higher hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations. The activity of the antioxidant enzymes, peroxidase (POD) and catalase (CAT), were found to be enhanced in response to increasing metal concentrations. Superoxide dismutase (SOD) activity decreased after Zn treatment but increased after Mo treatment. A marked increase in POD and CAT in response to metal stress suggests that these enzymes might have a significant cooperative role in regulating H2O2 production, although CAT, in response to drought and salt stress, has been reported to only play a supplementary role in A. orientalis. These results indicated that A. orientalis is susceptible to long-term Zn stress but can tolerate up to 2.5 mM Mo in the long-term. Deficiency of Mo is more common than high toxic concentrations in the environment. Therefore Zn contamination should be considered as one of the major threats for A. orientalis in its native habitat.
Collapse
|
36
|
Rather BA, Masood A, Sehar Z, Majid A, Anjum NA, Khan NA. Mechanisms and Role of Nitric Oxide in Phytotoxicity-Mitigation of Copper. FRONTIERS IN PLANT SCIENCE 2020; 11:675. [PMID: 32547583 PMCID: PMC7274197 DOI: 10.3389/fpls.2020.00675] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/29/2020] [Indexed: 05/07/2023]
Abstract
Phytotoxicity of metals significantly contributes to the major loss in agricultural productivity. Among all the metals, copper (Cu) is one of essential metals, where it exhibits toxicity only at its supra-optimal level. Elevated Cu levels affect plants developmental processes from initiation of seed germination to the senescence, photosynthetic functions, growth and productivity. The use of plant growth regulators/phytohormones and other signaling molecules is one of major approaches for reversing Cu-toxicity in plants. Nitric oxide (NO) is a versatile and bioactive gaseous signaling molecule, involved in major physiological and molecular processes in plants. NO modulates responses of plants grown under optimal conditions or to multiple stress factors including elevated Cu levels. The available literature in this context is centered mainly on the role of NO in combating Cu stress with partial discussion on underlying mechanisms. Considering the recent reports, this paper: (a) overviews Cu uptake and transport; (b) highlights the major aspects of Cu-toxicity on germination, photosynthesis, growth, phenotypic changes and nutrient-use-efficiency; (c) updates on NO as a major signaling molecule; and (d) critically appraises the Cu-significance and mechanisms underlying NO-mediated alleviation of Cu-phytotoxicity. The outcome of the discussion may provide important clues for future research on NO-mediated mitigation of Cu-phytotoxicity.
Collapse
|
37
|
Pu S, Yan C, Huang H, Liu S, Deng D. Toxicity of nano-CuO particles to maize and microbial community largely depends on its bioavailable fractions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113248. [PMID: 31561034 DOI: 10.1016/j.envpol.2019.113248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The environmental consequences of nano-CuO particles have gained significant attention in recent decades. Identification of the mechanisms for soil and plant responses with respect to the chemical speciation of nano-CuO (mainly the exchangeable and reducible fractions) remains scarce. Here, we analyzed different chemical speciation of Cu and DTPA-extractable Cu over 42 days in (1) control soil without Cu addition; (2) soil treated with nano-CuO particles; and (3) soil treated with CuSO4 solution. The applied dose was 500 mg Cu kg-1 and maize was grown in these soils. Plant growth was inhibited, but the inhibition by nano-CuO was slightly weaker compared to CuSO4. Cu accumulations were similar in the roots for CuSO4 and nano-CuO treatments, but significantly higher in the shoots for CuSO4 treatment. This indicates that Cu from nano-CuO-treated soils mainly accumulated in roots but rarely transferred to shoots. Enzyme activities on the rhizoplane visualized by zymography were strongly depressed by CuSO4 but slightly inhibited by nano-CuO. Microbial community diversity measured by 16S rRNA was the lowest in CuSO4-treated soils among three treatments. These results were explained by the following mechanisms: (1) Gradual increases of DTPA-extractable and exchangeable Cu were found in nano-CuO-treated soil, and the final concentrations at day 42 were only half of those in CuSO4-treated soil; (2) Enzyme activities on the rhizoplane were positively related to soil pH and negatively correlated with DTPA-extractable and exchangeable Cu; (3) Even though reducible Cu in nano-CuO-treated soils was 1.3 times higher than in CuSO4-treated soils, indicating stronger nano-accrued oxidative stress in nano-CuO-treated soils, the toxicity induced by nano-CuO particles was still weaker than CuSO4. Nevertheless, the toxicity of Cu particles to plants and microbes mainly depends on the gradually-released bioavailable Cu. This demonstrates the greater importance of bioavailable Cu concentrations for toxicity modulation rather than the scale of Cu particles.
Collapse
Affiliation(s)
- Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P.R. China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P.R. China.
| | - Chun Yan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P.R. China
| | - Hongyan Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P.R. China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P.R. China; College of Earth Sciences, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P.R. China.
| | - Daili Deng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P.R. China
| |
Collapse
|
38
|
Khan MIR, Jahan B, Alajmi MF, Rehman MT, Khan NA. Exogenously-Sourced Ethylene Modulates Defense Mechanisms and Promotes Tolerance to Zinc Stress in Mustard ( Brassica juncea L.). PLANTS (BASEL, SWITZERLAND) 2019; 8:E540. [PMID: 31775257 PMCID: PMC6963746 DOI: 10.3390/plants8120540] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022]
Abstract
Heavy metal (HM) contamination of agricultural soil is primarily related to anthropogenic perturbations. Exposure to high concentration of HMs causes toxicity and undesirable effects in plants. In this study, the significance of ethylene was studied in response of mustard (Brassica juncea) to a high level (200 mg kg-1 soil) of zinc (Zn) exposure. Plants with high Zn showed inhibited photosynthesis and growth with the increase in oxidative stress. Application of ethylene (as ethephon) to Zn-grown plants restored photosynthesis and growth by inhibiting oxidative stress through increased antioxidant activity, the proline metabolism glyoxalase system, and nutrient homoeostasis. The results suggested that ethylene played a role in modulating defense mechanisms for tolerance of plants to Zn stress.
Collapse
Affiliation(s)
- M. Iqbal R. Khan
- Plant Systems Biology Laboratory, Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110065, India
| | - Badar Jahan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (N.A.K.)
| | - Mohamed F Alajmi
- Department of Pharmacognosy, King Saud University, Riyadh 11362, Kingdom of Saudi Arabia; (M.F.A.); (M.T.R.)
| | - Md Tabish Rehman
- Department of Pharmacognosy, King Saud University, Riyadh 11362, Kingdom of Saudi Arabia; (M.F.A.); (M.T.R.)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (B.J.); (N.A.K.)
| |
Collapse
|
39
|
Afonso TF, Demarco CF, Pieniz S, Camargo FAO, Quadro MS, Andreazza R. Potential of Solanum viarum Dunal in use for phytoremediation of heavy metals to mining areas, southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24132-24142. [PMID: 31228062 DOI: 10.1007/s11356-019-05460-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Mining tailing areas may contain metal minerals such as Cu, Pb, Zn, Cr, and Cd at high concentrations and low nutrients for the growth of plants. This kind of conditions of the area, as well as lack of tailing structure, may limit the development of plants on these areas. Thus, the present study determined the metal, macronutrient, and micronutrient concentrations in the tissues of the roots and shoots of the Solanum viarum Dunal species as well as it evaluated the potential use of the plant for phytoremediation of mining tailing areas contaminated with heavy metals. The macronutrients, micronutrients, and heavy metals in the roots and shoots were determined by the digestion method with nitric and perchloric acid (HNO3-HClO4) and quantified by the ICP-OES. In S. viarum, the average concentrations of the metals presented in the dry biomass varied between the shoots and roots, being higher in the roots for metals such as Cu (229 mg kg-1), Zn (232 mg kg-1), Mn (251 mg kg-1), Cr (382 mg kg-1), Ni (178 mg kg-1), Pb (33 mg kg-1), and Ba (1123 mg kg-1). S. viarum indicates the possibility of a potential application in phytoremediation and treatment of areas contaminated with heavy metals.
Collapse
Affiliation(s)
- Thays França Afonso
- Postgraduate Program in Environmental Sciences, Engineering Center (CENg), UFPel, Pelotas, RS, Brazil
| | - Carolina Faccio Demarco
- Postgraduate Program in Environmental Sciences, Engineering Center (CENg), UFPel, Pelotas, RS, Brazil
| | - Simone Pieniz
- Postgraduate Program in Environmental Sciences, Engineering Center (CENg), UFPel, Pelotas, RS, Brazil
| | - Flávio A O Camargo
- Department of Soil Science, Agronomy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurízio Silveira Quadro
- Postgraduate Program in Environmental Sciences, Engineering Center (CENg), UFPel, Pelotas, RS, Brazil
| | - Robson Andreazza
- Postgraduate Program in Environmental Sciences, Engineering Center (CENg), UFPel, Pelotas, RS, Brazil.
| |
Collapse
|
40
|
Bhagyawant SS, Narvekar DT, Gupta N, Bhadkaria A, Koul KK, Srivastava N. Variations in the antioxidant and free radical scavenging under induced heavy metal stress expressed as proline content in chickpea. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:683-696. [PMID: 31168232 PMCID: PMC6522589 DOI: 10.1007/s12298-019-00667-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 05/13/2023]
Abstract
This study pertains to the effects of heavy metal salts viz., copper (Cu), manganese (Mn), lead (Pb) and zinc (Zn) on the chickpea accession ICC-4812. The salts were given as treatments to the chickpea seeds at various ascending levels of doses till proving toxic. The treatment of 24 h soaked and swollen seeds were then extended to 7 days duration from the date of treatment. Atomic absorption spectrophotometric analysis of bioassay tissue Cicer, showed maximum uptake of 9.41 mg/g and minimum of 1.65 mg/g tissue dry weight for Pb and Zn respectively. The study reveals that enhanced antioxidant responses are associated with substantial proline accumulation indicating induced stress. Ferric reducing antioxidant power assay measuring antioxidant activity was highest in the chickpea seedling treated with Zn, whereas, free radical scavenging activity was highest in the treatments with Mn. The total phenolic and flavonoid contents ranged between 0.24-0.97 and 0.27-1.00 mg/g of dry matter content respectively. Higher Pb and Zn doses seem to elicit higher proline levels therefore, suggesting an extreme condition of induced abiotic stress. Dose dependent protein oxidation coupled with DNA degradation was observed in all treatments, depicting genotoxicity. Unweighted pair-group method arithmetic average analysis presented similarity coefficients between the treatments.
Collapse
Affiliation(s)
| | | | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | - Amita Bhadkaria
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India
| | | | - Nidhi Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
41
|
Moustakas M, Bayçu G, Gevrek N, Moustaka J, Csatári I, Rognes SE. Spatiotemporal heterogeneity of photosystem II function during acclimation to zinc exposure and mineral nutrition changes in the hyperaccumulator Noccaea caerulescens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6613-6624. [PMID: 30623337 DOI: 10.1007/s11356-019-04126-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
We investigated changes in mineral nutrient uptake and translocation and photosystem II (PSII) functionality, in the hyperaccumulator Noccaea caerulescens after exposure to 800 μM Zn in hydroponic culture. Exposure to Zn inhibited the uptake of K, Mn, Cu, Ca, and Mg, while the uptake of Fe and Zn enhanced. Yet, Ca and Mg aboveground tissue concentrations remain unchanged while Cu increased significantly. In the present study, we provide new data on the mechanism of N. caerulescens acclimation to Zn exposure by elucidating the process of photosynthetic acclimation. A spatial heterogeneity in PSII functionality in N. caerulescens leaves exposed to Zn for 3 days was detected, while a threshold time of 4 days was needed for the activation of Zn detoxification mechanism(s) to decrease Zn toxicity and for the stomatal closure to decrease Zn supply at the severely affected leaf area. After 10-day exposure to Zn, the allocation of absorbed light energy in PSII under low light did not differ compared to control ones, while under high light, the quantum yield of non-regulated energy loss in PSII (ΦNO) was lower than the control, due to an efficient photoprotective mechanism. The chlorophyll fluorescence images of non-photochemical quenching (NPQ) and photochemical quenching (qp) clearly showed spatial and temporal heterogeneity in N. caerulescens exposure to Zn and provided further information on the particular leaf area that was most sensitive to heavy metal stress. We propose the use of chlorophyll fluorescence imaging, and in particular the redox state of the plastoquinone (PQ) pool that was found to display the highest spatiotemporal heterogeneity, as a sensitive bio-indicator to measure the environmental pressure by heavy metals on plants.
Collapse
Affiliation(s)
- Michael Moustakas
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey.
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Gülriz Bayçu
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Nurbir Gevrek
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - István Csatári
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Sven Erik Rognes
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
42
|
Shen X, Li R, Chai M, Cheng S, Niu Z, Qiu GY. Interactive effects of single, binary and trinary trace metals (lead, zinc and copper) on the physiological responses of Kandelia obovata seedlings. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:135-148. [PMID: 29987496 DOI: 10.1007/s10653-018-0142-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Heavy metals are considered important environmental contaminants, and their mixture toxicity on plants has complex mutual interactions. The interactive effects of heavy metals on growth, photosynthetic parameters, lipid peroxidation and compatible osmolytes were studied in Kandelia obovata grown for 5 months in sediment treated with combinations of lead (Pb), zinc (Zn) and copper (Cu). The results showed no significant reduction of biomass under heavy metal stresses, except for decreased root biomass under higher Pb + Cu treatment, indicating high tolerance of K. obovata to heavy metal stress. Only the photosynthetic parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr), decreased with increasing concentration of treatments (except for Pb + Cu and Pb + Zn + Cu). Trinary treatment (Pb + Zn + Cu) increased biomass and the photosynthetic parameters when compared to the external addition of binary metals. In the roots, biomass and soluble sugar content were lower under binary than trinary treatments, indicating that the combination of Zn and Cu exhibited improved effects of alleviating toxicity than each of them alone in Pb-containing combined treatments. In the leaves, Zn-containing combined treatments significantly decreased malondialdehyde (MDA), soluble sugar and proline content in low concentration, while Pb + Cu treatments significantly increased these parameters (P < 0.05). The correlation analysis showed that leaf MDA and proline content were negatively correlated with Zn concentration (P < 0.05). Zn could alleviate the effects of combined heavy metal stress, and Pb + Cu treatment showed synergistic effects in leaves. The positive correlations between MDA content and the osmotic parameters showed that osmotic stress and lipid membranes oxidation exist simultaneously under multiple heavy metal stresses. Therefore, biomass, Tr, leaf MDA, leaf proline content and soluble sugar content could indicate metal mixture toxicity to mangrove seedlings.
Collapse
Affiliation(s)
- Xiaoxue Shen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China.
| | - Minwei Chai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Shanshan Cheng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Zhiyuan Niu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Guo Yu Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
43
|
Šiukšta R, Bondzinskaitė S, Kleizaitė V, Žvingila D, Taraškevičius R, Mockeliūnas L, Stapulionytė A, Mak K, Čėsnienė T. Response of Tradescantia plants to oxidative stress induced by heavy metal pollution of soils from industrial areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:44-61. [PMID: 30276686 DOI: 10.1007/s11356-018-3224-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Numerous investigations have demonstrated that even soil in which concentrations of individual elements do not exceed permissible limits can cause harmful effects in living organisms. In the present study, polluted-soil-induced oxidative stress was evaluated using Tradescantia clone 4430, which is widely used for genotoxicity evaluations, employing biochemical (superoxide dismutase (SOD), contents of ascorbic acid (AA), carotenoids (Car), hydrogen peroxide (H2O2), chlorophyll (Chl) a/b ratio), and molecular (RAPD and differential display (DD-PCR)) markers after long-term exposure. The activity (staining intensity) of SOD isoforms in Tradescantia leaves was higher in plants grown in all heavy-metal-polluted test soils compared to the control. No direct link between the soil pollution category and the contents of AA, Car, Chl a/b in Tradescantia leaves was revealed, but the concentration of H2O2 was shown to be a sensitive biochemical indicator that may appropriately reflect the soil contamination level. Both short-term (treatment of cuttings with H2O extracts of soil) and long-term (0.5 and 1.0 year) exposure increased MN frequencies, but the coincidence of the MN induction and the soil pollution level was observed only in some cases of long-term exposure. Soil (geno)toxin-induced polymorphism in the RAPD profile was determined with two primers in plants after long-term exposure to soils of an extremely hazard category. Transcript profiling of plants after long-term cultivation in test soils using DD-PCR showed that the majority of differentially expressed transcript-derived fragments (TDFs) were homologous to genes directly or indirectly participating in photosynthesis, the abiotic stress response, and signal transduction cascades.
Collapse
Affiliation(s)
- Raimondas Šiukšta
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, LT-10257, Vilnius, Lithuania.
- Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239, Vilnius, Lithuania.
| | - Skaistė Bondzinskaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, LT-10257, Vilnius, Lithuania
| | - Violeta Kleizaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, LT-10257, Vilnius, Lithuania
| | - Donatas Žvingila
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, LT-10257, Vilnius, Lithuania
| | - Ričardas Taraškevičius
- Nature Research Centre, Institute of Geology and Geography, Akademija Str. 2, LT-08412, Vilnius, Lithuania
| | - Laurynas Mockeliūnas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, LT-10257, Vilnius, Lithuania
| | - Asta Stapulionytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, LT-10257, Vilnius, Lithuania
| | - Kristina Mak
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, LT-10257, Vilnius, Lithuania
| | - Tatjana Čėsnienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
44
|
Ai S, Liu B, Yang Y, Ding J, Yang W, Bai X, Naeem S, Zhang Y. Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:204-214. [PMID: 29438813 DOI: 10.1016/j.ecoenv.2018.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/07/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Heavy metal pollution in farmlands is highly concerned as crops' easy-uptake of heavy metal can ultimately affect consumers. In order to offer suggestions on cultivating safe quality vegetable, specifically eggplant which is widely consumed for its nutritional value and antioxidant activity, a field study was undertaken to investigate the temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system. In the present study, eggplants were planted in the farmlands of Weichuan village (WC) (relatively unpolluted field), Liangzhuang village (LZ) (moderately polluted field) and Minqin village (MQ) (seriously polluted field) to elucidate their temporal uptake processes of heavy metals described by the sigmoid model. Eggplant tissues from severely polluted farmlands were found with higher heavy metal concentrations and lower yields compared with other two groups. What is more, 25 farmlands along the Dongdagou stream (heavy metals polluted stream) were chosen to analyze the spatial distribution of heavy metals in soils and eggplants. Heavy metal concentrations in eggplants decreased with the decline of heavy metal concentrations in soil from upstream (pollution source) to downstream. Moreover, several methods were employed to assess bioavailability of heavy metals in soils. All the bioavailable heavy metals were found in linear positive correlations with heavy metal concentrations. Meanwhile, linear correlations were found between heavy metals in soils and eggplants. At last, redundancy analysis was used to investigate the effects of soil properties (pH, organic matter and texture of soils) and heavy metals on eggplants' uptake. The results indicated that soil heavy metals had a dominant impact on their accumulations in eggplant fruit, with a variance contribution of 78.0%, while soil properties had a regulatory effect, with a variance contribution of 5.2%.
Collapse
Affiliation(s)
- Shiwei Ai
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bailin Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jian Ding
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaojuan Bai
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
45
|
Sousa LPD, da Silva MJD, Mondego JMC. Leaf-associated bacterial microbiota of coffee and its correlation with manganese and calcium levels on leaves. Genet Mol Biol 2018; 41:455-465. [PMID: 29782032 PMCID: PMC6082234 DOI: 10.1590/1678-4685-gmb-2017-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/14/2017] [Indexed: 01/16/2023] Open
Abstract
Coffee is one of the most valuable agricultural commodities and the plants’
leaves are the primary site of infection for most coffee diseases, such as the
devastating coffee leaf rust. Therefore, the use of bacterial microbiota that
inhabits coffee leaves to fight infections could be an alternative agricultural
method to protect against coffee diseases. Here, we report the leaf-associated
bacteria in three coffee genotypes over the course of a year, with the aim to
determine the diversity of bacterial microbiota. The results indicate a
prevalence of Enterobacteriales in Coffea canephora,
Pseudomonadales in C. arabica ‘Obatã’, and an intriguing lack
of bacterial dominance in C. arabica ‘Catuaí’. Using PERMANOVA
analyses, we assessed the association between bacterial abundance in the coffee
genotypes and environmental parameters such as temperature, precipitation, and
mineral nutrients in the leaves. We detected a close relationship between the
amount of Mn and the abundance of Pseudomonadales in ‘Obatã’ and the amount of
Ca and the abundance of Enterobacteriales in C. canephora. We
suggest that mineral nutrients can be key drivers that shape leaf microbial
communities.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico, Campinas, SP, Brazil.,Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia Universidade de Campinas (UNICAMP), Campinas, SP, Brazil.,Programa de Pós Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcio José da da Silva
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
46
|
Foust RD, Phillips M, Hull K, Yehorova D. Changes in Arsenic, Copper, Iron, Manganese, and Zinc Levels Resulting from the Application of Poultry Litter to Agricultural Soils. TOXICS 2018; 6:toxics6020028. [PMID: 29757950 PMCID: PMC6027342 DOI: 10.3390/toxics6020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/30/2022]
Abstract
Twelve applications of poultry litter were made to a 2.1-ha field located in the Shenandoah Valley of Virginia, United States (USA), between March 1999 and August 2014. The field was planted with bermudagrass (Cynodon dactylon) and used as a pasture on an active farm. Copper, iron, manganese, zinc, and arsenic concentrations in the poultry litter were measured, and the application rates of these metals were calculated. The median application rates were: Cu, 1.32 kg/ha, Fe, 5.57 kg/ha, Mn, 1.80 kg/ha, Zn, 1.39 kg/ha, and As, 0.011 kg/ha. Twelve surface and subsurface soil samples were taken from the treated field in February 2016. Twelve samples were also taken from a comparison site. The comparison site was directly adjacent to the study site, consisted of the same soil type, and had been maintained as an undisturbed forest. Extractable Cu, Fe, Mn, Zn, and As concentrations in the soil samples were determined by atomic absorption spectroscopy, and the results of the chemical analysis were analyzed by ANOVA. Fe and Mn were depleted from the soil in the treated field, while Cu and Zn levels increased over the 12 years of treatment and grazing, and arsenic levels were unchanged in both the surface and subsurface soils between the comparison and the study site. The changes observed for Cu, Fe, Mn, and Zn are within the critical deficiency level and critical toxicity level for these metals, and no arsenic remains in the soil from roxarsone feed supplements, which were added to the poultry feed when the litter was applied to the study site.
Collapse
Affiliation(s)
- Richard D Foust
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA.
| | - Michael Phillips
- Natural Resources Conservation Service, Virginia, United States Department of Agriculture, Harrisonburg, VA 22801, USA.
| | - Killian Hull
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA.
| | - Dariia Yehorova
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA.
| |
Collapse
|
47
|
Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15159-15173. [PMID: 29560590 DOI: 10.1007/s11356-018-1742-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/13/2018] [Indexed: 05/03/2023]
Abstract
Lead (Pb) is considered one the most hazardous pollutant, and its accumulation in soil and plants is of prime concern. To understand the role of plant hormones in combating heavy metal stress, the present study was planned to assess the interactive effects of 24-epibrassinolide (EBL) (10-7 M) and salicylic acid (SA) (1 mM) in regulating growth, pigment contents, antioxidative defense response, and gene expression in Brassica juncea L. seedlings exposed to different concentrations of Pb metal (0.25, 0.50, and 0.75 mM). Reduction in root and shoot lengths, chlorophyll and carotenoid content, and non-enzymatic antioxidants like glutathione, ascorbic acid, and tocopherol in response to Pb toxicity was observed. The enzymatic antioxidants such as guaiacol peroxidase (POD), ascorbate peroxidase (APOX), glutathione peroxidase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate redductase (MDHAR), glutathione-S-transferease (GST), and glutathione peroxidase (GPOX) were lowered in response to Pb treatments. Other antioxidative enzymes including superoxide dismutase (SOD), catalase (CAT), and polyphenol oxidase (PPO) enhanced under metal stress. Co-application of EBL + SA to 0.75 mM Pb-treated seedlings resulted in improvement of root and shoot lengths, chlorophyll, and carotenoid contents. Similarly, glutathione, ascorbic acid, and tocopherol contents were also elevated. Enzymatic antioxidants were also significantly enhanced in response to pre-sowing combined treatment of both hormones. Gene expression analysis suggested elevation in expression of CAT, POD, GR, DHAR, and GST genes by application of EBL. Our results reveal that Pb metal toxicity caused adverse impact on B. juncea L. seedlings, but pre-soaking treatment with EBL and SA individually and in combination help seedlings to counter the ill effects of Pb by improving growth, contents of pigment, and modulation of antioxidative defense system. The combined application of EBL and SA was found to be more effective in ameliorating Pb stress as compared to their individual treatments.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Neha Handa
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
- Department of Botany, DAV University, Sarmastpur, Jalandhar, 144012, India
| | - Vandana Gautam
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Leonard Wijaya
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
48
|
Albert Q, Leleyter L, Lemoine M, Heutte N, Rioult JP, Sage L, Baraud F, Garon D. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. CHEMOSPHERE 2018; 196:386-392. [PMID: 29316464 DOI: 10.1016/j.chemosphere.2017.12.156] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 05/27/2023]
Abstract
Trace metals cause deterioration of the soil and constitute a major concern for the environment and human health. Bioremediation could be an effective solution for the rectification of contaminated soils. Fungi could play an important role in biodegradation because of the morphology of their mycelium (highly reactive and extensive biological surface) and its physiology (high tolerance to many stresses, production of enzymes and secondary metabolites). Fungi can effectively biosequestrate, or biotransform many organic and inorganic contaminants into a non-bioavailable form. This experiment was designed to evaluate the tolerance and the biosorption abilities of the fungus Absidia cylindrospora against three trace metals: Cadmium (Cd), Copper (Cu), and Lead (Pb). Firstly, the tolerance of the strain was evaluated on metal-enriched malt extract agar (MEA). Secondly, the strain was exposed to trace metals, in a liquid malt extract medium. After 3 or 7 days of exposure, the quantities of absorbed and adsorbed metals were measured with Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Biomass production and pH evolution were also evaluated during the test. Our experiment revealed differences between the three metals. In agar medium, Cd and Pb were better tolerated than Cu. In liquid medium, Cd and Pb were mostly absorbed whereas Cu was mostly adsorbed. A. cylindrospora biosorbed 14% of Cu, 59% of Pb and 68% of Cd when exposed for 3 days at 50 mg L-1.
Collapse
Affiliation(s)
- Quentin Albert
- Normandie Univ, UNICAEN, ABTE EA 4651, Centre F. Baclesse, 14000, Caen, France
| | - Lydia Leleyter
- Normandie Univ, UNICAEN, ABTE EA 4651, Centre F. Baclesse, 14000, Caen, France
| | - Mélanie Lemoine
- Normandie Univ, UNICAEN, ABTE EA 4651, Centre F. Baclesse, 14000, Caen, France
| | - Natacha Heutte
- Normandie Univ, UNIROUEN, CETAPS EA3 832, 76821, Mont Saint Aignan Cedex, France
| | | | - Lucile Sage
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS / USMB Université Grenoble Alpes, 38058, Grenoble, Cedex 9, France
| | - Fabienne Baraud
- Normandie Univ, UNICAEN, ABTE EA 4651, Centre F. Baclesse, 14000, Caen, France
| | - David Garon
- Normandie Univ, UNICAEN, ABTE EA 4651, Centre F. Baclesse, 14000, Caen, France.
| |
Collapse
|
49
|
Breygina M, Abramochkin DV, Maksimov N, Yermakov I. Effects of Ni 2+ and Cu 2+ on K + and H + currents in lily pollen protoplasts. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1171-1177. [PMID: 32480642 DOI: 10.1071/fp17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/17/2017] [Indexed: 06/11/2023]
Abstract
Heavy metals affect plant development and reproduction if they are present in excessive amounts, a situation that is becoming increasingly common. Pollen is a convenient object for pollution assessment as it is in most cases a 2- or 3-cellular organism exposed to the environment. At the same time, pollen is a key stage in the life cycle of seed plants; pollen viability and efficiency of germination are crucial for reproductive success and crop yield. In the present study we reveal for the first time, to our knowledge, targets for heavy metals (Cu2+ and Ni2+) in the pollen grain plasma membrane using the patch-clamp technique. Ni2+ dramatically decreases K+ current in pollen grain protoplasts, whereas Cu2+ does not alter the current density. Instead, Cu2+ strongly enhances H+ current driven by H+-ATPase, whereas Ni2+ fails to affect this current. The short-term treatment with Cu2+ also leads to reactive oxygen species (ROS) accumulation in pollen grain protoplasts but intracellular pH and membrane potential remain unchanged. Ni2+ had no significant effect on ROS content or membrane potential. Thus, plasmalemma K+ channels in pollen grains are sensitive to Ni2+ and H+-ATPase is sensitive to Cu2+, possibly, in a ROS-mediated way. Both metals leave pollen viable since membrane potential is maintained at the control level.
Collapse
Affiliation(s)
- Maria Breygina
- Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Denis V Abramochkin
- Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Nikita Maksimov
- Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Igor Yermakov
- Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| |
Collapse
|
50
|
Banakar R, Alvarez Fernandez A, Díaz-Benito P, Abadia J, Capell T, Christou P. Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4983-4995. [PMID: 29048564 PMCID: PMC5853871 DOI: 10.1093/jxb/erx304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/04/2017] [Indexed: 05/04/2023]
Abstract
Nicotianamine (NA) and 2'-deoxymugenic acid (DMA) are metal-chelating ligands that promote the accumulation of metals in rice endosperm, but it is unclear how these phytosiderophores regulate the levels of different metals and limit their accumulation. In this study, transgenic rice plants producing high levels of NA and DMA accumulated up to 4-fold more iron (Fe) and 2-fold more zinc (Zn) in the endosperm compared with wild-type plants. The distribution of Fe and Zn in vegetative tissues suggested that both metals are sequestered as a buffering mechanism to avoid overloading the seeds. The buffering mechanism involves the modulation of genes encoding metal transporters in the roots and aboveground vegetative tissues. As well as accumulating more Fe and Zn, the endosperm of the transgenic plants accumulated less cadmium (Cd), suggesting that higher levels of Fe and Zn competitively inhibit Cd accumulation. Our data show that although there is a strict upper limit for Fe (~22.5 µg g-1 dry weight) and Zn (~84 µg g-1 dry weight) accumulation in the endosperm, the careful selection of strategies to increase endosperm loading with essential minerals can also limit the accumulation of toxic metals such as Cd, thus further increasing the nutritional value of rice.
Collapse
Affiliation(s)
- Raviraj Banakar
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center Lleida, Spain
| | - Ana Alvarez Fernandez
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Pablo Díaz-Benito
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Javier Abadia
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Teresa Capell
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center Lleida, Spain
| | - Paul Christou
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida-Agrotecnio Center Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys, Barcelona, Spain
| |
Collapse
|