1
|
Han Y, Zhang Q, Chen L, Zhao J, Yang D. In vitro study of deltamethrin-induced extracellular traps in hemocytes of Ruditapes philippinarum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114909. [PMID: 37062260 DOI: 10.1016/j.ecoenv.2023.114909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Deltamethrin (DLM), a broad-spectrum pesticide, has been proven to have toxic effects on aquatic organisms. Here, we detected the formation of extracellular traps (ETosis) formation in Manila clam (Ruditapes philippinarum) hemocytes stimulated by three concentrations of DLM (0.01, 0.1 and 1 μg/mL) in vitro, and explored the underlying mechanisms induced by this pesticide. Extracellular DNA structure observation and quantitative results indicated that DLM exposure could obviously induce hemocytes ETosis, especially under high concentration of DLM induction. Moreover, DLM increased the levels of myeloperoxidase (MPO) and reactive oxygen species (ROS) in a dose-dependent manner, and enhanced the mRNA expression of several ROS-related genes. DPI (NADPH oxidase inhibitor) and ABAH (MPO inhibitor) could substantially inhibit DLM-induced extracellular traps (ETs), suggesting that the induced ETs release was caused by the induction of the ROS burst and MPO production. In addition, three concentrations of DLM-induced ETs were also accompanied by mitochondrial dysfunction, such as increasing the production of mitochondrial ROS, leading to a decrease in mitochondrial membrane potential (MMP) and activation of mitochondrial permeability transition pore (MPTP). Taken together, these results will shed new light on the immunotoxicity of DLM in clams and perhaps lays the foundation for health assessment in bivalves.
Collapse
Affiliation(s)
- Yijing Han
- School of Agriculture, Ludong University, Yantai, Shandong 264025, PR China
| | - Qianqian Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Lizhu Chen
- Shandong Marine Resource and Environment Research Institute, Yantai, Shandong 264006, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China.
| |
Collapse
|
2
|
Dellali M, Hedfi A, Ali MB, Noureldeen A, Darwish H, Beyrem H, Gyedu-Ababio T, Dervishi A, Karachle PK, Boufahja F. Multi-biomarker approach in Mytilus galloprovincialis and Ruditapes decussatus as a predictor of pelago-benthic responses after exposure to Benzo[a]Pyrene. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109141. [PMID: 34271163 DOI: 10.1016/j.cbpc.2021.109141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
This study evaluated the biomarker responses indicative of exposure to Benzo[a] Pyrene (B[a]P) in Mytilus galloprovincialis and Ruditapes decussatus. A significant increase of the total oxyradical scavenging capacity (TOSC) was observed after seven days of exposure to two concentrations of B[a]P (100 and 300 μg.L-1), in the digestive gland with the lowest concentration tested. The TOSC in the gills increased notably only after the exposure to 300 μg.L-1 of B[a]P. Interestingly, the superoxide dismutase (SOD) and catalase (CAT) activities in gills and digestive gland on one hand and glutathione S-transferase (GST) in gills in the other, were positively correlated with the concentration of B[a]P with a significant induction noticed at the highest concentration. In contrast, a significant increase of the GST activity was observed in the digestive gland following the exposure of bivalves to 100 μg.L-1. In pelagic (M. galloprovincialis) or benthic (R. decussatus) bivalves, the AChE activity decreased discernibly in digestive glands and gills with the increase of B[a]P concentrations as evidence of neurotoxic effects. In clams, the exposure to B[a]P was followed by a significant increase of Malondialdehyde level (MDA) in gills and digestive gland, this does not occur in gills of Mytilus galloprovincialis at the concentration of 100 μg.L-1. Overall, the results found seems to indicate that the mussel was more suitable as a predictor tool of toxicity of B[a]P.
Collapse
Affiliation(s)
- Mohamed Dellali
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manel Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | | | - Aida Dervishi
- Department of Biotechnology, Faculty of Natural Sciences, University of Tirana, Zog I, 25/1, 1001 Tirana, Albania
| | - Paraskevi K Karachle
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland waters, 46.7 Athens-Sounio Ave., P.O. Box 712, 19013 Anavyssos Attika, Greece
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
| |
Collapse
|
3
|
Dehghan N, Ghazi SP, Zendehboudi T, Mohajer F, Afshar AR, Kharadmehr A, Alamasi-Turk S, Tamadon A. Persian Gulf Bivalves: Bioactive Pharmaceutical Compounds and Biomedical Applications. IRANIAN SOUTH MEDICAL JOURNAL 2021; 24:481-504. [DOI: 10.52547/ismj.24.5.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
|
4
|
Sturla Lompré J, Moleiro P, De Marchi L, Soares AMVM, Pretti C, Chielini F, Pereira E, Freitas R. Bioaccumulation and ecotoxicological responses of clams exposed to terbium and carbon nanotubes: Comparison between native (Ruditapes decussatus) and invasive (Ruditapes philippinarum) species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146914. [PMID: 33901954 DOI: 10.1016/j.scitotenv.2021.146914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In the last decades the use of rare earth elements (REEs) increased exponentially, including Terbium (Tb) which has been widely used in newly developed electronic devices. Also, the production and application of nanoparticles has been growing, being Carbon Nanotubes (CNTs) among the most commonly used. Accompanying such development patterns, emissions towards the aquatic environments are highly probable, with scarce information regarding the potential toxicity of these pollutants to inhabiting species, especially considering their mixture. In the present study the effects of Tb and CNTs exposure (acting alone or as a mixture) on native and invasive clams' species (Ruditapes decussatus and Ruditapes philippinarum, respectively) were evaluated, assessing clams' accumulation and metabolic capacities, oxidative status as well neurotoxic impacts. Results obtained after a 28-days exposure period showed that the accumulation of Tb in both species was not affected by the presence of the CNTs and similar Tb concentrations were found in both species. The effects caused by Tb and CNTs, acting alone or as a mixture induced greater alterations in R. philippinarum antioxidant capacity in comparison to native R. decussatus, but no cellular damages were observed in both species. Nevertheless, although metabolic impairment was only observed in clams exposed to Tb, loss of redox balance and neurotoxicity were evidenced by both species regardless the exposure treatment. These findings highlight the potential impacts caused by CNTs and Tb, which may affect clams' normal physiological functioning, impairing their reproduction and growth capacities. The obtained results point out the need for further investigation considering the mixture of pollutants.
Collapse
Affiliation(s)
- Julieta Sturla Lompré
- Center for the Study of Marine Systems (CESIMAR-CONICET), National Patagonian Center, Bv. Almte Brown 2915, Puerto Madryn, Argentina; Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Moleiro
- Department de Chemistry, University de Aveiro, 3810-193 Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Federica Chielini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Eduarda Pereira
- Department de Chemistry and REQUIMTE, University de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Coppola F, Soares AMVM, Figueira E, Pereira E, Marques PAAP, Polese G, Freitas R. The Influence of Temperature Increase on the Toxicity of Mercury Remediated Seawater Using the Nanomaterial Graphene Oxide on the Mussel Mytilus galloprovincialis. NANOMATERIALS 2021; 11:nano11081978. [PMID: 34443810 PMCID: PMC8400667 DOI: 10.3390/nano11081978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023]
Abstract
Mercury (Hg) has been increasing in waters, sediments, soils and air, as a result of natural events and anthropogenic activities. In aquatic environments, especially marine systems (estuaries and lagoons), Hg is easily bioavailable and accumulated by aquatic wildlife, namely bivalves, due to their lifestyle characteristics (sedentary and filter-feeding behavior). In recent years, different approaches have been developed with the objective of removing metal(loid)s from the water, including the employment of nanomaterials. However, coastal systems and marine organisms are not exclusively challenged by pollutants but also by climate changes such as progressive temperature increment. Therefore, the present study aimed to (i) evaluate the toxicity of remediated seawater, previously contaminated by Hg (50 mg/L) and decontaminated by the use of graphene-based nanomaterials (graphene oxide (GO) functionalized with polyethyleneimine, 10 mg/L), towards the mussel Mytilus galloprovincialis; (ii) assess the influence of temperature on the toxicity of decontaminated seawater. For this, alterations observed in mussels’ metabolic capacity, oxidative and neurotoxic status, as well as histopathological injuries in gills and digestive tubules were measured. This study demonstrated that mussels exposed to Hg contaminated seawater presented higher impacts than organisms under remediated seawater. When comparing the impacts at 21 °C (present study) and 17 °C (previously published data), organisms exposed to remediated seawater at a higher temperature presented higher injuries than organisms at 17 °C. These results indicate that predicted warming conditions may negatively affect effective remediation processes, with the increasing of temperature being responsible for changes in organisms’ sensitivity to pollutants or increasing pollutants toxicity.
Collapse
Affiliation(s)
- Francesca Coppola
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (F.C.); (A.M.V.M.S.); (E.F.)
| | - Amadeu M. V. M. Soares
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (F.C.); (A.M.V.M.S.); (E.F.)
| | - Etelvina Figueira
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (F.C.); (A.M.V.M.S.); (E.F.)
| | - Eduarda Pereira
- Department of Chemistry LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering TEMA, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Rosa Freitas
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (F.C.); (A.M.V.M.S.); (E.F.)
- Correspondence:
| |
Collapse
|
6
|
Braga AC, Marçal R, Marques A, Guilherme S, Vilariño Ó, Martins JML, Gago-Martínez A, Costa PR, Pacheco M. Invasive clams (Ruditapes philippinarum) are better equipped to deal with harmful algal blooms toxins than native species (R. decussatus): evidence of species-specific toxicokinetics and DNA vulnerability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144887. [PMID: 33636784 DOI: 10.1016/j.scitotenv.2020.144887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
This study aims to assess and compare the kinetics (accumulation/elimination) of the marine biotoxins okadaic acid (OA) and dinophysistoxin-1 (DTX1), between native (Ruditapes decussatus) and invasive (Ruditapes philippinarum) clam species, and their genotoxic effects and DNA recover capacity after, exposure to toxic dinoflagellates Prorocentrum lima. Clams were fed with P. lima for 5 days and then to non-toxic algae (post-exposure) during other 5 days. Toxin concentrations determined in clams by LC-MS/MS were related with DNA damage and repair assessment through the comet and base excision repair (BER) assays, respectively. Differential accumulation patterns were observed between the invasive and native species. The invasive species consistently and progressively accumulated the toxins during the first 24 h of exposure, while the native clams showed drastic variations in the toxin accumulation. Nevertheless, at the end of a 5 days of exposure period, the native clams presented higher toxin concentrations, nearly reaching the legal regulatory limit for human consumption. In addition, native clams were vastly affected by OA and DTX1, presenting an increment in the DNA damage since the first day, with a correspondent increase in the repair activity. On the other hand, invasive clams were not affected by the dinoflagellate toxins, exhibiting only some signs of the challenge, namely an increase in the DNA repair mechanisms in the post-exposure period. Invasive clams R. philippinarum are better adapted to cope with harmful algal blooms and OA-group toxins than native species. These results may increase farming interest and may lead to new introductions of the invasive clams. In sympatry sites, exposure to OA-group toxins may unbalance clams species biomass and distribution as exposure to toxic dinoflagellates affects the native clams from cellular to a population level, representing a significant threat to development and maintenance of R. decussatus populations.
Collapse
Affiliation(s)
- Ana C Braga
- IPMA-Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal.
| | - Raquel Marçal
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Ana Marques
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Sofia Guilherme
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Óscar Vilariño
- Vigo University, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain
| | - J Manuel Leão Martins
- Vigo University, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain
| | - Ana Gago-Martínez
- Vigo University, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain
| | - Pedro R Costa
- IPMA-Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; CCMAR-Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Mário Pacheco
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Viana T, Ferreira N, Henriques B, Leite C, De Marchi L, Amaral J, Freitas R, Pereira E. How safe are the new green energy resources for marine wildlife? The case of lithium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115458. [PMID: 33254618 DOI: 10.1016/j.envpol.2020.115458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/12/2023]
Abstract
Considering the increasing use of Lithium (Li) and the necessity to fulfil this demand, labile Li occurrence in the environment will be enhanced. Thus, additional research is needed regarding the presence of this element in marine environment and its potential toxic impacts towards inhabiting wildlife. The aim of the present study was to evaluate Li toxicity based on the exposure of Mytilus galloprovincialis to this metal, assessing the biochemical changes related with mussels' metabolism, oxidative stress and neurotoxicity. For this, organisms were exposed to different Li concentrations (100, 250, 750 μg/L) for 28 days. The results obtained clearly demonstrated that Li lead to mussels' metabolism depression. The present study also revealed that, especially at the highest concentrations, antioxidant and biotransformation enzymes were not activated, leading to the occurrence of lipid peroxidation and loss of redox homeostasis, with increased content in oxidized glutathione in comparison to the reduced form. Furthermore, after 28 days, higher Li exposure concentrations induced neurotoxic effects in mussels, with a decrease in acetylcholinesterase enzyme activity. The responses observed were closely related with Li concentrations in mussels' tissues, which were more pronounced at higher exposure concentrations. Such results highlight the potential toxic effects of Li to marine species, which may even be higher under predicted climate changes and/or in the presence of other pollutants.
Collapse
Affiliation(s)
- Thainara Viana
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nicole Ferreira
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bruno Henriques
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carla Leite
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Centre for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Amaral
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Eduarda Pereira
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
8
|
Leite C, Coppola F, Monteiro R, Russo T, Polese G, Silva MRF, Lourenço MAO, Ferreira P, Soares AMVM, Pereira E, Freitas R. Toxic impacts of rutile titanium dioxide in Mytilus galloprovincialis exposed to warming conditions. CHEMOSPHERE 2020; 252:126563. [PMID: 32443264 DOI: 10.1016/j.chemosphere.2020.126563] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Climate change is leading to a gradual increase in the ocean temperature, which can cause physiological and biochemical impairments in aquatic organisms. Along with the environmental changes, the presence of emerging pollutants such as titanium dioxide (TiO2) in marine coastal systems has also been a topic of concern, especially considering the interactive effects that both factors may present to inhabiting organisms. In the present study, it has been assessed the effects of the presence in water of particles of rutile, the most common polymorph of TiO2, in Mytilus galloprovincialis, under actual and predicted warming conditions. Organisms were exposed to different concentrations of rutile (0, 5, 50, 100 μg/L) at control (18 ± 1.0 °C) and increased (22 ± 1.0 °C) temperatures. Histopathological and biochemical changes were evaluated in mussels after 28 days of exposure. Histopathological examination revealed similar alterations on mussels' gills and digestive glands with increasing rutile concentrations at both temperatures. Biochemical markers showed that contaminated mussels have an unchanged metabolic capacity at 18 °C, which increased at 22 °C. Although antioxidant defences were activated in contaminated organisms at 22 °C, cellular damage was still observed. Overall, our findings showed that histopathological impacts occurred after rutile exposure regardless of the temperature, while biochemical alterations were only significantly noticeable when temperature was enhanced to 22 °C. Thus, this study demonstrated that temperature rise may significantly enhance the sensitivity of bivalves towards emerging pollutants.
Collapse
Affiliation(s)
- Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Monteiro
- Departamento de Química & CESAM/LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal; CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Tania Russo
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126, Napoli, Italy
| | - Gianluca Polese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126, Napoli, Italy
| | - Mariana R F Silva
- CICECO- Instituto de Materiais de Aveiro, Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Mirtha A O Lourenço
- CICECO- Instituto de Materiais de Aveiro, Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, 3810-193, Aveiro, Portugal; Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144, Torino TO, Italy
| | - Paula Ferreira
- CICECO- Instituto de Materiais de Aveiro, Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & CESAM/LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
The Role of Temperature on the Impact of Remediated Water towards Marine Organisms. WATER 2020. [DOI: 10.3390/w12082148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine organisms are frequently exposed to pollutants, including trace metals, derived from natural and anthropogenic activities. In order to prevent environmental pollution, different approaches have been applied to remove pollutants from waste water and avoid their discharge into aquatic systems. However, organisms in their natural aquatic environments are also exposed to physico-chemical changes derived from climate change-related factors, including temperature increase. According to recent studies, warming has a negative impact on marine wildlife, with known effects on organisms physiological and biochemical performance. Recently, a material based on graphene oxide (GO) functionalized with polyethyleneimine (PEI) proved to be effective in the remediation of mercury (Hg) contaminated water. Nevertheless, no information is available on the toxic impacts of such remediated water towards aquatic systems, neither under actual nor predicted temperature conditions. For this, the present study assessed the toxicity of seawater, previously contaminated with Hg and remediated by GO-PEI, using the clam species Ruditapes philippinarum exposed to actual and a predicted temperature conditions. The results obtained demonstrated that seawater contaminated with Hg and/or Hg+GO-PEI induced higher toxicity in clams exposed to 17 and 22 °C compared to organisms exposed to remediated seawater at the same temperatures. Moreover, similar histological and biochemical results were observed between organisms exposed to control and remediated seawater, independently of the temperatures (17 and 21 °C), highlighting the potential use of GO-PEI to remediate Hg from seawater without significant toxicity issues to the selected marine species.
Collapse
|
10
|
Dallarés S, Montemurro N, Pérez S, Rodríguez-Sanchez N, Solé M. Preliminary results on the uptake and biochemical response to water-exposure of Tamiflu® (oseltamivir phosphate) in two marine bivalves. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:75-85. [PMID: 30669952 DOI: 10.1080/15287394.2018.1562393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tamiflu® (oseltamivir phosphate, OST) is an antiviral drug used for the pandemic treatment of avian influenza but few data are available regarding its toxicity. It should be noted that acute adverse responses are not likely to occur due to low environmental presence of this drug. Nonetheless, water concentration levels of this compound may reach the µg/L range under influenza episodes. Bivalves are reliable sentinels of chemical exposure due to their low metabolism; however, biotransformation of drugs does occur in these aquatic invertebrates. Two species of bivalves, namely mussels Mytilus galloprovincialis and clams Ruditapes philippinarum, were exposed for 48 h to 100 µg/L OST. Hemolymph from control and treated bivalves was withdrawn and the presence of OST and its metabolite oseltamivir carboxylate (OST-C) determined by LC-MS/MS. Gills and digestive gland were excised from control and exposed bivalves and carboxylesterase (CE) activities measured using different substrates. In addition, antioxidant defences and lipid peroxidation levels were determined. Higher metabolism of OST seemed to occur in mussels, since both OST and OST-C were found in hemolymph, whereas in clams only the parent compound was detected. In contrast, biomarker responses were more evident in exposed clams which indicate that this species may be considered as more sensitive to OST exposure. CE-related activities successfully reflected OST exposure, with substrates 1-naphthyl acetate (1NA) and 1-naphthyl butyrate (1NB) displaying the highest sensitivity in the two bivalve species. Data thus indicate the usefulness of CE-related activities as biomarkers for OST exposure in bivalves.
Collapse
Affiliation(s)
- Sara Dallarés
- a Institute of Marine Sciences (ICM-CSIC) , Barcelona , Spain
| | - Nicola Montemurro
- b Institute for Environmental Assessment and Water Research (IDAEA-CSIC) , Barcelona , Spain
| | - Sandra Pérez
- b Institute for Environmental Assessment and Water Research (IDAEA-CSIC) , Barcelona , Spain
| | | | - Montserrat Solé
- a Institute of Marine Sciences (ICM-CSIC) , Barcelona , Spain
| |
Collapse
|
11
|
Solé M, Rivera-Ingraham G, Freitas R. The use of carboxylesterases as biomarkers of pesticide exposure in bivalves: A methodological approach. Comp Biochem Physiol C Toxicol Pharmacol 2018; 212:18-24. [PMID: 29902568 DOI: 10.1016/j.cbpc.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/18/2018] [Accepted: 06/03/2018] [Indexed: 12/13/2022]
Abstract
Bivalves are worldwide sentinels of anthropogenic pollution. The inclusion of biomarker responses in chemical monitoring is a recommended practise that has to overcome some difficulties. One of them is the time frame between sample collection and sample processing in order to ensure the preservation of enzymatic activities. In the present study, three bivalve species of commercial interest (mussel, Mytilus galloprovincialis, razor shell, Solen marginatus, and cockle, Cerastoderma edule) were processed within <2 h after being retrieved from their natural habitat, and 24 h after being transported in air under cold conditions (6-8 °C) to laboratory facilities. The enzymatic activities were compared in the three species submitted to both conditions revealing no differences in terms of carboxylesterase dependent activities (CEs) using different substrates: p-nitrophenyl acetate (pNPA), p-nitrophenyl butyrate (pNPB), 1-naphthyl acetate (1-NA), 1-naphthyl butyrate (1-NB) and 2-naphthyl acetate (2-NA). In mussels, three tissues were selected (haemolymph, gills and digestive gland). For comparative purposes, in razor shell and cockle only digestive gland was considered as it is the main metabolic organ. Baseline enzymatic activities for CEs were characterised in the digestive gland of the three bivalves using four out of the five selected CE substrates as well as the kinetic parameters (Vmax and Km) and catalytic efficiency. The in vitro sensitivity to the organophosphorus metabolite chlorpyrifos oxon was also calculated. IC50 values (pM-nM range) were lower than those obtained for vertebrate groups which suggest that bivalves have high protection efficiency against this pesticide as well as species dependent particularities.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Freitas R. Effects of single and combined exposure of pharmaceutical drugs (carbamazepine and cetirizine) and a metal (cadmium) on the biochemical responses of R. philippinarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:10-19. [PMID: 29494826 DOI: 10.1016/j.aquatox.2018.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/10/2018] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
In the aquatic environment, organisms are exposed to complex mixtures of contaminants which may alter the toxicity profile of each compound, compared to its toxicity alone. Pharmaceutical drugs (e.g. carbamazepine (CBZ) and cetirizine (CTZ)) and metals (e.g. cadmium (Cd)) are among those contaminants that co-occur in the environment. However, most studies concerning their toxicity towards aquatic species are based on single exposure experiments. Thus, the present study aimed to evaluate single and combined effects of Cd and CBZ or CTZ (single conditions: Cd, CTZ, CBZ; combined conditions: CTZ + Cd, CBZ + Cd) on biomarkers related to oxidative stress and energy metabolism in the edible clam Ruditapes philippinarum, by exposing the organisms for 28 days to environmentally relevant concentrations of these contaminants. The biomarkers studied were: i) the electron transport system activity, protein and glycogen contents (indicators of organisms' metabolic status and energy reserves); ii) lipid peroxidation and the ratio between reduced and oxidized glutathione (indicators of oxidative stress); iii) superoxide dismutase and catalase activities (enzymes indicators of antioxidant defence) and iv) activity of glutathione S-transferases (family of enzymes indicators of biotransformation capacity). Results obtained showed that the uptake of Cd and CBZ was not affected by the combined presence of the contaminants. However, for CTZ, the uptake was higher in the presence than in the absence of Cd. Concerning toxicity data, in general, the combined exposures (CTZ + Cd, CBZ + Cd) had lower biological effects than the contaminants alone. Nevertheless, our data showed that despite the low concentrations tested, they were enough to exert biological effects that differed between single and combined treatments, evidencing the need to conduct more co-exposure studies to increase the environmental relevance of the gathered data.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, D-12489 Berlin, Germany
| | | | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Coppola F, Almeida Â, Henriques B, Soares AMVM, Figueira E, Pereira E, Freitas R. Biochemical responses and accumulation patterns of Mytilus galloprovincialis exposed to thermal stress and Arsenic contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:954-962. [PMID: 29029381 DOI: 10.1016/j.ecoenv.2017.09.051] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
Organisms in marine systems are exposed to multiple stressors that create a range of associated environmental and ecotoxicological risks. Examples of stressors include alterations related to climate change, such as temperature increase, and the exposure to pollutants arising from human activities. The present study evaluated the impacts of Arsenic exposure (1mg/L) and warming (21°C) in Mytilus galloprovincialis, acting alone and in combination. Our results demonstrated that both Arsenic exposure and warming induced oxidative stress and reduced mussels metabolism, with changes becoming more prominent with the exposure time and when mussels were exposed to both stressors in combination. Furthermore, results obtained showed higher As accumulation in organisms exposed to warming treatments. The present study showed that under warming scenarios, the negative impacts induced by As may be enhanced in ecologically and economically relevant bivalves, with potential impacts on population stocks due to increased sensitivity to pollutants, which may eventually result in biodiversity loss and socio-economic impacts.
Collapse
Affiliation(s)
- Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ângela Almeida
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Chiesa S, Chainho P, Almeida Â, Figueira E, Soares AMVM, Freitas R. Metals and As content in sediments and Manila clam Ruditapes philippinarum in the Tagus estuary (Portugal): Impacts and risk for human consumption. MARINE POLLUTION BULLETIN 2018; 126:281-292. [PMID: 29421099 DOI: 10.1016/j.marpolbul.2017.10.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/06/2017] [Accepted: 10/30/2017] [Indexed: 06/08/2023]
Abstract
The Manila clam is emerging as a relevant species for the Portuguese market. The present work was conducted in the Tagus estuary to evaluate 1) the metals and As content in the sediments of the Tagus estuary, especially on those areas subjected to Manila clam harvesting 2) the metals and As content in clams, and the risk associated with their consumption 3) the physiological and biochemical responses of the clam to metals and As contamination, and its possible role as a pollution bioindicator in the estuarine environment. The most contaminated sediments were identified nearby industrial areas, nevertheless clams collected in low contaminated areas showed high metals and As concentrations. The condition index, glycogen content, membrane oxidative damage, biotransformation enzymes and metallothioneins showed consistent responses to metals and As content in clams. Results emphasize the need for the development of a management plan for the species exploitation in the Tagus estuary.
Collapse
Affiliation(s)
- Stefania Chiesa
- Department of Biology, CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Paula Chainho
- MARE, Marine and Environmental Sciences Centre, Faculty of Sciences, Lisbon University, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ângela Almeida
- Department of Biology, CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Freitas R, Coppola F, Henriques B, Wrona F, Figueira E, Pereira E, Soares AMVM. Does pre-exposure to warming conditions increase Mytilus galloprovincialis tolerance to Hg contamination? Comp Biochem Physiol C Toxicol Pharmacol 2017; 203:1-11. [PMID: 28965928 DOI: 10.1016/j.cbpc.2017.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022]
Abstract
UNLABELLED The degree to which marine invertebrate populations can tolerate extreme weather events, such as short-term exposure to high temperatures, and the underlying biochemical response mechanisms are not yet fully understood. Furthermore, scarce information is available on how marine organisms respond to the presence of pollutants after exposure to heat stress conditions. Therefore, the present study aimed to understand how the mussel Mytilus galloprovincialis responds to Hg pollution after pre-exposure to warming conditions. Mussels were exposed to control (17°C) and warming (21°C) conditions during 14days, followed by Hg contamination during 28days under different temperature regimes (17 and 21°C). The results obtained demonstrated significantly higher Hg concentrations in mussels under 17°C during the entire experiment than in organisms exposed to 21°C during the same period, which resulted in higher oxidative stress in mussels under control temperature. Significantly higher Hg concentrations were also observed in mussels pre-exposed to 21°C followed by a 17°C exposure comparing with organisms maintained the entire experiment at 21°C. These results may be explained by higher metabolic capacity in organisms exposed to 17°C after pre-exposure to 21°C that although induced antioxidant defences were not enough to prevent oxidative stress. No significant differences in terms of Hg concentration were found between mussels exposed to 17°C during the entire experiment and organisms pre-exposed to 21°C followed by a 17°C exposure, leading to similar oxidative stress levels in mussels exposed to both conditions. Therefore, our findings demonstrated that pre-exposure to warming conditions did not change mussels' accumulation and tolerance to Hg in comparison to Hg contaminated mussels maintained at control temperature. Furthermore, the present study indicate that organisms maintained under warming conditions for long periods may prevent the accumulation of pollutants by decreasing their metabolism which will limit cellular injuries. CAPSULE Mussels under warming conditions presented reduced metabolic capacity, resulting in lower Hg accumulation, which in turn prevented higher damages and, consequently, physiological impairments.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Fredrick Wrona
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Geography, University of Victoria, National Water Research Institute, STN CSC, Victoria, BC, Canada
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Coppola F, Almeida Â, Henriques B, Soares AMVM, Figueira E, Pereira E, Freitas R. Biochemical impacts of Hg in Mytilus galloprovincialis under present and predicted warming scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1129-1138. [PMID: 28599369 DOI: 10.1016/j.scitotenv.2017.05.201] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
The interest in the consequences of climate change on the physiological and biochemical functioning of marine organisms is increasing, but the indirect and interactive effects resulting from warming on bioconcentration and responsiveness to pollutants are still poorly explored, particularly in terms of cellular responses. The present study investigated the impacts of Hg in Mytilus galloprovincialis under control (17°C) and warming (21°C) conditions, assessing mussels Hg bioconcentration capacity, metabolic and oxidative status after 14 and 28days of exposure. Results obtained showed greater impacts in mussels exposed for 28days in comparison to 14days of exposure. Furthermore, our findings revealed that the increase in temperature from 17 to 21°C reduced the bioconcentration of Hg by M. galloprovincialis, which may explain higher mortality rates at 17°C in comparison to 21°C. Lower Hg concentration at 21°C in mussels tissue may result from valves closure for longer periods, identified by reduced energy reserves consumption at higher temperature, which in turn might also contributed to higher oxidative stress in organisms exposed to this condition. The highest LPO levels observed in mussels exposed to higher temperatures alone indicate that warming conditions will greatly affect M. galloprovincialis. Furthermore, the present study showed that the impacts induced by the combination of Hg and warming were similar to the ones caused by increased temperature acting alone, mainly due to increased antioxidant defenses in organisms under combined effects of Hg and warming, suggesting that warming was the factor that mostly contributed to oxidative stress in mussels. Although higher mortality was observed in individuals exposed to 17°C and Hg compared to organisms exposed to Hg at 21°C, the oxidative stress induced at higher temperature may generate negative consequences on mussels reproductive and feeding capacity, growth and, consequently, on population maintenance and dynamics.
Collapse
Affiliation(s)
- Francesca Coppola
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research , Rua dos Bragas 289, 4050-123 Porto, Portugal
| | | | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Ciulli S, Volpe E, Pagliarani A, Zavatta E, Brunetti B, Gazzotti T, Parmeggiani A, Govoni N, Nesci S, Fabbri M, Mordenti O, Serratore P. A preliminary study on a novel sea water disinfection process by a peroxy-acid compound to complement and improve the microbial depuration of clams (Ruditapes philippinarum). Food Control 2017; 80:226-235. [DOI: 10.1016/j.foodcont.2017.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Leite L, Jude-Lemeilleur F, Raymond N, Henriques I, Garabetian F, Alves A. Phylogenetic diversity and functional characterization of the Manila clam microbiota: a culture-based approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21721-21732. [PMID: 28766142 DOI: 10.1007/s11356-017-9838-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
According to the hologenome theory, the microbiota contributes to the fitness of the holobiont having an important role in its adaptation, survival, development, health, and evolution. Environmental stress also affects the microbiota and its capability to assist the holobiont in coping with stress factors. Here, we analyzed the diversity of cultivable bacteria associated with Manila clam tissues (mantle, gills, hemolymph) in two non-contaminated sites (Portugal and France) and one metal-contaminated site (Portugal). A total of 240 isolates were obtained. Representative isolates (n = 198) of the overall diversity were identified by 16S rDNA sequencing and subjected to functional characterization. Isolates affiliated with Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Proteobacteria (mostly Pseudoalteromonadaceae and Vibrionaceae) were dominant in non-contaminated sites while Actinobacteria (mostly Microbacteriaceae) dominated in the metal-contaminated site. The main factor affecting the microbiota composition was contamination. No significant differences were observed between clam tissues and geographic regions. Several isolates tested positive for antibacterial activity, biofilm formation, protease, and siderophore production. The results show that the Manila clam harbors a diverse microbiota that may contribute to clam protection and overall fitness, as well as to its adaptation to stressful environments. In addition, the Manila clam microbiota is revealed as a promising source of novel probiotics with potential application in aquaculture.
Collapse
Affiliation(s)
- Laura Leite
- Departamento de Biologia, CESAM, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
- Université de Bordeaux, UMR 5805 EPOC, 33120, Arcachon, France
- CNRS, UMR 5805 EPOC, 33120, Arcachon, France
| | - Florence Jude-Lemeilleur
- Université de Bordeaux, UMR 5805 EPOC, 33120, Arcachon, France
- CNRS, UMR 5805 EPOC, 33120, Arcachon, France
| | - Natalie Raymond
- Université de Bordeaux, UMR 5805 EPOC, 33120, Arcachon, France
- CNRS, UMR 5805 EPOC, 33120, Arcachon, France
| | - Isabel Henriques
- Departamento de Biologia, CESAM, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Frédéric Garabetian
- Université de Bordeaux, UMR 5805 EPOC, 33120, Arcachon, France
- CNRS, UMR 5805 EPOC, 33120, Arcachon, France
| | - Artur Alves
- Departamento de Biologia, CESAM, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Braga AC, Lage S, Pacheco M, Rydberg S, Costa PR. Native (Ruditapes decussatus) and non-indigenous (R. philippinarum) shellfish species living in sympatry: Comparison of regulated and non-regulated biotoxins accumulation. MARINE ENVIRONMENTAL RESEARCH 2017; 129:147-155. [PMID: 28527836 DOI: 10.1016/j.marenvres.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The native Ruditapes decussatus and the non-indigenous Ruditapes philippinarum are an important target of shellfish industries. The aim of this study was to compare an invader with a native species living in sympatry in the view of marine biotoxins accumulation. Samples were analysed for regulated and non-regulated biotoxins. The consistently occurrence of okadaic acid-group toxins and BMAA, may cause human health problems and economical losses. A strong positive relationship was observed between species, with significantly higher DSP toxicity in R. decussatus. Similar toxin profiles dominated by DTX3 in both species suggests similar metabolic pathways. Lower DSP toxicity in R. philippinarum may favour their cultivation, but a tendency for higher levels of the non-regulated BMAA was observed, indicating risks for consumers that are not monitored. This study highlights the need to better understand the physiological responses and adaptations allowing similar species exposed to the same conditions to present different toxicity levels.
Collapse
Affiliation(s)
- Ana C Braga
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Sandra Lage
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden
| | - Mário Pacheco
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden
| | - Pedro R Costa
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
20
|
Piló D, Carvalho S, Pereira P, Gaspar MB, Leitão A. Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 577:340-348. [PMID: 27817921 DOI: 10.1016/j.scitotenv.2016.10.193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
The present study assessed the metal genotoxicity potential at chromosome-level in the bivalve Ruditapes philippinarum collected along different areas of the Tagus estuary. Higher levels of aneuploidy on gill cells were detected at the most sediment contaminated area both in May (31.7%) and October (36.0%) when compared to a less contaminated area over the same periods (20.3% and 29.0% respectively). Interestingly, metal bioaccumulation in gills was higher in the specimens collected at the least contaminated area with the exception of Pb. Indeed, the multivariate analysis revealed a stronger relation between aneuploidy and sediment contamination than between aneuploidy and the bioaccumulation of the metals. The temporal and spatial inconsistency found for the bioaccumulation of metals in R. philippinarum and the positive correlation between sediment contamination and aneuploidy at the most contaminated area suggest that these chromosome-level effects might be due to chronic metal contamination occurring in the Tagus estuary, rather than a direct result of the temporal variation of bioavailable contaminants. The vertical transmission phenomenon of bivalve aneuploidy levels may then be perpetuating those levels on clams from the most contaminated area. The present results shed light about the effect of metal toxicity at the chromosome-level in species inhabiting chronic contaminated areas and highlight the use of aneuploidy as an effective tool to identify persistent contamination in worldwide transitional waters.
Collapse
Affiliation(s)
- D Piló
- Portuguese Institute for the Ocean and Atmosphere (IPMA), Avenida 5 de Outubro, 8700-305 Olhão, Portugal; Department of Biology, Faculty of Marine and Environment Sciences, University of Cadiz, Campus de Excelencia International del Mar (CEIMAR), Avda. República Saharaui S/N Puerto Real, 11510 Puerto Real, Cadiz, Spain.
| | - S Carvalho
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - P Pereira
- Portuguese Institute for the Ocean and Atmosphere (IPMA), Av. Brasília, 1449-006 Lisbon, Portugal; Centre for Environmental and Marine Studies and Department of Biology (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M B Gaspar
- Portuguese Institute for the Ocean and Atmosphere (IPMA), Avenida 5 de Outubro, 8700-305 Olhão, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve (UAlg), Campus de Gambelas, 8005-139 Faro, Portugal
| | - A Leitão
- Environmental Science Center (ESC), Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
21
|
Mennillo E, Casu V, Tardelli F, De Marchi L, Freitas R, Pretti C. Suitability of cholinesterase of polychaete Diopatra neapolitana as biomarker of exposure to pesticides: In vitro characterization. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:152-159. [PMID: 27777085 DOI: 10.1016/j.cbpc.2016.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
Cholinesterases of Diopatra neapolitana were characterized for their activity in whole body and different body segments (apical, intermediate, posterior), substrate affinity (acetyl-, butyryl-, propionylthiocholine), kinetic parameters (Km and Vmax) and in vitro response to model inhibitors (eserine hemisulfate, isoOMPA, BW284C51) and carbamates (carbofuran, methomyl, aldicarb and carbaryl). Results showed that the rate of hydrolysis for acetyl- and propionylthiocholine was higher in the posterior segment than the apical/intermediate segments and whole body. Cholinesterases of D. neapolitana showed a substrate preference for acetylthiocholine followed by propionylthiocholine; butyrylthioline was poorly hydrolyzed indicating, together with the absence of inhibition by the specific inhibitor and the absence of reactive bands in native electrophoresis, a lack of an active butyrylcholinesterase, differently than that observed in other Annelida species. The degree of inhibition by selected carbamates of cholinesterase activity with propionylthiocholine as substrate was higher than that observed with ATChI-ChE activity; aldicarb showed the highest inhibitory effect.
Collapse
Affiliation(s)
- Elvira Mennillo
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy
| | - Valentina Casu
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy
| | - Federica Tardelli
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy
| | - Lucia De Marchi
- Departamento de Biologia & CESAM, University of Aveiro 3810-193, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, University of Aveiro 3810-193, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy; Interuniversitary Center of Marine Biology (CIBM) "G. Bacci", Leghorn 57128, Italy.
| |
Collapse
|
22
|
Aru V, Sarais G, Savorani F, Engelsen SB, Cesare Marincola F. Metabolic responses of clams, Ruditapes decussatus and Ruditapes philippinarum, to short-term exposure to lead and zinc. MARINE POLLUTION BULLETIN 2016; 107:292-299. [PMID: 27058966 DOI: 10.1016/j.marpolbul.2016.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of 48h heavy metal exposure upon the metabolic profiles of Ruditapes decussatus and Ruditapes philippinarum using (1)H NMR metabolomics. Both species were exposed to increasing concentrations of lead nitrate (10, 40, 60 and 100μg/L) and zinc chloride (20, 50, 100 and 150μg/L), under laboratory conditions. ICP-OES analysis was further performed on the clams' samples in order to verify the occurrence of heavy metal bioaccumulation. With respect to the controls, the metabolic profiles of treated R. decussatus exhibited higher levels of organic osmolytes and lower contents of free amino acids. An opposite behavior was shown by R. philippinarum. In terms of heavy metal, the exposure effects were more evident in the case of Pb rather than Zn. These findings show that NMR-based metabolomics has the required sensitivity and specificity for the identification of metabolites that can act as sensitive indicators of contaminant-induced stress.
Collapse
Affiliation(s)
- Violetta Aru
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, 09042 Monserrato (CA), Italy
| | - Giorgia Sarais
- Departement of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Francesco Savorani
- Quality & Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Søren Balling Engelsen
- Quality & Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Flaminia Cesare Marincola
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, 09042 Monserrato (CA), Italy.
| |
Collapse
|
23
|
Moreira A, Figueira E, Soares AMVM, Freitas R. The effects of arsenic and seawater acidification on antioxidant and biomineralization responses in two closely related Crassostrea species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:569-581. [PMID: 26760276 DOI: 10.1016/j.scitotenv.2015.12.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/06/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
Ocean acidification processes are major threats to marine calcifying organisms, mostly affecting biomineralization related processes. Abiotic stressors acting on marine systems do not act alone, rather in a combination of multiple stressors, especially in coastal habitats such as estuaries, where anthropogenic and environmental pressures are high. Arsenic (As) is a widely distributed contaminant worldwide and its toxicity has been studied on a variety of organisms. However, the effect of low pH on the toxicity of As on marine organisms is unknown. Here, we studied the combined effects of ocean acidification and As exposure on two closely related oyster species (Crassostrea angulata and Crassostrea gigas), by use of a biochemical approach. Oxidative stress related parameters were studied along with the assessment of biomineralization enzymes activity after 28days of exposure. Results showed that both species were sensitive to all tested conditions (low pH, As and pH+As), showing enhancement of antioxidant and biotransformation defenses and impairment of biomineralization processes. Glutathione S-transferases (GSTs) activity were significantly higher in oysters exposed to As, showing activation of detoxification mechanisms, and a lower GSTs activity was observed in low pH+As condition, indicating an impact on the oysters capacity to detoxify As in a low pH scenario. Carbonic anhydrase (CA) activity was significantly lower in all tested conditions, showing to be affected by both As and low pH, whereas the combined effect of low pH+As was not different from the effect of low pH alone. Multivariate analysis of biochemical data allowed for the comparison of both species performance, showing a clear distinction of response in both species. C. gigas presented overall higher enzymatic activity (GSTs; superoxide dismutase; catalase; CA and acid phosphatase) and higher cytosolic GSH content in As exposed oysters than C. angulata. Results obtained indicate a higher tolerance capacity of the Pacific oyster C. gigas towards the tested conditions.
Collapse
Affiliation(s)
- Anthony Moreira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
24
|
Velez C, Freitas R, Antunes SC, Soares AMVM, Figueira E. Clams sensitivity towards As and Hg: A comprehensive assessment of native and exotic species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 125:43-54. [PMID: 26655232 DOI: 10.1016/j.ecoenv.2015.11.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
To assess the environmental impact of As and Hg, bioindicator organisms such as bivalves have been used. Nevertheless, few studies have assessed the impacts of As and Hg in Ruditapes decussatus and Ruditapes philippinarum, which are native and exotic species in Europe, respectively. The main goal of the present study was to assess elements' partitioning and detoxification strategies of R. decussatus and R. philippinarum. Both clams showed a higher capacity to bioconcentrate Hg (BCF 2.29-7.49), when compared to As (0.59-1.09). Furthermore, As accumulation in both species was similar in the soluble and insoluble fractions, while in both species the majority of Hg was found in the insoluble fraction. Clams exposed to As showed different detoxification strategies, since R. decussatus had higher ability to enhance antioxidant enzymes and metallothioneins in order to reduce toxicity, and R.philippinarum increased glutathione S-transferase Ω activity, that catalyzes monomethyl arsenate reduction, the rate-limiting reaction in arsenic biotransformation. When exposed to Hg, R. decussatus presented, higher synthesis of antioxidant enzymes and lower LPO, being able to better tolerate Hg than the exotic species R. philippinarum. Thus under relevant levels of As and Hg contamination our work evidenced the higher ability of R. decussatus to survive and inhabit coastal environments not heavily contaminated by Hg and As.
Collapse
Affiliation(s)
- Cátia Velez
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Sara C Antunes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas 289, 450-123 Porto, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Freitas R, Salamanca L, Velez C, Wrona FJ, Soares AMVM, Figueira E. Multiple stressors in estuarine waters: Effects of arsenic and salinity on Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1106-1114. [PMID: 26473712 DOI: 10.1016/j.scitotenv.2015.09.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Marine organisms are constantly exposed to multiple stressors creating a range of associated environmental and ecotoxicological risks. Several stressors have been identified as key drivers of environmental change that may significantly influence marine near-shore systems. These include increased frequency and duration of extreme rainy events and drought periods, arising from climate change, and the constant discharge of contaminants into aquatic systems. A growing body of evidence demonstrates that climate change can have direct and indirect impacts on marine organisms although the combined effects with other stressors, namely with metals and metalloids, have received very little attention to date. The present study evaluated the biochemical alterations induced in the clam Ruditapes philippinarum, also known as Manila clam, when simultaneously exposed (96 h) to different arsenic concentrations (0, 4 and 17 mg/L) and a range of salinities (14, 21, 28, 35 and 42 g/L). Results obtained revealed that, when acting alone, both stressors induced oxidative stress in clams, with higher LPO levels and lower GSTs activity induced by As contamination, and a stronger inhibition of the antioxidant defenses induced by salinity increase. Furthermore, when exposed to the combination of both stressors, clams experienced stronger biochemical alterations, presenting higher LPO increases and greater decreases of antioxidant enzymes, especially noticed at higher salinities. The present findings may indicate that climate change, including predicted drought periods that will increase salinities in aquatic systems, will seriously affect the clam R. philippinarum, especially those inhabiting contaminated ecosystems.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Cátia Velez
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Frederick J Wrona
- Department of Geography, University of Victoria, National Water Research Institute, STN CSC, Victoria, BC, Canada
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|