1
|
Bhardwaj S, Kapoor B, Kapoor D, Thakur U, Dolma Y, Raza A. Manifold roles of potassium in mediating drought tolerance in plants and its underlying mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112337. [PMID: 39603421 DOI: 10.1016/j.plantsci.2024.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Drought stress (DS) is a major devastating factor affecting plant growth and development worldwide. Potassium (K) is considered a vigorous moiety and stress alleviator, which crop cultivars need for better yield. It is also helpful in alleviating the DS-induced negative consequences by regulating various morphological, physiological, biochemical, and molecular mechanisms in plants. Particularly, the K application improves plant tolerance against DS by improving plant growth parameters, photosynthetic pigments, cell turgor pressure, osmotic pressure, nutritional balance, compatible solutes, and the plant's antioxidant defense system. Apart from its role as a constituent of the plant structure, biochemical processes such as protein synthesis, carbohydrate metabolism, and enzyme activation are also regulated by K. However, the exact K-mediated molecular mechanisms of DS tolerance are still unclear and require more investigation. The present review aims to provide insight into the role of K in regulating various morphological and physico-chemical aspects under DS. It also emphasizes the crosstalk of K with other nutrients and phytohormones, as well as molecular mechanisms for K homeostasis under DS. We have also shed light on genomics analysis to discover K transporter's novel genes in different plant species.
Collapse
Affiliation(s)
- Savita Bhardwaj
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Bharat Kapoor
- Department of Hotel Management and Tourism, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Dhriti Kapoor
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| | - Usha Thakur
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Yanchen Dolma
- Department of Zoology, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Ali Raza
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Chen X, Wang K, Qin T, Bai Y, Li Q, Guo A, Liao B, Zhang J. An ideal leaf spraying strategy of brown sugar for edible medicinal plants of Viola inconspicua. NPJ Sci Food 2024; 8:99. [PMID: 39572563 PMCID: PMC11582318 DOI: 10.1038/s41538-024-00343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The typical edible medicinal plants of Viola inconspicua were compared with leaf-green, biomass, metabolomes, and bacterial communities, after leaf-spraying water (A), brown sugar water (B), brown sugar, urea, and KH2PO4 water (C), or KH2PO4 and urea water (D). The plants sprayed with C solution presented relatively normal leaf-green and the highest biomass. In contrast of A group, B, C, and D groups were found with 72, 94, and 104 leaf differently accumulated metabolites (DAMs) and 105, 88, and 92 root DAMs, respectively. Typically, relative abundances of amino acids were elevated in C and D groups, while those of leaf flavonoids were increased in B group. Noticeably, leaf DAMs of C group versus A group had strong correlations with one to more phylum- or/and genus-dominant bacteria of C group. Taken together, leaf-spraying brown sugar, urea, and KH2PO4 water are ideal for holding leaf-green and biomass in V. inconspicua plants.
Collapse
Affiliation(s)
- Xuhan Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Kemei Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Ting Qin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Yachao Bai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Aimin Guo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Jun Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China.
| |
Collapse
|
3
|
Shehzad MA, Hussain I, Akhtar G, Ahmad KS, Nawaz F, Faried HN, Mehmood A. Insights into physiological and metabolic modulations instigated by exogenous sodium nitroprusside and spermidine reveals drought tolerance in Helianthus annuus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107935. [PMID: 37579683 DOI: 10.1016/j.plaphy.2023.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Drought is the most critical climatic factor instigating severe threats to crop production worldwide. As stress ameliorants, exogenous sodium nitroprusside (SNP) or spermidine (Spd) supply has positive responses in alleviating the drought adversities in crops, however, reports regarding their combined effects is still elusive. Here, the protective role of SNP and Spd to confer drought resistance in sunflower (Helianthus annuus L.) through up-regulation of physiological and metabolic processes was investigated. Plants were foliar sprayed with individual or combined SNP (100 μM) or Spd (100 μM). Drought was induced by keeping the soil at 100% (normal) and 60% (drought stress) field capacity levels. Drought exposure caused a marked decline in relative water content (RWC), excised leaf water retention (ELWR), net photosynthesis (PN), transpiration rate (E), stomatal conductance (gs), and sub-stomatal conductance (Ci) with substantial increase in catalase (CAT), superoxide dismutase (SOD), and peroxidase (POX). SNP plus Spd exhibited a considerable increase in CAT, SOD, and POX activities under drought, and helped the plants to retain optimum water status and gas exchange attributes. Similarly, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were increased significantly to drought; however, a notable decline was recorded in drought prone plants treated with exogenous SNP plus Spd. Moreover, addition of SNP plus Spd under drought caused a remarkable increase in chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll total (Chl t), carotenoids (Car), and growth traits like shoot length (SL), root length (RL), shoot fresh weight (SFW), shoot dry weight (SDW), root dry weight (RDW). Combined SNP and Spd application could potentially alleviate the drought-induced damages in sunflower through increased water status (8-10%), antioxidant enzymes (17-28%), chlorophyll pigments (14-21%), and growth performance (12-22%) under drought stress.
Collapse
Affiliation(s)
- Muhammad Asif Shehzad
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan.
| | - Israr Hussain
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Gulzar Akhtar
- Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot (UPR), 12350, Azad Jammu and Kashmir, Pakistan.
| | - Fahim Nawaz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hafiz Nazar Faried
- Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot (UPR), 12350, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
4
|
Melash AA, Bogale AA, Bytyqi B, Nyandi MS, Ábrahám ÉB. Nutrient management: as a panacea to improve the caryopsis quality and yield potential of durum wheat ( Triticum turgidum L.) under the changing climatic conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1232675. [PMID: 37701803 PMCID: PMC10493400 DOI: 10.3389/fpls.2023.1232675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
The increasing human population and the changing climate, which have given rise to frequent drought spells, pose a serious threat to global food security, while identification of high-yielding drought-tolerant genotypes coupled with nutrient management remains a proficient approach to cope with these challenges. An increase in seasonal temperature, recurring drought stress, and elevated atmospheric CO2 are alarmingly affecting durum wheat production, productivity, grain quality, and the human systems it supports. An increase in atmospheric carbon dioxide can improve wheat grain yield in a certain amount, but the right amount of nutrients, water, and other required conditions should be met to realize this benefit. Nutrients including nitrogen, silicon, and sulfur supply could alleviate the adverse effects of abiotic stress by enhancing antioxidant defense and improving nitrogen assimilation, although the effects on plant tolerance to drought stress varied with nitrogen ionic forms. The application of sewage sludge to durum wheat also positively impacts its drought stress tolerance by triggering high accumulation of osmoregulators, improving water retention capacity in the soil, and promoting root growth. These beneficial effect of nutrients contribute to durum wheat ability to withstand and recover from abiotic stress conditions, ultimately enhance its productivity and resilience. While these nutrients can provide benefits when applied in appropriate amounts, their excessive use can lead to adverse environmental consequences. Advanced technologies such as precision nutrient management, unmanned aerial vehicle-based spraying, and anaerobic digestion play significant roles in reducing the negative effects associated with nutrients like sewage sludge, zinc, nanoparticles and silicon fertilizers. Hence, nutrient management practices offer significant potential to enhance the caryopsis quality and yield potential of durum wheat. Through implementing tailored nutrient management strategies, farmers, breeders, and agronomists can contribute to sustainable durum wheat production, ensuring food security and maintaining the economic viability of the crop under the changing climatic conditions.
Collapse
Affiliation(s)
- Anteneh Agezew Melash
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
- Department of Horticulture, College of Agriculture and Environmental Science, Debark University, Debark, Ethiopia
| | - Amare Assefa Bogale
- Institute of Crop Production, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Bekir Bytyqi
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
| | - Muhoja Sylivester Nyandi
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Debrecen, Hungary
| | - Éva Babett Ábrahám
- Faculty of Agricultural, Food Sciences and Environmental Management, Institute of Crop Sciences, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Long J, Dong M, Wang C, Miao Y. Effects of drought and salt stress on seed germination and seedling growth of Elymus nutans. PeerJ 2023; 11:e15968. [PMID: 37641594 PMCID: PMC10460566 DOI: 10.7717/peerj.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Drought and soil salinization are global environmental issues, and Elymus nutans play an important role in vegetation restoration in arid and saline environments due to their excellent stress resistance. In the process of vegetation restoration, the stage from germination to seedling growth of forage is crucial. This experiment studied the effects of PEG-6000 simulated drought stress and NaCl simulated salinization stress on the germination of E. nutans seeds, and explored the growth of forage seedlings from sowing to 28 days under drought and salinization stress conditions. The results showed that under the same environmental water potential, there were significant differences in responses of seed germination, seedling growth, organic carbon, total nitrogen and total phosphorus of above-ground and underground parts of E. nutans to drought stress and salinization stress. Using the membership function method to comprehensively evaluate the seed germination and seedling indicators of E. nutans, it was found that under the same environmental water potential, E. nutans was more severely affected by drought stress during both the seed germination and seedling growth stages. E. nutans showed better salt tolerance than drought resistance.
Collapse
Affiliation(s)
- Jianting Long
- Tibet Agricultural and Animal Husbandry University, Tibet, China
| | - Mengjie Dong
- Tibet Agricultural and Animal Husbandry University, Tibet, China
| | - Chuanqi Wang
- Tibet Agricultural and Animal Husbandry University, Tibet, China
| | - Yanjun Miao
- Tibet Agricultural and Animal Husbandry University, Tibet, China
| |
Collapse
|
6
|
Wang Y, Qin T, Pu Z, Dekomah SD, Yao P, Sun C, Liu Y, Bi Z, Bai J. Foliar Application of Chelated Sugar Alcohol Calcium Improves Photosynthesis and Tuber Quality under Drought Stress in Potatoes ( Solanum tuberosum L.). Int J Mol Sci 2023; 24:12216. [PMID: 37569590 PMCID: PMC10418820 DOI: 10.3390/ijms241512216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Drought stress is a major threat to sustainable crop production worldwide. Despite the positive role of calcium (Ca2+) in improving plant drought tolerance in different crops, little attention has been paid to its role in mitigating drought stress in potatoes. In the present study, we studied the effect of foliar chelated sugar alcohol calcium treatments on two potato cultivars with different drought responses applied 15 and 30 days after limiting soil moisture. The results showed that the foliar application of calcium treatments alleviated the SPAD chlorophyll loss of the drought-sensitive cultivar 'Atlantic' (Atl) and reduced the inhibition of photosynthetic parameters, leaf anatomy deformation, and MDA and H2O2 content of both cultivars under drought stress. The Ca2+ treatments changed the expression of several Calcium-Dependent Protein Kinase (StCDPK) genes involved in calcium sensing and signaling and significantly increased antioxidant enzyme activities, average tuber weight per plant, and tuber quality of both cultivars. We conclude that calcium spray treatments improved the drought tolerance of both potato cultivars and were especially effective for the drought-sensitive cultivar. The present work suggests that the foliar application of calcium is a promising strategy to improve commercial potato yields and the economic efficiency of potato production under drought stress conditions.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Tianyuan Qin
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhuanfang Pu
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Simon Dontoro Dekomah
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Ullah A, Tian Z, Xu L, Abid M, Lei K, Khanzada A, Zeeshan M, Sun C, Yu J, Dai T. Improving the effects of drought priming against post-anthesis drought stress in wheat ( Triticum aestivum L.) using nitrogen. FRONTIERS IN PLANT SCIENCE 2022; 13:965996. [PMID: 36035683 PMCID: PMC9400543 DOI: 10.3389/fpls.2022.965996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Water and nitrogen (N) deficiencies are the major limitations to crop production, particularly when they occur simultaneously. By supporting metabolism, even when tissue water capacity is lower, nitrogen and priming may reduce drought pressure on plants. Therefore, the current study investigates the impact of nitrogen and priming on wheat to minimize post-anthesis drought stress. Plant morphology, physiology, and biochemical changes were observed before, during, and after stress at the post-anthesis stage. The plants were exposed to three water levels, i.e., well watering (WW), water deficit (WD), and priming at jointing and water deficit (PJWD) at the post-anthesis stage, and two different nitrogen levels, i.e., N180 (N1) and N300 (N2). Nitrogen was applied in three splits, namely, sowing, jointing, and booting stages. The results showed that the photosynthesis of plants with N1 was significantly reduced under drought stress. Moreover, drought stress affected chlorophyll (Chl) fluorescence and water-related parameters (osmotic potential, leaf water potential, and relative water content), grain filling duration (GFD), and grain yield. In contrast, PJWD couple with high nitrogen treatment (N300 kg ha-1) induced the antioxidant activity of peroxidase (37.5%), superoxide dismutase (29.64%), and catalase (65.66%) in flag leaves, whereas the levels of hydrogen peroxide (H2O2) and superoxide anion radical (O2 -) declined by 58.56 and 66.64%, respectively. However, during the drought period, the primed plants under high nitrogen treatment (N300 kg ha-1) maintained higher Chl content, leaf water potential, and lowered lipid peroxidation (61%) (related to higher activities of ascorbate peroxidase and superoxide dismutase). Plants under high nitrogen treatment (N300 kg ha-1) showed deferred senescence, improved GFD, and grain yield. Consequently, the research showed that high nitrogen dose (N300 kg ha-1) played a synergistic role in enhancing the drought tolerance effects of priming under post-anthesis drought stress in wheat.
Collapse
Affiliation(s)
- Attiq Ullah
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, China
| | - Libing Xu
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, China
| | | | - Kangqi Lei
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, China
| | - Anab Khanzada
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Zeeshan
- Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, China
| | - Chuanjiao Sun
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, China
| | - Jinhong Yu
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Zhang H, Sun X, Dai M. Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100228. [PMID: 35059626 PMCID: PMC8760038 DOI: 10.1016/j.xplc.2021.100228] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 05/11/2023]
Abstract
Drought is one of the main abiotic stresses that cause crop yield loss. Improving crop yield under drought stress is a major goal of crop breeding, as it is critical to food security. The mechanism of plant drought resistance has been well studied, and diverse drought resistance genes have been identified in recent years, but transferring this knowledge from the laboratory to field production remains a significant challenge. Recently, some new strategies have become research frontiers owing to their advantages of low cost, convenience, strong field operability, and/or environmental friendliness. Exogenous plant growth regulator (PGR) treatment and microbe-based plant biotechnology have been used to effectively improve crop drought tolerance and preserve yield under drought stress. However, our understanding of the mechanisms by which PGRs regulate plant drought resistance and of plant-microbiome interactions under drought is still incomplete. In this review, we summarize these two strategies reported in recent studies, focusing on the mechanisms by which these exogenous treatments regulate crop drought resistance. Finally, future challenges and directions in crop drought resistance breeding are discussed.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaopeng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Nazim M, Ali M, Shahzad K, Ahmad F, Nawaz F, Amin M, Anjum S, Nasif O, Ali Alharbi S, Fahad S, Danish S, Datta R. Kaolin and Jasmonic acid improved cotton productivity under water stress conditions. Saudi J Biol Sci 2021; 28:6606-6614. [PMID: 34764776 PMCID: PMC8568989 DOI: 10.1016/j.sjbs.2021.07.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 11/22/2022] Open
Abstract
Drought is one of the most emerging threat that causes a severe reduction in cotton plant growth and development. Being cotton is a major cash crop has great threat to prevailing drought events in Pakistan. A field experiment was conducted in Kharif season 2018 at Research Area of MNS-University of Agriculture, Multan, Pakistan to assess the role of foliar applied kaolin and jasmonic acid on vegetative growth, gas exchange and reproductive traits of cotton under normal irrigated and artificial water deficit conditions. The experiment was laid -out in a factorial randomized complete block design with split - split plot arrangement. Main plots were allocated for irrigation levels, sub-plots for two -cotton genotypes viz. NIAB - 878 and SLH - 19 while sub - sub plots for treatments of kaolin and Jasmonic acid. Water deficit stress was created by skipping irrigation at flowering for 21 days. Foliar sprays of Kaolin (5%, w/v) and Jasmonic acid (100 μM) were applied alone or in combination at 60 days after planntinon both to normal irrigated and water-stresse skip irrigation while irrigation water alone was sprayed in control plots. Both cotton genotypes responded variably to normal irrigated and skip conditions. Skipping irrigation for up to 21 days at flowering caused a significant decrease in leaf relative water content, SPAD values, net photosynthetic rate and seed cotton yield in both the genotypes. Seed cotton yield showed an overall decline of 24.7% in skip over Normal irrigated crop. The genotype NIAB - 878 produced maximum seed cotton yield of 3.304 Mg ha-1 in normal that dropped to 2.579 Mg ha-1 in skip, thus showing an average decline of 21.9 %. Similarly, SLH - 19 produced 2.537 Mg ha-1 seed cotton under normal that dropped to 1.822 Mg ha-1 in skip, showing an average decline of 28.2%. The Application of Kaolin and JA Jasmonic acid, either applied individually or in combination, improved vegetative and reproductive development of both cotton varieties in normal and skip regimes. However, combined kaolin and Jasmonic Acid application proved to be more beneficial in terms of seed cotton production and other parameters studied.
Collapse
Affiliation(s)
- Muhammad Nazim
- Department of Agronomy, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Muqarrab Ali
- Department of Agronomy, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Khurram Shahzad
- Department of Soil Science, Faculty of Agriculture, Lasbella University of Agriculture, Water and Marine Sciences, Uthal, Balochistan 90150, Pakistan
| | - Fiaz Ahmad
- Plant Physiology/ Chemistry Section, Central Cotton Research Institute, Multan 66000, Pakistan
| | - Fahim Nawaz
- Department of Agronomy, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Amin
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shazia Anjum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, P.O. Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| |
Collapse
|
10
|
Mwangangi IM, Büchi L, Haefele SM, Bastiaans L, Runo S, Rodenburg J. Combining host plant defence with targeted nutrition: key to durable control of hemiparasitic Striga in cereals in sub-Saharan Africa? THE NEW PHYTOLOGIST 2021; 230:2164-2178. [PMID: 33577098 DOI: 10.1111/nph.17271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Host plant defence mechanisms (resistance and tolerance) and plant nutrition are two of the most widely proposed components for the control of hemiparasitic weeds of the genus Striga in tropical cereal production systems. Neither of the two components alone is effective enough to prevent parasitism and concomitant crop losses. This review explores the potential of improved plant nutrition, being the chemical constituent of soil fertility, to fortify the expression of plant inherent resistance and tolerance against Striga. Beyond reviewing advances in parasitic plant research, we assess relevant insights from phytopathology and plant physiology in the broader sense to identify opportunities and knowledge gaps and to develop the way forward regarding research and development of combining genetics and plant nutrition for the durable control of Striga.
Collapse
Affiliation(s)
- Immaculate M Mwangangi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Lucie Büchi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Stephan M Haefele
- Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Lammert Bastiaans
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6700 AK, the Netherlands
| | - Steven Runo
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, 43844-0100, Kenya
| | - Jonne Rodenburg
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
11
|
Selenium Alleviates the Adverse Effect of Drought in Oilseed Crops Camelina ( Camelina sativa L.) and Canola ( Brassica napus L.). Molecules 2021; 26:molecules26061699. [PMID: 33803724 PMCID: PMC8003272 DOI: 10.3390/molecules26061699] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023] Open
Abstract
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.
Collapse
|
12
|
Majeed S, Nawaz F, Naeem M, Ashraf MY, Ejaz S, Ahmad KS, Tauseef S, Farid G, Khalid I, Mehmood K. Nitric oxide regulates water status and associated enzymatic pathways to inhibit nutrients imbalance in maize (Zea mays L.) under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:147-160. [PMID: 32758996 DOI: 10.1016/j.plaphy.2020.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/07/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule that instigates significant changes in plant metabolic processes and promotes tolerance against various environmental stresses including drought. In this study, we focused on NO-mediated physiological mechanisms and enzymatic activities that influence the nutrient concentrations and yield in maize under drought stress. The drought-tolerant (NK-8711) and sensitive (P-1574) maize hybrids were sown in lysimeter tanks and two levels of water stress (well-watered at100% field capacity and drought stress at 60% field capacity) were applied at three-leaves stage of maize. Foliar treatment of sodium nitroprusside (SNP), the donor of NO was applied at the cob development stage. The results showed that the foliar spray of NO regulated water relations by increasing proline content and improved drought tolerance in water stressed maize plants. In addition, it stimulated the activity of antioxidative enzymes which reduced the production of free radicals and lipid peroxidation. The activities of nitrate assimilation enzymes were considerably increased by NO spray which, in turn, increased nutrient accumulation and yield in maize under water deficit conditions. These results acknowledge the importance of NO as a stress-signaling molecule that positively regulates defense mechanisms in maize to withstand water-limited conditions.
Collapse
Affiliation(s)
- Sadia Majeed
- Department of Agronomy, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Fahim Nawaz
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan; Institut für Kulturpflanzenwissenschaften (340 h), Universität Hohenheim, Stuttgart, Germany.
| | - Muhammad Naeem
- Department of Agronomy, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Yasin Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Samina Ejaz
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch, Rawalakot, 12350, Azad Jammu and Kashmir, Pakistan
| | - Saba Tauseef
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Pakistan
| | - Ghulam Farid
- Nuclear Institute for Agriculture and Biology, Jhang road, Faisalabad, Pakistan
| | - Iqra Khalid
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Pakistan
| | - Kinza Mehmood
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
13
|
Dimkpa CO, Andrews J, Sanabria J, Bindraban PS, Singh U, Elmer WH, Gardea-Torresdey JL, White JC. Interactive effects of drought, organic fertilizer, and zinc oxide nanoscale and bulk particles on wheat performance and grain nutrient accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137808. [PMID: 32199367 DOI: 10.1016/j.scitotenv.2020.137808] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 05/04/2023]
Abstract
Drought (40% field moisture capacity), organic fertilizer (O-F; 10%), and nano vs. bulk-ZnO particles (1.7 vs. 3.5 mg Zn/kg) were assessed in soil to determine their interactive effects on wheat performance and nutrient acquisition. Drought significantly reduced (6%) chlorophyll levels, whereas nano and bulk-ZnO alleviated some stress, thereby increasing (14-16%) chlorophyll levels, compared to the control. O-F increased (29%) chlorophyll levels and counteracted Zn's effect. Drought delayed (3-days) panicle emergence; O-F, nano and bulk-ZnO each accelerated (5-days) panicle emergence under drought, relative to the control and absence of O-F. Drought reduced (51%) grain yield, while O-F increased (130%) yield under drought. Grain yield was unaffected by Zn treatment under drought but increased (88%) under non-drought condition with bulk-ZnO, relative to the control. Drought lowered (43%) shoot Zn uptake. Compared to the control, nano and bulk-ZnO increased (39 and 23%, respectively) shoot Zn in the absence of O-F, whereas O-F amendment enhanced (94%) shoot Zn. Drought increased (48%) grain Zn concentration; nano and bulk-ZnO increased (29 and 18%, respectively) grain Zn, relative to the control, and O-F increased (85%) grain Zn. Zn recovery efficiency was in the order O-F > nano-ZnO > bulk-ZnO, regardless of the water status. Grain Fe concentration was unaffected by drought, under which O-F significantly reduced grain Fe, and nano-ZnO significantly reduced grain Fe, in the absence of O-F. Nano and bulk-ZnO also significantly reduced grain Fe, with O-F amendment under drought. Drought can have dire consequences for food and nutrition security, with implications for human health. This study demonstrated that drought-induced effects in food crops can be partially or wholly alleviated by ZnO particles and Zn-rich O-F. Understanding the interactions of drought and potential mitigation strategies such as fertilization with Zn-rich organic manure and ZnO can increase options for sustaining food production and quality under adverse conditions.
Collapse
Affiliation(s)
- Christian O Dimkpa
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States.
| | - Joshua Andrews
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Joaquin Sanabria
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Prem S Bindraban
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Upendra Singh
- International Fertilizer Development Center (IFDC), Muscle Shoals, AL 35662, United States
| | - Wade H Elmer
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, United States
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas, El Paso, TX 79968, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, United States
| |
Collapse
|
14
|
Ren H, Qin X, Huang B, Fernández-García V, Lv C. Responses of soil enzyme activities and plant growth in a eucalyptus seedling plantation amended with bacterial fertilizers. Arch Microbiol 2020; 202:1381-1396. [PMID: 32179939 DOI: 10.1007/s00203-020-01849-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are widely used to improve plant nutrient uptake and assimilation and soil physicochemical properties. We investigated the effects of bacterial (Bacillus megaterium strain DU07) fertilizer applications in a eucalyptus (clone DH32-29) plantation in Guangxi, China in February 2011. We used two types of organic matter, i.e., fermented tapioca residue ("FTR") and filtered sludge from a sugar factory ("FS"). The following treatments were evaluated: (1) no PGPR and no organic matter applied (control), (2) 3 × 109 CFU/g (colony forming unit per gram) PGPR plus FS (bacterial fertilizer 1, hereafter referred to as BF1), (3) 4 × 109 CFU/g plus FS (BF2), (4) 9 × 109 CFU/g plus FS (BF3), (5) 9 × 109 CFU/g broth plus FTR (BF4). Soil and plant samples were collected 3 months (M3) and 6 months (M6) after the seedlings were planted. In general, bacterial fertilizer amendments significantly increased plant foliar total nitrogen (TN) and soil catalase activity in the short term (month 3, M3); whereas, it significantly increased foliar TN, chlorophyll concentration (Chl-ab), proline; plant height, diameter, and volume of timber; and soil urease activity, STN, and available N (Avail N) concentrations in the long term (month 6, M6). Redundancy analysis showed that soil available phosphorus was significantly positively correlated with plant growth in M3, and soil Avail N was negatively correlated with plant growth in M6. In M3, soil catalase was more closely correlated with plant parameters than other enzyme activities and soil nutrients, and in M6, soil urease, polyphenol oxidase, and peroxidase were more closely correlated with plant parameters than other environmental factors and soil enzyme activities. PCA results showed that soil enzyme activities were significantly improved under all treatments relative to the control. Hence, photosynthesis, plant growth, and soil N retention were positively affected by bacterial fertilizer in M6, and bacterial fertilizer applications had positive and significant influence on soil enzyme activities during the trial period. Thus, bacterial fertilizer is attractive for use as an environmentally friendly fertilizer in Eucalyptus plantations following proper field evaluation.
Collapse
Affiliation(s)
- Han Ren
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, 530004, China
| | - Xiaohong Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, 530004, China
| | - Baoling Huang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, 530004, China
| | - Víctor Fernández-García
- Area of Ecology, Faculty of Biological and Environmental Sciences, University of Leon, 24071, León, Spain
| | - Chengqun Lv
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
15
|
Usmani MM, Nawaz F, Majeed S, Shehzad MA, Ahmad KS, Akhtar G, Aqib M, Shabbir RN. Sulfate-mediated Drought Tolerance in Maize Involves Regulation at Physiological and Biochemical Levels. Sci Rep 2020; 10:1147. [PMID: 31980688 PMCID: PMC6981264 DOI: 10.1038/s41598-020-58169-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/13/2020] [Indexed: 11/29/2022] Open
Abstract
Restriction in nutrient acquisition is one of the primary causes for reduced growth and yield in water deficient soils. Sulfur (S) is an important secondary macronutrient that interacts with several stress metabolites to improve performance of food crops under various environmental stresses including drought. Increased S supply influences uptake and distribution of essential nutrients to confer nutritional homeostasis in plants exposed to limited water conditions. The regulation of S metabolism in plants, resulting in synthesis of numerous S-containing compounds, is crucial to the acclimation response to drought stress. Two different experiments were laid out in semi-controlled conditions to investigate the effects of different S sources on physiological and biochemical mechanisms of maize (Zea mays L. cv. P1574). Initially, the rate of S application in maize was optimized in terms of improved biomass and nutrient uptake. The maize seedlings were grown in sandy loam soil fertigated with various doses (0, 15, 30 and 45 kg ha-1) of different S fertilizers viz. K2SO4, FeSO4, CuSO4 and Na2SO4. The optimized S dose of each fertilizer was later tested in second experiment to determine its role in improving drought tolerance of maize plants. A marked effect of S fertilization was observed on biomass accumulation and nutrients uptake in maize. In addition, the optimized doses significantly increased the gas exchange characteristics and activity of antioxidant enzymes to improve yield of maize. Among various S sources, application of K2SO4 resulted in maximum photosynthetic rate (43%), stomatal conductance (98%), transpiration rate (61%) and sub-stomatal conductance (127%) compared to no S supply. Moreover, it also increased catalase, guaiacol peroxidase and superoxide dismutase activities by 55, 87 and 65%, respectively that ultimately improved maize yield by 33% with respect to control under water deficit conditions. These results highlight the importance of S fertilizers that would likely be helpful for farmers to get better yield in water deficient soils.
Collapse
Affiliation(s)
| | - Fahim Nawaz
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan.
| | - Sadia Majeed
- Department of Agronomy, University College of Agriculture and Environmental Sciences, Bahawalpur, Pakistan
| | | | | | - Gulzar Akhtar
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Aqib
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan
| | - Rana Nauman Shabbir
- Department of Agronomy, Faculty of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
16
|
Shehzad MA, Nawaz F, Ahmad F, Ahmad N, Masood S. Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109841. [PMID: 31677566 DOI: 10.1016/j.ecoenv.2019.109841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 05/25/2023]
Abstract
Drought stress is one of the extreme effects of climate change causing large losses in production of crop plants. The risk of recurrent droughts has increased in next decades hence, the development of shot-gun, inexpensive and effective approaches is essential to ensure high yield of crops in drought-prone areas of the world. Exogenous application of nutrients such as potassium (K) has been reported to increase abiotic resistance and improve yield in crops however, knowledge regarding interaction of K with osmoprotectants like chitosan (Ct) still remains elusive. Here, we report the effects of individual or combined K (using K2SO4 as a source) or Ct application on growth, physiological processes and antioxidative defense system of sunflower under drought stress. At first, various doses of K (0, 5, 10, 15, 20, 25 g/l) and Ct (0, 0.1, 0.2, 0.3, 0.4, 0.5 g/l) were foliar applied to evaluate their role in improving plant biomass, water status and total chlorophyll in drought-induced seedlings of sunflower. The optimized K (11.48 g/l) and Ct (0.28 g/l) doses were further tested in second experiment to understand the underlying mechanisms of drought tolerance. Foliar K + Ct spray markedly enhanced the leaf gas exchange characteristics, increased proline, soluble proteins, and free amino acids, upregulated antioxidant defense system and helped to maintain plant water status in sunflower exposed to drought stress. The impact of drought stress was more pronounced at vegetative than reproductive stage and positive effects of combined K and Ct application were related to improved physiological and metabolic processes to improve yield and quality of sunflower under drought stress.
Collapse
Affiliation(s)
| | - Fahim Nawaz
- Department of Agronomy, MNS-University of Agriculture, Multan, 66000, Pakistan
| | - Fiaz Ahmad
- Central Cotton Research Institute, Multan, 66000, Pakistan
| | - Naveed Ahmad
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38040, Pakistan
| | | |
Collapse
|
17
|
Calcium Application Enhances Drought Stress Tolerance in Sugar Beet and Promotes Plant Biomass and Beetroot Sucrose Concentration. Int J Mol Sci 2019; 20:ijms20153777. [PMID: 31382384 PMCID: PMC6696248 DOI: 10.3390/ijms20153777] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have demonstrated the potential of sugar beet to lose the final sugar yield under water limiting regime. Ample evidences have revealed the important role of mineral nutrition in increasing plant tolerance to abiotic stresses. Despite the vital role of calcium (Ca2+) in plant growth and development, as well as in stress responses as an intracellular messenger, its role in alleviating drought stress in sugar beet has been rarely addressed. Here, an attempt was undertaken to investigate whether, and to what extent, foliar application of Ca2+ confers drought stress tolerance in sugar beet plants exposed to drought stress. To achieve this goal, sugar beet plants, which were grown in a high throughput phenotyping platform, were sprayed with Ca2+ and submitted to drought stress. The results showed that foliar application of Ca2+ increased the level of magnesium and silicon in the leaves, promoted plant growth, height, and leaf coverage area as well as chlorophyll level. Ca2+, in turn, increased the carbohydrate levels in leaves under drought condition and regulated transcriptionally the genes involved in sucrose transport (BvSUC3 and BvTST3). Subsequently, Ca2+ enhanced the root biomass and simultaneously led to induction of root (BvSUC3 and BvTST1) sucrose transporters which eventually supported the loading of more sucrose into beetroot under drought stress. Metabolite analysis revealed that the beneficial effect of Ca2+ in tolerance to drought induced-oxidative stress is most likely mediated by higher glutathione pools, increased levels of free polyamine putrescine (Put), and lower levels of amino acid gamma-aminobutyric acid (GABA). Taken together, this work demonstrates that foliar application of Ca2+ is a promising fertilization strategy to improve mineral nutrition efficiency, sugar metabolism, redox state, and thus, drought stress tolerance.
Collapse
|
18
|
Hussain A, Ali S, Rizwan M, Rehman MZU, Qayyum MF, Wang H, Rinklebe J. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:156-164. [PMID: 30771659 DOI: 10.1016/j.ecoenv.2019.01.118] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 05/12/2023]
Abstract
The present study demonstrated the possible impacts of iron oxide nanoparticles (Fe NPs) on the alleviation of toxic effects of cadmium (Cd) in wheat and enhance its growth, yield, and Fe biofortification. A pot experiment was conducted in historically Cd-contaminated soil using five levels of Fe NPs (0, 5, 10, 15, and 20 ppm) by soil and foliar application methods. The plants were harvested after 125 days of growth while vegetative parameters, antioxidant capacity, electrolyte leakage (EL) in leaves as well as Cd, and Fe concentrations in wheat grains, roots, and shoots were measured. The results showed that the application of Fe NPs mitigated the Cd toxicity on wheat growth and yield parameters. The exogenous application of Fe NPs enhanced the wheat morphological parameters, photosynthetic pigments, and dry biomass of shoots, roots, spike husks and grains. The activities of super oxide dismutase and peroxidase increased, whereas EL reduced from wheat leaves over control. The Cd concentrations were reduced in wheat tissues and grains whereas Fe concentrations increased with Fe NPs application in a dose-additive manner. The current work suggested that the application of Fe NPs on wheat in Cd-contaminated soils could be employed to improve growth, yield and Fe biofortification as well as reduction in Cd concentrations in plants.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan.
| | - Muhammad Zia Ur Rehman
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jörg Rinklebe
- Soil, and Groundwater-Management, Institute for Soil Engineering, Water and Wastewater Management, University of Wuppertal, Pauluskirchstraße 7, Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
19
|
Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H. GmWRKY16 Enhances Drought and Salt Tolerance Through an ABA-Mediated Pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 9:1979. [PMID: 30740122 PMCID: PMC6357947 DOI: 10.3389/fpls.2018.01979] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/20/2018] [Indexed: 05/19/2023]
Abstract
The WRKY transcription factors (TFs) are one of the largest families of TFs in plants and play multiple roles in plant development and stress response. In the present study, GmWRKY16 encoding a WRKY transcription factor in soybean was functionally characterized in Arabidopsis. GmWRKY16 is a nuclear protein that contains a highly conserved WRKY domain and a C2H2 zinc-finger structure, and has the characteristics of transcriptional activation ability, presenting a constitutive expression pattern with relative expression levels of over fourfold in the old leaves, flowers, seeds and roots of soybean. The results of quantitative real time polymerase chain reaction (qRT-PCR) showed that GmWRKY16 could be induced by salt, alkali, ABA, drought and PEG-6000. As compared with the control, overexpression of GmWRKY16 in Arabidopsis increased the seed germination rate and root growth of seedlings in transgenic lines under higher concentrations of mannitol, NaCl and ABA. In the meantime, GmWRKY16 transgenic lines showed over 75% survival rate after rehydration and enhanced Arabidopsis tolerance to salt and drought with higher proline and lower MDA accumulation, less water loss of the detached leaves, and accumulated more endogenous ABA than the control under stress conditions. Further studies showed that AtWRKY8, KIN1, and RD29A were induced in GmWRKY16 transgenic plants under NaCl treatment. The expressions of the ABA biosynthesis gene (NCED3), signaling genes (ABI1, ABI2, ABI4, and ABI5), responsive genes (RD29A, COR15A, COR15B, and RD22) and stress-related marker genes (KIN1, LEA14, LEA76, and CER3) were regulated in transgenic lines under drought stress. In summary, these results suggest that GmWRKY16 as a WRKY TF may promote tolerance to drought and salt stresses through an ABA-mediated pathway.
Collapse
Affiliation(s)
- Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhenglin Xia
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jia Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Alleviation of Drought Stress by Nitrogen Application in Brassica campestris ssp. Chinensis L. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8050066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Nawaz F, Naeem M, Akram A, Ashraf MY, Ahmad KS, Zulfiqar B, Sardar H, Shabbir RN, Majeed S, Shehzad MA, Anwar I. Seed priming with KNO 3 mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4780-4789. [PMID: 28369913 DOI: 10.1002/jsfa.8347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Accumulation of lead (Pb) in agricultural soils has become a major factor for reduced crop yields and poses serious threats to humans consuming agricultural products. The present study investigated the effects of KNO3 seed priming (0 and 0.5% KNO3 ) on growth of maize (Zea mays L.) seedlings exposed to Pb toxicity (0, 1300 and 2550 mg kg-1 Pb). RESULTS Pb exposure markedly reduced the growth of maize seedlings and resulted in higher Pb accumulation in roots than shoots. Pretreatment of seeds with KNO3 significantly improved the germination percentage and increased physiological indices. A stimulating effect of KNO3 seed priming was also observed on pigments (chlorophyll a, b, total chlorophyll and carotenoid contents) of Pb-stressed plants. Low translocation of Pb from roots to shoots caused an increased accumulation of total free amino acids and higher activities of catalase, peroxidase, superoxide dismutase and ascorbate peroxidase in roots as compared to shoot, which were further enhanced by exogenous KNO3 supply to prevent Pb toxicity. CONCLUSION Maize accumulates more Pb in roots than shoot at early growth stages. Priming of seeds with KNO3 prevents Pb toxicity, which may be exploited to improve seedling establishment in crop species grown under Pb contaminated soils. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fahim Nawaz
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Naeem
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | - Asim Akram
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | | | - Khawaja S Ahmad
- Department of Botany, University of Poonch, Rawalakot, Pakistan
| | - Bilal Zulfiqar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sardar
- Department of Horticulture, Agriculture College, Bahauddin Zakariya University, Multan, Pakistan
| | - Rana N Shabbir
- Department of Agronomy, Agriculture College, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Majeed
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | | | - Irfan Anwar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
22
|
Hosseini SA, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N. A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley. FRONTIERS IN PLANT SCIENCE 2016; 7:206. [PMID: 26955376 PMCID: PMC4768371 DOI: 10.3389/fpls.2016.00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/06/2016] [Indexed: 05/03/2023]
Abstract
Terminal drought stress decreases crop yields by inducing abscisic acid (ABA) and premature leaf senescence. As potassium (K) is known to interfere with ABA homeostasis we addressed the question whether there is genetic variability regarding the role of K nutrition in ABA homeostasis and drought tolerance. To compare their response to drought stress, two barley lines contrasting in drought-induced leaf senescence were grown in a pot experiment under high and low K supply for the analysis of flag leaves from the same developmental stage. Relative to the drought-sensitive line LPR, the line HPR retained more K in its flag leaves under low K supply and showed delayed flag leaf senescence under terminal drought stress. High K retention was further associated with a higher leaf water status, a higher concentration of starch and other primary carbon metabolites. With regard to ABA homeostasis, HPR accumulated less ABA but higher levels of the ABA degradation products phaseic acid (PA) and dehydro-PA. Under K deficiency this went along with higher transcript levels of ABA8'-HYDROXYLASE, encoding a key enzyme in ABA degradation. The present study provides evidence for a positive impact of the K nutritional status on ABA homeostasis and carbohydrate metabolism under drought stress. We conclude that genotypes with a high K nutritional status in the flag leaf show superior drought tolerance by promoting ABA degradation but attenuating starch degradation which delays flag leaf senescence. Flag leaf K levels may thus represent a useful trait for the selection of drought-tolerant barley cultivars.
Collapse
Affiliation(s)
- Seyed A. Hosseini
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Mohammad R. Hajirezaei
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Christiane Seiler
- Abiotic Stress Genomics Group, Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nese Sreenivasulu
- Abiotic Stress Genomics Group, Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| |
Collapse
|
23
|
Nawaz F, Naeem M, Ashraf MY, Tahir MN, Zulfiqar B, Salahuddin M, Shabbir RN, Aslam M. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize ( Zea mays L.) under Water Deficit Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:1438. [PMID: 27729917 PMCID: PMC5037271 DOI: 10.3389/fpls.2016.01438] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 05/07/2023]
Abstract
Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se foliar spray (40 mg L-1) is a handy, feasible and cost-effective approach to improve maize fodder yield and quality in arid and semi-arid regions of the world facing acute shortage of water.
Collapse
Affiliation(s)
- Fahim Nawaz
- Department of Agronomy, Muhammad Nawaz Sharif University of AgricultureMultan, Pakistan
- Department of Agronomy, UCA and ES, The Islamia University of BahawalpurBahawalpur, Pakistan
- *Correspondence: Fahim Nawaz, ;
| | - Muhammad Naeem
- Department of Agronomy, UCA and ES, The Islamia University of BahawalpurBahawalpur, Pakistan
| | | | - Muhammad N. Tahir
- University College of Veterinary and Animal Sciences, The Islamia University of BahawalpurBahawalpur, Pakistan
| | - Bilal Zulfiqar
- Department of Agronomy, UCA and ES, The Islamia University of BahawalpurBahawalpur, Pakistan
| | - Muhammad Salahuddin
- Department of Agronomy, UCA and ES, The Islamia University of BahawalpurBahawalpur, Pakistan
| | - Rana N. Shabbir
- Department of Agronomy, Agriculture College, Bahauddin Zakariya UniversityMultan, Pakistan
| | - Muhammad Aslam
- Department of Agronomy, UCA and ES, The Islamia University of BahawalpurBahawalpur, Pakistan
| |
Collapse
|