1
|
Imbrogno A, Schmidt M, Schulze A, Moreira MT, Schäfer AI. Ultrafiltration and composite microfiltration biocatalytic membrane activity and steroid hormone micropollutant degradation at environmentally relevant concentrations. WATER RESEARCH 2025; 272:122902. [PMID: 39667174 DOI: 10.1016/j.watres.2024.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Biocatalytic degradation of micropollutants has been extensively explored in both batch and membrane reactors in µg/L to mg/L concentrations and variable water compositions. The degradation of micropollutants by biocatalytic membranes at environmentally relevant concentrations of ng/L range found in natural surface water matrices has not yet been investigated, presumably because of the challenging concentration analysis. This study investigated the limitations of biocatalytic degradation of estradiol (E2) micropollutant at environmentally relevant concentrations by a biocatalytic membrane. The contributions of solute flux, hydraulic residence time (HRT) and water matrix composition on reaction kinetics, the apparent rate of disappearance (or reaction rate) and enzyme activity were examined. Two biocatalytic membranes were used: i) laccase entrapped in an ultrafiltration (UF) membrane support (namely UF-SNPs) and, ii) laccase covalently bound to the nanofiber matrix of a composite microfiltration (MF) membrane. The three main findings are reported. Firstly, the apparent rate of E2 disappearance decreases significantly by four orders of magnitude at a low micropollutant concentration of 0.1 µg/L, resulting in undetectable degradation during filtration, irrespective of the biocatalytic membrane. Secondly, the solute mass transfer and HRT control the biocatalytic degradation through the membranes resulting in different E2 removal. For the UF-SNPs membrane, a removal of 31 % is achieved only by increasing the concentration to 3000 µg/L and at a flux of 60 L/m².h (HRT of 4.5 s) due to an increase in solute flux by an order of magnitude similar to the apparent rate of disappearance. In contrast, the nano-MF membrane is ineffective in achieving biocatalytic degradation regardless of E2 concentration, as the HRT is approximately seven times lower (0.6 s) than that of the UF-SNPs, and thus insufficient for E2 to reach the catalytic site. Thirdly, the composition of the aqueous matrix plays a crucial role in the control of laccase activity irrespective of the membrane. Indeed, laccase is inactivated predominantly by chloride ions in synthetic carbonate buffer, since the typical NaCl concentration is about two orders of magnitude higher than E2 concentration. This study highlights that the slower kinetics achieved in the biocatalytic UF-SNPs and MF membranes are ineffective in removing steroid hormone micropollutants at realistic concentrations in surface water matrices. Further research is suggested to accelerate the reaction kinetics at such low concentrations and prolong the residence time within the membrane.
Collapse
Affiliation(s)
- Alessandra Imbrogno
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Schmidt
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - María Teresa Moreira
- CRETUS, Department of Chemical Engineering, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
2
|
Xu J, Zhang Y, Zhu X, Shen C, Liu S, Xiao Y, Fang Z. Direct evolution of an alkaline fungal laccase to degrade tetracyclines. Int J Biol Macromol 2024; 277:134534. [PMID: 39111464 DOI: 10.1016/j.ijbiomac.2024.134534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/06/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
A fungal laccase-mediator system capable of high effectively oxidizing tetracyclines under a wide pH range will benefit environmental protection. This study reported a directed evolution of a laccase PIE5 to improve its performance on tetracyclines oxidization at alkaline conditions. Two mutants, namely MutA (D229N/A244V) and MutB (N123A/D229N/A244V) were obtained. Although they shared a similar optimum pH and temperature as PIE5, the two mutants displayed approximately 2- and 5-fold higher specific activity toward the mediators ABTS and guaiacol at pHs 4.0 to 6.5, respectively. Simultaneously, their catalytic efficiency increased by 8.0- and 6.4-fold compared to PIE5. At a pH range of 5-8 and 28 °C, MutA or MutB at a final concentration of 2.5 U·mL-1 degraded 77 % and 81 % of 100 mg·L-1 tetracycline within 10 min, higher than PIE5 (45 %). Furthermore, 0.1 U·mL-1 MutA or MutB completely degraded 100 mg·L-1 chlortetracycline within 6 min in the presence of 0.1 mM ABTS. At pH 8.0, MutA degraded tetracycline and chlortetracycline following the routine pathways were reported previously based on LC-MS analysis.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China
| | - Yinliang Zhang
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China
| | - Xuelin Zhu
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China
| | - Chen Shen
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China
| | - Shenglong Liu
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China.
| | - Zemin Fang
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China.
| |
Collapse
|
3
|
Girón‐Guzmán I, Sánchez G, Pérez‐Cataluña A. Tracking epidemic viruses in wastewaters. Microb Biotechnol 2024; 17:e70020. [PMID: 39382399 PMCID: PMC11462645 DOI: 10.1111/1751-7915.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Classical epidemiology relies on incidence, mortality rates, and clinical data from individual testing, which can be challenging for many countries. Therefore, innovative, flexible, cost-effective, and scalable surveillance techniques are needed. Wastewater-based epidemiology (WBE) has emerged as a highly powerful tool in this regard. WBE analyses substances excreted in human fluids and faeces that enter the sewer system. This approach provides insights into community health status and lifestyle habits. WBE serves as an early warning system for viral surveillance, detecting the emergence of new pathogens, changes in incidence rates, identifying future trends, studying outbreaks, and informing the performance of action plans. While WBE has long been used to study different viruses such as poliovirus and norovirus, its implementation has surged due to the pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2. This has led to the establishment of wastewater surveillance programmes at international, national, and community levels, many of which remain operational. Furthermore, WBE is increasingly applied to study other pathogens, including antibiotic resistance bacteria, parasites, fungi, and emerging viruses, with new methodologies being developed. Consequently, the primary focus now is on creating international frameworks to enhance states' preparedness against future health risks. However, there remains considerable work to be done, particularly in integrating the principles of One Health into epidemiological surveillance to acknowledge the interconnectedness of humans, animals, and the environment in pathogen transmission. Thus, a broader approach to analysing the three pillars of One Health must be developed, transitioning from WBE to wastewater and environmental surveillance, and establishing this approach as a routine practice in public health.
Collapse
Affiliation(s)
- Inés Girón‐Guzmán
- Environmental Virology and Food Sefety Lab (VISAFELab), Institute of Agrochemistry and Food Technology, IATA‐CSICPaternaValenciaSpain
| | - Gloria Sánchez
- Environmental Virology and Food Sefety Lab (VISAFELab), Institute of Agrochemistry and Food Technology, IATA‐CSICPaternaValenciaSpain
| | - Alba Pérez‐Cataluña
- Environmental Virology and Food Sefety Lab (VISAFELab), Institute of Agrochemistry and Food Technology, IATA‐CSICPaternaValenciaSpain
| |
Collapse
|
4
|
Liao Z, Jian Y, Lu J, Liu Y, Li Q, Deng X, Xu Y, Wang Q, Yang Y, Luo Z. Distribution, migration patterns, and food chain human health risks of endocrine-disrupting chemicals in water, sediments, and fish in the Xiangjiang River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172484. [PMID: 38631636 DOI: 10.1016/j.scitotenv.2024.172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) in freshwater systems has garnered increasing attention. A comprehensive analysis of the migration patterns, bioaccumulation, and consumer health risk of EDCs along the Xiangjiang River due to fish consumption from the river ecosystem was provided. Twenty natural and synthetic target EDCs were detected and analyzed from the water, sediments, and fish samples collected along the Xiangjiang River. There were significant correlations between the EDC concentrations in fish and the sediments. This revealed that EDCs in sediments play a dominant role in the uptake of EDCs by fish. The bioaccumulation factor and biota-sediment accumulation factor were calculated, with the highest values observed for nonylphenol. Pearson's correlation analysis showed that bisphenol A is the most reliable biological indicator of EDC contamination in fish. Furthermore, based on the threshold of toxicological concerns and the health risk with dietary intake, crucian carp and catfish from the Xiangjiang River pose a certain risk for children and pregnant women compared to grass carp. The Monte Carlo simulation results indicated a certain risk of cumulative ∑EDC exposure for local residents due to fish consumption.
Collapse
Affiliation(s)
- Ze Liao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yu Jian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Lu
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Changsha 410004, PR China
| | - Yilin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Qinyao Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Xunzhi Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yin Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Qiuping Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Zhoufei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
5
|
Mikušová P, Toušová Z, Sehnal L, Kuta J, Grabicová K, Fedorova G, Marek M, Grabic R, Hilscherová K. Identification of new endocrine disruptive transthyretin ligands in polluted waters using pull-down assay coupled to non-target mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134240. [PMID: 38678700 DOI: 10.1016/j.jhazmat.2024.134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Surface and treated wastewater are contaminated with highly complex mixtures of micropollutants, which may cause numerous adverse effects, often mediated by endocrine disruption. However, there is limited knowledge regarding some important modes of action, such as interference with thyroid hormone (TH) regulation, and the compounds driving these effects. This study describes an effective approach for the identification of compounds with the potential to bind to transthyretin (TTR; protein distributing TH to target tissues), based on their specific separation in a pull-down assay followed by non-target analysis (NTA). The method was optimized with known TTR ligands and applied to complex water samples. The specific separation of TTR ligands provided a substantial reduction of chromatographic features from the original samples. The applied NTA workflow resulted in the identification of 34 structures. Twelve compounds with available standards were quantified in the original extracts and their TH-displacement potency was confirmed. Eleven compounds were discovered as TTR binders for the first time and linear alkylbenzene sulfonates (LAS) were highlighted as contaminants of concern. Pull-down assay combined with NTA proved to be a well-functioning approach for the identification of unknown bioactive compounds in complex mixtures with great application potential across various biological targets and environmental compartments.
Collapse
Affiliation(s)
- P Mikušová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Z Toušová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - L Sehnal
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - J Kuta
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - K Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - G Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - M Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno 601 77, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 601 77, Czech Republic
| | - R Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - K Hilscherová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
6
|
Grzegorzek M, Wartalska K, Kowalik R. Occurrence and sources of hormones in water resources-environmental and health impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37907-37922. [PMID: 38772997 PMCID: PMC11189324 DOI: 10.1007/s11356-024-33713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Within recent years, hormones have become emergent contaminants in the water environment. They easily accumulate in living organisms which in effect leads to numerous health problems (endocrine-disrupting mechanism is one of the most known toxic effects). Microbial resistance to antibiotics also became one of the emergent issues related to hormone presence. It was shown that the most common in the environment occur estrogens (E1, E2, E3, and EE2). It has been proven that large amounts of hormones are released from aquaculture as well as from wastewater treatment plants (due to the relatively low separation efficiency of conventional wastewater treatment processes). Within the article's scope, the literature review was performed. The analysis was regarding the characterization of the hormone substances present in the environment, their influence on living organisms and the environment, as well as its potential sources classification.
Collapse
Affiliation(s)
- Martyna Grzegorzek
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Stanisława Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Katarzyna Wartalska
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Stanisława Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Robert Kowalik
- Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314, Kielce, Poland
| |
Collapse
|
7
|
Georgin J, Franco DSP, Manzar MS, Meili L, El Messaoudi N. A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24679-24712. [PMID: 38488920 DOI: 10.1007/s11356-024-32876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Even at low concentrations, steroid hormones pose a significant threat to ecosystem health and are classified as micropollutants. Among these, 17β-estradiol (molecular formula: C18H24O2; pKa = 10.46; Log Kow = 4.01; solubility in water = 3.90 mg L-1 at 27 °C; molecular weight: 272.4 g mol-1) is extensively studied as an endocrine disruptor due to its release through natural pathways and widespread use in conventional medicine. 17β-estradiol (E2) is emitted by various sources, such as animal and human excretions, hospital and veterinary clinic effluents, and treatment plants. In aquatic biota, it can cause issues ranging from the feminization of males to inhibiting plant growth. This review aims to identify technologies for remediating E2 in water, revealing that materials like graphene oxides, nanocomposites, and carbonaceous materials are commonly used for adsorption. The pH of the medium, especially in acidic to neutral conditions, affects efficiency, and ambient temperature (298 K) supports the process. The Langmuir and Freundlich models aptly describe isothermal studies, with interactions being of a low-energy, physical nature. Adsorption faces limitations when other ions coexist in the solution. Hybrid treatments exhibit high removal efficiency. To mitigate global E2 pollution, establishing national and international standards with detailed guidelines for advanced treatment systems is crucial. Despite significant advancements in optimizing technologies by the scientific community, there remains a considerable gap in their societal application, primarily due to economic and sustainable factors. Therefore, further studies are necessary, including conducting batch experiments with these adsorbents for large-scale treatment along with economic analyses of the production process.
Collapse
Affiliation(s)
- Jordana Georgin
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, 31451, Dammam, Saudi Arabia
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas Campus A. C. Simões, Av. Lourival Melo Mota, Tabuleiro Dos Martins, Maceió, AL, 57072-970, Brazil
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr, University, 80000, Agadir, Morocco.
| |
Collapse
|
8
|
Frimodig J, Autio A, Lahtinen E, Haukka M. Recovery of 17β-Estradiol Using 3D Printed Polyamide-12 Scavengers. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1122-1129. [PMID: 37886421 PMCID: PMC10599425 DOI: 10.1089/3dp.2021.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Over the past decades, endocrine-disrupting compounds have been under active studies due to their potential environmental impact and increased usage. The actual hormones, especially estrogens, have shown to be one of the major contributors to hormonal waste in wastewater. Wastewater treatment facilities have variable capabilities to handle hormonal compounds and, therefore, different quantities of harmful compounds may end up in the environment. We introduce a simple technique to remove estrogens, such as 17β-estradiol (E2) from wastewater by using 3D printed polyamide-12 (PA12) filters. A selective laser sintering 3D printing was used to manufacture porous PA12 filters with accessible functional groups. Adsorption and desorption properties were studied using gas chromatography with flame ionization detector. The results showed that near quantitative removal of E2 was achieved. The 3D printed filters could also be regenerated and reused without losing their efficiency. During regeneration, E2 could be extracted from the filter without destroying the compound. This opens up possibilities to use the hormone scavenger filters also as concentration tools enabling accurate analyses of sources with trace concentrations of E2.
Collapse
Affiliation(s)
- Janne Frimodig
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Aino Autio
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Elmeri Lahtinen
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
9
|
van Gijn K, van Dam MRHP, de Wilt HA, de Wilde V, Rijnaarts HHM, Langenhoff AAM. Removal of micropollutants and ecotoxicity during combined biological activated carbon and ozone (BO 3) treatment. WATER RESEARCH 2023; 242:120179. [PMID: 37302178 DOI: 10.1016/j.watres.2023.120179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Ozonation is a viable option to improve the removal of micropollutants (MPs) in wastewater treatment plants (WWTPs). Nevertheless, the application of ozonation is hindered by its high energy requirements and by the uncertainties regarding the formation of toxic transformation products in the process. Energy requirements of ozonation can be reduced with a pre-ozone treatment, such as a biological activated carbon (BAC) filter, that removes part of the effluent organic matter before ozonation. This study investigated a combination of BAC filtration followed by ozonation (the BO3 process) to remove MPs at low ozone doses and low energy input, and focused on the formation of toxic organic and inorganic products during ozonation. Effluent from a WWTP was collected, spiked with MPs (approximately 1 µg/L) and treated with the BO3 process. Different flowrates (0.25-4 L/h) and specific ozone doses (0.2-0.6 g O3/g TOC) were tested and MPs, ecotoxicity and bromate were analyzed. For ecotoxicity assessment, three in vivo (daphnia, algae and bacteria) and six in vitro CALUX assays (Era, GR, PAH, P53, PR, andNrf2 CALUX) were used. Results show that the combination of BAC filtration and ozonation has higher MP removal and higher ecotoxicity removal than only BAC filtration and only ozonation. The in vivo assays show a low ecotoxicity in the initial WWTP effluent samples and no clear trend with increasing ozone doses, while most of the in vitro assays show a decrease in ecotoxicity with increasing ozone dose. This suggests that for the tested bioassays, feed water and ozone doses, the overall ecotoxicity of the formed transformation products during ozonation was lower than the overall ecotoxicity of the parent compounds. In the experiments with bromide spiking, relevant formation of bromate was observed above specific ozone doses of approximately 0.4 O3/g TOC and more bromate was formed for the samples with BAC pre-treatment. This indirectly indicates the effectivity of the pre-treatment in removing organic matter and making ozone more available to react with other compounds (such as MPs, but also bromide), but also underlines the importance of controlling the ozone dose to be below the threshold to avoid formation of bromate. It was concluded that treatment of the tested WWTP effluent in the BO3 process at a specific ozone dose of 0.2 g O3/g TOC, results in high MP removal at limited energy input while no increase in ecotoxicity, nor formation of bromate was observed under this condition. This indicates that the hybrid BO3 process can be implemented to remove MPs and improve the ecological quality of this WWTP effluent with a lower energy demand than conventional MP removal processes such as standalone ozonation.
Collapse
Affiliation(s)
- K van Gijn
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - M R H P van Dam
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - H A de Wilt
- Royal HaskoningDHV, 3800 BC Amersfoort, the Netherlands
| | - V de Wilde
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - H H M Rijnaarts
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - A A M Langenhoff
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
10
|
Wahab RA, Omar TFT, Nurulnadia MY, Rozulan NNA. Occurrence, distribution, and risk assessment of parabens in the surface water of Terengganu River, Malaysia. MARINE POLLUTION BULLETIN 2023; 192:115036. [PMID: 37207388 DOI: 10.1016/j.marpolbul.2023.115036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The concentration, distribution, and risk assessment of parabens were determined in the surface water of the Terengganu River, Malaysia. Target chemicals were extracted via solid-phase extraction, followed by high-performance liquid chromatography analysis. Method optimization produced a high percentage recovery for methylparaben (MeP, 84.69 %), ethylparaben (EtP, 76.60 %), and propylparaben (PrP, 76.33 %). Results showed that higher concentrations were observed for MeP (3.60 μg/L) as compared with EtP (1.21 μg/L) and PrP (1.00 μg/L). Parabens are ubiquitously present in all sampling stations, with >99 % of detection. Salinity and conductivity were the major factors influencing the level of parabens in the surface water. Overall, we found no potential risk of parabens in the Terengganu River ecosystem due to low calculated risk assessment values (risk quotient < 1). In conclusion, parabens are present in the river, but their levels are too low to pose risks to aquatic organisms.
Collapse
Affiliation(s)
- Rohaya Abd Wahab
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tuan Fauzan Tuan Omar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mohd Yusoff Nurulnadia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Najaa Nur Atiqah Rozulan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
11
|
Moghiseh Z, Xiao Y, Kalantar M, Barati B, Ghahrchi M. Role of bio-electrochemical technology for enzyme activity stimulation in high-consumption pharmaceuticals biodegradation. 3 Biotech 2023; 13:119. [PMID: 37025753 PMCID: PMC10070591 DOI: 10.1007/s13205-023-03539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Active pharmaceutical ingredients (APIs) and their intermediate residues have recently been considered a serious concern. Among technologies, bio-electrochemical technologies (BETs) have stimulated the production of bio-electrical energy. This review aims to examine the benefit and mechanism of BETs on the degradation of high-consumption pharmaceutical compounds, including antibiotic, anti-inflammatory, and analgesic drugs, and the stimulation of enzymes induced in a bioreactor. Moreover, intermediates and the proposed pathways of pharmaceutical compound biodegradation in BETs are to be explained in this review. According to studies performed exclusively, the benefit of BETs is using bio-electroactive microbes to mineralize recalcitrant pharmaceutical contaminants by promoting enzyme activity and energy. Since BETs use the electron transfer chain between bio-anode/-cathode and pharmaceuticals, the enzyme activity is essential in the oxidation and reduction of phenolic rings of drugs and the ineffective detoxification of effluent from the treatment plant. This study is suggested a vital and influential role of BETs in mineralizing and enzyme induction in bioreactors. Eventually, a content of future developments or outlooks of BETs are propounded to improve the pharmaceutical industries' wastewater problems.
Collapse
Affiliation(s)
- Zohreh Moghiseh
- Department of Environmental Health Engineering, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 People’s Republic of China
| | - Mojtaba Kalantar
- Department of Occupational Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Barat Barati
- Department of Radiologic Technology, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mina Ghahrchi
- Department of Environmental Health Engineering, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| |
Collapse
|
12
|
Cooper RJ, Hiscock KM. Two decades of the EU Water Framework Directive: Evidence of success and failure from a lowland arable catchment (River Wensum, UK). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161837. [PMID: 36709887 DOI: 10.1016/j.scitotenv.2023.161837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The EU Water Framework Directive (WFD) is widely regarded as a seminal piece of environmental legislation. However, two decades since its inception, many European waterbodies are failing to meet its ambitious goal to ensure 'good' quantitative and qualitative status. Here, we investigate the impact of the WFD upon the environmentally sensitive yet heavily impacted River Wensum, a lowland arable catchment in eastern England. Compiling a dataset of 10,950 water quality samples collected from 57 sites across the catchment at approximately monthly intervals during 2000-2022, we assess the spatio-temporal dynamics of 12 priority pollutants, identify the major drivers of water quality change, and evaluate current and future compliance with WFD goals. Our analysis reveals improvements in wastewater treatment initiated significant declines (11-50 %) in the concentration of key sewage pollution indicators (phosphorus, ammonium, biological oxygen demand (BOD)) during the early 2000s. Conversely, agricultural pollution indicators (nitrogen, suspended solids, pesticides) displayed either limited change or a deterioration in water quality, with oxidised nitrogen concentrations in particular having increased 23 % during 2015-2022. Concentration spikes of organic chemical contaminants in recent years (propyzamide, tetrachloroethylene) raise concerns about increased riverine pollution from hazardous substances. Similarly, changes in winter (+13 %) and summer (-7 %) discharge over the past two decades have increased the risk of diffuse pollution mobilisation and reduced the dilution of point source pollutants, respectively. By 2022, 'good' or 'high' water quality status for organic matter pollution indicators (dissolved oxygen, BOD, ammonium) was achieved for >98 % of samples, however WFD compliance fell to just 46 % for phosphorus and 1.8 % for nitrogen. Projections to the end of the third River Basin Management Plan cycle (2027) reveal that whilst phosphorus compliance is likely to improve, nitrogen compliance failure will persist due to the existence of catchment legacy stores and climate change induced impacts on nitrogen mobilisation.
Collapse
Affiliation(s)
- Richard J Cooper
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Kevin M Hiscock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
13
|
Bellver-Domingo Á, Fuentes R, Hernández-Sancho F, Carmona E, Picó Y, Hernández-Chover V. MCDA-DEA approach to construct a composite indicator for effluents from WWTPs considering the influence of PPCPs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47234-47247. [PMID: 36735130 DOI: 10.1007/s11356-023-25500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Considering current water situation, reuse is an effective solution to meet water demand and reduce pressure on conventional water sources. However, pharmaceutical and personal care products (PPCPs) in effluents from wastewater treatment plants (WWTPs) decrease their quality and suitability. With the aim of identifying and monitoring both the influence of PPCPs and the suitability of effluents to be reused, this study proposes the development of a composite indicator (CI) related to PPCP presence in WWTPs, through the common weight multi-criteria decision analysis (MCDA)-data envelopment analysis (DEA) model. Obtaining a CI for PPCPs is a novel approach in the published literature, showing a new perspective in PPCP management and their influence in wastewater treatment. Furthermore, this study proposes an improvement on MCDA-DEA model which maintains the initial hierarchy obtained for the units analyzed. The development of CI is based on information about the technological, environmental, social, and biological issues of WWTPs. Results show that 4 of the 33 WWTPs analysed had the best CI values, meaning that their effluents have lower environmental impact. The development of a CI related to PPCPs in WWTPs suggests that further steps are needed to manage the WWTP effluents. Hence, the need to implement preventive measures in WWTPs has been shown, even though the removal of PPCPs is not yet part of European law. This work highlights the importance of considering PPCPs as priority pollutants in wastewater management and reuse frameworks, to guarantee low environmental impact and adapt wastewater reuse based on a circular economy approach. HIGHLIGHTS: Emerging contaminants (PPCPs) are used as effluent quality indicators. A composite indicator for PPCPs performance has been developed through MCDA-DEA model. Indicator obtained allow decision makers implementing concrete actions to assess effluent quality. Results show the improvement capacity of the effluents quality through PPCPs removing.
Collapse
Affiliation(s)
- Águeda Bellver-Domingo
- Institute of Local Development (ILD-WATER). Water Economics Group, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain.
| | - Ramón Fuentes
- Department of Applied Economic Analysis, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Francesc Hernández-Sancho
- Institute of Local Development (ILD-WATER). Water Economics Group, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain
| | - Eric Carmona
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre, CIDE-GV-UV), University of Valencia, Avda. Vicent Andrés, S/N, 46100, Burjassot, Valencia, Spain
- Department Effect-Directed Analysis, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr, 15 04318, Leipzig, Germany
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre, CIDE-GV-UV), University of Valencia, Avda. Vicent Andrés, S/N, 46100, Burjassot, Valencia, Spain
| | - Vicent Hernández-Chover
- Institute of Local Development (ILD-WATER). Water Economics Group, University of Valencia, Avda. Tarongers S/N, 46022, Valencia, Spain
| |
Collapse
|
14
|
Ciślak M, Kruszelnicka I, Zembrzuska J, Ginter-Kramarczyk D. Estrogen pollution of the European aquatic environment: A critical review. WATER RESEARCH 2023; 229:119413. [PMID: 36470046 DOI: 10.1016/j.watres.2022.119413] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Among the plethora of chemicals released into the environment, much attention is paid to endocrine disrupting compounds (EDCs). Natural estrogens, such as estrone (E1), 17β-estradiol (E2), estriol (E3) are excreted by humans as well as animals, and can enter the environment as a result of discharging domestic sewage and animal waste. These compounds can cause deleterious effects such as feminization, infertility and hermaphroditism in organisms that inhabit water bodies. This study provides an overview of the level of estrogen exposures in surface waters, groundwater and river sediments in European countries. The conducted review shows that estrogen concentrations were within the range of 0.1 ng L - 10 ng /L in the majority of the tested environmental samples. However, the authors of the study point out that there are still many unexplored areas and a limited amount of data that mainly concerns Eastern European countries. The study also analysed the factors that influence the increased emissions of estrogens to the environment, which may be helpful for identifying particularly polluted areas.
Collapse
Affiliation(s)
- Marianna Ciślak
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland.
| | - Izabela Kruszelnicka
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland
| | - Joanna Zembrzuska
- Poznan University of Technology, Faculty of Chemical Technology Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznan
| | - Dobrochna Ginter-Kramarczyk
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland
| |
Collapse
|
15
|
Mulay MR, Martsinovich N. Interaction of organic pollutants with TiO 2: a density functional theory study of carboxylic acids on the anatase (101) surface. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2165981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Manasi R. Mulay
- Department of Chemistry, University of Sheffield, Sheffield, UK
- Grantham Centre for Sustainable Futures, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
16
|
Studziński W, Przybyłek M, Gackowska A. Application of gas chromatographic data and 2D molecular descriptors for accurate global mobility potential prediction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120816. [PMID: 36473641 DOI: 10.1016/j.envpol.2022.120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Mobility is a key feature affecting the environmental fate, which is of particular importance in the case of persistent organic pollutants (POPs) and emerging pollutants (EPs). In this study, the global mobility classification artificial neural networks-based models employing GC retention times (RT) and 2D molecular descriptors were constructed and validated. The high usability of RT was confirmed based on the feature selection step performed using the multivariate adaptive regression splines (MARS) tool. Although RT was found to be the most important, according to Kruskal-Wallis ANOVA analysis, it is insufficient to build a robust model, which justifies the need to expand the input layer with 2D descriptors. Therefore the following molecular descriptors: MPC10, WTPT-2, AATS8s, minaaCH, GATS7c, RotBtFrac, ATSC7v and ATSC1p, which were characterized by a high predicting potential were used to improve the classification performance. As a result of machine learning procedure ten of the most accurate neural networks were selected. The external validation showed that the final models are characterized by a high general accuracy score (85.71-96.43%). The high predicting abilities were also confirmed by the micro-averaged Matthews correlation coefficient (MAMCC) (0.73-0.88). To evaluate the applicability of the models, new retention times of selected POPs and EPs including pesticides, polycyclic aromatic hydrocarbons, pharmaceuticals, fragrances and personal care products were measured and used for mobility prediction. Further, the classifiers were used for photodegradation and chlorination products of two popular sunscreen agents, 2-ethyl-hexyl-4-methoxycinnamate and 2-ethylhexyl 4-(dimethylamino)benzoate.
Collapse
Affiliation(s)
- Waldemar Studziński
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Maciej Przybyłek
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950, Bydgoszcz, Poland.
| | - Alicja Gackowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| |
Collapse
|
17
|
Rodrigues-Silva F, Masceno GP, Panicio PP, Imoski R, Prola LDT, Vidal CB, Xavier CR, Ramsdorf WA, Passig FH, Liz MVD. Removal of micropollutants by UASB reactor and post-treatment by Fenton and photo-Fenton: Matrix effect and toxicity responses. ENVIRONMENTAL RESEARCH 2022; 212:113396. [PMID: 35525292 DOI: 10.1016/j.envres.2022.113396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Literature is scarce on the performance of Fenton-based processes as post-treatment of municipal wastewater treated by upflow anaerobic sludge blanket (UASB) reactor. This study aims to perform Fenton and photo-Fenton from UASB influent and effluent matrices to remove micropollutants (MPs) models: atrazine (ATZ), rifampicin (RIF), and 17α-ethynylestradiol (EE2). A UASB reactor at bench-scale (14 L) was operated with these MPs, and the AOPs experiments at bench-scale were performed on a conventional photochemical reactor (1 L). A high-pressure vapor mercury lamp was used for photo-Fenton process (UVA-Vis) as a radiation source. Microcrustacean Daphnia magna (acute toxicity) and seeds of Lactuca sativa (phytotoxicity) were indicator organisms for toxicity monitoring. The UASB reactor showed stability removing 90% of the mean chemical oxygen demand, and removal efficiencies for ATZ, RIF, and EE2 were 16.5%, 45.9%, and 15.7%, respectively. A matrix effect was noted regarding the application of both Fenton and photo-Fenton in UASB influent and effluent to remove MPs and toxicity responses. The pesticide ATZ was the most recalcitrant compound, yet the processes carried out from UASB effluent achieved removal >99.99%. The post-treatment of the UASB reactor by photo-Fenton removed acute toxicity in D. magna for all treatment times. However, only the photo-Fenton conducted for 90 min did not result in a phytotoxic effect in L. sativa.
Collapse
Affiliation(s)
- Fernando Rodrigues-Silva
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Gabriella Paini Masceno
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Paloma Pucholobek Panicio
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Rafaela Imoski
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Liziê Daniela Tentler Prola
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Carla Bastos Vidal
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Claudia Regina Xavier
- Laboratory of Wastewater Treatment, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Wanessa Algarte Ramsdorf
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Fernando Hermes Passig
- Laboratory of Sanitation, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Marcus Vinicius de Liz
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
| |
Collapse
|
18
|
Sundararaman S, Aravind Kumar J, Deivasigamani P, Devarajan Y. Emerging pharma residue contaminants: Occurrence, monitoring, risk and fate assessment - A challenge to water resource management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153897. [PMID: 35182637 DOI: 10.1016/j.scitotenv.2022.153897] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Water is one of the important gifts to mankind. In recent days the accessibility of pharmaceuticals in the environment is progressively a worldwide concern. The significant wellspring of these contaminations in water assets is drugs for human use or veterinary medications. Intermediates, active metabolites and raw materials present in water from pharmaceutical industry waste because of incomplete sewage treatment systems. Various pharmaceutical components such as analgesic/antipyretics such as Ibuprofen (57.9-104 ng/L), Diclofenac (17-129 ng/L), antibiotics such as Sulfamethoxazole (28.7-124.5 ng/L), Sulfamethazine (29.2-83.9 ng/L), Azithromycin (10-68 ng/L), psychiatric drug such as Carbamazepine (9.3-92.4 ng/L), stimulants such as caffeine greater than 55 ng/L, antidepressants, antihypertensive, contraceptives etc., are present in water resources and have been detected in mg/L to μg/L range. The synergic effects and ecotoxicological hazard assessment must be developed. Studies demonstrate that these drugs might cause morphological, metabolic and sex alterations on sea-going species, and interruption of biodegradation activities. Hazard analysis and assessments are in progress. However, the conventional effluent treatment methods are not sufficient to remove API (active pharmaceutical ingredients) from this water effectively. There is necessitate for continuous monitoring of the pharmaceutical compounds in aquatic ecosystem to save the environment and living form of lives from health hazards. This work highlights the hazards, environmental assessment and the mitigation measures of pharmaceutical pollutants.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, India.
| | - J Aravind Kumar
- Department of Biomass and Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamilnadu, India
| | - Prabu Deivasigamani
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | - Yuvarajan Devarajan
- Department of Thermal Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamilnadu, 602105, India.
| |
Collapse
|
19
|
Bendová H, Kamenická B, Weidlich T, Beneš L, Vlček M, Lacina P, Švec P. Application of Raney Al-Ni Alloy for Simple Hydrodehalogenation of Diclofenac and Other Halogenated Biocidal Contaminants in Alkaline Aqueous Solution under Ambient Conditions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3939. [PMID: 35683235 PMCID: PMC9182476 DOI: 10.3390/ma15113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Raney Al-Ni contains 62% of Ni2Al3 and 38% NiAl3 crystalline phases. Its applicability has been studied within an effective hydrodehalogenation of hardly biodegradable anti-inflammatory drug diclofenac in model aqueous concentrates and, subsequently, even in real hospital wastewater with the aim of transforming them into easily biodegradable products. In model aqueous solution, complete hydrodechlorination of 2 mM aqueous diclofenac solution (0.59 g L-1) yielding the 2-anilinophenylacetate was achieved in less than 50 min at room temperature and ambient pressure using only 9.7 g L-1 of KOH and 1.65 g L-1 of Raney Al-Ni alloy. The dissolving of Al during the hydrodehalogenation process is accompanied by complete consumption of NiAl3 crystalline phase and partial depletion of Ni2Al3. A comparison of the hydrodehalogenation ability of a mixture of diclofenac and other widely used halogenated aromatic or heterocyclic biocides in model aqueous solution using Al-Ni was performed to verify the high hydrodehalogenation activity for each of the used halogenated contaminants. Remarkably, the robustness of Al-Ni-based hydrodehalogenation was demonstrated even for the removal of non-biodegradable diclofenac in real hospital wastewater with high chloride and nitrate content. After removal of the insoluble part of the Al-Ni for subsequent hydrometallurgical recycling, the low quantity of residual Ni was removed together with insoluble Al(OH)3 obtained after neutralization of aqueous filtrate by filtration.
Collapse
Affiliation(s)
- Helena Bendová
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Barbora Kamenická
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Tomáš Weidlich
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Ludvík Beneš
- Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (L.B.); (M.V.)
| | - Milan Vlček
- Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (L.B.); (M.V.)
| | - Petr Lacina
- GEOtest, a.s., Šmahova 1244/112, 627 00 Brno, Czech Republic;
| | - Petr Švec
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| |
Collapse
|
20
|
Bustos E, Sandoval-González A, Martínez-Sánchez C. Detection and Treatment of Persistent Pollutants in Water: General Review of Pharmaceutical Products. ChemElectroChem 2022. [DOI: 10.1002/celc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erika Bustos
- Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Centro de Investigación y Desarrollo Tecnológico en Electroq76703México 76703 Pedro Escobedo MEXICO
| | - Antonia Sandoval-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| | - Carolina Martínez-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| |
Collapse
|
21
|
|
22
|
Predicting the Solubility of Nonelectrolyte Solids Using a Combination of Molecular Simulation with the Solubility Parameter Method MOSCED: Application to the Wastewater Contaminants Monuron, Diuron, Atrazine and Atenolol. Processes (Basel) 2022. [DOI: 10.3390/pr10030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methods to predict the equilibrium solubility of nonelectrolyte solids are indispensable for early-stage process development, design, and feasibility studies. Conventional analytic methods typically require reference data to regress parameters, which may not be available or limited for novel systems. Molecular simulation is a promising alternative, but is computationally intensive. Here, we demonstrate the ability to use a small number of molecular simulation free energy calculations to generate reference data to regress model parameters for the analytical MOSCED (modified separation of cohesive energy density) model. The result is an efficient analytical method to predict the equilibrium solubility of nonelectrolyte solids. The method is demonstrated for the wastewater contaminants monuron, diuron, atrazine and atenolol. Predictions for monuron, diuron and atrazine are in reasonable agreement with MOSCED parameters regressed using experimental solubility data. Predictions for atenolol are inferior, suggesting a potential limitation in the adopted molecular models, or the solvents selected to generate the necessary reference data.
Collapse
|
23
|
Khalaf DM, Cruzeiro C, Schröder P. Removal of tramadol from water using Typha angustifolia and Hordeum vulgare as biological models: Possible interaction with other pollutants in short-term uptake experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151164. [PMID: 34695465 DOI: 10.1016/j.scitotenv.2021.151164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Tramadol (TRD) is widely detected in aquatic ecosystems as a result of massive abuse and insufficient removal from wastewater facilities. As a result, TRD can contaminate groundwater sources and/or agricultural soils. While TRD toxicity has been reported from aquatic biota, data about TRD detection in plants are scarce. Moreover, information regarding plant capability for TRD removal is lacking. To understand the fate of this opioid, we have investigated the uptake, translocation and removal capacity of TRD by plants, addressing short-term and long-term uptake. The uptake rates of TRD, in excised barley and cattail roots, were 5.18 and 5.79 μg g-1 root fresh weight day-1, respectively. However, TRD uptake was strongly inhibited after co-exposing these roots either with the drug venlafaxine (similar molecular structure as TRD) or with quinidine (an inhibitor of cellular organic cation transporters). When barley seedlings were exposed to TRD in a hydroponic experiment a removal efficiency up to 90% (within 15 days) was obtained, with bioconcentration and translocation factors close to 9 and 1, respectively. The combination of results from both plants and the inhibition observed after treatment with quinidine revealed that organic cation transporters may be involved in the uptake of TRD by plants.
Collapse
Affiliation(s)
- David Mamdouh Khalaf
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Botany and Microbiology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Catarina Cruzeiro
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
24
|
Chen Y, Xie H, Junaid M, Xu N, Zhu Y, Tao H, Wong M. Spatiotemporal distribution, source apportionment and risk assessment of typical hormones and phenolic endocrine disrupting chemicals in environmental and biological samples from the mariculture areas in the Pearl River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150752. [PMID: 34619214 DOI: 10.1016/j.scitotenv.2021.150752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The present work studied the levels, distribution, potential sources, ecological and human health risks of typical hormones and phenolic endocrine disrupting chemicals (EDCs) in the mariculture areas of the Pearl River Delta (PRD), China. The environmental levels of 11 hormones (6 estrogens, 4 progestogens, and 1 androgen) and 2 phenolic EDCs were quantified in various matrices including water, sediment, cultured fish and shellfish. Ultrahigh performance liquid chromatography-triple quadrupole tandem mass spectrometry analyses showed that all the 13 target compounds were detected in biotic samples, whereas 10 were detected in water and sediment, respectively. The total concentrations ranged from 35.06-364.53 ng/L in water and 6.31-29.30 ng/g in sediment, respectively. The average contaminant levels in shellfish (Ostrea gigas, Mytilus edulis and Mimachlamys nobilis) were significantly higher than those in fish (Culter alburnus, Ephippus orbis and Ephippus orbis). Source apportionment revealed that the pollution of hormones and phenolic EDCs in PRD mariculture areas was resulted from the combination of coastal anthropogenic discharges and mariculture activities. The hazard quotient values of the contaminants were all less than 1, implying no immediate human health risk. Overall, the present study is of great significance for scientific mariculture management, land-based pollution control, ecosystem protection, and safeguarding human health.
Collapse
Affiliation(s)
- Yupeng Chen
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Haiwen Xie
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Muhammad Junaid
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Youchang Zhu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huchun Tao
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Minghung Wong
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
25
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence and ecological risk assessment of pharmaceuticals and cocaine in the urban drainage channels of Santos beaches (São Paulo, Brazil): a neglected, but sensitive issue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65595-65609. [PMID: 34322794 DOI: 10.1007/s11356-021-15249-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/28/2021] [Indexed: 05/20/2023]
Abstract
In some Brazilian coastal cities, it is common to observe 'black tongues' in beaches, i.e. a mixture of urban runoff and untreated domestic sewage containing pollutants of emerging concern, namely pharmaceutical and personal care products (PPCPs), flowing into the South Atlantic Ocean. Such diffuse loads of pollutants might expose nontarget aquatic organisms to harmful compounds. In this work, the occurrence and preliminary ecological risk of 27 PPCPs of various therapeutic classes (including cocaine and its primary metabolite, benzoylecgonine) were investigated, for the first time, in seven urban drainage channels whose diffuse loads flow continuously to the beaches of Santos Bay, São Paulo, Brazil. Of these, 21 compounds were detected using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), and nine of them were consistently quantified in all urban channels of Santos, suggesting that those pollutants are ubiquitous in this region: caffeine (143.4-516.0 ng/L), losartan (4.2-21.8 ng/L), atenolol (1.1-18.2 ng/L), acetaminophen (1.5-13.8 ng/L), benzoylecgonine (1.0-4.8 ng/L), carbamazepine (1.1-4.0 ng/L), diclofenac (1.9-3.5 ng/L), cocaine (0.5-1.7 ng/L), and orphenadrine (0.1-0.8 ng/L). Moreover, twelve compounds were found below the limit of quantification ( <LOQ): citalopram, propranolol, diazepam, rosuvastatin, atorvastatin, midazolam, ranitidine, chlortalidone, clopidogrel, chlorpheniramine, enalapril and valsartan. According to our knowledge, this is the first report on the occurrence of midazolam, ranitidine and chlorpheniramine in surface waters in Latin America and, therefore, these compounds should be considered environmental warning signs. A preliminary ecological risk assessment revealed that caffeine, acetaminophen and losartan presented a moderate risk, and carbamazepine a low risk to sensitive aquatic organisms at maximum measured concentrations. This study provides valuable information to reinforce the importance of a continuous monitoring of the diffuse loads (containing PPCPs and illicit drugs) flowing to the coastal zones in developing countries.
Collapse
Affiliation(s)
- Vinicius Roveri
- Faculdade de Ciência e Tecnologia da Universidade Fernando Pessoa (FCT-UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, 11045-002, Santos, São Paulo, Brasil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília, Rua Cesário Mota 8, F83A, 11045-040 Santos, São Paulo, Brasil
| | - Walber Toma
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília, Rua Cesário Mota 8, F83A, 11045-040 Santos, São Paulo, Brasil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
26
|
Cho HJ, Kang E, Kim S, Yang DC, Nam J, Jin E, Choe W. Impact of Zr 6 Node in a Metal-Organic Framework for Adsorptive Removal of Antibiotics from Water. Inorg Chem 2021; 60:16966-16976. [PMID: 34662513 DOI: 10.1021/acs.inorgchem.1c01890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Quinolone-based antibiotics commonly detected in surface, ground, and drinking water are difficult to remove and therefore pose a threat as organic contaminants of aqueous environment. We performed adsorptive removal of quinolone antibiotics, nalidixic acid and ofloxacin, using a zirconium-porphyrin-based metal-organic framework (MOF), PCN-224. PCN-224 exhibits the highest adsorption capacities for both nalidixic acid and ofloxacin among those reported for MOFs to date. The accessible metal sites of Zr metal nodes are responsible for efficient adsorptive removal. This study offers a pragmatic approach to design MOFs optimized for adsorptive removal of antibiotics.
Collapse
Affiliation(s)
- Hye Jin Cho
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Eunyoung Kang
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Seonghoon Kim
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - D ChangMo Yang
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Joohan Nam
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Eunji Jin
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
27
|
The Use of Surface-Modified Nanocrystalline Cellulose Integrated Membranes to Remove Drugs from Waste Water and as Polymers to Clean Oil Sands Tailings Ponds. Polymers (Basel) 2021; 13:polym13223899. [PMID: 34833197 PMCID: PMC8620018 DOI: 10.3390/polym13223899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
There is an urgent environmental need to remediate waste water. In this study, the use of surface-modified nanocrystalline cellulose (CNC) to remove polluting drugs or chemicals from waste water and oil sands tailing ponds has been investigated. CNC was modified by either surface adsorbing cationic or hydrophobic species or by covalent methods and integrated into membrane water filters. The removal of either diclofenac or estradiol from water was studied. Similar non-covalently modified CNC materials were used to flocculate clays from water or to bind naphthenic acids which are contaminants in tailing ponds. Estradiol bound well to hydrophobically modified CNC membrane filter systems. Similarly, diclofenac (anionic drug) bound well to covalently cationically modified CNC membranes. Non-covalent modified CNC effectively flocculated clay particles in water and bound two naphthenic acid chemicals (negatively charged and hydrophobic). Modified CNC integrated into water filter membranes may remove drugs from waste or drinking water and contaminants from tailing ponds water. Furthermore, the ability of modified CNC to flocculate clays particles and bind naphthenic acids may allow for the addition of modified CNC directly to tailing ponds to remove both contaminants. CNC offers an environmentally friendly, easily transportable and disposable novel material for water remediation purposes.
Collapse
|
28
|
Palma TL, Shylova A, Costa MC. Isolation and characterization of bacteria from activated sludge capable of degrading 17α-ethinylestradiol, a contaminant of high environmental concern. MICROBIOLOGY-SGM 2021; 167. [PMID: 33656438 DOI: 10.1099/mic.0.001038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The compound 17α-ethinylestradiol (EE2) is a synthetic oestrogen which is classified as a group 1 carcinogen by the World Health Organization. Together with other endocrine disruptor compounds, EE2 has been included in the surface water Watch List by the European Commission, since it causes severe adverse effects in ecosystems. Thus, it became a high priority to find or improve processes such as biodegradation of EE2 to completely remove this drug from the wastewater treatment plants (WWTPs). The present study aimed at the isolation of bacteria capable of degrading EE2 using environmental samples, namely a sludge from the Faro Northwest WWTP. Four isolates with ability to grow in the presence of 50 mg l-1 EE2 were obtained. The analysis of 16SrRNA gene sequences identified the isolated bacteria as Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides. The results of biodegradation assays showed that Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides were able to degrade 47±4 %, 55±3 %, 64±4% and 35±4 %, respectively of 13 mg l-1 EE2 after 168 h at 28 °C. To the best of our knowledge, these bacterial isolates were identified as EE2 degraders for the first time. In a preliminary experiment on the identification of metabolic products resulting from EE2 degradation products such as estrone (E1), γ-lactone compounds, 2-pentanedioic acid and 2-butenedioic acid an intermediate metabolite of the TCA cycle, were detected.
Collapse
Affiliation(s)
- Tânia Luz Palma
- Faculdade de Ciências e Tecnologia, University of Algarve, Campus de Gambelas, building 8, 8005-139 Faro, Portugal.,Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, building 7, 8005-139 Faro, Portugal
| | - Anastasiia Shylova
- Faculdade de Ciências e Tecnologia, University of Algarve, Campus de Gambelas, building 8, 8005-139 Faro, Portugal
| | - Maria Clara Costa
- Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, building 7, 8005-139 Faro, Portugal.,Faculdade de Ciências e Tecnologia, University of Algarve, Campus de Gambelas, building 8, 8005-139 Faro, Portugal
| |
Collapse
|
29
|
Erickson TB, Endo N, Duvallet C, Ghaeli N, Hess K, Alm EJ, Matus M, Chai PR. "Waste Not, Want Not" - Leveraging Sewer Systems and Wastewater-Based Epidemiology for Drug Use Trends and Pharmaceutical Monitoring. J Med Toxicol 2021; 17:397-410. [PMID: 34402038 PMCID: PMC8366482 DOI: 10.1007/s13181-021-00853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
During the current global COVID-19 pandemic and opioid epidemic, wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring public health trends by analysis of biomarkers including drugs, chemicals, and pathogens. Wastewater surveillance downstream at wastewater treatment plants provides large-scale population and regional-scale aggregation while upstream surveillance monitors locations at the neighborhood level with more precise geographic analysis. WBE can provide insights into dynamic drug consumption trends as well as environmental and toxicological contaminants. Applications of WBE include monitoring policy changes with cannabinoid legalization, tracking emerging illicit drugs, and early warning systems for potent fentanyl analogues along with the resurging wave of stimulants (e.g., methamphetamine, cocaine). Beyond drug consumption, WBE can also be used to monitor pharmaceuticals and their metabolites, including antidepressants and antipsychotics. In this manuscript, we describe the basic tenets and techniques of WBE, review its current application among drugs of abuse, and propose methods to scale and develop both monitoring and early warning systems with respect to measurement of illicit drugs and pharmaceuticals. We propose new frontiers in toxicological research with wastewater surveillance including assessment of medication assisted treatment of opioid use disorder (e.g., buprenorphine, methadone) in the context of other social burdens like COVID-19 disease.
Collapse
Affiliation(s)
- Timothy B Erickson
- Department of Emergency Medicine / Division of Toxicology, Brigham & Women's Hospital / Harvard Medical School, 10 Vining St, Boston, MA, 02155, USA.
- Division of Medical Toxicology, Department of Emergency Medicine, Mass General Brigham, Boston, USA.
- Harvard Humanitarian Institute, Cambridge, MA, USA.
| | | | | | | | | | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Peter R Chai
- Department of Emergency Medicine / Division of Toxicology, Brigham & Women's Hospital / Harvard Medical School, 10 Vining St, Boston, MA, 02155, USA
- Division of Medical Toxicology, Department of Emergency Medicine, Mass General Brigham, Boston, USA
- The Fenway Institute, Boston, MA, USA
- The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| |
Collapse
|
30
|
Egli M, Hartmann A, Rapp Wright H, Ng KT, Piel FB, Barron LP. Quantitative Determination and Environmental Risk Assessment of 102 Chemicals of Emerging Concern in Wastewater-Impacted Rivers Using Rapid Direct-Injection Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2021; 26:5431. [PMID: 34576902 PMCID: PMC8466042 DOI: 10.3390/molecules26185431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022] Open
Abstract
The rapid source identification and environmental risk assessment (ERA) of hundreds of chemicals of emerging concern (CECs) in river water represent a significant analytical challenge. Herein, a potential solution involving a rapid direct-injection liquid chromatography-tandem mass spectrometry method for the quantitative determination of 102 CECs (151 qualitatively) in river water is presented and applied across six rivers in Germany and Switzerland at high spatial resolution. The method required an injection volume of only 10 µL of filtered sample, with a runtime of 5.5 min including re-equilibration with >10 datapoints per peak per transition (mostly 2 per compound), and 36 stable isotope-labelled standards. Performance was excellent from the low ng/L to µg/L concentration level, with 260 injections possible in any 24 h period. The method was applied in three separate campaigns focusing on the ERA of rivers impacted by wastewater effluent discharges (1 urban area in the Basel city region with 4 rivers, as well as 1 semi-rural and 1 rural area, each focusing on 1 river). Between 25 and 40 compounds were quantified directly in each campaign, and in all cases small tributary rivers showed higher CEC concentrations (e.g., up to ~4000 ng/L in total in the R. Schwarzach, Bavaria, Germany). The source of selected CECs could also be identified and differentiated from other sources at pre- and post- wastewater treatment plant effluent discharge points, as well as the effect of dilution downstream, which occurred over very short distances in all cases. Lastly, ERA for 41 CECs was performed at specific impacted sites, with risk quotients (RQs) at 1 or more sites estimated as high risk (RQ > 10) for 1 pharmaceutical (diclofenac), medium risk (RQ of 1-10) for 3 CECs (carbamazepine, venlafaxine, and sulfamethoxazole), and low risk (RQ = 0.1-1.0) for 7 CECs (i.e., RQ > 0.1 for 11 CECs in total). The application of high-throughput methods like this could enable a better understanding of the risks of CECs, especially in low flow/volume tributary rivers at scale and with high resolution.
Collapse
Affiliation(s)
- Melanie Egli
- Medical Research Council Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; (M.E.); (A.H.); (H.R.W.); (K.T.N.); (F.B.P.)
| | - Alicia Hartmann
- Medical Research Council Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; (M.E.); (A.H.); (H.R.W.); (K.T.N.); (F.B.P.)
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, 65510 Idstein, Germany
| | - Helena Rapp Wright
- Medical Research Council Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; (M.E.); (A.H.); (H.R.W.); (K.T.N.); (F.B.P.)
| | - Keng Tiong Ng
- Medical Research Council Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; (M.E.); (A.H.); (H.R.W.); (K.T.N.); (F.B.P.)
| | - Frédéric B. Piel
- Medical Research Council Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; (M.E.); (A.H.); (H.R.W.); (K.T.N.); (F.B.P.)
| | - Leon P. Barron
- Medical Research Council Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, 86 Wood Lane, London W12 0BZ, UK; (M.E.); (A.H.); (H.R.W.); (K.T.N.); (F.B.P.)
| |
Collapse
|
31
|
Rodrigues JA, Silva S, Cardoso VV, Benoliel MJ, Cardoso E, Coelho MR, Martins A, Almeida CMM. Screening and Seasonal Behavior of Analgesics, Non-steroidal Anti-inflammatory Drugs, and Antibiotics in Two Urban Wastewater Treatment Plants. ENVIRONMENTAL MANAGEMENT 2021; 68:411-425. [PMID: 34269831 DOI: 10.1007/s00267-021-01496-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical active compounds (PhACs) belonging to analgesics, antibiotics, and non-steroidal anti-inflammatory drugs (NSAIDs) therapeutic classes were monitored in wastewater influents and effluents from two Portuguese urban wastewater treatment plants (UWWTPs) for 24 months. Both facilities were chosen due to their effluents are discharged in highly touristic and sensitive areas, Tagus river and Ria Formosa coastal lagoon, respectively. Target PhACs, acetaminophen, diclofenac, ibuprofen, naproxen, sulfadiazine, and sulfamethoxazole were measured using solid-phase extraction (SPE) coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS). PhACs occurrence in the influents was higher than 98%, with acetaminophen presenting the highest concentrations, with values between 16.3 µg/L and 124 µg/L. In the effluents, distinct behavior was observed with diclofenac and sulfamethoxazole showing recalcitrant characteristics, whereas acetaminophen, ibuprofen, and naproxen showed removal efficiencies above 95%. Acetaminophen and ibuprofen amount in influents showed consistently higher concentration levels in autumn (in Beirolas and Faro Nw UWWTPs) and winter (only in Beirolas UWWTP) seasons. These seasonal trends were observed to a greater extent in Beirolas UWWTP than in Faro Nw UWWTP. This study enabled the comprehensive definition of a behavior pattern for these target contaminants, contributing to better characterization and build-up a library of PhACs occurrence. It also allowed a robust seasonal profiling of the target compounds due to the high number of samples analyzed by each season and a longer monitoring campaign, making the obtained results more significant.
Collapse
Affiliation(s)
- João Aleixo Rodrigues
- Empresa Portuguesa das Águas Livres, S.A.- Direção de Controlo de Qualidade da Água, Lisboa, Portugal
| | - Sofia Silva
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal
| | - Vítor Vale Cardoso
- Empresa Portuguesa das Águas Livres, S.A.- Direção de Controlo de Qualidade da Água, Lisboa, Portugal
| | - Maria João Benoliel
- Empresa Portuguesa das Águas Livres, S.A.- Direção de Controlo de Qualidade da Água, Lisboa, Portugal
| | - Eugénia Cardoso
- Águas do Tejo Atlântico, S.A, Fábrica de Água de Beirolas, Sacavém, Portugal
| | | | | | - Cristina Maria Martins Almeida
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Lisboa, Portugal.
| |
Collapse
|
32
|
Ramasamy B, Jeyadharmarajan J, Chinnaiyan P. Novel organic assisted Ag-ZnO photocatalyst for atenolol and acetaminophen photocatalytic degradation under visible radiation: performance and reaction mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39637-39647. [PMID: 33763832 PMCID: PMC7990384 DOI: 10.1007/s11356-021-13532-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
This study is on photocatalytic degradation of pharmaceutical residues of atenolol (ATL) and acetaminophen (ACT) present in secondary effluent under visible light irradiation stimulated by Ag doped ZnO (Ag-ZnO) photocatalyst. Lawsonia inermis leaf extract was used for reduction of Zinc sulphate to ZnO nanoparticles (NPs). Further, ZnO NPs were doped with Ag and characterized by XRD, FT-IR, SEM-EDX, surface area analyzer, UV-Vis, and photoluminescence spectrometry to analyze the structure, morphology, chemical composition, and optical property. FT-IR analysis revealed major functional groups such as OH, C=O, and SEM analysis depicted the polyhedron shape of the NPs with size range of 100 nm. Ag-ZnO NPs were used in the photocatalytic degradation of ATL and ACT, and its removal was evaluated by varying initial contaminant concentration, catalyst dosage, and initial pH. Findings indicate that Ag-ZnO NPs demonstrated relative narrow bandgap and efficient charge separation that resulted in enhanced photocatalytic activity under visible light illumination. The photocatalytic degradation of ATL and ACT fitted well with pseudo-first-order kinetic model. Further, it was found that under optimal conditions of 5 mg/L of contaminants, pH of 8.5, and catalyst dose of 1 g/L, degradation efficiency of 70.2% (ATL) and 90.8% (ACT) was achieved for a reaction time of 120 min. More than 60% reduction in TOC was observed for both contaminants and OH• pathway was found to be the major removal process. Ag-ZnO photocatalyst showed good recycling performance, and these findings indicate that it could be cost effectively employed for removing emerging contaminants under visible light radiation.
Collapse
Affiliation(s)
- Bhuvaneswari Ramasamy
- Department of Civil Engineering, Government College of Technology, Coimbatore, Tamilnadu, 641013, India
| | - Jeyanthi Jeyadharmarajan
- Department of Civil Engineering, Government College of Technology, Coimbatore, Tamilnadu, 641013, India.
| | - Prakash Chinnaiyan
- Department of Civil Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
33
|
Liu ZH, Dang Z, Liu Y. Legislation against endocrine-disrupting compounds in drinking water: essential but not enough to ensure water safety. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19505-19510. [PMID: 33620688 DOI: 10.1007/s11356-021-12901-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Since the last several decades, there has been a growing concern on the presence of endocrine-disrupting compounds (EDCs) in potable water due to their negative impacts on public health of mankind. As such, more and more EDCs have been regulated in many national drinking water quality standards. Given this situation, this work attempted to deliberately offer new insights into some remaining scientific challenges, i.e., (1) what should the allowable EDC concentration be in drinking water?; (2) should the main chlorinated byproducts of EDCs be regulated in potable water?; and (3) what concentration should be regulated for each chlorinated EDC? It is expected that these could help to better design the water quality regulations for EDCs.
Collapse
Affiliation(s)
- Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
34
|
Ng B, Quinete N, Maldonado S, Lugo K, Purrinos J, Briceño H, Gardinali P. Understanding the occurrence and distribution of emerging pollutants and endocrine disruptors in sensitive coastal South Florida Ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143720. [PMID: 33288250 DOI: 10.1016/j.scitotenv.2020.143720] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/04/2023]
Abstract
Environmental exposure risk to different xenobiotics, which can potentially alter the function of the endocrine system, remains a great health and safety concern for aquatic species and humans. Steroid hormones, pharmaceuticals and personal care products (PPCPs) have been identified as important aquatic contaminants due to their widespread occurrence in surface waters and their endocrine disrupting properties. Heavily populated areas in South Florida not served by municipal wastewater collection present an unexpected high risk of anthropogenic contaminants to nearby coastal systems through surface runoff and groundwater flow. Previous studies in South Florida have been largely concentrated on assessing the relevance of the fate and transport of inorganic nutrients, heavy metals and pesticides with regulatory criteria. Therefore, a significant gap exists in assessing occurrence, distribution and biological significance of the presence of human related organic contaminants in natural surface waters. In this study, we have developed a fast and sensitive online solid-phase extraction followed by liquid chromatography-high resolution mass spectrometry (SPE-LC-HRMS) method using a Q-Exactive system for the determination of the occurrence and distribution of selected wastewater tracers/indicators, recalcitrant PPCPs and steroid hormones in South Florida surface waters. Seasonal and spatial variations of these contaminants were monitored from 2017 to 2019. The presence of total coliforms and E. coli were also evaluated in order to further assess water quality. Correlations between hormones and anthropogenic tracers were explored to better elucidate the sources, pathways and exposure risks to these contaminants. Caffeine, sucralose, Diethyl-m-toluamide (DEET) and carbamazepine were frequently detected in the water samples, which is indicative of extensive wastewater intrusion impacting the surface water. Estrone (E1), 17-β-estradiol (E2), and 17-α-ethynylestradiol (EE2) levels found in surface water raises concern of potential endocrine disruption effects in the aquatic ecosystem. Hazard quotient has been calculated to identify areas with high ecological risks to aquatic organisms.
Collapse
Affiliation(s)
- Brian Ng
- Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA
| | - Natalia Quinete
- Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA.
| | - Stephanie Maldonado
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA; Deparment of Chemistry, Universidad de Puerto Rico, Humacao 00791, Puerto Rico
| | - Kathleen Lugo
- Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA
| | - Julian Purrinos
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA
| | - Henry Briceño
- Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA
| | - Piero Gardinali
- Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA
| |
Collapse
|
35
|
Dias R, Sousa D, Bernardo M, Matos I, Fonseca I, Vale Cardoso V, Neves Carneiro R, Silva S, Fontes P, Daam MA, Maurício R. Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants. Molecules 2021; 26:molecules26041010. [PMID: 33672924 PMCID: PMC7918913 DOI: 10.3390/molecules26041010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/12/2023] Open
Abstract
Presently, water quantity and quality problems persist both in developed and developing countries, and concerns have been raised about the presence of emerging pollutants (EPs) in water. The circular economy provides ways of achieving sustainable resource management that can be implemented in the water sector, such as the reuse of drinking water treatment sludges (WTSs). This study evaluated the potential of WTS containing a high concentration of activated carbon for the removal of two EPs: the steroid hormones 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). To this end, WTSs from two Portuguese water treatment plants (WTPs) were characterised and tested for their hormone adsorbance potential. Both WTSs showed a promising adsorption potential for the two hormones studied due to their textural and chemical properties. For WTS1, the final concentration for both hormones was lower than the limit of quantification (LOQ). As for WTS2, the results for E2 removal were similar to WTS1, although for EE2, the removal efficiency was lower (around 50%). The overall results indicate that this method may lead to new ways of using this erstwhile residue as a possible adsorbent material for the removal of several EPs present in wastewaters or other matrixes, and as such contributing to the achievement of Sustainable Development Goals (SDG) targets.
Collapse
Affiliation(s)
- Rita Dias
- CENSE—Center for Environmental and Sustainability Research, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.S.); (M.A.D.); (R.M.)
- Correspondence:
| | - Diogo Sousa
- CENSE—Center for Environmental and Sustainability Research, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.S.); (M.A.D.); (R.M.)
| | - Maria Bernardo
- LAQV/REQUIMTE, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (M.B.); (I.M.); (I.F.)
| | - Inês Matos
- LAQV/REQUIMTE, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (M.B.); (I.M.); (I.F.)
| | - Isabel Fonseca
- LAQV/REQUIMTE, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (M.B.); (I.M.); (I.F.)
| | - Vitor Vale Cardoso
- EPAL—Empresa Pública de Águas Lives S.A., AdP—Grupo Águas de Portugal, 31700-421 Lisboa, Portugal; (V.V.C.); (R.N.C.); (S.S.); (P.F.)
| | - Rui Neves Carneiro
- EPAL—Empresa Pública de Águas Lives S.A., AdP—Grupo Águas de Portugal, 31700-421 Lisboa, Portugal; (V.V.C.); (R.N.C.); (S.S.); (P.F.)
| | - Sofia Silva
- EPAL—Empresa Pública de Águas Lives S.A., AdP—Grupo Águas de Portugal, 31700-421 Lisboa, Portugal; (V.V.C.); (R.N.C.); (S.S.); (P.F.)
| | - Pedro Fontes
- EPAL—Empresa Pública de Águas Lives S.A., AdP—Grupo Águas de Portugal, 31700-421 Lisboa, Portugal; (V.V.C.); (R.N.C.); (S.S.); (P.F.)
| | - Michiel A. Daam
- CENSE—Center for Environmental and Sustainability Research, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.S.); (M.A.D.); (R.M.)
| | - Rita Maurício
- CENSE—Center for Environmental and Sustainability Research, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.S.); (M.A.D.); (R.M.)
| |
Collapse
|
36
|
López-Velázquez K, Guzmán-Mar JL, Saldarriaga-Noreña HA, Murillo-Tovar MA, Hinojosa-Reyes L, Villanueva-Rodríguez M. Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116223. [PMID: 33316500 DOI: 10.1016/j.envpol.2020.116223] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Five endocrine-disrupting compounds (EDCs) were determined in four urban wastewater treatment plants (WWTPs) of the Metropolitan Area of Monterrey (MAM) in two seasonal periods (winter and summer). The MAM, one of the most urbanized areas in Mexico, is characterized by high industrial activity and population density, leading to extensive use of several EDCs. In the MAM, ∼90% of urban and industrial wastewater is treated in WWTPs, where EDCs can be partially eliminated. In this work, dissolved levels of 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) in wastewater were determined. The EDCs' determination was carried out through solid-phase extraction (SPE) and gas chromatography coupled to mass spectrometry (GC-MS). High EDCs levels (0.4-450 ng/L) were found in the influents of WWTPs, while concentrations in the effluents ranged from 0.2 to 26.8 ng/L, with E2, EE2, and 4TOP being the most persistent. The Spearman correlation analysis revealed the association between E2 and EE2 (r = 0.4835, p < 0.05), and between BPA and 4NP (r = 0.5180, p < 0.05), suggesting that these EDCs have similar sources. Also, E2, BPA, and 4TOP were positively correlated with the chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) (r = 0.4080-0.5694, p < 0.05), indicating the association of the EDCs with the organic matter in the wastewater. The factor analysis confirmed the significant correlation of COD, BOD, TSS, temperature, and pH with the high occurrence of 4TOP during the summer. It was also confirmed that summer warmer temperatures favored the removal of BPA and 4NP in the studied WWTPs. Finally, the studied sites were classified by cluster analysis in three groups, revealing the impact that seasonality has on the behavior of the selected EDCs.
Collapse
Affiliation(s)
- Khirbet López-Velázquez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Jorge L Guzmán-Mar
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Hugo A Saldarriaga-Noreña
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Mexico
| | - Mario A Murillo-Tovar
- CONACYT-Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Mexico
| | - Laura Hinojosa-Reyes
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Minerva Villanueva-Rodríguez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
37
|
Dogan A, Kempińska-Kupczyk D, Kubica P, Kot-Wasik A. Analysis of chiral pharmaceutical residues in influent and effluent samples at racemic and enantiomeric level using liquid chromatography-tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Du B, Fan G, Yu W, Yang S, Zhou J, Luo J. Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115405. [PMID: 33618485 DOI: 10.1016/j.envpol.2020.115405] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 05/15/2023]
Abstract
The ubiquitous occurrence of steroid estrogens (SEs) in the aquatic environment has raised global concern for their potential environmental impacts. This paper extensively compiled and reviewed the available occurrence data of SEs, namely estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), and 17α-ethinyl estradiol (EE2), based on 145 published articles in different regions all over the world including 51 countries and regions during January 2015-March 2020. The data regarding SEs concentrations and estimated 17β-estradiol equivalency (EEQ) values are then compared and analyzed in different environmental matrices, including natural water body, drinking and tap water, and wastewater treatment plants (WWTPs) effluent. The detection frequencies of E1, 17β-E2, and E3 between the ranges of 53%-83% in natural water and WWTPs effluent, and the concentration of SEs varied considerably in different countries and regions. The applicability for EEQ estimation via multiplying relative effect potency (REPi) by chemical analytical data, as well as correlation between EEQbio and EEQcal was also discussed. The risk quotient (RQ) values were on the descending order of EE2 > 17β-E2 > E1 > 17α-E2 > E3 in the great majority of investigations. Furthermore, E1, 17β-E2, and EE2 exhibited high or medium risks in water environmental samples via optimized risk quotient (RQf) approach at the continental-scale. This overview provides the latest insights on the global occurrence and ecological impacts of SEs and may act as a supportive tool for future SEs investigation and monitoring.
Collapse
Affiliation(s)
- Banghao Du
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Jinjin Zhou
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jing Luo
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| |
Collapse
|
39
|
Tran TN, Kim DG, Ko SO. Efficient removal of 17α-ethinylestradiol from secondary wastewater treatment effluent by a biofilm process incorporating biogenic manganese oxide and Pseudomonas putida strain MnB1. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122810. [PMID: 32516724 DOI: 10.1016/j.jhazmat.2020.122810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
This study proposes a biofilm process to immobilize biogenic manganese oxide (BMO) and Pseudomonas putida MnB1 (BMO-MnB1), which shows excellent synergistic effects for 17α-ethinylestradiol (EE2) from secondary wastewater treatment effluent (WWTE). Modified granular activated carbon (M-GAC) was used as the packing carrier, inoculated with Pseudomonas putida MnB1 and Mn(II) to form the BMO-MnB1 biofilm. Feasibility tests were performed to compare the EE2 removal efficiency with that of the conventional biofilm process (BAC) for heterogeneous microbial communities. Results show that in the BAC, EE2 was removed mainly by adsorption, with biodegradation contributing only slightly to the overall performance. In contrast, the BMO-MnB1 biofilter outperformed the BAC. Furthermore, less than 4% of the total EE2 removed was extracted from the biofilter medium over 150 days of operation, confirming that EE2 was biodegraded by P. putida MnB1 or chemically oxidized by BMO. Our results suggest that BMO-MnB1 biofilm processes have high potential for practical applications in removal of endocrine disrupting compounds from wastewater effluent.
Collapse
Affiliation(s)
- Thi Nhung Tran
- Department of Civil Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin, 446-701, Republic of Korea.
| | - Do-Gun Kim
- Department of Civil Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin, 446-701, Republic of Korea.
| | - Seok-Oh Ko
- Department of Civil Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
40
|
Determination of the Bioaccumulative Potential Risk of Emerging Contaminants in Fish Muscle as an Environmental Quality Indicator in Coastal Lagoons of the Central Mexican Pacific. WATER 2020. [DOI: 10.3390/w12102721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This research proposes an environmental quality indicator to detect, predict and scientifically evaluate the environmental impact generated by chemical substances within the pollutant group of nonsteroidal anti-inflammatory drugs (NSAIDs) that are categorized as emerging contaminants (ECs) with endocrine disruptive action. The present study was carried out in two coastal lagoons affected by wastewater produced by urban and rural settlements in the states of Colima and Jalisco. Four pharmaceutical compounds were analyzed: diclofenac, ibuprofen, ketorolac and naproxen. The muscle tissues of 14 fish species were analyzed; all had measurable concentrations of the four contaminants. The presence of the ECs was confirmed in all the samples collected. The bioaccumulative potential risk (BPR) of the ECs is estimated by calculating the environmental risk factors and the potential risks to human health, evaluating the concentration and assessing the risk involved in the incorporation of the pollutants into the environment. The BPR indicates the potential impact of NSAIDs on the ecology of these coastal lagoons, and predicts whether a contaminant is likely to act and persist in the environment and bioaccumulate in organisms. Additionally, it estimates the possibility of contamination and risks to human health caused by residues of the chemical contaminants.
Collapse
|
41
|
Dimitriadou S, Frontistis Z, Petala A, Bampos G, Mantzavinos D. Carbocatalytic activation of persulfate for the removal of drug diclofenac from aqueous matrices. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Grabicová K, Grabic R, Fedorova G, Kolářová J, Turek J, Brooks BW, Randák T. Psychoactive pharmaceuticals in aquatic systems: A comparative assessment of environmental monitoring approaches for water and fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114150. [PMID: 32062094 DOI: 10.1016/j.envpol.2020.114150] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Environmental monitoring and surveillance studies of pharmaceuticals routinely examine occurrence of substances without current information on human consumption patterns. We selected 10 streams with diverse annual flows and differentially influenced by population densities to examine surface water occurrence and fish accumulation of select psychoactive medicines, for which consumption is increasing in the Czech Republic. We then tested whether passive sampling can provide a useful surrogate for exposure to these substances through grab sampling, body burdens of young of year fish, and tissue specific accumulation of these psychoactive contaminants. We identified a statistically significant (p < 0.05) relationship between ambient grab samples and passive samplers in these streams when psychoactive contaminants were commonly quantitated by targeted liquid chromatography with tandem mass spectrometry, though we did not observe relationships between passive samplers and tissue specific pharmaceutical accumulation. We further observed smaller lotic systems with elevated contamination when municipal effluent discharges from more highly populated cities contributed a greater extent of instream flows. These findings identify the importance of understanding age and species specific differences in fish uptake, internal disposition, metabolism and elimination of psychoactive drugs across surface water quality gradients.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Jitka Kolářová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Jan Turek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Bryan W Brooks
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic; Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Tomáš Randák
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| |
Collapse
|
43
|
Gusmaroli L, Mendoza E, Petrovic M, Buttiglieri G. How do WWTPs operational parameters affect the removal rates of EU Watch list compounds? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136773. [PMID: 32018966 DOI: 10.1016/j.scitotenv.2020.136773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
This work aims at achieving a better understanding of the mechanisms and the operative conditions regulating the removal of a set of relevant micropollutants in conventional activated sludge (CAS) systems to maximize their removal and, if possible, biodegradation. Eight compounds from the EU Watch list (clothianidin, thiacloprid, methiocarb, E1, E2, EE2, diclofenac and erythromycin) were spiked at 2 μg/L in CAS systems and their behaviour was studied in 6-h batch tests. The role of sorption was also investigated. Information on the removal of the pesticides clothianidin, thiacloprid and methiocarb is here presented for the first time to the best of the authors' knowledge. With the aim of enhancing the removal of the selected compounds in wastewater treatment, four parameters were explored: biomass concentration, temperature, pH and redox conditions. For each parameter, a low and a high value were chosen, based on the ranges usually applied in wastewater treatment plants (WWTPs). Results show that biomass concentration is the most relevant parameter among the ones investigated, followed by the redox conditions. The operational conditions that maximized removal rates were: 5 g/L of biomass, aerobic conditions, 25 °C and pH 7.5. High variability in removal rates was observed for compounds such as E1, erythromycin and methiocarb. The pesticides clothianidin and thiacloprid did not prove to be easily degradable. The highest removal rates were recorded for the hormones, particularly E2, with a transformation rate of at least 96% under all conditions. Sorption proved to be a relevant removal route for EE2, for which the highest sorption rates were recorded, and diclofenac, where the adsorption mechanisms was hypothesised for its prevalence at lower pH values.
Collapse
Affiliation(s)
- Lucia Gusmaroli
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Esther Mendoza
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
44
|
Sauvêtre A, Węgrzyn A, Yang L, Vestergaard G, Miksch K, Schröder P, Radl V. Enrichment of endophytic Actinobacteria in roots and rhizomes of Miscanthus × giganteus plants exposed to diclofenac and sulfamethoxazole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11892-11904. [PMID: 31981026 DOI: 10.1007/s11356-020-07609-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
This study investigates how wastewater containing 2 mg l-1 of sulfamethoxazole (SMX) and 2 mg l-1 of diclofenac (DCF) affects the composition of bacterial communities present in the roots and rhizomes of Miscanthus × giganteus plants grown in laboratory-scale constructed wetlands. Bacterial communities in plant roots and rhizomes were identified in treated and control samples by 16S rRNA amplicon sequencing. Moreover, bacterial endophytes were isolated in R2A and 1/10 869 media and screened for their ability to metabolize SMX and DCF in liquid medium by HPLC. Our results show significant changes in the abundance of main genera, namely Sphingobium and Streptomyces between control and treated plants. Around 70% of the strains isolated from exposed plants belonged to the phylum Actinobacteria and were classified as Streptomyces, Microbacterium, and Glycomyces. In non-exposed plants, Proteobacteria represented 43.5% to 63.6% of the total. We identified 17 strains able to remove SMX and DCF in vitro. From those, 76% were isolated from exposed plants. Classified mainly as Streptomyces, they showed the highest SMX (33%) and DCF (41%) removal efficiency. These isolates, alone or in combination, might be used as bio-inoculants in constructed wetlands to enhance the phytoremediation of SMX and DCF during wastewater treatment.
Collapse
Affiliation(s)
- Andrés Sauvêtre
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
- HydroSciences Montpellier, UMR 5569, Faculté de Pharmacie, University of Montpellier, Avenue Charles Flahault 15, 34000, Montpellier, France.
| | - Anna Węgrzyn
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland., Konarskiego 18, 44-100, Gliwice, Poland
| | - Luhua Yang
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Institute for Microbiology, University of Copenhagen; Microbiology, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Korneliusz Miksch
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland., Konarskiego 18, 44-100, Gliwice, Poland
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Viviane Radl
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
45
|
Rutherford R, Lister A, Bosker T, Blewett T, Gillio Meina E, Chehade I, Kanagasabesan T, MacLatchy D. Mummichog (Fundulus heteroclitus) are less sensitive to 17α-ethinylestradiol (EE 2) than other common model teleosts: A comparative review of reproductive effects. Gen Comp Endocrinol 2020; 289:113378. [PMID: 31899193 DOI: 10.1016/j.ygcen.2019.113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 12/28/2022]
Abstract
The environmental estrogen 17α-ethinylestradiol (EE2) will depress or completely inhibit egg production in many common model teleosts at low concentrations (≤0.5 ng/L; Runnalls et al., 2015). This inhibition is not seen in the estuarine killifish, or mummichog (Fundulus heteroclitus), even when exposed to 100 ng/L EE2. This relative insensitivity to EE2 exposure indicates species-specific mechanisms for compensating for exogenous estrogenic exposure. This review compares various reproductive responses elicited by EE2 in mummichog to other common model teleosts, such as zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), identifying key endpoints where mummichog differ from other studied fish. For example, EE2 accumulates primarily in the liver/gall bladder of mummichog, which is different than zebrafish and fathead minnow in which accumulation is predominantly in the carcass. Despite causing species-specific differences in fecundity, EE2 has been shown to consistently induce hepatic vitellogenin in males and cause feminization/sex reversal during gonadal differentiation in larval mummichog, similar to other species. In addition, while gonadal steroidogenesis and plasma steroid levels respond to exogenous EE2, it is generally at higher concentrations than observed in other species. In mummichog, production of 17β-estradiol (E2) by full grown ovarian follicles remains high; unlike other teleost models where E2 synthesis decreases as 17α,20β-dihydroxy-4-prenen-3-on levels increase to induce oocyte maturation. New evidence in mummichog indicates some dissimilarity in gonadal steroidogenic gene expression responses compared to gene expression responses in zebrafish and fathead minnow exposed to EE2. The role of ovarian physiology continues to warrant investigation regarding the tolerance of mummichog to exogenous EE2 exposure. Here we present a comprehensive review, highlighting key biological differences in response to EE2 exposure between mummichog and other commonly used model teleosts.
Collapse
Affiliation(s)
- Robert Rutherford
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Andrea Lister
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Thijs Bosker
- Leiden University College/Institute of Environmental Sciences, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands.
| | - Tamzin Blewett
- University of Alberta, Edmonton, AB, 116 St & 85 Ave, T6G 2R3, Canada.
| | | | - Ibrahim Chehade
- New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | | | - Deborah MacLatchy
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
46
|
Sacdal R, Madriaga J, Espino MP. Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia. ENVIRONMENTAL RESEARCH 2020; 182:109091. [PMID: 31927242 DOI: 10.1016/j.envres.2019.109091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Hormones are natural and synthetic compounds that are now being detected in the aquatic environment. Many lakes in Asia are important water sources that may be affected by these emerging contaminants. Lakes are drains and reservoirs of watersheds that are altered by changing land use and environmental conditions. While there are several studies on the detection of hormones in lakes, these studies were mostly done in China. Limited information is available on the presence of these contaminants in the lakes in other Asian countries. Hormones in the lake water come from discharge waters in urban areas, farm runoffs, and effluents of wastewater and sewage treatment plants. Hormones contamination in water has been shown to affect the reproduction and growth of certain aquatic organisms. In this review, a background on the chemical nature and physiological functions of hormones is provided and the existing knowledge on the occurrence and ecological impacts of hormones in lakes is described. The available analytical methods for sampling, analyte extraction and instrumental analysis are outlined. This overview provides insights on the current conditions of lakes that may be impacted by hormones contamination. Understanding the levels and possible ecological consequences will address the issues on these emerging contaminants especially in the Asian environment. This will elicit discussions on improving guidelines on wastewater discharges and will drive future research directions.
Collapse
Affiliation(s)
- Rosselle Sacdal
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Jonalyn Madriaga
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Maria Pythias Espino
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
47
|
Cerreta G, Roccamante MA, Plaza-Bolaños P, Oller I, Aguera A, Malato S, Rizzo L. Advanced treatment of urban wastewater by UV-C/free chlorine process: Micro-pollutants removal and effect of UV-C radiation on trihalomethanes formation. WATER RESEARCH 2020; 169:115220. [PMID: 31677437 DOI: 10.1016/j.watres.2019.115220] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/22/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
The effect of the UV-C/free chlorine (FC) process on the removal of contaminants of emerging concern (CECs) from real urban wastewater as well as the effect of UV-C radiation on the formation of trihalomethanes (THMs) compared to FC process alone was investigated. Unlike of FC process, UV-C/FC was really effective in the degradation of the target CECs (carbamazepine (CBZ), diclofenac, sulfamethoxazole and imidacloprid) in real wastewater (87% degradation of total CECs within 60 min, QUVC = 1.33 kJ L-1), being CBZ the most refractory one (49.5%, after 60 min). The UV-C radiation significantly affected the formation of THMs. THMs concentration (mainly chloroform) was lower in UV-C/FC process after 30 min treatment (<1 μgL-1 = limit of quantification (LOQ)) than in FC process in dark (2.3 μgL-1). Noteworthy, while in FC treated wastewater chloroform concentration increased after treatment, UV-C/FC process resulted in a significant decrease (residual concentrations below the LOQ), even after 24 h and 48 h post-treatment incubation. The formation of radicals due to UV-C/FC process can reduce THMs compared to chlorination process, because part of FC reacts with UV-C radiation to form radicals and it is no longer available to form THMs. These results are encouraging in terms of possible use of UV-C/FC process as advanced treatment of urban wastewater even for possible effluent reuse.
Collapse
Affiliation(s)
- Giusy Cerreta
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Melina A Roccamante
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | | | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - Ana Aguera
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - Sixto Malato
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy; Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200, Tabernas, Almería, Spain.
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
48
|
Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134057. [PMID: 31783460 DOI: 10.1016/j.scitotenv.2019.134057] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/17/2023]
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug has turned into a contaminant of emerging concern; hence, it was included in the previous Watch List of the EU Water Framework Directive. This review paper aims to highlight the metabolism of diclofenac at different trophic levels, its occurrence, ecological risks, and interactive effects in the water cycle and biota over the past two decades. Increased exposure to diclofenac not only raises health concerns for vultures, aquatic organisms, and higher plants but also causes serious threats to mammals. The ubiquitous nature of diclofenac in surface water (river, lake canal, estuary, and sea) is compared with drinking water, groundwater, and wastewater effluent in the environment. This comprehensive survey from previous studies suggests the fate of diclofenac in wastewater treatment plants (WWTPs) and may predict its persistence in the environment. This review offers evidence of fragmentary available data for the water environment, soil, sediment, and biota worldwide and supports the need for further data to address the risks associated with the presence of diclofenac in the environment. Finally, we suggest that the presence of diclofenac and its metabolites in the environment may represent a high risk because of their synergistic interactions with existing contaminants, leading to the development of drug-resistant strains and the formation of newly emerging pollutants.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | | | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thayumanavan Palvannan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
49
|
Sardiña P, Leahy P, Metzeling L, Stevenson G, Hinwood A. Emerging and legacy contaminants across land-use gradients and the risk to aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133842. [PMID: 31426001 DOI: 10.1016/j.scitotenv.2019.133842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 05/22/2023]
Abstract
Information on potentially harmful emerging and legacy chemicals is essential to understand the risks to the environment and inform regulatory actions. The objective of this study was to assess the occurrence, concentration, and distribution of emerging and legacy contaminants across a gradient of land-use intensity and determine the risk posed to aquatic ecosystems. The land-use intensity gradient considered was: background/undeveloped < low-intensity agriculture < high-intensity agriculture < urban residential < urban industrial. Twenty-five sites were sampled for surface water, sediment, and soil. A total of 218 chemicals were analyzed: pesticides, per- and poly-fluoroalkyl substances (PFAS), polybrominated biphenyls and polybrominated diphenyl ethers (PBDEs), phthalates, and short-chain chlorinated paraffins (SCCPs). The risk posed by the analyzed chemicals to the aquatic environment was measured using hazard quotients (HQs), which were calculated by dividing the maximum measured environmental concentration by a predicted no-effect concentration for each chemical. A HQ > 1 was considered to indicate a high risk of adverse effects from the given chemical. A total of 68 chemicals were detected: 19 pesticides, 18 PFAS, 28 PBDEs, two phthalates, and SCCPs (as total SCCPs). There were no significant differences in the overall chemical composition between land uses. However, the insecticide bifenthrin, PFAS, PBDEs, and phthalates were more frequently found in samples from residential and/or industrial sites, suggesting urban land uses are hotspots and potential large-scale sources of these chemicals. Nineteen chemicals had a HQ > 1; most had a restricted spatial distribution limited to high-intensity agriculture and industrial sites in Melbourne. Bifenthrin and the perfluorooctanesulfonic acid (PFOS) had the highest HQs in residential and industrial sites, suggesting an increased risk to aquatic ecosystems in urban settings. The results of this study will enhance future research, predictive methods, and effective targeting of monitoring, and will help guide regulatory management actions and mitigation solutions.
Collapse
Affiliation(s)
- Paula Sardiña
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| | - Paul Leahy
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| | - Leon Metzeling
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| | - Gavin Stevenson
- National Measurement Institute, 105 Delhi Road, North Ryde, NSW 2113, Australia.
| | - Andrea Hinwood
- Environment Protection Authority Victoria, Ernest Jones Drive, Macleod, Victoria 3085, Australia.
| |
Collapse
|
50
|
Cerreta G, Roccamante MA, Oller I, Malato S, Rizzo L. Contaminants of emerging concern removal from real wastewater by UV/free chlorine process: A comparison with solar/free chlorine and UV/H 2O 2 at pilot scale. CHEMOSPHERE 2019; 236:124354. [PMID: 31330434 DOI: 10.1016/j.chemosphere.2019.124354] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 05/20/2023]
Abstract
The removal of contaminants of emerging concern (CECs) from urban wastewater treatment plants (UWTPs) is really important to minimize the risk for human health and environment. In this study, the homogeneous advanced oxidation process (AOP) UV-C/free chlorine (UV-C/FC) was investigated at pilot scale in the degradation of a mixture of four CECs, in different water matrices and compared to a consolidated AOP, namely UV-C/H2O2. As matter of fact 90% degradation of CECs was observed after 15 min (QUVC = 0.33 kJ L-1) by UV-C/FC (5 mg L-1 of FC) and 30 min (0.67 kJ L-1) by UV-C/H2O2 (5 mg L-1 of H2O2) in natural water. However, CECs degradation by UV-C/H2O2 and UV-C/FC was comparable (>82%) in wastewater samples, under the investigated conditions (60 min, 1.33 kJ L-1). The effect of sunlight/FC process on the target CECs was also investigated (in a compound parabolic collector based reactor). Interestingly, a different behaviour was observed between the two light sources. In particular, a total removal of carbamazepine (CBZ) and imidacloprid (IMD) was observed for UV-C/FC process with 0.27 kJ L-1 and 10 mgL-1 of FC, while, in the sunlight/FC process (same FC dose), CBZ total removal took place quite fast (0.50 kJ L-1), but 90% removal of IMD was observed only after 60 min (7.09 kJ L-1). In conclusion, UV-C/FC process can be an interesting solution for tertiary treatment of urban wastewater for the removal of CECs and sunlight/FC is worthy of further investigation to evaluate its possible application in small UWTPs.
Collapse
Affiliation(s)
- Giusy Cerreta
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Melina A Roccamante
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés Km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés Km 4, 04200, Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120, Almería, Spain
| | - Sixto Malato
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy; Plataforma Solar de Almería-CIEMAT, Ctra. Senés Km 4, 04200, Tabernas, Almería, Spain.
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|