1
|
Kou L, Huang T, Zhang H, Li K, Hua F, Huang C, Liu X, Si F. Water-lifting and aeration system improves water quality of drinking water reservoirs: Biological mechanism and field application. J Environ Sci (China) 2023; 129:174-188. [PMID: 36804234 DOI: 10.1016/j.jes.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/18/2023]
Abstract
Reservoirs have been served as the major source of drinking water for dozens of years. The water quality safety of large and medium reservoirs increasingly becomes the focus of public concern. Field test has proved that water-lifting and aeration system (WLAS) is a piece of effective equipment for in situ control and improvement of water quality. However, its intrinsic bioremediation mechanism, especially for nitrogen removal, still lacks in-depth investigation. Hence, the dynamic changes in water quality parameters, carbon source metabolism, species compositions and co-occurrence patterns of microbial communities were systematically studied in Jinpen Reservoir within a whole WLAS running cycle. The WLAS operation could efficiently reduce organic carbon (19.77%), nitrogen (21.55%) and phosphorus (65.60%), respectively. Biolog analysis revealed that the microbial metabolic capacities were enhanced via WLAS operation, especially in bottom water. High-throughput sequencing demonstrated that WLAS operation altered the diversity and distributions of microbial communities in the source water. The most dominant genus accountable for aerobic denitrification was identified as Dechloromonas. Furthermore, network analysis revealed that microorganisms interacted more closely through WLAS operation. Oxidation-reduction potential (ORP) and total nitrogen (TN) were regarded as the two main physicochemical parameters influencing microbial community structures, as confirmed by redundancy analysis (RDA) and Mantel test. Overall, the results will provide a scientific basis and an effective way for strengthening the in-situ bioremediation of micro-polluted source water.
Collapse
Affiliation(s)
- Liqing Kou
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China.
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Kai Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Fengyao Hua
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Cheng Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Fan Si
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| |
Collapse
|
2
|
Ai S, Du L, Nie Z, Liu W, Kang H, Wang F, Bian D. Characterization of a novel micro-pressure double-cycle reactor for low temperature municipal wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2023; 44:394-406. [PMID: 34424135 DOI: 10.1080/09593330.2021.1972169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
To solve the deterioration of effluent caused by low temperature in urban sewage treatment plant in cold areas, a new type of reactor was proposed, the biochemical environmental and low-temperature operating characteristics of the reactor were studied. Through analysis of flow simulation and dissolved oxygen (DO) distribution when the aeration rate was 0.6 m3/h, it showed that there were many different DO environments in the reactor at the same time, which provided favourable conditions for various biochemical reactions. The operation test showed that the average effluent removal rate of COD, TN, NH4+-N and TP was 92.53%, 74.57%, 89.61% and 96.04%, respectively. And there were a variety of functional bacteria related to nitrogen and phosphorus removal in the system, most of them with strong adaptability at low temperatures. Among the dominant microorganisms, Flavobacterium and Rhodobacter were related to denitrification, Aeromonas and Thiothrix were related to phosphorous removal. Denitrifying phosphorus removal was the main way of phosphorus removal. Picrust2 results showed that the reactor operated well at low temperature, and the regional difference distribution of nitrification genes further confirmed the existence of functional zones in the reactor. The results showed that the Micro-pressure Double-cycle reactor worked well at low temperature, which provided a new idea and way for the upgrading of urban sewage treatment plants in cold areas.
Collapse
Affiliation(s)
- Shengshu Ai
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| | - Linzhu Du
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| | - Zebing Nie
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, People's Republic of China
| | - Wenai Liu
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| | - Hua Kang
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| | - Fan Wang
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| | - Dejun Bian
- Changchun Institute of Technology, Changchun, People's Republic of China
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun, People's Republic of China
| |
Collapse
|
3
|
Cao X, Shi Y, He W, An T, Chen X, Zhang Z, Liu F, Zhao Y, Zhou P, Chen C, He J, He W. Impacts of anthropogenic groundwater recharge (AGR) on nitrate dynamics in a phreatic aquifer revealed by hydrochemical and isotopic technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156187. [PMID: 35618121 DOI: 10.1016/j.scitotenv.2022.156187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Although anthropogenic groundwater recharge (AGR) can either elevate or decline the concentration of nitrate in the phreatic aquifer with high hydraulic conductivity, the long-term impact of AGR on nitrate dynamics in the phreatic aquifer and its reason is seldom disclosed. In this study, the hydrogen and oxygen stable isotopes (δ2H-H2O and δ18O-H2O) combined with mixing stable isotope analysis in R (MixSIAR) were used to group the study area into the dominant area of AGR by surface water (AGRSW) and the dominant area of natural groundwater recharged by precipitation (NGRP). Hydrochemical parameters and multiple stable isotopes, including δ2H-H2O, δ18O-H2O, δ15N-NO3-, δ18O-NO3-, and δ13C-DIC, were applied to explore the impacts of AGR on the concentration, biogeochemical processes, and main sources of nitrate. The results showed that AGR by surface water with low nitrate content can reduce nitrate pollution in groundwater. The characteristic of δ18O-NO3- value revealed that nitrification was the primary biogeochemical process of nitrogen in groundwater. AGR may enhance nitrification as indicated by the δ18O-NO3- value closer to the nitrification theoretical line. Dual nitrate stable isotopes and MixSIAR revealed that chemical fertilizer (CF), soil nitrogen (SN), and surface water (SW) contributed 10.88%, 49.92%, and 27.64% to nitrate in AGRSW groundwater, respectively, which was significantly different from their contributions to NGRP groundwater (p < 0.05). Notably, AGR significantly increased the contribution of SW but decreased the contribution of CF and SN in groundwater. This study provided a basis and guidance for groundwater quality assessment and pollution control in the phreatic aquifer with high hydraulic conductivity.
Collapse
Affiliation(s)
- Xu Cao
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuanyuan Shi
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| | - Wei He
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| | - Tongyan An
- Beijing Municipal Research Institute of Eco-Environment Protection, Beijing 100037, China
| | - Xiaorui Chen
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhanhao Zhang
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fei Liu
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yi Zhao
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Pengpeng Zhou
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Cuibai Chen
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jiangtao He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
4
|
Wang H, Yun H, Ma X, Li M, Qi M, Wang L, Li Z, Gao S, Tao Y, Liang B, Wang A. Bioelectrochemical catabolism of triclocarban through the cascade acclimation of triclocarban-hydrolyzing and chloroanilines-oxidizing microbial communities. ENVIRONMENTAL RESEARCH 2022; 210:112880. [PMID: 35123970 DOI: 10.1016/j.envres.2022.112880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Chlorinated antimicrobial triclocarban (3,4,4'-trichlorocarbanilide, TCC) is an emerging refractory contaminant omnipresent in various environments. Preferential microbial hydrolysis of TCC to chloroanilines is essential for its efficient mineralization. However, the microbial mineralization of TCC in domestic wastewater is poorly understood. Here, the bioelectrochemical catabolism of TCC to chloroanilines (3,4-dichloroaniline and 4-chloroaniline) and then to CO2 was realized through the cascade acclimation of TCC-hydrolyzing and chloroanilines-oxidizing microbial communities. The biodegradation of chloroanilines was obviously enhanced in the bioelectrochemical reactors. Pseudomonas, Diaphorobacter, and Sphingomonas were the enriched TCC or chloroanilines degraders in the bioelectrochemical reactors. The addition of TCC enhanced the synergistic effect within functional microbial communities based on the feature of the phylogenetic ecological networks. This study provides a new idea for the targeted domestication and construction of functionally differentiated microbial communities to efficiently remove TCC from domestic wastewater through a green and low-carbon bioelectrochemical method.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Minghan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
5
|
Huang Y, Zhang H, Liu X, Ma B, Huang T. Iron-Activated Carbon Systems to Enhance Aboriginal Aerobic Denitrifying Bacterial Consortium for Improved Treatment of Micro-Polluted Reservoir Water: Performances, Mechanisms, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3407-3418. [PMID: 35239323 DOI: 10.1021/acs.est.1c05254] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although many source waterbodies face nitrogen pollution problems, the lack of organic electron donors causes difficulties when aerobic denitrifying bacteria are used to treat micro-polluted water. Different forms of iron with granular activated carbon (AC) as carriers were used to stimulate aboriginal microorganisms for the purification of micro-polluted source water. Compared with the iron-absent AC system, targeted pollutants were significantly removed (75.76% for nitrate nitrogen, 95.90% for total phosphorus, and 80.59% for chemical oxygen demand) in the sponge-iron-modified AC system, which indicated that iron promoted the physical and chemical removal of pollutants. In addition, high-throughput sequencing showed that bacterial distribution and interaction were changed by ion dosage, which was beneficial for pollutant transformation and reduction. Microbial functions, such as pollutant removal and expression of functional enzymes that were responsible for the transformation of nitrate nitrogen to ammonia, were highly efficient in iron-applied systems. This study provides an innovative strategy to strengthen in situ remediation of micro-pollution in waterbodies.
Collapse
Affiliation(s)
- Yuwei Huang
- Xi'an Weiyuan Environmental Protection and Technology Co., Ltd., Xi'an 710054, China
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
6
|
Outer membrane vesicles mediated horizontal transfer of an aerobic denitrification gene between Escherichia coli. Biodegradation 2021; 32:435-448. [PMID: 33886019 DOI: 10.1007/s10532-021-09945-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Bacterial genetic material can be horizontally transferred between microorganisms via outer membrane vesicles (OMVs) released by bacteria. Up to now, the application of vesicle-mediated horizontal transfer of "degrading genes" in environmental remediation has not been reported. In this study, the nirS gene from an aerobic denitrification bacterium, Pseudomonas stutzeri, was enclosed in a pET28a plasmid, transformed into Escherichia coli (E. coli) DH5α and expressed in E. coli BL21. The E. coli DH5α released OMVs containing the recombination plasmid pET28a-nirS-EGFP. When compared with the free pET28a-nirS-EGFP plasmid's inability to transform, nirS in OMVs could be transferred into E. coli BL21 with the transformation frequency of 2.76 × 106 CFU/g when the dosage of OMVs was 200 µg under natural conditions, and nirS could express successfully in recipient bacteria. Furthermore, the recipient bacteria that received OMVs containing pET28a-nirS-EGFP could produce 18.16 U/mL activity of nitrite reductase.
Collapse
|
7
|
Kalaycı Kara A, Fakıoğlu Ö, Kotan R, Atamanalp M, Alak G. The investigation of bioremediation potential of Bacillus subtilis and B. thuringiensis isolates under controlled conditions in freshwater. Arch Microbiol 2021; 203:2075-2085. [PMID: 33595691 DOI: 10.1007/s00203-021-02187-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Bioremediation is widely used to remove water pollution as environmentally friendly smart solutions. In this study, Bacillus isolates were investigated in terms of the effectiveness of single and multiple cultures in eliminating aquatic pollution related to aquaculture activities. In the established experimental setups, the environments where Bacillus isolates were inoculated with single and multiple cultures at 1 × 107 CFU/mL were evaluated comparatively with control groups without these isolates, and total aerobic mesophilic bacterial counts were performed in the petri dish by inoculation method. At the end of the 6 days of the experiment, in the environment in which single and multiple cultures of Bacillus isolates were presented with 17-20 ± 0.05 °C temperature and 5.1-8.1 pH 2-4.6 mg/l dissolved oxygen values (O2), 2% increase in total phosphorus (TP) value was observed. On the other hand, 4% removal of Ammonia-nitrogen (NH3-N), 80% removal of Nitrite-nitrogen (NO2-N), and 100% removal of Nitrate-nitrogen (NO3-N) were observed. In the changes in heavy metal concentrations, the removal of Ni, Cr, Se, Al, Cd, Mn, Fe, and B was observed from highest to lowest as 57%, 50%, 50%, 43%, 40%, 23%, 5%, and 2%, respectively. It also has been seen that B. thuringiensis isolate was observed to be more effective than B. subtilis in metal removal.
Collapse
Affiliation(s)
- Ayşe Kalaycı Kara
- Department of Seafood Processing, Faculty of Fisheries, Recep Tayyip Erdoğan University, 53040, Rize, Turkey
| | - Özden Fakıoğlu
- Department of Freshwater Biology, Faculty of Fisheries, Ataturk University, 25240, Erzurum, Turkey
| | - Recep Kotan
- Department of Plant Protection, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, 25240, Erzurum, Turkey
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
8
|
Yin C, Li Y, Zhang T, Liu J, Yuan Y, Huang M. Effects of exposure to anionic surfactants (SDBS and SDS) on nitrogen removal of aerobic denitrifier. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:2129-2139. [PMID: 32585773 DOI: 10.1002/wer.1384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In order to explain the effect of anionic surfactants on aerobic denitrification in the urban river, sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulfonate (SDS) were added in aerobic denitrifier and the efficiency of nitrogen removal, microbial mechanisms, and enzyme activity was investigated in this study. The results showed that the total nitrogen (TN) and the nitrate nitrogen ( NO 3 - - N ) removal efficiency decreased as an increase of SDBS concentration. In contrast, 59.70% of the TN and 75.12% of NO 3 - - N were removed as the SDBS was 0 mg/L (Control). When SDBS was 200 mg/L (SDBS-200), the removal efficiency of TN and NO 3 - - N was reduced to 4.92% and 4.00%, respectively. However, the denitrification efficiency was significantly accelerated when the concentration of SDS increased, except for 200 mg/L treatment (SDS-200). As the SDS increased from 0 to 100 mg/L (SDS-100), the removal efficiency of TN and NO 3 - - N raised from 59.70% to 70.8% and from 75.12% to 85.08%, respectively. The community structure of aerobic denitrifiers was significantly affected in the SDBS and SDS. While the Cupriavidus and Achromobacter were dominant genera in the group of Control (39.59%, and 42.45%) and SDS-100 (44.40% and 34.86%), the relative abundance of Cupriavidus increased to 84.06% and 59.45% in the group of SDBS-200 and SDS-200, respectively. Enzyme activity assays proved that the nitrite reductase (NiR) relative activity of aerobic denitrification was suppressed by both SDBS and SDS. The increase in the SDS concentrations (from 0 to 50 mg/L) resulted in sharp growth of the nitrate reductase (NR) relative activities (from 100% to 146.86%). These findings demonstrated that SDBS and SDS affected aerobic denitrification efficiency of the aerobic denitrifiers by changing its microbial community structure and enzyme activity. PRACTITIONER POINTS: SDS strengthened aerobic denitrification at low concentration, but the aerobic denitrifiers were inhibited in SDBS. The variation of community structure played a vital role in the aerobic denitrification system. The enzyme activity was seriously affected by SDBS and SDS. Microorganisms and enzyme activity were synergistically involved in the aerobic denitrification.
Collapse
Affiliation(s)
- Chao Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ying Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Tingyue Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jiamin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuxin Yuan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Minsheng Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Yang C, Sun J, Chen Y, Wu J, Wang Y. Linkage between water soluble organic matter and bacterial community in sediment from a shallow, eutrophic lake, Lake Chaohu, China. J Environ Sci (China) 2020; 98:39-46. [PMID: 33097156 DOI: 10.1016/j.jes.2020.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Lacustrine sediment played important roles in migration and transformation of its water soluble organic matter (WSOM), and the source and composition of WSOM would affect water trophic status and the fate of pollutants. However, we know little about the pathway of WSOM transformation and its driving bacterial communities in lacustrine sediment. In the present study, we investigated the spatial distribution patterns of sediment WSOM and its fluorescent fractions across Lake Chaohu using fluorescence spectroscopy, and explored WSOM compositional structure through our proposed calculated ratios. In addition, we also analyzed sediment bacterial community using Illumina sequencing technology, and probed the possible pathway of sediment WSOM transformation under the mediate of indigenous bacteria. Our results showed that the inflowing rivers affected the spatial distribution patterns of WSOM and its five fractions (including tyrosine-, tryptophan-, fulvic acid-, humic acid-like substances and soluble microbial productions), and sediment WSOM originated from fresh algae detritus or bacterial sources. In parallel, we also found that Proteobacteria (mainly γ-Proteobacteria and δ-Proteobacteria), Firmicutes (mainly Bacilli), Chloroflexi, Acidobacteria, Planctomycetes and Actinobacteria dominate sediment bacterial community. Furthermore, these dominant bacteria triggered sediment WSOM transformation, specifically, the humic acid-like substances could be converted into fulvic acid-like substances, and further degraded into aromatic protein-like and SMP substances. In addition, our proposed ratios (P-L:H-L, Ar-P:SMP and H-L ratio), as supplementary tool, were effective to reveal WSOM composition structure. These results figured out possible pathway of WSOM transformation, and revealed its microbial mechanism in lacustrine sediment.
Collapse
Affiliation(s)
- Changming Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Jiliang Sun
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai BaoSen Environmental Technology Co., Ltd., Shanghai 200439, China
| | - Yingying Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan City 243002, China
| | - Jing Wu
- School of Energy and Environment, Anhui University of Technology, Maanshan City 243002, China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan City 243002, China.
| |
Collapse
|
10
|
Qiao Z, Sun R, Wu Y, Hu S, Liu X, Chan J, Mi X. Characteristics and metabolic pathway of the bacteria for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems. ENVIRONMENTAL RESEARCH 2020; 191:110069. [PMID: 32828759 DOI: 10.1016/j.envres.2020.110069] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/11/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the nitrogen removal characteristics and metabolic pathway of bacteria in aquatic ecosystem, with a focus on heterotrophic nitrification and aerobic denitrification. The bacteria demonstrated significant heterotrophic nitrification and aerobic denitrification capacity. The highest ammonium-N, nitrate-N, and nitrite-N removal efficiencies were 95.31 ± 0.11%, 98.91 ± 0.05%, and 98.79 ± 0.09%, respectively. The Monod model was used to estimate the maximum rate of substrate utilization (Rmo) and the half-saturation concentration (Ks) for the two substrates, i.e., ammonium and nitrate. The kinetic coefficients were 3.34 mg/L/d (Rmo) and 30.59 mg/L (Ks) for ammonium-N, respectively, and 14.23 mg/L/d (Rmo) and 215.24 mg/L (Ks) for nitrate-N, respectively. The effects of initial nitrogen (ammonium-N or nitrate-N) concentration, temperature, and dissolved oxygen (DO) on nitrogen removal rate were investigated using response surface methodology (RSM), and the optimal conditions for nitrogen removal were determined. The principal nitrogen removal pathway of the bacteria was proposed as complete heterotrophic nitrification and aerobic denitrification, which was performed by six key genera: Arthrobacter, Pseudomonas, Rhodococcus, Bacillus, Massilia, and Rhizobium. Chryseobacterium and other denitrifying species may also reduce nitrification products (NOX-) via aerobic denitrification.
Collapse
Affiliation(s)
- Zixia Qiao
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ran Sun
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yaoguo Wu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Sihai Hu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaoyan Liu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jiangwei Chan
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaohui Mi
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
11
|
Li M, Sun J, Liu C, Tang Y, Huang J. The remediation of urban freshwater sediment by humic-reducing activated sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115038. [PMID: 32599325 DOI: 10.1016/j.envpol.2020.115038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Organic pollution of urban rivers caused by stormwater discharge is a global problem. Traditional bioremediation of organic matters (OM) by aerobes could be restrained in anaerobic environments, which usually occurr in polluted river sediments. In this study, an anaerobic remediation technology has been developed to enhance the in-situ removal of organic matters in river sediments, humic-reducing sludge (HRS) was adapted from traditional activated sludge; it exhibited a strong humic-reducing ability. Nitrate and biostimulants were used to stimulate HRS. The change of microbial community between AQDS-adapted and non-AQDS-adapted was analyzed, and the effect of HRS augmentation and Nitrate/biostimulant addition on TOM removal were discussed from the perspective of light and heavy fraction organic matters (LFOM and HFOM). The results have indicated that, after adaptation, HRS had increased the bacterial population of Anaerolineales and Desulfuromonadales, which was related to the carbon metabolism and electron-transfer ability. On the other hand, the adaptation decreased the population of bacteria related to the sulfur/sulfate circulation. This characteristic of the HRS was potentially benificial to reducing the occurrence of black-odor phenomenon. Also, the removal efficiency of TOM in sediment was significantly improved by using HRS because HRS could facilitate the removal of HFOM. Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated that the advantage of decomposing HFOM using HRS resulted from the fact that the HFOM contained redox mediators to facilitate humic-reducing respiration. In addition, nitrate appeared to be crucial for the enhancement of HRS in sediments. These findings have allowed for the development of a technology for in-situ anaerobic remediation of urban river sediments. They could also help to understand humic-reducing mechanism in the sediment during anaerobic bioremediation.
Collapse
Affiliation(s)
- Meng Li
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin, University, Tianjin, 300350, PR China
| | - Jingmei Sun
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin, University, Tianjin, 300350, PR China
| | - Chang Liu
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Yinqi Tang
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Jianjun Huang
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
12
|
Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A. A critical review of aerobic denitrification: Insights into the intracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139080. [PMID: 32417477 DOI: 10.1016/j.scitotenv.2020.139080] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/04/2020] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
Aerobic denitrification is a novel biological nitrogen removal technology, which has been widely investigated as an alternative to the conventional denitrification and for its unique advantages. To fully comprehend aerobic denitrification, it is essential to clarify the regulatory mechanisms of intracellular electron transfer during aerobic denitrification. However, reports on intracellular electron transfer during aerobic denitrification are rather limited. Thus, the purpose of this review is to discuss the molecular mechanism of aerobic denitrification from the perspective of electron transfer, by summarizing the advancements in current research on electron transfer based on conventional denitrification. Firstly, the implication of aerobic denitrification is briefly discussed, and the status of current research on aerobic denitrification is summarized. Then, the occurring foundation and significance of aerobic denitrification are discussed based on a brief review of the key components involved in the electron transfer of denitrifying enzymes. Moreover, a strategy for enhancing the efficiency of aerobic denitrification is proposed on the basis of the regulatory mechanisms of denitrification enzymes. Finally, scientific outlooks are given for further investigation on aerobic denitrification in the future. This review could help clarify the mechanism of aerobic denitrification from the perspective of electron transfer.
Collapse
Affiliation(s)
- Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
13
|
Characteristics and Driving Factors of the Aerobic Denitrifying Microbial Community in Baiyangdian Lake, Xiong'an New Area. Microorganisms 2020; 8:microorganisms8050714. [PMID: 32403444 PMCID: PMC7284800 DOI: 10.3390/microorganisms8050714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022] Open
Abstract
Here, the ion-exchangeable form of nitrogen (IEF-N), weak-acid extractable form of nitrogen (WAEF-N), strong-alkali extractable form of nitrogen (SAEF-N), strong-oxidant extractable form of nitrogen (SOEF-N), residue nitrogen (Res-N), and total nitrogen (TN) showed spatial differences, and most of the sediment nitrogen fractions exhibited positive correlations in Baiyangdian Lake. High-throughput sequencing analysis revealed that the aerobic denitrification microbial community was composed of proteobacteria (42.04%–99.08%) and unclassified_bacteria (0.92%–57.92%). Moreover, the microbial community exhibited significant differences (R2 = 0.4422, P < 0.05) on the basis of the adonis analysis. T(temperature), Moisture content (MC), sediment total phosphorus (STP), ion-exchangeable form of ammonia (IEF-NH4+-N), weak-acid extractable form of ammonia (WAEF-NH4+-N), weak-acid extractable form of nitrate (WAEF-NO3−-N), and strong-alkali extractable form of ammonia (SAEF-NH4+-N) were the dominant environmental factors and explained 11.1%, 8.2%, 10.7%, 6.9%, 9.3%, 8.1%, 10.5%, 7.5%, and 7% variation, respectively, of the total variation in the microbial community. Furthermore, the network analysis showed that symbiotic relationships accounted for a major percentage of the microbial networks. The keystone aerobic denitrifying bacteria belonged to Comamonas, Rhodobacter, Achromobacter, Aeromonas, Azoarcus, Leptothrix_Burkholderiales, Pseudomonas, Thauera, unclassified_Burkholderiales, and unclassified_bacteria. The composition of the keystone aerobic denitrifying microbial community also exhibited significant differences (R2 = 0.4534, P < 0.05) on the basis of the adonis analysis. T, STP, IEF-NH4+-N, ion-exchangeable form of nitrate (IEF-NO3−-N), WAEF-NO3−-N, SAEF-NH4+-N, and TN were the dominant environmental factors that explained 8.4%, 6.2%, 4.6%, 5.9%, 5.9%, 4.5%, and 9.4% variation, respectively, of the total variation in the keystone aerobic denitrifying microbial community. The systematic investigation could provide a theoretical foundation for the evolution mechanism of the aerobic denitrifying microbial community in Baiyangdian Lake.
Collapse
|
14
|
Abdullahi K, Elreedy A, Fujii M, Ibrahim MG, Tawfik A. Robustness of anaerobes exposed to cyanuric acid contaminated wastewater and achieving efficient removal via optimized co-digestion scheme. J Adv Res 2020; 24:211-222. [PMID: 32373355 PMCID: PMC7191646 DOI: 10.1016/j.jare.2020.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 11/16/2022] Open
Abstract
The impact of various industrial pollutants on anaerobes and the biodegradation potentials need much emphasis. This study aims to investigate the response of anaerobic microbial systems to cyanuric acid (CA) exposure; CA is toxic and possible carcinogen. First, the long-term exposure of mixed culture bacteria (i.e., municipal sludge) to low-strength wastewater containing 20 mg/L CA was conducted in an up-flow anaerobic staged reactor. Stable performance and sludge granulation were observed, and the microbial community structure showed the progression of genus Acinetobacter known as CA degrader. Second, batch-mode experiment was performed to examine the CA biodegradability at higher doses (up to 250 mg/L of CA) in the absence and presence of glucose as a co-substrate; response surface-based optimization was used to design this experiment and to estimate the optimum CA-glucose combination. CA removal of 77-98% was achieved when CA was co-digested with glucose (250-1,000 mg/L), after 7 days-incubation at temperature of 37 °C, compared to 34% when CA was solely digested. Further, the obtained methane yield dropped when CA exceeded over 125 mg/L, though the deterioration was mitigated by addition of higher concentration of glucose. Overall, we conclude that CA is efficiently degraded under anaerobic conditions when being co-digested with readily assimilable substrate.
Collapse
Affiliation(s)
- Kabir Abdullahi
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
| | - Ahmed Elreedy
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan.,Sanitary Engineering Department, Alexandria University, Alexandria 21544, Egypt
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Mona G Ibrahim
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt.,Environmental Health Department, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt
| | - Ahmed Tawfik
- Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
15
|
Zhou S, Sun Y, Zhang Y, Huang T, Zhou Z, Li Y, Li Z. Pollutant removal performance and microbial enhancement mechanism by water-lifting and aeration technology in a drinking water reservoir ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135848. [PMID: 31905546 DOI: 10.1016/j.scitotenv.2019.135848] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Here, the performance and mechanism of pollutant removal in the Zhoucun reservoir by water-lifting and aeration systems (WLAs) were explored. The hypolimnion anoxic layer disappeared and the reservoir was mixed after the WLAs were operated for approximately 35 days, providing a suitable environment for pollutant removal. Operation of the system enhanced the metabolic activity of the water microbes and their capacity for purification, which contributed to the removal of nitrogen, organic carbon, Fe, Mn, P, and S. Specifically, the total N concentration decreased from 2.55 to 0.48 mg/L, showing an 81.18% removal rate. Microbial metabolism and the diversity index increased following the operation of the WLAs in the Zhoucun Reservoir. Furthermore, the water reservoir clearly inhibited the performance of Fe, Mn, P, and S through the WLA operation, meeting the requirements for class III based on the Chinese Surface Water Environmental Quality Standard (GB3838-2002). High-throughput sequencing analysis revealed increased levels of indicator and keystone operational taxonomic units belonging to Flavobacterium, hgcI_clade, Rheinheimera, Dechloromonas, Pseudomonas, and Rhodocyclaceae, which are related to the degradation of organic carbon and removal of nitrogen and phosphorus. Moreover, total N, ammonia, total P, dissolved oxygen, temperature, and pH were the principal factors affecting the microbial community based on redundancy analysis and the Mantel test. Furthermore, network analysis showed that symbiotic relationships accounted for the major proportion of the microbial network. Our results provide a theoretical foundation for the efficiency of N removal and essential technical support for improving the self-repair capacity of water in drinking water reservoirs.
Collapse
Affiliation(s)
- Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| | - Yue Sun
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yiran Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China.
| | - Zizhen Zhou
- School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yang Li
- School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Zaixing Li
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
16
|
Qiao Z, Wu Y, Qian J, Hu S, Chan J, Liu X, Sun R, Wang W, Zhou B. A lab-scale study on heterotrophic nitrification-aerobic denitrification for nitrogen control in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9307-9317. [PMID: 31916165 DOI: 10.1007/s11356-019-07551-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Nitrogen (N) loss is generally caused by denitrification under anaerobic conditions and the N loss in the heterotrophic nitrification_aerobic denitrification (HN_AD) system is of recent research interest. However, previous studies are generally focused on pure cultures-based system and the information on HN_AD in the complex aquatic ecosystem is limited. In this study, HN-AD system was established in the mixed cultures of the sediments and the performances of HN-AD were evaluated under different conditions. Further, the N loss mechanism in HN_AD system was explored. The study found that the N was lost in the sediment cultures with ammonium-N (NH4+_N) (or) and nitrate-N (NO3-_N) as N source under aerobic conditions. The highest N loss rate was achieved under the TOC/TN mass ratio of 10 with citrate as the carbon source. Under this condition, the N loss percentages of NH4+_N (201.91 mg/L) and NO3-_N (130.00 mg/L) reached 99.61% and 100.00%, respectively, which were higher than those in the pure HN_AD strains reported in the literature. High NH4+_N removal efficiencies were also achieved at low C/N mass ratio and high NH4+_N concentration (493.12 mg L-1). The N loss pathway in the system was investigated by adding Na2WO4 as the nitrate reductase inhibitor. The study found that the N was not lost via partial nitrification/denitrification pathway, i.e., NH4+ → NH2OH → NO2- → N2O (N2), instead via full nitrification/denitrification pathway, i.e., NH4+ → NH2OH → NO2- → NO3- → NO2- → N2O (N2), since nitrate was a key intermediate. The variation in NH4+_N, NO3-_N, and NO2-_N concentrations in the HN_AD processes further confirmed the N transformation pathway. Therefore, HN_AD may occur and cause N loss in natural aquatic ecosystems. The results of this study demonstrate that N was lost through HN-AD and that the well-cultured HN-AD sediments could be useful biological tool to remediate eutrophic water bodies.
Collapse
Affiliation(s)
- Zixia Qiao
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yaoguo Wu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Jin Qian
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
- Research & Development Institute, Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Sihai Hu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jiangwei Chan
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiaoyan Liu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ran Sun
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wendong Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Zhou
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
17
|
Bioremediation of contaminated river sediment and overlying water using biologically activated beads: A case study from Shedu river, China. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Rajta A, Bhatia R, Setia H, Pathania P. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. J Appl Microbiol 2019; 128:1261-1278. [PMID: 31587489 DOI: 10.1111/jam.14476] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022]
Abstract
With the increase in industrial and agricultural activities, a large amount of nitrogenous compounds are released into the environment, leading to nitrate pollution. The perilous effects of nitrate present in the environment pose a major threat to human and animal health. Bioremediation provides a cost-effective and environmental friendly method to deal with this problem. The process of aerobic denitrification can reduce nitrate compounds to harmless dinitrogen gas. This review provides a brief view of the exhaustive role played by aerobic denitrifiers for tackling nitrate pollution under different ecological niches and their dependency on various environmental parameters. It also provides an understanding of the enzymes involved in aerobic denitrification. The role of aerobic denitrification to solve the issues faced by the conventional method (aerobic nitrification-anaerobic denitrification) in treating nitrogen-polluted wastewaters is elaborated.
Collapse
Affiliation(s)
- A Rajta
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - R Bhatia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - H Setia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - P Pathania
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
19
|
Pan X, Lin L, Huang Z, Liu M, Dong L, Chen J, Crittenden J. Distribution characteristics and pollution risk evaluation of the nitrogen and phosphorus species in the sediments of Lake Erhai, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22295-22304. [PMID: 31152427 DOI: 10.1007/s11356-019-05489-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Erhai is a famous tectonic rift lake in China. In this study, the distribution of nitrogen and phosphorus species in Erhai sediment cores and their ecology risk were evaluated. The total nitrogen (TN) in the sediment cores ranged from 1583.3 to 8018.5 mg/kg. Nitrogen (N) was still accumulating in the sediment. For depths of 0 to 25 cm, the TN decreased dramatically and for deeper depths the TN got stabilized. The proportions of various N fractions in the sediments of the study areas ranked as follows: the strong oxidation extractable N (SOEF-N) > the weak acid extractable N (WAEF-N) > the strong alkali extractable N (SAEF-N) > the ion-exchangeable N (IEF-N). The total phosphorus (TP) ranged from 814.9 to 1442.3 mg/kg. The vertical distribution of each fraction of phosphorus showed that there were different sources of sediment phosphorus around the Erhai Lake. The results of nitrogen and phosphorus pollution evaluation in sediments by single pollution standard index method showed that the standard index of the TN (STN) ranged from 4.29 to 14.01, and the standard index of the TP (STP) ranged from 1.69 to 2.18. It illustrated that N and P in the sediments were the serious ecological pollution risks in Erhai Lake.
Collapse
Affiliation(s)
- Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China.
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China.
| | - Zhuo Huang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
| | - Min Liu
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
| | - Jin Chen
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
- Administration office, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
| | - John Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
20
|
Screening and Immobilizing the Denitrifying Microbes in Sediment for Bioremediation. WATER 2019. [DOI: 10.3390/w11030614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, immobilized microbial beads were proposed as a solution for excessive nitrogen concentration of the river sediment. The predominant denitrifying microbes were screened from the river sediment. The optimized production of immobilized microbial beads and long-term nitrogen removal efficiency were investigated. 16S rRNA gene sequencing analysis showed that denitrifying bacteria such as Pseudomonas, Alcaligenes, Proteiniclasticum, Achromobacter and Methylobacillus were dominant microflora in the enriched microbial agent, which accounted for 94.43% of the total microbes. Pseudomonas belongs to Gammaproteo bacteria, accounting for 49.22% and functioned as the most predominant denitrifying bacteria. The material concentration of 8% polyvinyl alcohol, 0.5% sodium alginate and 12.5% microbial biomass were found to be the optimal immobilizing conditions. The NH4+-N and total nitrogen (TN) removal rates in sediment with dosing immobilized microbial beads were estimated as 68.1% and 67.8%, respectively, when compared to the dosing liquid microbial agent were 50.5% and 49.3%. Meanwhile, the NH4+-N and TN removal rates in overlying water went up from 53.14% to 59.69% and from 68.03% to 78.13%, respectively, by using immobilized microbial beads.
Collapse
|
21
|
Zhou S, Zhang Y, Huang T, Liu Y, Fang K, Zhang C. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:998-1010. [PMID: 30266057 DOI: 10.1016/j.scitotenv.2018.09.160] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04-3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36-5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.
Collapse
Affiliation(s)
- Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yiran Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China.
| | - Yanfang Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Kaikai Fang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| | - Chunhua Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| |
Collapse
|