1
|
Jebesa WT, Astatkie T, Zerfu A, Kenea HD, Abamecha N, Shumuye M, Abera G, Kidane A, Hirko M, Assefa F. Impact of brewery sludge application on heavy metal build-up, translocation, growth and yield of bread wheat ( Triticum aestivum L.) crop in Northern Ethiopia. Heliyon 2024; 10:e32559. [PMID: 38961976 PMCID: PMC11219491 DOI: 10.1016/j.heliyon.2024.e32559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
In a field study, the impact of different levels of brewery sludge (BS) enrichment on Triticum aestivum L. (wheat plants) was examined in terms of growth, yield, heavy metal absorption, and potential health risks linked to plant consumption. Using a randomized complete block design with seven treatments and three blocks, the study showed that applying up to 12 t ha-1 brewery sludge significantly improved all agronomic parameters (except harvest index) compared to control and mineral-fertilized soil. Heavy metal translocation was generally low, except for Cu and Pb. The sequence of heavy metal translocation was Cu > Pb > Cd > Ni > Zn > Mn > Cr from soil to spikes and Cu > Zn > Mn > Pb > Ni > Cd > Cr from soil to grain. Heavy metal loads were mostly higher in roots than in the above-ground crop parts. The target hazard quotient (THQ), hazard index (HI), and target cancer risk (TCR) within wheat grain remained within safe limits for all BS treatments. Consequently, consuming this wheat grain is considered safe regarding heavy metals. Thus, utilizing brewery sludge at 12 t ha-1 as a fertilizer for wheat production and as an alternative method for sludge disposal is plausible.
Collapse
Affiliation(s)
| | | | - Ambachew Zerfu
- College of Agriculture and Natural Resource, Bonga University, Bonga, Ethiopia
| | - Hawi Deressa Kenea
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Nezif Abamecha
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Meresa Shumuye
- College of Agriculture and Natural Resource, Raya University, Maychew, Ethiopia
| | - Gezai Abera
- College of Agriculture and Natural Resource, Raya University, Maychew, Ethiopia
| | - Asmeret Kidane
- College of Agriculture and Natural Resource, Raya University, Maychew, Ethiopia
| | - Mignote Hirko
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Fenta Assefa
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Aina OE, Mugivhisa LL, Olowoyo JO, Obi CL. Heavy metals and potential health risk assessment of Lactuca sativa and Daucus carrota from soil treated with organic manures and chemical fertilizer. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:538. [PMID: 38730206 PMCID: PMC11087361 DOI: 10.1007/s10661-024-12687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The large-scale production of food crops with heavy application of chemical fertilizers in the effort to meet the astronomical increase in food demands may be counterproductive to the goal of food security. This study investigated the effect of different soil treatments on the levels of heavy metals (Cr, Cu, Fe, Ni, Pb, and Zn) in two types of vegetables Lactuca sativa (lettuce) and Daucus carrota (carrot). The potential carcinogenic and non-carcinogenic health risks from their consumption were also evaluated. Planting experiment was set up in a randomized block design, with different soil treatments of soil + cow dung (CD), soil + sewage sludge (SS), soil + chemical fertilizer (nitrogen-phosphorus-potassium (NPK)), and untreated soil (UNTRD). The vegetables were harvested at maturity, washed with distilled water, and subjected to an acid digestion process before the levels of heavy metals were measured by inductively coupled plasma spectrometry (ICP-MS). The mean concentrations of the metals in the vegetables across all treatments were below the maximum permissible limits. The pattern of heavy metal accumulation by the vegetables suggested that the lettuce from SS treatment accumulated higher concentrations of heavy metals like Cr (0.20 mg/kg), Cu (3.91 mg/kg), Ni (0.33 mg/kg), and Zn (20.44 mg/kg) than carrot, with highest concentrations of Fe (90.89 mg/kg) and Pb (0.16 mg/kg) recorded in lettuce from NPK treatment. The bioaccumulation factor (BAF) showed that lettuce, a leafy vegetable, has bioaccumulated more heavy metals than carrot, a root vegetable. The BAF was generally below the threshold value of 1 in both vegetables, except in lettuce from NPK and CD treatments and carrot from NPK treatments, with BAF values of 1.6, 1.69, and 1.39, respectively. The cancer risk assessment factors were well below the unacceptable maximum range of 10-4 suggesting that consuming these vegetables might not expose an individual to potential risk of cancer development. The hazard quotient estimations were below the threshold values of 1 for all heavy metals; however, the hazard index (HI) values of 1.27 and 1.58 for lettuce from NPK and SS treatments indicate a potential non-carcinogenic health risk to consumers from intake of all the heavy metals.
Collapse
Affiliation(s)
- O E Aina
- Department of Biology and Environmental Science: School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
| | - L L Mugivhisa
- Department of Biology and Environmental Science: School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - J O Olowoyo
- Department of Health Sciences and The Water School, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - C L Obi
- Department of Biology and Environmental Science: School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
3
|
Chane AD, Košnář Z, Hřebečková T, Jozífek M, Doležal P, Tlustoš P. Persistent polycyclic aromatic hydrocarbons removal from sewage sludge-amended soil through phytoremediation combined with solid-state ligninolytic fungal cultures. Fungal Biol 2024; 128:1675-1683. [PMID: 38575240 DOI: 10.1016/j.funbio.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment, causing increasing concern because of their impact on soil health, food safety and potential health risks. Four bioremediation strategies were examined to assess the dissipation of PAHs in agricultural soil amended with sewage sludge over a period of 120 days: soil-sludge natural attenuation (SS); phytoremediation using maize (Zea mays L.) (PSS); mycoremediation (MR) separately using three white-rot fungi (Pleurotus ostreatus, Phanerochaete chrysosporium and Irpex lacteus); and plant-assisted mycoremediation (PMR) using a combination of maize and fungi. In the time frame of the experiment, mycoremediation using P. chrysosporium (MR-PH) exhibited a significantly higher (P < 0.05) degradation of total PAHs compared to the SS and PSS treatments, achieving a degradation rate of 52 %. Both the SS and PSS treatments demonstrated a lower degradation rate of total PAHs, with removal rates of 18 % and 32 %, respectively. The PMR treatments showed the highest removal rates of total PAHs at the end of the study, with degradation rates of 48-60 %. In the shoots of maize, only low- and medium-molecular-weight PAHs were found in both the PSS and PMR treatments. The calculated translocation and bioconversion factors always showed values < 1. The analysed enzymatic activities were higher in the PMR treatments compared to other treatments, which can be positively related to the higher degradation of PAHs in the soil.
Collapse
Affiliation(s)
- Abraham Demelash Chane
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Zdeněk Košnář
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic.
| | - Tereza Hřebečková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Miroslav Jozífek
- Department of Horticulture, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Petr Doležal
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| |
Collapse
|
4
|
Ding Z, Chen W, Hou J, Wang Q, Liu W, Christie P, Luo Y. Hydrogen peroxide combined with surfactant leaching and microbial community recovery from oil sludge. CHEMOSPHERE 2022; 286:131750. [PMID: 34352537 DOI: 10.1016/j.chemosphere.2021.131750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The remediation effects of hydrogen peroxide (H2O2) oxidation and surfactant-leaching alone or in combination on three typical oilfield sludges were studied. The removal efficiency of total petroleum hydrocarbons (TPHs) of Jidong, Liaohe and Jiangsu oil sludges by hydrogen peroxide oxidation alone was very poor (6.5, 6.8, and 3.4 %, respectively) but increased significantly (p < 0.05), especially of long-chain hydrocarbons, by combining the use of H2O2 with surfactants (80.0, 79.8 and 82.2 %, respectively). Oxidation combined with leaching may impair microbial activity and organic manure was therefore added to the treated sludges for biostimulation and the composition and function of the microbial community were studied. The addition of manure rapidly restored sludge microbial activity and significantly increased the relative abundance of some salt-tolerant and alkali-tolerant petroleum-degrading bacteria such as Corynebacterium, Pseudomonas, Dietzia and Jeotgalicoccus. Moreover, the relative abundance of two classic petroleum-degrading enzyme genes, alkane 1-monooxygenase and catechol 1, 2-dioxygenase, increased significantly.
Collapse
Affiliation(s)
- Zhixian Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyan Chen
- Jiangsu East China New Energy Exploration Co., Ltd., Nanjing, 210005, China
| | - Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingling Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
5
|
Hu Y, Khomenko O, Shi W, Velasco-Sánchez Á, Ashekuzzaman SM, Bennegadi-Laurent N, Daly K, Fenton O, Healy MG, Leahy JJ, Sørensen P, Sommer SG, Taghizadeh-Toosi A, Trinsoutrot-Gattin I. Systematic Review of Dairy Processing Sludge and Secondary STRUBIAS Products Used in Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.763020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Worldwide dairy processing plants produce high volumes of dairy processing sludge (DPS), which can be converted into secondary derivatives such as struvite, biochar and ash (collectively termed STRUBIAS). All of these products have high fertilizer equivalent values (FEV), but future certification as phosphorus (P)-fertilizers in the European Union will mean they need to adhere to new technical regulations for fertilizing materials i.e., content limits pertaining to heavy metals (Cd, Cu, Hg, Ni, Pb, and Zn), synthetic organic compounds and pathogens. This systematic review presents the current state of knowledge about these bio-based fertilizers and identifies knowledge gaps. In addition, a review and calculation of greenhouse gas emissions from a range of concept dairy sludge management and production systems for STRUBIAS products [i.e., biochar from pyrolysis and hydrochar from hydrothermal carbonization (HTC)] is presented. Results from the initial review showed that DPS composition depends on product type and treatment processes at a given processing plant, which leads to varied nutrient, heavy metal and carbon contents. These products are all typically high in nutrients and carbon, but low in heavy metals. Further work needs to concentrate on examining their pathogenic microorganism and emerging contaminant contents, in addition to conducting an economic assessment of production and end-user costs related to chemical fertilizer equivalents. With respect to STRUBIAS products, contaminants not present in the raw DPS may need further treatment before being land applied in agriculture e.g., heated producing ashes, hydrochar, or biochar. An examination of these products from an environmental perspective shows that their water quality footprint could be minimized using application rates based on P incorporation of these products into nutrient management planning and application by incorporation into the soil. Results from the concept system showed that elimination of methane emissions was possible, along with a reduction in nitrous oxide. Less carbon (C) is transferred to agricultural fields where DPS is processed into biochar and hydrochar, but due to high recalcitrance, the C in this form is retained much longer in the soil, and therefore STRUBIAS products represent a more stable and long-term option to increase soil C stocks and sequestration.
Collapse
|
6
|
Tomczyk B, Siatecka A, Jędruchniewicz K, Sochacka A, Bogusz A, Oleszczuk P. Polycyclic aromatic hydrocarbons (PAHs) persistence, bioavailability and toxicity in sewage sludge- or sewage sludge-derived biochar-amended soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141123. [PMID: 32795789 DOI: 10.1016/j.scitotenv.2020.141123] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Soils can be contaminated with polycyclic aromatic hydrocarbons (PAHs) when either sewage sludge (SSL) or biochar (BC) are used. There are no comparative studies regarding the effects of soil amendment with SSL or BC on the persistence, bioavailability and toxicity of PAHs. This research compared the persistence of PAHs (based on the extractable content, Ctot) and their bioavailability (freely dissolved, Cfree) as well as the toxicity (solid phase: Phytotoxkit F with Lepidium sativum and the Collembolan test with Folsomia candida; leachates: Phytotestkit F with L. sativum and Microtox® with Aliivibrio fischeri) of soil amended with SSL or with SSL-derived BCs. BCs were produced from three different sewage sludges at a temperature of 500 °C. SSLs or BCs were added to the soil at a rate of 1% (30 t/ha). Adding SSL to the soil increased more the PAH content in it than after BC application, which was associated with a higher content of PAHs in SSL. Losses of Σ16 Ctot and Cfree PAHs were higher than those observed for biochar only in the case of one SSL. In the other cases, PAH losses were either higher for biochar or did not differ significantly between SSL and BC. On the other hand, the analysis of the individual groups of PAHs showed significant differences between SSL and BC, both for Ctot and Cfree. Nonetheless, these differences were largely driven by the type of sewage sludge and biochar. Only in the case of root growth inhibition the toxicity higher was for the SSL-amended soils than for the BC-amended ones. In the other cases, varying results were observed which were determined by the type of sewage sludge/biochar, similarly to PAH losses.
Collapse
Affiliation(s)
- Beata Tomczyk
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, ul. Krucza 5/11D, 00-548 Warszawa, Poland
| | - Anna Siatecka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Katarzyna Jędruchniewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Aleksandra Sochacka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, ul. Krucza 5/11D, 00-548 Warszawa, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
7
|
Lopes BC, Figueiredo RS, Araújo JC, Matos AT. Bacterial community dynamics in tropical soil after sewage sludge amendment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2937-2947. [PMID: 33341783 DOI: 10.2166/wst.2020.523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the widespread use of sewage sludge in developing countries is common, little is known about how sludge disposal can affect the microbial composition and diversity of tropical soils. We evaluated the effects of the sewage sludges of two types of anaerobic digestors differing, by the biological treatment they have undergone (uplow anaerobic sludge blanket and activated sludge digester), and two different disposal methods (surface and incorporated) on tropical soils. Samples were taken from topsoil (0-10 cm) and analyzed by amplifying the 16S rRNA genes to study the microbial community, and physicochemical analysis was performed concomitantly. The results indicated that, in general, sewage sludge amendment (SSA) significantly changed the tropical soil bacterial community by the sludge type and by application method. Moreover, the redundancy analysis diagram indicates that changes in soil chemical parameters over time due to SSA resulted in changes in the bacterial community's composition, increasing the population responsible for recycling nutrients in the soil.
Collapse
Affiliation(s)
- Bruna C Lopes
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antonio Carlos Avenue 6627, Belo Horizonte, Brazil E-mail:
| | - Raíssa S Figueiredo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antonio Carlos Avenue 6627, Belo Horizonte, Brazil E-mail:
| | - Juliana C Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antonio Carlos Avenue 6627, Belo Horizonte, Brazil E-mail:
| | - Antonio T Matos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antonio Carlos Avenue 6627, Belo Horizonte, Brazil E-mail:
| |
Collapse
|
8
|
Huang Z, Xiang X, Xu L, Cai Y. Phenylmethylsiloxanes and trifluoropropylmethylsiloxanes in municipal sludges from wastewater treatment plants in China: Their distribution, degradation and risk assessment. WATER RESEARCH 2020; 185:116224. [PMID: 32758790 DOI: 10.1016/j.watres.2020.116224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Based on wastewater and raw/digested sludge samples from 29 wastewater treatment plants in 25 Chinese cities, the nationwide profiles of cis- and trans- isomers of phenylmethylsiloxanes (P3 and P4) and trifluoropropylmethylsiloxanes (D3F and D4F) were investigated. Calculated with paired influents/sludges positive for these compounds, majority (93% at mean) of them were found accumulating in raw sludges [<LOQ-188 ng/g dw (dry weight), df (detection frequency) = 0-96.6%, n = 58] during wastewater treatment. Overall, trifluoropropylmethylsiloxanes were merely found in 6 cities, while phenylmethylsiloxanes were found in all cities distributed over seven geographic regions of China. Sludge emissions of phenylmethylsiloxanes in each region correlated with their reported consumption volume (R2 = 0.81, except for the Southwest China), per capita gross domestic products (R2 = 0.20), and annual average temperature (R2 = 0.63). Although not found in wastewater biological treatment processes, degradation of phenylmethylsiloxanes and trifluoropropylmethylsiloxanes was apparent (3.0-25.9%) during sludge-digestion processes. In digestion experiments, detection of silanediols and silanetriols indicated possible biodegradation pathway, i.e., hydrolysis of Si-O and Si-C bones, with half-lives ranging from 33.7-57.7 d The calculated hazard quotients of these compounds in soils undergoing one year sludge-fertilization were less than 0.01, but their ecological risks should be further studied in view of their potential accumulation in soils.
Collapse
Affiliation(s)
- Zichun Huang
- Hubei Key Laboratory of Environmental and Health Effects of Persistence Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoling Xiang
- Hubei Key Laboratory of Environmental and Health Effects of Persistence Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Lin Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yaqi Cai
- Hubei Key Laboratory of Environmental and Health Effects of Persistence Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
9
|
Guoqing X, Xiuqin C, Liping B, Hongtao Q, Haibo L. Absorption, accumulation and distribution of metals and nutrient elements in poplars planted in land amended with composted sewage sludge: A field trial. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109360. [PMID: 31265970 DOI: 10.1016/j.ecoenv.2019.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Interest in the application of sewage sludge as amendments to grow trees has continued to increase, especially for fast-growing trees such as poplars. In this study, two-year field trial was conducted to determine the effects of compost sewage sludge (CSS) soil application on the distributions of metal and nutrient elements in poplars (Populus × euramericana 'Guariento') and poplar growth. Soil was amended with one of four CSS treatments in both study years: control (2012, 2013: 0 t/ha), SS1 (2012: 7.5 t/ha, 2013: 15 t/ha), SS2 (2012: 15 t/ha, 2013: 30 t/ha), and SS3 (2012: 30 t/ha, 2013: 45 t/ha). During the two-year field trial period, CSS treatments significantly affected leaf K, Mg, Ni, Cr, and Pb contents and root P contents. The element contents in different plant parts responded differently to the different CSS application rates; microelement contents in roots and trace element contents in leaves were significantly affected by the high sludge treatment. The CSS application significantly influenced Ca, Na, Cu, Ni, and Pb accumulation in aerial parts of poplar and the distributions of N, S, Ni, Mg, and P between roots and leaves or stems, and significantly increased the diameter at breast height (DBH) of poplars by 2.4-18.6%. The CSS application of 15 t/ha per year resulted in the largest average increase in DBH of 11.1%; therefore, it could be considered as the most suitable application rate. In summary, CSS application can improve nutrition uptake in various parts of poplars and promote the growth of poplar. Poplar forest amendment is a good CSS disposal strategy.
Collapse
Affiliation(s)
- Xu Guoqing
- Key Laboratory of Urban Rainwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment, State Forestry Administration, Beijing, 100091, China
| | - Cao Xiuqin
- Key Laboratory of Urban Rainwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Bai Liping
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment, State Forestry Administration, Beijing, 100091, China.
| | - Qi Hongtao
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment, State Forestry Administration, Beijing, 100091, China
| | - Lu Haibo
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment, State Forestry Administration, Beijing, 100091, China
| |
Collapse
|
10
|
Lu Y, Zheng G, Zhou W, Wang J, Zhou L. Bioleaching conditioning increased the bioavailability of polycyclic aromatic hydrocarbons to promote their removal during co-composting of industrial and municipal sewage sludges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:1073-1082. [PMID: 30893739 DOI: 10.1016/j.scitotenv.2019.02.174] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/26/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Conditioning treatments are extensively employed in wastewater treatment plants (WWTPs) to enhance sludge dewaterability, thereby improving the sludge dehydration during mechanical dewatering. However, it remains unclear whether the sludge conditioning treatments would influence the removal of polycyclic aromatic hydrocarbons (PAHs) during the dewatered sludge composting. In this study, the influences of three sludge conditioning methods, including bioleaching conditioning driven by Acidithiobacillus ferrooxidans, chemical conditioning with Fe[III]/CaO, and chemical conditioning with polyacrylamide (PAM), on the bioavailability of PAHs in dewatered sludge and the PAH removal during the co-compositing of industrial and municipal sewage sludges were investigated. The results showed that bioleaching conditioning was capable to significantly increase the bioavailability of PAHs in dewatered sludge, which was not attained by the other two conditioning methods. During the 39 days composting of dewatered sludge, the total removal efficiency of six detected PAHs (∑PAHs) including acenaphthylene, fluorene, phenanthrene, anthracene, chrysene and benzo(k)fluoranthene was 58.7% in raw sludge, 58.5% in PAM-conditioned sludge, 76.4% in bioleached sludge, and 60.4% in Fe[III]/CaO-conditioned sludge, respectively, and the removal of acenaphthylene, chrysene and benzo(k)fluoranthene was much higher in bioleached sludge than in other sludges. During dewatered sludge composting, PAHs may mainly be degraded by the bacteria belonging to the genera Luteimonas, Glutamicibacter, Alcanivorax, Dechloromonas, Ferribacterium, Truepera and Sphingobacterium. Linear correlation analysis between PAH removal and their bioavailability revealed that the promoted PAH removal during the composting of dewatered bioleached sludge may ascribe to the enhanced bioavailability of individual PAH. Therefore, the combination of bioleaching conditioning and subsequent dewatered sludge composting is effective to remove PAHs in sewage sludge, thus alleviating the loads of PAHs during the land application of sludge compost products.
Collapse
Affiliation(s)
- Yi Lu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Wenbin Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajun Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
11
|
Zhao F, Yang L, Chen L, Xiang Q, Li S, Sun L, Yu X, Fang L. Soil contamination with antibiotics in a typical peri-urban area in eastern China: Seasonal variation, risk assessment, and microbial responses. J Environ Sci (China) 2019; 79:200-212. [PMID: 30784443 DOI: 10.1016/j.jes.2018.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 05/11/2023]
Abstract
The prevalence and persistence of antibiotics in soils has become an emerging environmental issue and an increasing threat to soil security and global public health. The problem is more severe in areas undergoing rapid urbanization; however, the ecological risks of antibiotics, seasonal variability, and associated soil microbial responses in peri-urban soils have not been well-explored. The seasonal soil sampling campaigns were conducted in a typical peri-urban watershed in eastern China to investigate distribution of antibiotics. The results demonstrated higher mean concentrations of most antibiotic compounds in winter than in summer in peri-urban soils. The seasonal variations of norfloxacin, enrofloxacin, and ciprofloxacin were more significant than those of other antibiotics, due to their higher migration ability and bioavailability. An ecological risk assessment demonstrated that chlortetracycline, ciprofloxacin, doxycycline, and ofloxacin can pose high risks to soil microorganisms. Furthermore, the coexistence of multiple antibiotics obviously poses higher risks than individual compounds. A redundancy analysis demonstrated that tetracyclines mainly showed negative correlations with Firmicutes and Chloroflexi, and quinolones showed obviously negative correlations with Acidobacteria, Gemmatimonadetes, and Nitrospirae, suggesting potential inhibition from antibiotics on biological activities or biodegradation processes. However, the persistence of antibiotics in soil results in a significant decrease in bacterial diversity and a change in dominant species. Our results provide an overview of the seasonal variability of antibiotics and the associated effects on bacterial communities in peri-urban soils. The results can provide scientific guidance on decreasing soil contamination with antibiotics to enhance soil security in similar areas.
Collapse
Affiliation(s)
- Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China..
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Xiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shoujuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan 316021, China
| | - Li Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan 316021, China
| |
Collapse
|
12
|
Sun SJ, Zhao ZB, Li B, Ma LX, Fu DL, Sun XZ, Thapa S, Shen JM, Qi H, Wu YN. Occurrence, composition profiles and risk assessment of polycyclic aromatic hydrocarbons in municipal sewage sludge in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:764-770. [PMID: 30502706 DOI: 10.1016/j.envpol.2018.11.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/15/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
A nationwide survey, including 75 sludge samples and 18 wastewater samples taken from different wastewater treatment plants (WWTPs) from 23 cities, was carried out to investigate the occurrence and composition profiles of polycyclic aromatic hydrocarbons (PAHs) in China. In total, the concentrations of ∑16PAHs in sludge ranged from 565 to 280,000 ng/g (mean: 9340 ng/g) which was at a moderate level in the world. The composition profiles of PAHs were characterized by 3- and 4-ring PAHs in textile dyeing sludge and 4- and 5-ring PAHs in domestic sludge. Significant variations in regional distribution of PAHs were observed. Both the principal components analysis and diagnostic ratios revealed that vehicle exhaust, coal and natural gas combustion were the main sources of PAHs in China. The estimated concentrations of PAHs were 3820 ng/L and 1120 ng/L in influents and effluents of the WWTPs, respectively. The high toxic equivalent quantity (TEQ) values of PAHs are ascribed to the high PAH levels. Risk quotient values (RQs) in sludge indicated that there was low potential risk to soil ecosystem after sludge had been applied one year except for indeno [1,2,3-cd]pyrene (IcdP) detected in Huaibei, Anhui province.
Collapse
Affiliation(s)
- Shao-Jing Sun
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ze-Bin Zhao
- School of Management, Harbin Institute of Technology, Harbin, 150090, China
| | - Bo Li
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li-Xin Ma
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dong-Lei Fu
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xia-Zhong Sun
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Samit Thapa
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Min Shen
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong Qi
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yi-Ning Wu
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
13
|
Smith K, Liu S, Hu HY, Dong X, Wen X. Water and energy recovery: The future of wastewater in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1466-1470. [PMID: 29801239 DOI: 10.1016/j.scitotenv.2018.05.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
China is increasing its use of non-conventional water sources - seawater desalination, surface water transfer and wastewater reuse - to meet demand. Getting and treating water from these sources generally requires more energy than is needed for local freshwater sources. This increases the cost and greenhouse gas emissions associated with water supply. It also leads us to the question: are alternative water sources necessary and, if so, which source should be preferred? Here we argue that reclaiming and reusing wastewater is often the least energy-intensive alternative source for water-scarce areas of China, particularly when energy present in wastewater is recovered during the process.
Collapse
Affiliation(s)
- Kate Smith
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuming Liu
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hong-Ying Hu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xin Dong
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Sharma B, Kothari R, Singh RP. Growth performance, metal accumulation and biochemical responses of Palak (Beta vulgaris L. var. Allgreen H-1) grown on soil amended with sewage sludge-fly ash mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12619-12640. [PMID: 29468393 DOI: 10.1007/s11356-018-1475-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Agricultural utilization of sewage sludge (SS) and fly ash (FA) has become both, a common practice and an alternative disposal method for these wastes all around the world. The present study was conducted to assess the effect and viability of co-application of SS and FA (SLASH) in four mixing ratios denoted as A [4 (SS): 1(FA)], B [4 (SS): 2 (FA)], C [4 (SS): 3 (FA)] and D [4 (SS): 4(FA)] at three application rates viz. 20, 40 and 60% (w/w) with agricultural soil on biochemical, physiological and growth response of Palak (Beta vulgaris L. var. Allgreen H-1), a commonly used green leafy vegetable. SLASH amendment modified the physico-chemical properties of soil and increased the concentration of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) in soil and plant parts however, within the Indian permissible limit except for Cr, Cd and Zn in shoot. Experimental results revealed decrease in morphological and growth parameters such as root and shoot length, leaf area, root, shoot biomass etc. Lipid peroxidation, ascorbic acid, proline and protein content increased however, total chlorophyll and carotenoid content decreased indicating towards heavy metal stress induced biochemical and physiological response in Palak plants. Significant increase in yield was seen in some of the treatments viz. three mixing ratios B, C and D, with maximum increment shown by mixture D at 20 and 40% amendment rate. The results of this study suggest that though SLASH amendment for growing Palak improved the physico-chemical properties of soil amended and also the yield of the plants in some treatments, it may not be a good option due to risk of contamination of heavy metals such as Cr, Cd and Zn showing higher accumulation.
Collapse
Affiliation(s)
- Bhavisha Sharma
- Department of Environment and Sustainable Development, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Richa Kothari
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
- Department of Environmental Science, Central University of Jammu, Samba, (J & K), 181143, India
| | - Rajeev Pratap Singh
- Department of Environment and Sustainable Development, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
15
|
Li H, Ye M, Zheng L, Xu Y, Sun S, Du Q, Zhong Y, Ye S, Zhang D. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 2017:390-403. [PMID: 29851391 DOI: 10.2166/wst.2018.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study explores the potential for synchronous extraction of Cu, Cr, Ni and Zn during sewage sludge bioleaching processes, using three types of bacterial cultures: a pure culture of Acidithiobacillus ferrooxidans (A. ferrooxidans); a pure culture of Acidithiobacillus thiooxidans (A. thiooxidans); and a mixed culture of A. ferrooxidans and A. thiooxidans. Variable operating parameters included initial pH, solids concentration, sulfur concentration and ferrous iron concentration, with optimization via Box-Behnken design of response surface methodology. Results indicate that the mixed culture of A. ferrooxidans and A. thiooxidans, was the most effective at bioleaching heavy metals from sewage sludge. The optimal operating conditions were as follows: an initial pH of 2.0, with concentrations of 3% solids, 6.14 g L-1 sulfur and 4.55 g L-1 ferrous iron. Maximum extraction efficiencies obtained after 14 days of bioleaching under optimal conditions, were 98.54% Cu, 57.99% Cr, 60.06% Ni and 95.60% Zn. Bioleaching kinetics were effectively simulated using a shrinking core model to explain the leaching reaction, with modelling results suggesting that the rate was determined by the diffusion step.
Collapse
Affiliation(s)
- Haifei Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Maoyou Ye
- Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China and Key Laboratory of Heavy Metals Pollution Prevention and Vocational Education of Guangdong Environmental Protection of Mining and Metallurgy Industry, Foshan 528216, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail: ; Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China and Key Laboratory of Heavy Metals Pollution Prevention and Vocational Education of Guangdong Environmental Protection of Mining and Metallurgy Industry, Foshan 528216, China
| | - Qingping Du
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Yujian Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Shengjun Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Dongsheng Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| |
Collapse
|
16
|
Arif MS, Riaz M, Shahzad SM, Yasmeen T, Ashraf M, Siddique M, Mubarik MS, Bragazza L, Buttler A. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:517-527. [PMID: 29156271 DOI: 10.1016/j.scitotenv.2017.11.143] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
A field study was conducted to test the potential of 5-year consecutive application of fresh industrial sludge (FIS) and composted industrial sludge (CIS) to restore soil functions at surface (0-15cm) and subsurface (15-30cm) of the degraded agricultural land. Sludge amendments increased soil fertility parameters including total organic carbon (TOC), soil available nitrogen (SAN), soil available phosphorus (SAP) and soil available potassium (SAK) at 0-15cm depth. Soil enzyme activities i.e. dehydrogenase (DHA), β-glucosidase (BGA) and alkaline phosphatase (ALp) were significantly enhanced by FIS and CIS amendments in surface soil. However, urease activity (UA) and acid phosphatase (ACp) were significantly reduced compared to control soil. The results showed that sludge amendments significantly increased microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) at both soil depth, and soil microbial biomass carbon (MBC) only at 0-15cm depth. Significant changes were also observed in the population of soil culturable microflora (bacteria, fungi and actinomycetes) with CIS amendment in surface soil suggesting persistence of microbial activity owing to the addition of organic matter source. Sludge amendments significantly reduced soil heavy metal concentrations at 0-15cm depth, and the effect was more pronounced with CIS compared to unamended control soil. Sludge amendments generally had no significant impact on soil heavy metal concentrations in subsoil. Agronomic viability test involving maize was performed to evaluate phytotoxicity of soil solution extract at surface and sub-surface soil. Maize seeds grown in solution extract (0-15cm) from sludge treated soil showed a significant increase of relative seed germination (RSG), relative root growth (RRG) and germination index (GI). These results suggested that both sludge amendments significantly improved soil properties, however, the CIS amendment was relatively more effective in restoring soil functions and effectively immobilizing wastewater derived heavy metals compared to FIS treatment.
Collapse
Affiliation(s)
- Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Bâtiment GR, Station 2, CH-1015 Lausanne, Switzerland; WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Station 2, Case Postale 96, CH-1015 Lausanne, Switzerland.
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sher Muhammad Shahzad
- Department of Soil & Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ashraf
- Department of Soil & Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Siddique
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Luca Bragazza
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Bâtiment GR, Station 2, CH-1015 Lausanne, Switzerland; WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Station 2, Case Postale 96, CH-1015 Lausanne, Switzerland; University of Ferrara, Department of Life Science and Biotechnologies, Corso Ercole I d'Este 32, I-44121 Ferrara, Italy
| | - Alexandre Buttler
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Bâtiment GR, Station 2, CH-1015 Lausanne, Switzerland; WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Station 2, Case Postale 96, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Eid EM, Alrumman SA, El-Bebany AF, Hesham AEL, Taher MA, Fawy KF. The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers (Cucumis sativus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16371-16382. [PMID: 28550630 DOI: 10.1007/s11356-017-9289-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg-1) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg-1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg-1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor <1.0. All of the heavy metals (except Cd, Cu and Zn) had translocation factors that were <1.0. As a result, the sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal. Graphical Abstract The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers.
Collapse
Affiliation(s)
- Ebrahem M Eid
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61321, Saudi Arabia.
- Botany Department, Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Sulaiman A Alrumman
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61321, Saudi Arabia
| | - Ahmed F El-Bebany
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61321, Saudi Arabia
- Plant Pathology Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt
| | - Abd El-Latif Hesham
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61321, Saudi Arabia
- Genetics Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Mostafa A Taher
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61321, Saudi Arabia
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Khaled F Fawy
- Chemistry Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61321, Saudi Arabia
| |
Collapse
|