1
|
Hummadi KK, Zhu L, He S. Bio-adsorption of heavy metals from aqueous solution using the ZnO-modified date pits. Sci Rep 2023; 13:22779. [PMID: 38123837 PMCID: PMC10733537 DOI: 10.1038/s41598-023-50278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
The bio-adsorption of heavy metals (including Cu2+, Ni2+, and Zn2+) in aqueous solution and also in an industry wastewater using the ZnO-modified date pits (MDP) as the bio-adsorbent are investigated. The fresh and used bio-adsorbents were characterized by FT-IR, SEM, BET, and XRD. The bio-adsorption parameters (including the pH of solution, the particle size of MDP, the shaking speed, the initial concentration of heavy metals, the dosing of MDP, the adsorption time, and the adsorption temperature) were screened and the data were used to optimize the bio-adsorption process and to study the bio-adsorption isotherms, kinetics, and thermodynamics. Two adsorption models (Langmuir isotherm model and Freundlich isotherm model) and three kinetic models (pseudo-first-order model, pseudo-second-order model, and intra-particle diffusion model) were applied to model the experimental data. Results show that the maximum adsorption amount of Cu2+, Ni2+, and Zn2+ on a complete monolayer of MDP are 82.4, 71.9, and 66.3 mg g-1, which are over 4 times of those of date pits-based bio-adsorbents reported in literature. The bio-adsorption of heavy metals on MDP is spontaneous and exothermic, and is regulated by chemical adsorption on the homogeneous and heterogeneous adsorption sites of MDP surface. This work demonstrates an effective modification protocol for improved bio-adsorption performance of the date pits-based bio-adsorbent, which is cheap and originally from a waste.
Collapse
Affiliation(s)
- Khalid Khazzal Hummadi
- Joint International Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- College of Engineering, University of Baghdad, 47024, Aljadria, Baghdad, Iraq.
| | - Lin Zhu
- Joint International Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Songbo He
- Joint International Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- CoRe Pro BV, 9722NJ, Groningen, The Netherlands.
| |
Collapse
|
2
|
Cerrahoğlu Kaçakgil E, Turanlı A, Dizman C. Polymeric Networks Derived from UV-Curing of Bio-Based Polyesters for Methyl Violet Removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87129-87144. [PMID: 37420155 DOI: 10.1007/s11356-023-28599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
In this study, firstly, the syntheses and characterizations of biobased polyesters with different acid values obtained from the condensation reaction of biobased itaconic acid and polyethylene glycol were investigated. Then, UV curing was applied to form polymeric networks as adsorbent material from these polyesters containing different acids. Fourier transform infrared spectrometry (FTIR), Nuclear Magnetic Resonance Spectroscopy (NMR), X-ray Photoelectron Spectroscopy (XPS), Gel Permeation Chromatography (GPC) and scanning electron microscope (SEM) were used for the characterization of polymeric networks. The effects of the parameters of contact time, initial dye concentration, pH, temperature, amount of adsorbent on adsorption were investigated by batch method. In addition, adsorption equilibrium data were analyzed by Langmuir, Freundlich, Tempkin, Elovich, Redlich-Peterson, Harkin-Jura and Jossens adsorption models. Kinetic and thermodynamic studies were performed at 298, 308, 318 and 328 K and desorption studies were also examined. Comparison studies for the effects of the acid values of the adsorbent materials on the removal of methyl violet (MV) organic pollutant from aqueous solutions were analyzed. According to the pseudo-second-order model, the adsorption capacities were found to be ≥ 357.14 mg/g for the adsorbents. From the thermodynamic data, it was determined that the mechanism was exothermic and spontaneous. As a result of the third reuse, it was found that the adsorbents had a removal efficiency of ≥ 72.36%. According to the results observed the increase in the acidities in the chemical structure of bio-based polymeric networks enhances the adsoption properties.
Collapse
Affiliation(s)
| | - Aleyna Turanlı
- İzel Kimya Research and Development Center, Dilovası, Kocaeli, Turkey
| | - Cemil Dizman
- İzel Kimya Research and Development Center, Dilovası, Kocaeli, Turkey
| |
Collapse
|
3
|
Lu M, Fang S, Li G, Wang W, Tan X, Wu W. Optimization of adsorption performance of cerium-loaded intercalated bentonite by CCD-RSM and GA-BPNN and its application in simultaneous removal of phosphorus and ammonia nitrogen. CHEMOSPHERE 2023:139241. [PMID: 37330066 DOI: 10.1016/j.chemosphere.2023.139241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Excessive phosphorus (P) and ammonia nitrogen (NH3-N) in water bodies can lead to eutrophication of the aquatic environment. Therefore, it is important to develop a technology that can efficiently remove P and NH3-N from water. Here, the adsorption performance of cerium-loaded intercalated bentonite (Ce-bentonite) was optimized based on single-factor experiments using central composite design-response surface methodology (CCD-RSM) and genetic algorithm-back propagation neural network (GA-BPNN) models. Based on the determination coefficient (R2), mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), and root mean square error (RMSE), the GA-BPNN model was found to be more accurate in predicting adsorption conditions than the CCD-RSM model. The validation results showed that the removal efficiency of P and NH3-N by Ce-bentonite under optimal adsorption conditions (adsorbent dosage = 1.0 g, adsorption time = 60 min, pH = 8, initial concentration = 30 mg/L) reached 95.70% and 65.93%. Furthermore, based on the application of these optimal conditions in simultaneous removal of P and NH3-N by Ce-bentonite, pseudo-second order and Freundlich models were able to better analyze adsorption kinetics and isotherms. It is concluded that the optimization of experimental conditions by GA-BPNN has some guidance and provides a new approach to explore adsorption performance after optimizing the conditions.
Collapse
Affiliation(s)
- Mingrong Lu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Shuju Fang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Guizhen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Wei Wang
- School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Xuewen Tan
- School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Wanqin Wu
- School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, 650500, PR China.
| |
Collapse
|
4
|
Abdelnaby A, Abdelaleem NM, Elshewy E, Mansour AH, Ibrahim SS. Application of Bentonite Clay, Date Pit, and Chitosan Nanoparticles as Promising Adsorbents to Sequester Toxic Lead and Cadmium from Milk. Biol Trace Elem Res 2023; 201:2650-2664. [PMID: 35829983 PMCID: PMC10020323 DOI: 10.1007/s12011-022-03353-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Evaluating residual lead (Pb) and cadmium (Cd) levels in food products, especially milk, is critical for product safety and quality. In this purview, the current study aims to determine Pb and Cd concentrations in milk using atomic absorption spectrophotometry and compare their values with international standards. In addition, it aims to remove these metals from milk samples using low-cost, naturally occurring materials, such as bentonite, date pit, and chitosan nanoparticles. The ability of potential adsorbents was also investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscope (TEM). Moreover, their impact on milk's nutritional properties was considered. The results revealed that most milk samples contained Pb and Cd, with mean values of 0.237 ± 0.179 and 0.041 ± 0.036 mg/kg, respectively. Furthermore, the three possible adsorbents demonstrated high sequestering ability due to their existing functional groups; the adsorption capacity of bentonite to Pb and Cd was 84 and 88%, date pit was 97 and 93%, and chitosan nanoparticles were 82 and 98%, respectively, with no discernible change in milk nutritional contents. In conclusion, the bentonite, date pit, and chitosan nanoparticles were found to be significantly effective and safe in removing hazardous trace elements (Pb and Cd) from contaminated milk.
Collapse
Affiliation(s)
- Amany Abdelnaby
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
- Agricultural Research Center, Animal Health Research Institute, (Benha Branch), Benha, 13512, Egypt.
| | - Nabila M Abdelaleem
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Elham Elshewy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Ayman H Mansour
- Department of Biotechnology, Agricultural Research Center, Animal Health Research Institute, Dokki,, Giza, 12618, Egypt
| | - Samar S Ibrahim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| |
Collapse
|
5
|
Alsulaili AD, Refaie AA, Garcia HA. Adsorption capacity of activated carbon derived from date seeds: Characterization, optimization, kinetic and equilibrium studies. CHEMOSPHERE 2023; 313:137554. [PMID: 36528152 DOI: 10.1016/j.chemosphere.2022.137554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/19/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Agricultural wastes have the potential to be reused in applications such as water/wastewater treatment. Several studies have focused on activating organic waste, such as date seeds, to produce activated carbon. However, these studies have always assumed that all date seeds behave similarly to each other. In this study, we evaluated different types of date seeds and characterized their physical-chemical properties. The results showed variation in the seed-to-fruit weight percentage, ash content, and moisture content among different seed types. Different activation procedures were performed to find the optimum combination of physical and chemical interventions. KOH impregnation yielded better results than H3PO4 impregnation. The maximum adsorption capacity was measured for nine different types of date seeds, and the Khalas seed type yielded the highest methylene blue (MB) adsorption capacity of 165 mg of MB/g of activated date seeds (ADS), which is 71% of the capacity of commercial activated carbon (CAC). Kinetics model was fitted to the experimental data, and the pseudo-second-order model provided the best fit, indicating that the adsorption process occurred following a chemical process rather than being controlled by intraparticle diffusion only. The results showed no significant difference among the three isotherm models used to fit the experimental data. The results indicated that there is a significant difference among various types of seeds regarding adsorption performance. The application of ADS in treating synthetic produced water showed that its performance is one third that of CAC. ADS showed promising potential in comparison with CAC, mostly considering the costs involved with CAC.
Collapse
Affiliation(s)
- Abdalrahman D Alsulaili
- Civil Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box-5969, 13060, Safat, Kuwait.
| | - Abdelrahman A Refaie
- Civil Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box-5969, 13060, Safat, Kuwait
| | - Hector A Garcia
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| |
Collapse
|
6
|
Optimization of Adsorption Parameters for Removal of Cationic Dyes on Lignocellulosic Agricultural Waste Modified by Citric Acid: Central Composite Design. CHEMENGINEERING 2023. [DOI: 10.3390/chemengineering7010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Barley straw (BS-C) and corn stalks (CS-C) modified by citric acid are hopeful adsorbents for the removal of cationic dyes from aqueous solutions. Optimization of adsorption factors to improve removal of methylene blue (MB) and malachite green (MG) on BC-C and CS-C was carried out by response surface methodology with central composite design. The effect of pH, time, dye concentration, and adsorbent dose on the removal efficiency of cationic dyes was investigated. The experimental data were in good agreement with the predicted data obtained by mathematical models. Accordingly, the maximum MB removal efficiency on BS-C of 97% was achieved with a pH of 6.4, time of 50 min, an adsorbent dose of 11 g L−1, and an initial MB concentration of 26 mg L−1; the maximum MG removal efficiency on BS-C of 95% was achieved with a pH of 7.2, time of 60 min, an adsorbent dose of 14 g L−1, and an initial MG concentration of 24 mg L−1; the maximum MB removal efficiency on CS-C of 97% was achieved with a pH of 6.5, time of 45 min, an adsorbent dose of 11 g L−1, and an initial MB concentration of 20 mg L−1; the maximum MG removal efficiency on CS-C of 94% was achieved with a pH of 6.6, time of 50 min, an adsorbent dose of 12 g L−1, and an initial MG concentration of 24 mg L−1.
Collapse
|
7
|
Çetinkaya S, Kaya S, Aksu A, Çetintaş Hİ, Jalbani NS, Erkan S, Marzouki R. Equilibrium and DFT modeling studies for the biosorption of Safranin O Dye from Water Samples Using Bacillus subtilis Biosorbent. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Ali NS, Jabbar NM, Alardhi SM, Majdi HS, Albayati TM. Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: isotherm, kinetics, and thermodynamic studies. Heliyon 2022; 8:e10276. [PMID: 36042747 PMCID: PMC9420514 DOI: 10.1016/j.heliyon.2022.e10276] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Raw date seeds, as prospective natural, broadly obtainable and low-price agricultural waste for adsorbing cationic dyes from aqueous solutions, have been studied. In this work, Iraqi date seeds were prepared and characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Brunauer–Emmett–Teller (BET) surface area analysis before being used as an efficient bio-adsorbent for methyl violet (MV) dye removal. Adsorption tests were conducted with three investigated parameters, namely, time of contact, first adsorbate concentration and adsorbent dose. Compared with the pseudo first-order model (coefficient of determination = 0.9001), the pseudo second-order model was determined to be the best-fitting model with a coefficient of determination (R2) of 0.9917. The equilibrium isotherms for MV were obtained, and their ultimate capacity of adsorption was (59.5 mg g1). Two isotherm models, Langmuir and Freundlich, were studied to fit the equilibrium data. Compared with the Freundlich isotherm model (R2 = 0.8154), the Langmuir model functioned better as an adsorption isotherm with R2 of 0.9837. In addition, the adsorption process was endothermic and spontaneous. The date seeds acted as active adsorbents to remove MV from the aqueous solutions in the model experiments.
Collapse
Affiliation(s)
- Nisreen S Ali
- Mustansiriyah University, College of Engineering, Materials Engineering Department, Baghdad, Iraq
| | - Noor M Jabbar
- Biochemical Engineering Department, Al-Khwarizmi Engineering College, University of Baghdad, Baghdad, Iraq
| | - Saja M Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology, Iraq
| | - Hasan Sh Majdi
- Chemical Engineering Department and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Talib M Albayati
- Chemical Engineering Department, University of Technology- Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| |
Collapse
|
9
|
El Mouden A, El Guerraf A, El Messaoudi N, Haounati R, Ait El Fakir A, Lacherai A. Date Stone Functionalized with 3-Aminopropyltriethoxysilane as a Potential Biosorbent for Heavy Metal Ions Removal from Aqueous Solution. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00350-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Kuan J, Zhang H, Gu H, Zhang Y, Wu H, Mao N. Adsorption-enhanced photocatalytic property of Ag-doped biochar/g-C3N4/TiO2 composite by incorporating cotton-based biochar. NANOTECHNOLOGY 2022; 33:345402. [PMID: 35580568 DOI: 10.1088/1361-6528/ac705e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, the biochar obtained from waste cotton fibers was introduced into the Ag-doped g-C3N4/TiO2 hybrid composite through a facile one-step hydrothermal process. The morphology, elemental composition, crystal structure, microstructure, specific surface area, chemical bonding state, energy band structure, and separation efficiency of photoinduced charge carriers of the resultant composite were examined using scanning electron microscope, energy dispersive X-ray spectrometer, X-ray diffractometer, transmission electron microscope, surface area analyzer, X-ray photoelectron spectroscope, Ultraviolet-visible spectrophotometer, ultraviolet photoelectron spectroscope, and photoluminescence spectroscope. The adsorption isotherms, kinetics and thermodynamics of the biochar, Ag-doped g-C3N4/TiO2 and Ag-doped biochar/g-C3N4/TiO2 were evaluated using the model methyl orange dye. The photoacatalytic degradation of the model pollutants including methyl orange, methylene blue, congo red, and tetracycline hydrochloride and the photocatalytic reduction of Cr(VI) ions were also assessed under visible light. Experimental results indicated that the photocatalytic property of the Ag-doped biochar/g-C3N4/TiO2 was significantly enhanced through the adsorption enhancement compared with the Ag-doped g-C3N4/TiO2. This was due to the uniform doping of multi-scale porous biochar with g-C3N4 nanosheet, Ag and TiO2 nanoparticles. The adsorptive enhancement induced by the biochar resulted in the narrowed band gap, suitable electronic energy band structure, and fast separation of photoinduced charge carriers of the Ag-doped biochar/g-C3N4/TiO2, which was probably due to the coexistence of multi-valence Ti+4/+3 and Ag0/+1 species and oxygen-containing groups of biochar. The major reactive species of the Ag-doped biochar/g-C3N4/TiO2 were 1O2 and h+. The MO dye adsorption onto the Ag-doped biochar/g-C3N4/TiO2 followed the Langmuir isotherm model, pseudo-first-order and pseudo-second-order kinetic models, and the adsorption process was an endothermic reaction with entropy reduction effects. As such, the Ag-doped biochar/g-C3N4/TiO2 exhibited a promising application for the treatment of wastewater containing multi-pollutants especially organic dyes and heavy metal ions.
Collapse
Affiliation(s)
- Junling Kuan
- Xi'an Polytechnic University, No.19 Jinhua South Road, Xi'an, Shaanxi, 710048, CHINA
| | - Hui Zhang
- Xi'an Polytechnic University, No.19 Jinhua South Road, Xi'an, Shaanxi, 710048, CHINA
| | - Haoshuai Gu
- Xi'an Polytechnic University, No.19 Jinhua South Road, Xi'an, Shaanxi, 710048, CHINA
| | - Yaning Zhang
- Xi'an Polytechnic University, No.19 Jinhua South Road, Xi'an, Shaanxi, 710048, CHINA
| | - Hailiang Wu
- Xi'an Polytechnic University, No.19 Jinhua South Road, Xi'an, Shaanxi, 710048, CHINA
| | - Ningtao Mao
- University of Leeds, Leeds, LS2 9JT, United Kingdom, Leeds, Leeds, LS2 9JT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
11
|
Antibiotic Removal from the Aquatic Environment with Activated Carbon Produced from Pumpkin Seeds. Molecules 2022; 27:molecules27041380. [PMID: 35209169 PMCID: PMC8877137 DOI: 10.3390/molecules27041380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotics are among the most critical environmental pollutant drug groups. Adsorption is one of the methods used to eliminate these pollutants. In this study, activated carbon was produced from pumpkin seed shells and subsequently modified with KOH. The adsorbent obtained through this procedure was used to remove ciprofloxacin from aqueous systems. Fourier Transform-Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), elemental, X-ray Photoelectron Spectroscopy (XPS), Brunauer–Emmett–Teller (BET) and Zeta analyses were used to characterize the adsorbent. The surface area, in particular, was found to be a very remarkable value of 2730 m2/g. The conditions of the adsorption experiments were optimized based on interaction time, adsorbent amount, pH and temperature. Over 99% success was achieved in removal operations carried out under the most optimal conditions, with an absorption capacity of 884.9 mg·g−1. In addition, the Langmuir isotherm was determined to be the most suitable model for the adsorption interaction.
Collapse
|
12
|
El-Bindary M, El-Desouky M, El-Bindary A. Adsorption of industrial dye from aqueous solutions onto thermally treated green adsorbent: A complete batch system evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117082] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Osman H, Shigidi I, Elkhaleefa A, Ali I, Brima E, Al Alwan B. Ni(II) removal using date seed powder biosorbent: Process parameters classification and RSM modeling. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:76-84. [PMID: 34618661 DOI: 10.1080/10962247.2021.1990160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/11/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The effects of pH, particle size, adsorbent mass and stirring time on the adsorption efficiency were investigated. The univariate linear regression algorithm was applied on experimental data to rank the most effective parameters on the Ni(II) removal percentage. Response surface method (RSM) was then applied to model and optimize the operating conditions of the removal process. Results revealed that the most effective operation parameters on Ni(II) removal is the solution's pH. It has been concluded that the highest removal of 94.13% is obtained with stirring time of 29.15 min, particle size 137.81 µm, added mass absorbent of 0.346 g and pH of 12.04. Experimental verification showed removal percentage of 93.5% concluding agreement with that obtained by model prediction.Implications: The removal of Ni(II) ions from wastewater utilizing the agricultural waste of date seed powder is dominated by many parameters; solution pH, initial Ni(II) concentration, adsorbent mass, particle size, operational temperature and contact time. This research classifies these parameters to define the ones that significantly impacts the removal process. Modeling of these parameters was then conducted to study the impact of every set on the removal efficiency thus defining the optimum operating conditions. The findings of this study can be used to create optimal operating conditions that are capable of achieving higher removal percentages than are currently available.
Collapse
Affiliation(s)
- Haitham Osman
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Ihab Shigidi
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Abubakr Elkhaleefa
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Ismat Ali
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Eid Brima
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- School of Allied Health Science, De Montfort University, The Gateway, Leicester, UK
| | - Basem Al Alwan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Araújo LDCB, de Matos HK, Facchi DP, de Almeida DA, Gonçalves BMG, Monteiro JP, Martins AF, Bonafé EG. Natural carbohydrate-based thermosensitive chitosan/pectin adsorbent for removal of Pb(II) from aqueous solutions. Int J Biol Macromol 2021; 193:1813-1822. [PMID: 34774866 DOI: 10.1016/j.ijbiomac.2021.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
Biodegradable and eco-friendly adsorbents composed of natural carbohydrates have been used to replace carbon-based materials. This study presents a natural carbohydrate-based chitosan/pectin (CS/Pec) hydrogel adsorbent to remove Pb(II) from aqueous solutions. The physical CS/Pec hydrogel was prepared by blending aqueous CS and Pec solutions at 65 °C, preventing the use of toxic chemistries (crosslinking agents). The thermosensitive CS/Pec hydrogel was quickly created by cooling CS/Pec blend at room temperature. The used strategy created stable CS/Pec hydrogel against disintegration and water dissolution. The as-prepared hydrogel was characterized by infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The adsorbent had 1.688 mmol -COO- for each gram. These ionized sites bind Pb(II) ions, promoting their adsorption. The adsorption kinetic and equilibrium studies indicated that the Elovich and pseudo-second-order models adjusted well to the experimental data, respectively. The maximum removal capacities (qm) predicted by the Langmuir and Sips isotherms achieved 108.2 and 97.55 mg/g at 0.83 g/L adsorbent dosage (pH 4.0). The hydrogel/Pb(II) pair was characterized by scanning electron microscopy (SEM), X-ray dispersive energy (EDS), and differential scanning calorimetry (DSC). The chemisorption seems to play an essential role in the Pb(II) adsorption. Therefore, the adsorbent was not recovered, showing low potential for reusability.
Collapse
Affiliation(s)
- Lucas Del Coli B Araújo
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Henrique K de Matos
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Débora P Facchi
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil
| | - Débora A de Almeida
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Bruna M G Gonçalves
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Johny P Monteiro
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Alessandro F Martins
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil.
| | - Elton G Bonafé
- Laboratory of Materials, Macromolecules and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Analitycal Applied in Lipids, Sterols, and Antioxidants (APLE-A), State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
15
|
Azadfar M, Tahermansouri H, Qomi M. The picric acid removal from aqueous solutions by multi‐walled carbon nanotubes/
EDTA
/carboxymethylcellulose nanocomposite: Central composite design optimization, kinetic, and isotherm studies. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mina Azadfar
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Hasan Tahermansouri
- Department of Chemistry Ayatollah Amoli Branch, Islamic Azad University Amol Iran
| | - Mahnaz Qomi
- Active Pharmaceutical Ingredients Research Center (APIRC) Tehran Medical Sciences, Islamic Azad University Tehran Iran
| |
Collapse
|
16
|
Liu K, Liu H, Li L, Li W, Liu J, Tang T. Adsorption of methyl violet from aqueous solution using β-cyclodextrin immobilised onto mesoporous silica. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1917574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kai Liu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, PR China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, PR China
| | - Huijun Liu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, PR China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, PR China
| | - Liuxing Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, PR China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, PR China
| | - Wei Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, PR China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, PR China
| | - Juan Liu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, PR China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, PR China
| | - Ting Tang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, PR China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, PR China
| |
Collapse
|
17
|
Sadegh N, Asfaram A, Javadian H, Haddadi H, Sharifpour E. Ultrasound-assisted solid phase microextraction-HPLC method based on Fe 3O 4@SiO 2-NH 2-molecularly imprinted polymer magnetic nano-sorbent for rapid and efficient extraction of harmaline from Peganum harmala extract. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1171:122640. [PMID: 33743514 DOI: 10.1016/j.jchromb.2021.122640] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/29/2022]
Abstract
In the present study, a magnetic molecularly imprinted polymer (MMIP) was synthesized for the extraction of harmaline from Peganum harmala by dispersive solid-phase microextraction (DSPME). The MMIP for selective and intelligent extraction of harmaline with excellent functionality and high selectivity was synthesized using the sol-gel method with functionalized superparamagnetic core-shell nanoparticles, ethylene glycol dimethacrylate (EDMA) as a cross-linker, methacrylic acid (MAA) as a functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as a porogen. To study the properties and morphology of the coated polymer, FT-IR spectroscopy, FESEM, TEM images, and VSM were used. The DSPME-HPLC-UV equipment was used to quantify and analyze the data obtained from harmaline extraction. In this research, the efficiency of the synthesized polymer in harmaline extraction was modeled and optimized using the response surface methodology based on central composite design (RSM-CCD). In addition, for modeling the isotherm of harmaline sorption by the MMIP, Langmuir and Freundlich isotherm equations were used. The obtained results showed that the extraction of harmaline with the MMIP was well described with Freundlich isotherm. The results of the validation of the method showed that the measurement of harmaline in the concentration range of 1.0-4000 ng mL-1 followed a linear relationship (R2 = 9986.0). Moreover, the accuracy or repeatability index (% RSD) was determined to be < 10, and the LOQ and LOD values were 0.526 and 0.158 ng mL-1, respectively. The results of this study showed that the DSPME technique by using the synthesized MMIP as an effective sorbent with high efficiency and capacity could be utilized for pre-concentration and extraction of harmaline from real and complex samples.
Collapse
Affiliation(s)
- Negar Sadegh
- Department of Chemistry, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hamedreza Javadian
- Department of Chemical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | - Hedayat Haddadi
- Department of Chemistry, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | - Ebrahim Sharifpour
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
18
|
Roy A. Removal of color from real textile dyeing effluent utilizing tannin immobilized jute fiber as biosorbent: optimization with response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12011-12025. [PMID: 32335835 DOI: 10.1007/s11356-020-08820-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The present study explored an efficient technoeconomic method for treating intensely colored dyeing effluents from a commercial source. Firstly, the adsorption efficacy of jute fiber (JF) was enhanced through grafting with tannin, a natural polyphenol, via incorporation of active epoxy groups by epichlorohydrin onto fiber surface. The effect of different experimental parameters (e.g., initial pH, adsorbent dose, temperature, and contact time) on extent of color removal was evaluated performing batch studies. A full factorial central composite design (CCD) in response surface methodology (RSM) was applied to optimize the decolorization process for achieving maximum color removal (99.5%) at pH 4.9, adsorbent dose 11.8 g/L, temperature 30 °C, and time of contact 117.8 min. The isotherm and kinetic studies of the process revealed that Langmuir model and pseudo-second-order model provided best fit, yielding high correlation coefficients (R2 > 0.997). Significant desorption (76%) of the spent adsorbent by 0.1 M NaOH solution suggested that this tannin-modified JF can find a prospective practical application as a novel, inexpensive, and potential bioadsorbent to treat the dyeing effluent.
Collapse
Affiliation(s)
- Aparna Roy
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, 560064, India.
| |
Collapse
|
19
|
Kireç O, Alacabey İ, Erol K, Alkan H. Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Sub-microparticles have many applications in different fields today. In this study, it is aimed to develop hydrophobic microparticles as an alternative to existing methods and to determine the 17β-estradiol adsorption performance of this adsorbent to purify the 17β-estradiol hormone which is found as an endocrine disruptor in environmental waters with high capacity and low cost. In this study, l-phenylalanine containing Poly(HEMA-MAPA) microparticles were synthesized by microemulsion polymerization and used as adsorbent. Microparticles were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) methods. The size of the Poly(HEMA-MAPA) microparticles used was measured as 120–200 nm. Specific surface area and elemental analysis studies were also conducted. While the surface area of the particles was found to be a very high value of 1890 m2/g, the amount of incorporation of MAPA into the polymeric structure was calculated as 0.43 mmol/g. Adsorption studies were carried out in the batch system under different ambient conditions (17β-estradiol concentration, temperature, ionic intensity). The adsorption capacity of Poly(HEMA-MAPA) microparticles was calculated to be 98.4 mg/g. Isotherm models for adsorption interaction were investigated deeply, and it was determined that the adsorption mechanism is suitable for Langmuir isotherm.
Collapse
Affiliation(s)
- Osman Kireç
- Department of Chemistry, Faculty of Science , Dicle University , 21280 Diyarbakır , Turkey
| | - İhsan Alacabey
- Vocational School of Health Services , Mardin Artuklu University , 47200 Mardin , Turkey
| | - Kadir Erol
- Hitit University , Vocational School of Health Services , Department of Medical Services and Techniques , Çorum , Turkey
| | - Hüseyin Alkan
- Department of Biochemistry, Faculty of Pharmacy , Dicle University , 21280 Diyarbakır , Turkey
| |
Collapse
|
20
|
A novel material poly(N-acryloyl-L-serine)-brush grafted kaolin for efficient elimination of malachite green dye from aqueous environments. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Melo LLA, Ide AH, Duarte JLS, Zanta CLPS, Oliveira LMTM, Pimentel WRO, Meili L. Caffeine removal using Elaeis guineensis activated carbon: adsorption and RSM studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27048-27060. [PMID: 32388754 DOI: 10.1007/s11356-020-09053-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The palm (Elaeis guineensis), known as dendê, is an important oleaginous Brazilian plant with a high performance of oil production. In this work, a 23 full experimental design was performed and the response surface method (RSM) was used to indicate the optimum parameter of caffeine adsorption on Elaeis guineensis endocarp activated carbon, since the endocarp is the main by-product from dendê oil production. It was set the adsorbent point of zero charge (pHpzc), and the material was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The RSM results indicate removal efficiency (%) at the optimal conditions, 0.20 g of adsorbent, and caffeine initial concentration of 20 mg/L, and acidic medium was about 95%. Based on ANOVA and F test (Fcalculated > Fstandard), the mathematical/statistical model obtained fits well to the experimental data. The overall kinetic studies showed time was achieved after 5 h and caffeine adsorption followed the pseudo-second-order model suggesting chemisorption is a predominant mechanism. Redlich-Peterson and Sips models best represented the experimental data (0.967 < R2 < 0.993). Thermodynamic revealed that caffeine adsorption was spontaneous at all temperatures studied, exothermic, and probably with changes in the adsorbate-adsorbent complex during the process. The tests conducted in different water matrixes corroborate the suitability of this adsorbent to be used in caffeine removal even in a complex solution.
Collapse
Affiliation(s)
- Larissa L A Melo
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Alessandra H Ide
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - José Leandro S Duarte
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
- Laboratorio de Eletroquímica Aplicada, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Carmem Lucia P S Zanta
- Laboratorio de Eletroquímica Aplicada, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Leonardo M T M Oliveira
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Wagner R O Pimentel
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil
| | - Lucas Meili
- Laboratório de Processos, Centro de Tecnologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, Tabuleiro dos Martins, Maceió, AL, 57072-970, Brazil.
| |
Collapse
|
22
|
Gao C, Cao Y, Lin J, Fang H, Luo Z, Lin Y, Zhao H, Huang Y. Insights into facile synthesized pomelo biochar adsorbing thallium: potential remediation in agricultural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22698-22707. [PMID: 32323226 DOI: 10.1007/s11356-020-08595-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Little information is available on thallium (Tl) adsorption onto fruit-derived biochar. In this study, pomelo peel and waste pomelo were thus chosen to prepare two kinds of biochars recorded as PPB and WPB. The two produced biochars subsequently evaluated their potential remediation of thallium (Tl) contamination in agricultural soils by their Tl adsorption capacity. Results showed that the two pomelo-derived biochars presented obvious microporous structure and rich oxygen-containing functional group, supported by the observant data of specific surface area, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Furthermore, Langmuir isothermal adsorption model can better fit the adsorption behavior of thallium onto PPB and WPB, and the subsequent maximum adsorption capacity was 4283.9 μg g-1 and 5286.0 μg g-1, respectively. In addition, the pseudo-second-order kinetic model could well fit the kinetic behavior of thallium adsorption onto PPB and WPB, indicating that the process is accompanied by chemical adsorption. Meanwhile, in agricultural soils, PPB and WPB can be used as environmentally friendly adsorbents to remediate Tl contamination due to their pH increase of the tested soils and their comparable adsorption ability of Tl. The obtained findings can provide insights into comprehensively developed fruit-derived biochar technology to remediate Tl contamination in agricultural soils.
Collapse
Affiliation(s)
- Chunbai Gao
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yinglan Cao
- College of Port and Environmental Engineering, Jimei University, Xiamen, 361021, China.
| | - Jianqing Lin
- College of Port and Environmental Engineering, Jimei University, Xiamen, 361021, China
| | - Hongda Fang
- College of Port and Environmental Engineering, Jimei University, Xiamen, 361021, China
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment,, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yang Lin
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Han Zhao
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yicheng Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| |
Collapse
|
23
|
Mansouri L, Jellali S, Akrout H. Recent advances on advanced oxidation process for sustainable water management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18939-18941. [PMID: 31148002 DOI: 10.1007/s11356-019-05210-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Lobna Mansouri
- Wastewaters and Environment Laboratory, Centre for Water Research and Technologies, Technopark of Borj Cedria, Touristic Road of Soliman, BP 273, 8020, Soliman, Tunisia.
| | - Salah Jellali
- Wastewaters and Environment Laboratory, Centre for Water Research and Technologies, Technopark of Borj Cedria, Touristic Road of Soliman, BP 273, 8020, Soliman, Tunisia
| | - Hanene Akrout
- Wastewaters and Environment Laboratory, Centre for Water Research and Technologies, Technopark of Borj Cedria, Touristic Road of Soliman, BP 273, 8020, Soliman, Tunisia
| |
Collapse
|
24
|
Saha A, Basak BB, Ponnuchamy M. Performance of activated carbon derived from Cymbopogon winterianus distillation waste for scavenging of aqueous toxic anionic dye Congo red: Comparison with commercial activated carbon. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1620277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ajoy Saha
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand, India
| | - Biraj Bandhu Basak
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand, India
| | - Manivel Ponnuchamy
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand, India
| |
Collapse
|
25
|
Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source, and Bio-Fertilizer. Part 2: Water Recovery. WATER 2019. [DOI: 10.3390/w11040768] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water shortage is a very concerning issue in the Mediterranean region, menacing the viability of the agriculture sector and in some countries, population wellbeing. At the same time, liquid effluent volumes generated from agro-food industries in general and olive oil industry in particular, are quite huge. Thus, the main aim of this work is to suggest a sustainable solution for the management of olive mill wastewaters (OMWW) with possible reuse in irrigation. This work is a part of a series of papers valorizing all the outputs of a three-phase system of oil mills. It deals with recovery, by condensation, of water from both OMWW and OMWW-impregnated biomasses (sawdust and wood chips), during a convective drying operation (air velocity: 1 m/s and air temperature: 50 °C). The experimental results showed that the water yield recovery reaches about 95%. The condensate waters have low electrical conductivity and salinities but also acidic pH values and slightly high chemical oxygen demand (COD) values. However, they could be returned suitable for reuse in agriculture after additional low-cost treatment.
Collapse
|
26
|
Berkane N, Meziane S, Aziri S. Optimization of Congo red removal from aqueous solution using Taguchi experimental design. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1577442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nabila Berkane
- Laboratory of Applied Chemistry and Chemical Engineering, Faculty of Science, University Mouloud Mammeri of Tizi-Ouzou, Tizi-Ouzou, Algeria
| | - Smail Meziane
- Laboratory of Applied Chemistry and Chemical Engineering, Faculty of Science, University Mouloud Mammeri of Tizi-Ouzou, Tizi-Ouzou, Algeria
| | - Sabrina Aziri
- Laboratory of Applied Chemistry and Chemical Engineering, Faculty of Science, University Mouloud Mammeri of Tizi-Ouzou, Tizi-Ouzou, Algeria
| |
Collapse
|
27
|
Khiari B, Wakkel M, Abdelmoumen S, Jeguirim M. Dynamics and Kinetics of Cupric Ion Removal from Wastewaters by Tunisian Solid Crude Olive-Oil Waste. MATERIALS 2019; 12:ma12030365. [PMID: 30682806 PMCID: PMC6384997 DOI: 10.3390/ma12030365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/29/2023]
Abstract
The present paper aims to develop a low cost, efficient, and environmentally-friendly process to purify (industrial) waters contaminated by copper by the use of oil mill wastes, through kinetic, thermodynamic, and equilibrium investigations. To do so, the raw adsorbent was characterized using different analytical techniques including X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Then, the interaction between copper and olive residues were examined during batch adsorption tests at various operating parameters, such as pH, initial concentration, contact time, and particle size. Kinetic data were best fitted with Broeurs-Sotolongo kinetic model. Additionally, it was found that film and intraparticle diffusion steps controlled simultaneously the mass transfer of copper onto olive mill solid waste. Among the eight tested models, Broeurs-Sotolongo isotherm suited the most the sorption, with regards to the function errors analysis. It was deduced that the adsorption of copper does not involve chemical bonds with high energy which allows easier regeneration steps and higher number of biosorbent regeneration cycles without any need for applying high temperature in the desorption reaction systems. The adsorption capacity (18.93 mg/g) calculated on the basis of this model was close to the experimental value (18.4 mg/g) but more interestingly it brought up that 50% of the generated amounts of olive wastes in Tunisia could eliminate 1.84 kTons of copper from industrial waters.
Collapse
Affiliation(s)
- Besma Khiari
- National School of Engineers of Carthage, 45 rue des Entrepreneurs, Tunis 1002, Tunisia.
| | - Manel Wakkel
- National Institute of Applied Science and Technology (INSAT), University of Carthage, Tunis 1080, Tunisia.
| | - Souhir Abdelmoumen
- National Institute of Applied Science and Technology (INSAT), University of Carthage, Tunis 1080, Tunisia.
| | - Mejdi Jeguirim
- Institut de Sciences des Matériaux de Mulhouse, UMR 7661 CNRS, 15 rue Jean Starcky, 68057 Mulhouse, France.
| |
Collapse
|