1
|
Cheng H, Yang C, Ge P, Liu Y, Zafar MM, Hu B, Zhang T, Luo Z, Lu S, Zhou Q, Jaleel A, Ren M. Genetic diversity, clinical uses, and phytochemical and pharmacological properties of safflower ( Carthamus tinctorius L.): an important medicinal plant. Front Pharmacol 2024; 15:1374680. [PMID: 38799156 PMCID: PMC11127628 DOI: 10.3389/fphar.2024.1374680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Safflower (Carthamus tinctorius L.), a member of the Asteraceae family, is widely used in traditional herbal medicine. This review summarized agronomic conditions, genetic diversity, clinical application, and phytochemicals and pharmacological properties of safflower. The genetic diversity of the plant is rich. Abundant in secondary metabolites like flavonoids, phenols, alkaloids, polysaccharides, fatty acids, polyacetylene, and other bioactive components, the medicinal plant is effective for treating cardiovascular diseases, neurodegenerative diseases, and respiratory diseases. Especially, Hydroxysafflor yellow A (HYSA) has a variety of pharmacological effects. In terms of treatment and prevention of some space sickness in space travel, safflower could be a potential therapeutic agent. Further studies are still required to support the development of safflower in medicine. Our review indicates that safflower is an important medicinal plant and research prospects regarding safflower are very broad and worthy of further investigation.
Collapse
Affiliation(s)
- Hao Cheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Chenglong Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengliang Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Muhammad Mubashar Zafar
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Beibei Hu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Zhang
- Chengdu Florascape Technology Service Center, Chengdu, China
| | - Zengchun Luo
- Chengdu Florascape Technology Service Center, Chengdu, China
| | - Siyu Lu
- Chengdu Florascape Technology Service Center, Chengdu, China
| | - Qin Zhou
- Chengdu Florascape Technology Service Center, Chengdu, China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Dong X, Liu Y, Fan J, Wang G, Fan W, Wang H. Systematic characterization of the influence of petroleum spill on terpene metabolism in Suaeda salsa (L.) Pall from coastal wetland: Implication by compound-specific stable isotope. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123298. [PMID: 38185357 DOI: 10.1016/j.envpol.2024.123298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
With the increasing industrialization and urbanization, the ecological environment is suffering from severe deterioration in Liaohe coastal wetland, and petroleum spill is one of the pollution sources. Suaeda salsa (L.) Pall (S. salsa), one of the predominant plants in Liaohe coastal wetland, is facing the increasing degradation. Terpenes are a class of inherent compounds in plants, and play key role in maintain the growth of plants. However, the environmental stress on the terpene metabolism remained unclear in the plants. In the present study, the influence of petroleum spill on terpene metabolism in S. salsa was systematically investigated by analysis of concentrations, compositions and stable carbon isotope. Under the stress of petroleum spill, terpene concentrations showed the decreasing trend, indicating the inhibition effect of petroleum spill on terpene synthesis in S. salsa. The proportions of Sabinene and A-humulene showed the obviously increased with the influence of petroleum spill, implying that these congeners were more sensitive to petroleum spills. The significant changes in stable carbon isotope compositions were observed for Borneol, Dl-menthol, A-humulene and (-) -@-bisabolol, with the enrichment in heavier isotopes in residual fractions. This result indicated that the heavier 13C was preferentially fixed on terpene by S. salsa under the petroleum stress. The similar change trends along the incubation time was observed for A-humulene and (-) - trans caryophyllene, which might imply that A-humulene was one of the products of (-) - trans caryophyllene in S. salsa. Overall, the findings of present study verified the influence of petroleum spill on terpene metabolism in S. salsa, and were meaningful for protecting the plants in the petroleum-pollution wetlands.
Collapse
Affiliation(s)
- Xu Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China; Environmental Information Institute, Dalian Maritime University, Dalian, China.
| | - Junwen Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Weijia Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian, China
| |
Collapse
|
3
|
Pérez-Diz M, Rodríguez-Addesso B, Hussain MI, Rodríguez J, Novoa A, González L. Carbon and nitrogen stable isotope compositions provide new insights into the phenotypic plasticity of the invasive species Carpobrotus sp. pl. in different coastal habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162470. [PMID: 36842586 DOI: 10.1016/j.scitotenv.2023.162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The genus Carpobrotus N.E.Br. comprises several aggressive invasive species that threaten biodiversity in coastal areas worldwide. We studied the phenotypic plasticity of Carpobrotus sp. pl. invading four coastal habitats in the north-western Iberian Peninsula (coastal cliffs, disturbed areas, dunes and coastal forests). We measured morphological traits and carbon (δ13C) and nitrogen (δ15N) stable isotope compositions of Carpobrotus sp. pl. individuals collected in each habitat. Our results indicated that leaf carbon content (% C) and dry shoot weight were higher on cliffs and lower in mixed forests. In contrast, leaf hydration was higher in mixed forests and lower on cliffs. Leaf nitrogen content (% N) was higher in forests, which might be due to the presence of Acacia longifolia, an alien tree that accumulates N in the soil through symbiotic associations with N fixing bacteria. Differences in δ15N showed the use of different N sources in each habitat. Values were higher in disturbed areas with greater human activity and lower on cliffs and forests. δ13C was higher in cliffs and dunes, suggesting CAM activity where drought and salinity are more intense. Water use efficiency (iWUE) and δ13C were higher on cliffs and dunes, suggesting an adaptation and high tolerance of Carpobrotus sp. pl. to unfavourable conditions such as drought or salinity in the invaded areas.
Collapse
Affiliation(s)
- Marta Pérez-Diz
- Department of Plant Biology and Soil Sciences, Faculty of Biology, Universidade de Vigo, 36310 Vigo, Spain.
| | - Berea Rodríguez-Addesso
- Department of Plant Biology and Soil Sciences, Faculty of Biology, Universidade de Vigo, 36310 Vigo, Spain.
| | - Muhammad Iftikhar Hussain
- Department of Plant Biology and Soil Sciences, Faculty of Biology, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jonatan Rodríguez
- Department of Invasion Ecology, Institute of Botany of the Czech Academy of Sciences, CZ-252 43 Průhonice, Czech Republic; CRETUS, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ana Novoa
- Department of Invasion Ecology, Institute of Botany of the Czech Academy of Sciences, CZ-252 43 Průhonice, Czech Republic.
| | - Luís González
- Department of Plant Biology and Soil Sciences, Faculty of Biology, Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
4
|
Shukla P, Kidwai M, Narayan S, Shirke PA, Pandey KD, Misra P, Chakrabarty D. Phytoremediation potential of Solanum viarum Dunal and functional aspects of their capitate glandular trichomes in lead, cadmium, and zinc detoxification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41878-41899. [PMID: 36640234 DOI: 10.1007/s11356-023-25174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
In the present scenario, remediation of heavy metals (HMs) contaminated soil has become an important work to be done for the well-being of human and their environment. Phytoremediation can be regarded as an excellent method in environmental technologies. The present contemporary research explores the Solanum viarum Dunal function as a potential accumulator of hazardous HMs viz. lead (Pb), cadmium (Cd), zinc (Zn), and their combination (CHM). On toxic concentrations of Pb, Cd, Zn, and their synergistic exposure, seeds had better germination percentage and their 90d old aerial tissues accumulated Pb, Cd, and Zn concentrations ranging from 44.53, 84.06, and 147.29 mg kg-1 DW, respectively. Pattern of accumulation in roots was as Zn 70.08 > Pb 48.55 > Cd 42.21 mg kg-1DW. Under HMs treatment, positive modulation in physiological performances, antioxidant activities suggested an enhanced tolerance along with higher membrane stability due to increased levels of lignin, proline, and sugar. Phenotypic variations were recorded in prickles and roots of 120 d old HM stressed plants, which are directly correlated with better acclimation. Interestingly, trichomes of the plant also showed HM accumulation. Later, SEM-EDX microanalysis suggested involvement of S. viarum capitate glandular trichomes as excretory organs for Cd and Zn. Thus, the present study provides an understanding of the mechanism that makes S. viarum to function as potent accumulator and provides information to generate plants to be used for phytoremediation.
Collapse
Affiliation(s)
- Pragya Shukla
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Department of Plant Physiology, Umeå Plant Science Centre, 90187, Umeå, Sweden
| | - Shiv Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Pramod Arvind Shirke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Deo Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratibha Misra
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- 291, Eldeco Greens, Gomti Nagar, Lucknow, 226010, India.
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Zhu G, Cheng D, Wang X, Guo Q, Zhang Q, Zhang J, Tu Q, Li W. Free amino acids, carbon and nitrogen isotopic compositions responses to cadmium stress in two castor (Ricinus communis L.) species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:40-46. [PMID: 35623112 DOI: 10.1016/j.plaphy.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) toxicity induce various disturbances in metabolic processes and impair plant establishment. The composition of carbon and nitrogen stable isotopes (δ13C and δ15N) and free amino acids (FAAs) can reflect the response of plants to environmental stress. In the present study, a solution culture experiment was carried out, and the secretion characteristics of FAAs as well as δ13C and δ15N were evaluated as indicative of the functional performance of two castor species (Zibo-3 and Zibo-9) under various Cd concentrations stress (0, 1, 2, and 5 mg L-1). The results indicated that: 1) The treatment of the plants with 5 mg L-1 of a Cd solution resulted in a significant decline of biomasses by 22.4% and 11.6% in Zibo-3 and Zibo-9, respectively, relative to controls; additionally, the accumulation levels for Cd in Zibo-9 were higher than those in Zibo-3, thus Zibo-9 showed higher tolerance and enrichment ability to Cd. 2) The exposure of castor to Cd treatments results in significant modifications in individual FAAs, suggesting a differential sensitivity of each biosynthetic pathway to this stress; however, a positive correlation was found between the accumulation of total FAAs and Cd treatment dosages; higher proportion of asparagine and glutamate in total amino acids for Zibo-9, and abundant secretion of arginine in Cd treated Zibo-9 may be associated with the higher Cd-tolerance and Cd-accumulation in Zibo-9. 3) Cd stress increased leaf δ13C and δ15N values regardless of the castor species; δ13C and δ15N could be used as monitoring tools for heavy metal stress in plants.
Collapse
Affiliation(s)
- Guangxu Zhu
- College of Biology and Environment Engineering, Guiyang University, Guiyang, 550005, China.
| | - Dandan Cheng
- College of Biology and Environment Engineering, Guiyang University, Guiyang, 550005, China
| | - Xingfeng Wang
- College of Biology and Environment Engineering, Guiyang University, Guiyang, 550005, China
| | - QingJun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - WangJun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| |
Collapse
|
6
|
Hussain MI, Khan ZI, Farooq TH, Al Farraj DA, Elshikh MS. Comparative Plasticity Responses of Stable Isotopes of Carbon (δ 13C) and Nitrogen (δ 15N), Ion Homeostasis and Yield Attributes in Barley Exposed to Saline Environment. PLANTS (BASEL, SWITZERLAND) 2022; 11:1516. [PMID: 35684289 PMCID: PMC9182859 DOI: 10.3390/plants11111516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 05/02/2023]
Abstract
Salinity is a major threat to agricultural productivity worldwide. The selection and evaluation of crop varieties that can tolerate salt stress are the main components for the rehabilitation of salt-degraded marginal soils. A field experiment was conducted to evaluate salinity tolerance potential, growth performance, carbon (δ13C) and nitrogen isotope composition (δ15N), intrinsic water use efficiency (iWUE), harvest index, and yield stability attributes in six barley genotypes (113/1B, 59/3A, N1-10, N1-29, Barjouj, Alanda01) at three salinity levels (0, 7, and 14 dS m-1). The number of spikes m-2 was highest in Alanda01 (620.8) while the lowest (556.2) was exhibited by Barjouj. Alanda01 produced the highest grain yield (3.96 t ha-1), while the lowest yield was obtained in 59/3A (2.31 t ha-1). Genotypes 113/1B, Barjouj, and Alanda01 demonstrate the highest negative δ13C values (-27.10‱, -26.49‱, -26.45‱), while the lowest values were obtained in N1-29 (-21.63‱) under salt stress. The δ15N was increased (4.93‱ and 4.59‱) after 7 and 14 dS m-1 as compared to control (3.12‱). The iWUE was higher in N1-29 (144.5) and N1-10 (131.8), while lowest in Barjouj (81.4). Grain protein contents were higher in 113/1B and Barjouj than other genotypes. We concluded that salt tolerant barley genotypes can be cultivated in saline marginal soils for food and nutrition security and can help in the rehabilitation of marginal lands.
Collapse
Affiliation(s)
- Muhammad Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidade de Vigo, Campus As Lagoas Marcosende, 36310 Vigo, Spain
- Research Institute of Science and Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha 40100, Pakistan;
| | - Taimoor Hassan Farooq
- Bangor College China, A Joint Unit of Bangor University and Central South University of Forestry and Technology, Changsha 410004, China;
| | - Dunia A. Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (D.A.A.F.); (M.S.E.)
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (D.A.A.F.); (M.S.E.)
| |
Collapse
|
7
|
Liao Q, Gu S, Kang S, Du T, Tong L, Wood JD, Ding R. Mild water and salt stress improve water use efficiency by decreasing stomatal conductance via osmotic adjustment in field maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150364. [PMID: 34818800 DOI: 10.1016/j.scitotenv.2021.150364] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Water and salt stress often occur simultaneously in heavily irrigated arid agricultural areas, yet they are usually studied in isolation. To understand the physiological bases of water use efficiency (WUE) of field-grown maize (Zea mays) at multi-scales under combined water and salt stress, we investigated the joint effects of water and salt stress on physiology, growth, yield, and WUE of two genotypes (XY335 and ZD958). We measured leaf stomatal conductance (gs), net photosynthesis rate (A) and hydraulic traits, whole-plant growth and water use (ET), and final biomass and grain yield. Leaf osmotic adjustment was a key trait of the physiological differences between XY335 and ZD958 under water and salt stress. Although the responses of the two genotypes were different, mild water and salt stress improved intrinsic water use efficiency (iWUE = A/gs) by (i) decreasing gsvia increasing osmotic adjustment and hydraulic resistance, and (ii) declining A via increasing stomatal limitations rather than reducing photosynthetic capacity. Joint water and salt stress had a synergistic effect on reproductive growth and grain formation of maize. Mild water and salt stress reduced ET, stabilized grain yield, and improved grain WUE via declining gs, maintaining photosynthetic capacity, and improving harvest index. Collectively, our study provides a novel insight into the physiological mechanisms of WUE and demonstrates an approach for the efficient management of water and salt by using a growth stage-based deficit irrigation strategy or/and selecting genotypes with strong osmotic adjustment capacity and high harvest index.
Collapse
Affiliation(s)
- Qi Liao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Shujie Gu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Ling Tong
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China
| | - Jeffrey D Wood
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Ministry of Education and Gansu Government, Wuwei, Gansu Province 733009, China.
| |
Collapse
|
8
|
A multiple-trait analysis of ecohydrological acclimatisation in a dryland phreatophytic shrub. Oecologia 2021; 196:1179-1193. [PMID: 34331567 PMCID: PMC8367881 DOI: 10.1007/s00442-021-04993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/19/2021] [Indexed: 10/26/2022]
Abstract
Water is the main limiting factor for groundwater-dependent ecosystems (GDEs) in drylands. Predicted climate change (precipitation reductions and temperature increases) and anthropogenic activities such as groundwater drawdown jeopardise the functioning of these ecosystems, presenting new challenges for their management. We developed a trait-based analysis to examine the spatiotemporal variability in the ecophysiology of Ziziphus lotus, a long-lived phreatophyte that dominates one of the few terrestrial GDEs of semiarid regions in Europe. We assessed morpho-functional traits and stem water potential along a naturally occurring gradient of depth-to-groundwater (DTGW, 2-25 m) in a coastal aquifer, and throughout the species-growing season. Increasing DTGW and salinity negatively affected photosynthetic and transpiration rates, increasing plant water stress (lower predawn and midday water potential), and positively affected Huber value (sapwood cross-sectional area per leaf area), reducing leaf area and likely, plant hydraulic demand. However, the species showed greater salt-tolerance at shallow depths. Despite groundwater characteristics, higher atmospheric evaporative demand in the study area, which occurred in summer, fostered higher transpiration rates and water stress, and promoted carbon assimilation and water loss more intensively at shallow water tables. This multiple-trait analysis allowed us to identify plant ecophysiological thresholds related to the increase in salinity, but mostly in DTGW (13 m), and in the evaporative demand during the growing season. These findings highlight the existence of tipping points in the functioning of a long-lived phreatophyte in drylands and can contribute to the sustainable management of GDEs in southern Europe, paving the way for further studies on phreatophytic species.
Collapse
|
9
|
Thoday-Kennedy E, Joshi S, Daetwyler HD, Hayden M, Hudson D, Spangenberg G, Kant S. Digital Phenotyping to Delineate Salinity Response in Safflower Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:662498. [PMID: 34220887 PMCID: PMC8242588 DOI: 10.3389/fpls.2021.662498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Salinity is a major contributing factor to the degradation of arable land, and reductions in crop growth and yield. To overcome these limitations, the breeding of crop varieties with improved salt tolerance is needed. This requires effective and high-throughput phenotyping to optimize germplasm enhancement. Safflower (Carthamus tinctorius L.), is an underappreciated but highly versatile oilseed crop, capable of growing in saline and arid environments. To develop an effective and rapid phenotyping protocol to differentiate salt responses in safflower genotypes, experiments were conducted in the automated imaging facility at Plant Phenomics Victoria, Horsham, focussing on digital phenotyping at early vegetative growth. The initial experiment, at 0, 125, 250, and 350 mM sodium chloride (NaCl), showed that 250 mM NaCl was optimum to differentiate salt sensitive and tolerant genotypes. Phenotyping of a diverse set of 200 safflower genotypes using the developed protocol defined four classes of salt tolerance or sensitivity, based on biomass and ion accumulation. Salt tolerance in safflower was dependent on the exclusion of Na+ from shoot tissue and the maintenance of K+ uptake. Salinity response identified in glasshouse experiments showed some consistency with the performance of representatively selected genotypes tested under sodic field conditions. Overall, our results suggest that digital phenotyping can be an effective high-throughput approach in identifying candidate genotypes for salt tolerance in safflower.
Collapse
Affiliation(s)
| | - Sameer Joshi
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - David Hudson
- GO Resources Pty Ltd., Brunswick, VIC, Australia
| | - German Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Lu PH, Kuo CY, Chan CC, Wang LK, Chen ML, Tzeng IS, Tsai FM. Safflower Extract Inhibits ADP-Induced Human Platelet Aggregation. PLANTS (BASEL, SWITZERLAND) 2021; 10:1192. [PMID: 34208125 PMCID: PMC8230796 DOI: 10.3390/plants10061192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Safflower extract is commonly used as a traditional Chinese medicine to promote blood circulation and remove blood stasis. The antioxidant and anticancer properties of safflower extracts have been extensively studied, but their antiaggregative effects have been less analyzed. We found that safflower extract inhibited human platelet aggregation induced by ADP. In addition, we further analyzed several safflower extract compounds, such as hydroxysafflor yellow A, safflower yellow A, and luteolin, which have the same antiaggregative effect. In addition to analyzing the active components of the safflower extract, we also analyzed their roles in the ADP signaling pathways. Safflower extract can affect the activation of downstream conductors of ADP receptors (such as the production of calcium ions and cAMP), thereby affecting the expression of activated glycoproteins on the platelet membrane and inhibiting platelet aggregation. According to the results of this study, the effect of safflower extract on promoting blood circulation and removing blood stasis may be related to its direct inhibition of platelet activation.
Collapse
Affiliation(s)
- Ping-Hsun Lu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-Y.K.); (M.-L.C.); (I.-S.T.)
| | - Chuan-Chi Chan
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Mao-Liang Chen
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-Y.K.); (M.-L.C.); (I.-S.T.)
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-Y.K.); (M.-L.C.); (I.-S.T.)
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-Y.K.); (M.-L.C.); (I.-S.T.)
| |
Collapse
|
11
|
Li T, Sun J, Fu Z. Halophytes Differ in Their Adaptation to Soil Environment in the Yellow River Delta: Effects of Water Source, Soil Depth, and Nutrient Stoichiometry. FRONTIERS IN PLANT SCIENCE 2021; 12:675921. [PMID: 34140965 PMCID: PMC8204056 DOI: 10.3389/fpls.2021.675921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The Yellow River Delta is water, salt, and nutrient limited and hence the growth of plants depend on the surrounding factors. Understanding the water, salt, and stoichiometry of plants and soil systems from the perspective of different halophytes is useful for exploring their survival strategies. Thus, a comprehensive investigation of water, salt, and stoichiometry characteristics in different halophytes and soil systems was carried out in this area. Results showed that the oxygen isotopes (δ18O) of three halophytes were significantly different (P < 0.05). Phragmites communis primarily used rainwater and soil water, while Suaeda salsa and Limonium bicolor mainly used soil water. The contributions of rainwater to three halophytes (P. communis, S. salsa, and L. bicolor) were 50.9, 9.1, and 18.5%, respectively. The carbon isotope (δ13C) analysis showed that P. communis had the highest water use efficiency, followed by S. salsa and L. bicolor. Na+ content in the aboveground and underground parts of different halophytes was all followed an order of S. salsa > L. bicolor > P. communis. C content and N:P in leaves of P. communis and N content of leaves in L. bicolor were significantly positively correlated with Na+. Redundancy analysis (RDA) between plants and each soil layer showed that there were different correlation patterns in the three halophytes. P. communis primarily used rainwater and soil water with low salt content in 60-80 cm, while the significant correlation indexes of C:N:P stoichiometry between plant and soil were mainly in a 20-40 cm soil layer. In S. salsa, the soil layer with the highest contribution of soil water and the closest correlation with the C:N:P stoichiometry of leaves were both in 10-20 cm layers, while L. bicolor were mainly in 40-80 cm soil layers. So, the sources of soil water and nutrient of P. communis were located in different soil layers, while there were spatial consistencies of soils in water and nutrient utilization of S. salsa and L. bicolor. These results are beneficial to a comprehensive understanding of the adaptability of halophytes in the Yellow River Delta.
Collapse
Affiliation(s)
- Tian Li
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Jingkuan Sun
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Zhanyong Fu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| |
Collapse
|
12
|
Yasmin H, Mazher J, Azmat A, Nosheen A, Naz R, Hassan MN, Noureldeen A, Ahmad P. Combined application of zinc oxide nanoparticles and biofertilizer to induce salt resistance in safflower by regulating ion homeostasis and antioxidant defence responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112262. [PMID: 33964549 DOI: 10.1016/j.ecoenv.2021.112262] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 05/23/2023]
Abstract
Salinity is a key devastating abiotic factor that hinders the development and yield of safflower. The sole and combined application of zinc oxide nanoparticles (ZnO-NPs) and a biofertilizer (BF) to improve salt tolerance in safflower has not been thoroughly explored. The response of safflower plants in a pot experiment to the foliar spray of ZnO-NPs alone and in combination with a BF was thus detected. We determined that a ZnO-NP concentration of 17 mg/L was sufficient to protect safflower against salinity (250 mM NaCl) by increasing the plant productivity, percent water content, and osmolyte levels. Coapplication of ZnO-NPs and Phytoguard protected safflower plants from salinity stress by improving the activities of antioxidant enzymes and decreasing the levels of proline (leaves (61%) and roots (63%)) and malondialdehyde (MDA) (leaves (54%) and roots (65%)). Under salt stress, the Na+ content increased, while seed coating with biofertilizer and ZnO-NP spray significantly decreased the Na+ concentration (74% in leaves and 60% in roots). For the K+ concentration, however, antagonistic outcomes were observed. Additionally, the combined treatment significantly enhanced agronomic parameters such as the number of leaves and pods per plant, capitulum weight, and the number of yellow and wilted leaves per plant under salinity stress. Thus, ZnO-NPs could be an effective bio-source for the protection of safflower plants under salinity stress. Our findings showed that in the combined treatment of ZnO-NPs and biofertilizer, the salinity tolerance was more pronounced than in the single treatment and untreated control. A thorough analysis at the molecular level, however, is still required to understand the mechanism by which ZnO-NPs and BF in safflower plants alleviate salt stress.
Collapse
Affiliation(s)
- Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan.
| | - Javeria Mazher
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Ammar Azmat
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | | | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
13
|
Agro-Morphological, Yield and Quality Traits and Interrelationship with Yield Stability in Quinoa ( Chenopodium quinoa Willd.) Genotypes under Saline Marginal Environment. PLANTS 2020; 9:plants9121763. [PMID: 33322139 PMCID: PMC7764209 DOI: 10.3390/plants9121763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a halophytic crop that shows resistance to multiple abiotic stresses, including salinity. In this study we investigated the salinity tolerance mechanisms of six contrasting quinoa cultivars belonging to the coastal region of Chile using agro-physiological parameters (plant height (PH), number of branches/plant (BN), number of panicles/plant (PN), panicle length (PL), biochemical traits (leaf C%, leaf N%, grain protein contents); harvest index and yield (seed yield and plant dry biomass (PDM) under three salinity levels (0, 10, and 20 d Sm-1 NaCl). The yield stability was evaluated through comparision of seed yield characteristics [(static environmental variance (S2) and dynamic Wricke's ecovalence (W2)]. Results showed that significant variations existed in agro-morphological and yield attributes. With increasing salinity levels, yield contributing parameters (number of panicles and panicle length) decreased. Salt stress reduced the leaf carbon and nitrogen contents. Genotypes Q21, and AMES13761 showed higher seed yield (2.30 t ha-1), more productivity and stability at various salinities as compared to the other genotypes. Salinity reduced seed yield to 44.48% and 60% at lower (10 dS m-1) and higher salinity (20 dS m-1), respectively. Grain protein content was highest in NSL106398 and lowest in Q29 when treated with saline water. Seed yield was positively correlated with PH, TB, HI, and C%. Significant and negative correlations were observed between N%, protein contents and seed yield. PH showed significant positive correlation with APL, HI, C% and C:N ratio. HI displayed positive correlations with C%, N% and protein content., All measured plant traits, except for C:N ratio, responded to salt in a genotype-specific way. Our results indicate that the genotypes (Q21 and AMES13761) proved their suitability under sandy desert soils of Dubai, UAE as they exhibited higher seed yield while NSL106398 showed an higher seed protein content. The present research highlights the need to preserve quinoa biodiversity for a better seedling establishment, survival and stable yield in the sandy desertic UAE environment.
Collapse
|
14
|
Hussain MI, Farooq M, Muscolo A, Rehman A. Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28695-28729. [PMID: 32462627 DOI: 10.1007/s11356-020-09111-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 05/18/2023]
Abstract
Feeding 9 billion by 2050 is one of major challenges for researchers. Use of diversified crops, nonconventional water resources and rehabilitation of marginal lands are alternate options to produce more food to face climate change projections. Adaptation to climate change through climate smart agriculture practices, agroecology activities, and crop-based management packages can help transform the marginal lands from environmental burdens into productive and economic blocks. This review discusses the recent advancements on specialty group of alternate crops (oil seeds, legumes, cereals, medicinal, lignocellulose, and fruit crops) which can adapt in the marginal environments. Availability of alternate water resources (saline water, treated wastewater) for irrigation cannot be omitted. Crop diversification systems involving drought and salt-tolerant crops are likely to be the key to future agricultural and economic growth in the regions where salt-affected soils exist and/or saline aquifers are pumped for irrigation. These systems may tackle three main tasks: sustainable management of land resources and enhancement of per unit productivity; intensification of agroecological practices to increase soil fertility; and improving productivity of marginal lands for diversified climate smart crops. This review explores various aspects of marginal lands and selection of tolerant crop genotypes, crop diversification, and agroecological practices to maximize benefits.
Collapse
Affiliation(s)
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, 123, Al-Khoud, Oman
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Adele Muscolo
- Department of Agriculture, Mediterranea University, Feo di Vito, 89122, Reggio Calabria, Italy
| | - Abdul Rehman
- Department of Crop Sciences and Biotechnology, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, 31116, Korea
| |
Collapse
|
15
|
Hussain MI, El-Keblawy A, Mitterand Tsombou F. Leaf Age, Canopy Position, and Habitat Affect the Carbon Isotope Discrimination and Water-Use Efficiency in Three C 3 Leguminous Prosopis Species from a Hyper-Arid Climate. PLANTS 2019; 8:plants8100402. [PMID: 31600871 PMCID: PMC6843744 DOI: 10.3390/plants8100402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 01/11/2023]
Abstract
The present study involved measurements of the stable carbon isotope composition (δ13C) and intrinsic water-use efficiency (iWUE) of three C3 leguminous Prosopis spp. (P. juliflora, P. cineraria, and P. pallida) foliage at different canopy positions (east and west) from saline (SLH) and non-saline habitats (NSH). Integrated measurements of the stable carbon isotope composition (δ13C) of plant tissue were broadly used to study iWUE, taking into consideration the effect of leaf age and canopy position on C isotope discrimination. Mature foliage of P. pallida from an SLH with a west canopy position had significantly higher δ13C (less negative) than that from NSH. On the west side, Δ13C values ranged from 17.8‰ (P. pallida) to 22.31‰ (P. juliflora) for a west canopy position, while they varied from 18.05‰ (P. pallida) to 22.4‰ (P. cineraria) on the east canopy side. Because the patterns are similar for the three Prosopis species, the difference in carbon isotope discrimination (Δ13C) between the canopy position (west and east) is relatively consistent among species and sites, ranging between 17.8 ± 4.43‰ for the young foliage in the west and 18.05 ± 4.35‰ for the east canopy position. The iWUE of P. pallida was twice that of P. cineraria. The iWUE of P. juliflora was higher from NSH than SLH. Mature leaves possessed a higher iWUE than the young leaves. We concluded that exotic P. juliflora and P. pallida have higher iWUE values than the native P. cineraria, which might be due to the rapid below-ground development of plant roots in the Arabian deserts of the United Arab Emirates (UAE). This could enable the alien species access to deeper humid soil layers or water resources.
Collapse
Affiliation(s)
- M Iftikhar Hussain
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah 27272, UAE.
| | - Ali El-Keblawy
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah 27272, UAE.
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah 27272, UAE.
| | - François Mitterand Tsombou
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah 27272, UAE.
- Departmento de Biología Vegetal, Universidad de Málaga, 29016 Málaga, Spain.
| |
Collapse
|