1
|
Sati A, Ranade TN, Mali SN, Yasin HKA, Samdani N, Satpute NN, Yadav S, Pratap AP. Silver Nanoparticles (AgNPs) as Potential Antiviral Agents: Synthesis, Biophysical Properties, Safety, Challenges and Future Directions─Update Review. Molecules 2025; 30:2004. [PMID: 40363809 PMCID: PMC12073986 DOI: 10.3390/molecules30092004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
AgNPs have gained significant attention due to their unique physicochemical properties, making them valuable across a range of fields including medicine, textiles, and household products. With their strong antimicrobial and antiviral properties, AgNPs have shown promise in treating infections, particularly in wound care management. This review explores the mechanisms underlying the antiviral activities of AgNPs, as well as the methods used for their synthesis, which include physical, chemical, and biological approaches. The review also addresses the potential limitations of AgNPs, including their cytotoxicity to humans and the environment. The interaction between AgNPs and microorganisms, particularly viruses, varies based on synthesis methods and particle morphology. As viral infections, including resistant strains, present major global health challenges, there is a growing need for alternative antiviral therapies. Metal nanoparticles like AgNPs offer potential advantages over conventional antiviral drugs due to their broad target range, which reduces the likelihood of resistance development. This review highlights AgNPs' effectiveness against a variety of viruses, such as HIV, hepatitis B, and respiratory syncytial virus, and discusses their potential for use in novel antiviral treatments. The review also examines AgNPs' toxicity, offering insights into their future therapeutic roles.
Collapse
Affiliation(s)
- Abhinav Sati
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Tanvi N. Ranade
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Suraj N. Mali
- Department of Pharmaceutical Chemistry, School of Pharmacy, D.Y. Patil University, Nerul, Navi Mumbai 400706, India
| | - Haya Khader Ahmad Yasin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nehal Samdani
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Nikil Navnath Satpute
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Susmita Yadav
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, India
| | - Amit P. Pratap
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
2
|
Michalec S, Nieckarz W, Klimek W, Lange A, Matuszewski A, Piotrowska K, Hotowy A, Kunowska-Slósarz M, Sosnowska M. Green Synthesis of Silver Nanoparticles from Chlorella vulgaris Aqueous Extract and Their Effect on Salmonella enterica and Chicken Embryo Growth. Molecules 2025; 30:1521. [PMID: 40286137 PMCID: PMC11990373 DOI: 10.3390/molecules30071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Silver nanoparticles (AgNPs), synthesised using Chlorella vulgaris algal extract and silver nitrate, are studied in medicine for their antibacterial properties in poultry. This study assessed the effect of AgNPs on bacterial inhibition and early development and blood parameters in Ross 308 chicken embryos. AgNPs were characterised using transmission electron microscopy, scanning electron microscopy with a focused ion beam, UV-Vis spectroscopy, and a zetasizer. The antibacterial properties of the AgNP colloid against S. enterica were assessed using minimal inhibitory concentration, minimal bacterial concentration, and PrestoBlue assays. AgNP colloid (2 mg/L) was injected into egg albumen on day 0. Chicken embryos were incubated for 3 and 16 d. The effect of AgNPs on 3 d old embryos was evaluated based on mortality and somite count using the Hamburger-Hamilton classification. For older embryos, mortality, dimensions, anatomical changes, organ mass, plasma liver enzymes and antioxidants, and red blood cell morphology were determined. Blood samples from the control group embryos were assessed for the impact of AgNPs on hemolysis. AgNPs inhibited S. enterica growth at concentrations >6.75 mg/L. A 3 d exposure to AgNPs caused an insignificant decrease in the number of somites without affecting embryo mortality. However, a 16 d exposure to AgNPs reduced live embryos and plasma antioxidants, changed the levels of ALT, AST, and GGT, altered red blood cell morphology, and caused hemolysis. Toxicity of AgNPs was model-dependent, whereby the chicken embryo was more sensitive to AgNPs than the bacterium.
Collapse
Affiliation(s)
- Sebastian Michalec
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Wiktoria Nieckarz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Wiktoria Klimek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Arkadiusz Matuszewski
- Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Klara Piotrowska
- Department of Animal Breeding and Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (K.P.); (M.K.-S.)
| | - Anna Hotowy
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Małgorzata Kunowska-Slósarz
- Department of Animal Breeding and Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (K.P.); (M.K.-S.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| |
Collapse
|
3
|
Das I, Borah D. Microbial biosurfactant-mediated green synthesis of zinc oxide nanoparticles (ZnO NPs) and exploring their role in enhancing chickpea and rice seed germination. DISCOVER NANO 2024; 19:174. [PMID: 39487377 PMCID: PMC11530582 DOI: 10.1186/s11671-024-04134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Malnutrition is one of the greatest challenges faced by humanity, which may be addressed by improving crop productivity to ensure food security. However, extensive use of synthetic fertilizers can lead to soil fertility degradation. This study highlights the potential of combining nanotechnology with biotechnology to enhance the germination rates of commercially important crop seeds. Bacterial biosurfactant extracted from a newly isolated Klebsiella sp. strain RGUDBI03 was used as a reducing and capping agent for the synthesis of zinc oxide nanoparticles (ZnO NPs) through a simple method. Extensive characterization of ZnO NPs through electron microscopic analysis showed well-dispersed, homogeneous NPs with a size range of 2-10 nm. High-resolution transmission electron microscopy (HR-TEM) images also revealed molecular fringes of 0.26 nm in single crystal ZnO NPs, with approximately 50% of the NPs exhibiting a size range of 2-4 nm. X-ray diffraction (XRD) results of ZnO NPs indicated the presence of (100), (002), (101), (102), (200), and (112) planes, confirming their crystalline nature. The presence of C = C-H, C = C, C-H, and C = C groups in both the bacterial biosurfactant and ZnO NPs, as depicted by Fourier-transform infrared spectroscopy (FTIR) spectra, confirmed the function of the biosurfactant as a reducing and capping agent. The nano-primed chickpea (Cicer arietinum) and rice (Oryza sativa) seeds showed an increase in water uptake rate, 89% and 92% respectively, compared to the control (73% and 44%), leading to an enhanced germination rate of 98% and 76%, compared to their respective controls (80% and 30%) under optimized conditions. Additionally, the nano-primed seeds exhibited higher levels of α-amylase activity in both seeds (0.37 mg/g for chickpea and 2.49 mg/g for rice) compared to the control. Notably, the ZnO NP priming solution exhibited no cytotoxicity on red blood cells and earthworms (Eudrilus eugeniae), indicating their non-cytotoxic and eco-friendly nature for future field trials.
Collapse
Affiliation(s)
- Indukalpa Das
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035, India
| | - Debajit Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035, India.
| |
Collapse
|
4
|
Masadeh MM, Al-Tal Z, Khanfar MS, Alzoubi KH, Sabi SH, Masadeh MM. Synergistic Effect of Silver Nanoparticles with Antibiotics for Eradication of Pathogenic Biofilms. Curr Pharm Biotechnol 2024; 25:1884-1903. [PMID: 38231054 DOI: 10.2174/0113892010279217240102100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The increase in nosocomial multidrug resistance and biofilm-forming bacterial infections led to the search for new alternative antimicrobial strategies other than traditional antibiotics. Silver nanoparticles (AgNP) could be a viable treatment due to their wide range of functions, rapid lethality, and minimal resistance potential. The primary aim of this study is to prepare silver nanoparticles and explore their antibacterial activity against biofilms. METHODS AgNPs with specific physicochemical properties such as size, shape, and surface chemistry were prepared using a chemical reduction technique, and then characterized by DLS, SEM, and FTIR. The activity of AgNPs was tested alone and in combination with some antibiotics against MDR Gram-negative and Gram-positive planktonic bacterial cells and their biofilms. Finally, mammalian cell cytotoxicity and hemolytic activity were tested using VERO and human erythrocytes. RESULTS The findings of this study illustrate the success of the chemical reduction method in preparing AgNPs. Results showed that AgNPs have MIC values against planktonic organisms ranging from 0.0625 to 0.125 mg/mL, with the greatest potency against gram-negative bacteria. It also effectively destroyed biofilm-forming cells, with minimal biofilm eradication concentrations (MBEC) ranging from 0.125 to 0.25 mg/ml. AgNPs also had lower toxicity profiles for the MTT test when compared to hemolysis to erythrocytes. Synergistic effect was found between AgNPs and certain antibiotics, where the MIC was dramatically reduced, down to less than 0.00195 mg/ml in some cases. CONCLUSION The present findings encourage the development of alternative therapies with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Zeinab Al-Tal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biological Sciences, Faculty of Science, The Hashemite University, Zarqa 13110, Jordan
| | - Majd M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
5
|
Rahim MI, Waqas SFUH, Lienenklaus S, Willbold E, Eisenburger M, Stiesch M. Effect of titanium implants along with silver ions and tetracycline on type I interferon-beta expression during implant-related infections in co-culture and mouse model. Front Bioeng Biotechnol 2023; 11:1227148. [PMID: 37929187 PMCID: PMC10621036 DOI: 10.3389/fbioe.2023.1227148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Type I interferon-beta (IFN-β) is a crucial component of innate and adaptive immune systems inside the host. The formation of bacterial biofilms on medical implants can lead to inflammatory diseases and implant failure. Biofilms elicit IFN-β production inside the host that, in turn, restrict bacterial growth. Biofilms pose strong antibiotic resistance, whereas surface modification of medical implants with antibacterial agents may demonstrate strong antimicrobial effects. Most of the previous investigations were focused on determining the antibacterial activities of implant surfaces modified with antibacterial agents. The present study, for the first time, measured antibacterial activities and IFN-β expression of titanium surfaces along with silver or tetracycline inside co-culture and mouse models. A periodontal pathogen: Aggregatibacter actinomycetemcomitans reported to induce strong inflammation, was used for infection. Silver and tetracycline were added to the titanium surface using the heat evaporation method. Macrophages showed reduced compatibility on titanium surfaces with silver, and IFN-β expression inside cultured cells significantly decreased. Macrophages showed compatibility on implant surfaces with tetracycline, but IFN-β production significantly decreased inside seeded cells. The decrease in IFN-β production inside macrophages cultured on implant surfaces with silver and tetracycline was not related to the downregulation of Ifn-β gene. Bacterial infection significantly upregulated mRNA expression levels of Isg15, Mx1, Mx2, Irf-3, Irf-7, Tlr-2, Tnf-α, Cxcl-1, and Il-6 genes. Notably, mRNA expression levels of Mx1, Irf7, Tlr2, Tnf-α, Cxcl1, and Il-6 genes inside macrophages significantly downregulated on implant surfaces with silver or tetracycline. Titanium with tetracycline showed higher antibacterial activities than silver. The in vivo evaluation of IFN-β expression around implants was measured inside transgenic mice constitutive for IFN-β expression. Of note, the non-invasive in vivo imaging revealed a significant decrease in IFN-β expression around subcutaneous implants with silver compared to titanium and titanium with tetracycline in sterile or infected situations. The histology of peri-implant tissue interfaces around infected implants with silver showed a thick interface with a significantly higher accumulation of inflammatory cells. Titanium implants with silver and tetracycline remained antibacterial in mice. Findings from this study unequivocally indicate that implant surfaces with silver decrease IFN-β expression, a crucial component of host immunity.
Collapse
Affiliation(s)
- Muhammad Imran Rahim
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Syed Fakhar-ul-Hassnain Waqas
- Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Elmar Willbold
- Department of Orthopedic Surgery, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Michael Eisenburger
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Tian Y, Li Y, Sun S, Dong Y, Tian Z, Zhan L, Wang X. Effects of urban particulate matter on the quality of erythrocytes. CHEMOSPHERE 2023; 313:137560. [PMID: 36526140 DOI: 10.1016/j.chemosphere.2022.137560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/20/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
With the acceleration of industrialisation and urbanisation, air pollution has become a serious global concern as a hazard to human health, with urban particulate matter (UPM) accounting for the largest share. UPM can rapidly pass into and persist within systemic circulation. However, few studies exist on whether UPM may have any impact on blood components. In this study, UPM standards (SRM1648a) were used to assess the influence of UPM on erythrocyte quality in terms of oxidative and metabolic damage as well as phagocytosis by macrophages in vitro and clearance in vivo. Our results showed that UPM had weak haemolytic properties. It can oxidise haemoglobin and influence the oxygen-carrying function, redox balance, and metabolism of erythrocytes. UPM increases the content of reactive oxygen species (ROS) and decreases antioxidant function according to the data of malonaldehyde (MDA), glutathione (GSH), and glucose 6 phosphate dehydrogenase (G6PDH). UPM can adhere to or be internalised by erythrocytes at higher concentrations, which can alter their morphology. Superoxide radicals produced in the co-incubation system further disrupted the structure of red blood cell membranes, thereby lowering the resistance to the hypotonic solution, as reflected by the osmotic fragility test. Moreover, UPM leads to an increase in phosphatidylserine exposure in erythrocytes and subsequent clearance by the mononuclear phagocytic system in vivo. Altogether, this study suggests that the primary function of erythrocytes may be affected by UPM, providing a warning for erythrocyte quality in severely polluted areas. For critically ill patients, transfusion of erythrocytes with lesions in morphology and function will have serious clinical consequences, suggesting that potential risks should be considered during blood donation screening. The current work expands the scope of blood safety studies.
Collapse
Affiliation(s)
- Yaxian Tian
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China; Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Yuxuan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Sujing Sun
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yanrong Dong
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Zhaoju Tian
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China.
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| |
Collapse
|
7
|
Luna-Vázquez-Gómez R, Arellano-García ME, Toledano-Magaña Y, García-Ramos JC, Radilla-Chávez P, Salas-Vargas DS, Casillas-Figueroa F, Ruiz-Ruiz B, Pestryakov A, Bogdanchikova N. Bell Shape Curves of Hemolysis Induced by Silver Nanoparticles: Review and Experimental Assay. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1066. [PMID: 35407184 PMCID: PMC9000491 DOI: 10.3390/nano12071066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
The hemolytic activity assay is a versatile tool for fast primary toxicity studies. This work presents a systematic study of the hemolytic properties of ArgovitTM silver nanoparticles (AgNPs) extensively studied for biomedical applications. The results revealed an unusual and unexpected bell-shaped hemolysis curve for human healthy and diabetic donor erythrocytes. With the decrease of pH from 7.4 and 6.8 to 5.6, the hemolysis profiles for AgNPs and AgNO3 changed dramatically. For AgNPs, the bell shape changed to a step shape with a subsequent sharp increase, and for AgNO3 it changed to a gradual increase. Explanations of these changes based on the aggregation of AgNPs due to the increase of proton concentration were suggested. Hemolysis of diabetic donor erythrocytes was slightly higher than that of healthy donor erythrocytes. The meta-analysis revealed that for only one AgNPs formulation (out of 48), a bell-shaped hemolysis profile was reported, but not discussed. This scarcity of data was explained by the dominant goal of studies consisting in achieving clinically significant hemolysis of 5-10%. Considering that hemolysis profiles may be bell-shaped, it is recommended to avoid extrapolations and to perform measurements in a wide concentration interval in hemolysis assays.
Collapse
Affiliation(s)
- Roberto Luna-Vázquez-Gómez
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | | | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - David Sergio Salas-Vargas
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Francisco Casillas-Figueroa
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Balam Ruiz-Ruiz
- Escuela de Ciencias de la Salud, Campus Ensenada, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico; (R.L.-V.-G.); (Y.T.-M.); (J.C.G.-R.); (D.S.S.-V.); (F.C.-F.); (B.R.-R.)
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Nina Bogdanchikova
- Nanoscience and Nanotechnology Center (CNyN), Campus Ensenada, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| |
Collapse
|
8
|
Effect of silver diamine fluoride on vital dental pulp: A systematic review. J Dent 2022; 119:104066. [DOI: 10.1016/j.jdent.2022.104066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022] Open
|
9
|
Chi Z, Weng L, Zhang X. Investigation on the interaction between Ag + and bovine hemoglobin using spectroscopic methods. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1367-1372. [PMID: 34727821 DOI: 10.1080/10934529.2021.1999163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Silver ions (Ag+) can be released by silver nanoparticles (AgNPs) which are widely used in diverse fields. Ag+ can exist inside cells to produce cytotoxicity. This report uses spectroscopic methods to reveal the interactions between Ag+ and bovine hemoglobin (BHb). The results of the quenching rate constant (Kq) and the fluorescence lifetime detection showed that the quenching mechanism of BHb by Ag+ was static. Thermodynamic investigations indicated that Ag+ can interact with BHb with one binding site to form complex mainly through van der Waals interactions and hydrogen bonds. The UV-vis absorption and synchronous fluorescence spectra showed that Ag+ changed the conformation of BHb, which may affect protein functions. This research is favorable for understanding the molecular toxic mechanism of Ag+ in vivo.
Collapse
Affiliation(s)
- Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Weihai, PR China
| | - Ling Weng
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Weihai, PR China
| | - Xunuo Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Weihai, PR China
| |
Collapse
|
10
|
Luna-Vázquez-Gómez R, Arellano-García ME, García-Ramos JC, Radilla-Chávez P, Salas-Vargas DS, Casillas-Figueroa F, Ruiz-Ruiz B, Bogdanchikova N, Pestryakov A. Hemolysis of Human Erythrocytes by Argovit™ AgNPs from Healthy and Diabetic Donors: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2792. [PMID: 34073953 PMCID: PMC8197390 DOI: 10.3390/ma14112792] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
The use of nanomaterials is becoming increasingly widespread, leading to substantial research focused on nanomedicine. Nevertheless, the lack of complete toxicity profiles limits nanomaterials' uses, despite their remarkable diagnostic and therapeutic results on in vitro and in vivo models. Silver nanoparticles (AgNPs), particularly Argovit™, have shown microbicidal, virucidal, and antitumoral effects. Among the first-line toxicity tests is the hemolysis assay. Here, the hemolytic effect of Argovit™ AgNPs on erythrocytes from one healthy donor (HDE) and one diabetic donor (DDE) is evaluated by the hemolysis assay against AgNO3. The results showed that Argovit™, in concentrations ≤24 µg/mL of metallic silver, did not show a hemolytic effect on the HDE or DDE. On the contrary, AgNO3 at the same concentration of silver ions produces more than 10% hemolysis in both the erythrocyte types. In all the experimental conditions assessed, the DDE was shown to be more prone to hemolysis than the HDE elicited by Ag+ ions or AgNPs, but much more evident with Ag+ ions. The results show that Argovit™ is the least hemolytic compared with the other twenty-two AgNP formulations previously reported, probably due to the polymer mass used to stabilize the Argovit™ formulation. The results obtained provide relevant information that contributes to obtaining a comprehensive toxicological profile to design safe and effective AgNP formulations.
Collapse
Affiliation(s)
- Roberto Luna-Vázquez-Gómez
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - María Evarista Arellano-García
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - David Sergio Salas-Vargas
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - Francisco Casillas-Figueroa
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - Balam Ruiz-Ruiz
- Departamento de Ciencias de la Salud, Unidad Regional Los Mochis, Universidad Autónoma de Occidente, Los Mochis 81223, Sinaloa, Mexico;
| | - Nina Bogdanchikova
- Nanoscience and Nanotechnology Center (CNyN), National Autonomous University of Mexico (UNAM), Mexico City 58089, Distrito Federal, Mexico;
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
11
|
Tian Y, Tian Z, Dong Y, Wang X, Zhan L. Current advances in nanomaterials affecting morphology, structure, and function of erythrocytes. RSC Adv 2021; 11:6958-6971. [PMID: 35423203 PMCID: PMC8695043 DOI: 10.1039/d0ra10124a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
In recent decades, nanomaterials have been widely used in the field of biomedicine due to their unique physical and chemical properties, and have shown good prospects for in vitro diagnosis, drug delivery, and imaging. With regard to transporting nanoparticles (NPs) to target tissues or organs in the body intravenously or otherwise, blood is the first tissue that NPs come into contact with and is also considered an important gateway for targeted transport. Erythrocytes are the most numerous cells in the blood, but previous studies based on interactions between erythrocytes and NPs mostly focused on the use of erythrocytes as drug carriers for nanomedicine which were chemically bound or physically adsorbed by NPs, so little is known about the effects of nanoparticles on the morphology, structure, function, and circulation time of erythrocytes in the body. Herein, this review focuses on the mechanisms by which nanoparticles affect the structure and function of erythrocyte membranes, involving the hemocompatibility of NPs, the way that NPs interact with erythrocyte membranes, effects of NPs on erythrocyte surface membrane proteins and their structural morphology and the effect of NPs on erythrocyte lifespan and function. The detailed analysis in this review is expected to shed light on the more advanced biocompatibility of nanomaterials and pave the way for the development of new nanodrugs.
Collapse
Affiliation(s)
- Yaxian Tian
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences Taian Shandong 271016 China
| | - Zhaoju Tian
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences Taian Shandong 271016 China
| | - Yanrong Dong
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
| |
Collapse
|
12
|
Matyi RJ, MacCuspie RI. Characterization of Nanoparticles for Nanomaterial Environmental Health and Safety Studies: The Physics and Metrology for Several Common Approaches. IEEE NANOTECHNOLOGY MAGAZINE 2020. [DOI: 10.1109/mnano.2020.3009962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Luo Z, Liu J, Lin H, Ren X, Tian H, Liang Y, Wang W, Wang Y, Yin M, Huang Y, Zhang J. In situ Fabrication of Nano ZnO/BCM Biocomposite Based on MA Modified Bacterial Cellulose Membrane for Antibacterial and Wound Healing. Int J Nanomedicine 2020; 15:1-15. [PMID: 32021161 PMCID: PMC6954087 DOI: 10.2147/ijn.s231556] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background Developing an ideal wound dressing that meets the multiple demands of safe and practical, good biocompatibility, superior mechanical property and excellent antibacterial activity is highly desirable for wound healing. Bacterial cellulose (BC) is one of such promising class of biopolymers since it can control wound exudates and can provide moist environment to a wound resulting in better wound healing. However, the lack of antibacterial activity has limited its application. Methods and Results We prepared a flexible dressing based on a bacterial cellulose membrane and then modified it by chemical crosslinking to prepare in situ synthesis of nZnO/BCM via a facile and eco-friendly approach. Scanning electron microscopy (SEM) results indicated that nZnO/BCM membranes were characterized by an ideal porous structure (pore size: 30~ 90 μm), forming a unique string-beaded morphology. The average water vapor transmission of nZnO/BCM was 2856.60 g/m2/day, which improved the moist environment of nZnO/BCM. ATR-FITR further confirmed the stepwise deposition of nano-zinc oxide. Tensile testing indicated that our nanocomposites were flexible, comfortable and resilient. Bacterial suspension assay and plate counting methods demonstrated that 5wt. % nZnO/BCM possessed excellent antibacterial activity against S.aureus and E. coli, while MTT assay demonstrated that they had no measurable cytotoxicity toward mammalian cells. Moreover, skin irritation test and histocompatibility examination supported that 5wt. % nZnO/BCM had no stimulation to skin and had acceptable biocompatibility with little infiltration of the inflammatory cells. Finally, by using a bacteria-infected (S. aureus and E. coli) murine wound model, we found that nZnO/BCM could prevent in vivo bacterial infections and promote wound healing via accelerating the re-epithelialization and wound contraction, and these membranes had no obvious toxicity toward normal tissues. Conclusion Therefore, the constructed nZnO/BCM has great potential for biomedical applications as an efficient antibacterial wound dressing.
Collapse
Affiliation(s)
- Zhenghui Luo
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jie Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Hai Lin
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xi Ren
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Hao Tian
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yi Liang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Weiyi Wang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yuan Wang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Meifang Yin
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yuesheng Huang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| |
Collapse
|
14
|
Pan J, Li C, Zhang X, Liu R. Hematological effects of ultrafine carbon black on red blood cells and hemoglobin. J Biochem Mol Toxicol 2019; 34:e22438. [PMID: 31860784 DOI: 10.1002/jbt.22438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/03/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Abstract
The harmful effects of ultrafine particles (UFPs) in the atmosphere have caused widespread concern. Ultrafine carbon black (UFCB) is an important component of UFPs. In this study, we explored the impact of UFCB on the structure, the antioxidant defense system, and the ATPase activity of human red blood cells (hRBCs). It was found that UFCB decreased the activity of SOD (73.58%), CAT (89.79%), and GSH-Px (81.02%), leading to oxidative stress in hRBCs. UFCB had no destructive effect on the structure of hRBCs in 4 hours. ATPase activity increased (119.34%) and UFCB had weakly stimulated the cell membrane. On the molecular level, spectroscopic experiments showed that bovine hemoglobin (BHb) can bind to the UFCB by electrostatic force, leading to the shrinking of the BHb skeleton and increase in microenvironment polarity. This study demonstrates the negative hematological effect of UFCB on hemoglobin and hRBCs and reveals the potential risks in animals and humans.
Collapse
Affiliation(s)
- Jie Pan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment and Health, Qingdao, Shandong, China
| | - Chao Li
- Clinical Laboratory of School Hospital, Shandong University, Jinan, Shandong, China
| | - Xun Zhang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment and Health, Qingdao, Shandong, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment and Health, Qingdao, Shandong, China
| |
Collapse
|
15
|
Pandey S, Mishra A. Rational approaches for toxicological assessments of nanobiomaterials. J Biochem Mol Toxicol 2019; 33:e22335. [DOI: 10.1002/jbt.22335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/09/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Shalabh Pandey
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER‐R)Lucknow Uttar Pradesh India
| | - Awanish Mishra
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER‐R)Lucknow Uttar Pradesh India
| |
Collapse
|