1
|
Yarbakht M, Sarau G, Xu Y, Fang X, Mirzaei Z, Krüger R, Xiao Y, Usman A, Daniel C, Schiffer M, Christiansen S, Müller-Deile J. Fine particulate matter (PM 2.5) induces microRNA-192-5p causing glomerular damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118280. [PMID: 40373708 DOI: 10.1016/j.ecoenv.2025.118280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/25/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
An association between air pollution and the incidence of membranous glomerulonephritis (MGN) has been shown in epidemiological studies. However, the causality of this relationship and data on potential pathomechanisms are still missing. Anti-phospholipase A2 receptor (PLA2R1) antibodies, upregulation of microRNA-192-5p, and decreased expression of its podocyte target nephronectin (NPNT) in patients with MGN have been shown, but the trigger for these regulations remained unknown. The current study aimed to assay the possible role of PM2.5 in the pathogenesis of MGN. In this study, we characterized particulate matter (PM2.5) collected on air filters in Shanghai by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence, microwave plasma atomic emission spectroscopy, nanoparticle tracking analysis, and Raman spectroscopy. Cultured human podocytes, zebrafish, and mice were exposed to PM2.5 to assess possible effects on glomerular function and ultrastructure. PM2.5 caused a reduction of podocyte-specific markers and upregulation of microRNA-192-5p. Moreover, NPNT/npnt/Npnt were downregulated, while PLA2R1/pla2r1/Pla2r1 were upregulated. PM2.5 was able to cause edema, proteinuria, and glomerular damage with loosening of the glomerular basement membrane and partial podocyte effacement in zebrafish larvae. BulkRNA seq analysis and qPCR of zebrafish larvae showed an increase in inflammatory response and oxidative stress due to the exposure to PM2.5. Long-term exposure of mice to ambient PM2.5 induced glomerular damage, albuminuria, and upregulation of pulmonary microRNA-192-5p. Therefore, air pollution might be involved in developing MGN through inflammatory pathways and the induction of microRNA-192-5p, which targets gene expression important for glomerular cell function.
Collapse
Affiliation(s)
- Melina Yarbakht
- Department of Nephrology and Hypertension, Uniklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - George Sarau
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany; Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany; Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai China
| | - Xinyi Fang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai China
| | - Zeynab Mirzaei
- Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany
| | - René Krüger
- Department of Nephrology and Hypertension, Uniklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Yalan Xiao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai China
| | - Arslan Usman
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany
| | - Christoph Daniel
- Department of Nephropathology, Uniklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Uniklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Christiansen
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany; Leuchs Emeritus Group, Max Planck Institute for the Science of Light, Erlangen, Germany; Institute for Nanotechnology and Correlative Microscopy eV INAM, Forchheim, Germany; Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Janina Müller-Deile
- Department of Nephrology and Hypertension, Uniklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Zhou Q, Chen L, He C, Liu X, Wang W, Kang S, Jiang Y, Xiang J, Zhang X, Wu C. Association of PM 2.5 and its elemental components with plasma metabolome in healthy older adults: Evidence from epidemiological and experimental studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118378. [PMID: 40409185 DOI: 10.1016/j.ecoenv.2025.118378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/21/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Previous studies have found that exposure to fine particulate matter (PM2.5) is associated with metabolic alterations, but the specific effects of its composition on metabolic changes remain unclear. OBJECTIVE To identify key metabolites associated with PM2.5 exposure and its elemental components, with validation through animal experiments. METHODS A total of 112 healthy older adults were enrolled in the cross-sectional study between winter 2020 and summer 2021. Individual PM2.5 exposure levels were quantified by personal samplers, and ten trace elements in PM2.5 were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Animal experiments were conducted on male rats to validate the associations between PM2.5, its elemental composition, and metabolomic changes. Fasting venous blood samples from participants and rat heart blood were collected for non-targeted metabolomic analysis using Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA) and pathway enrichment analysis via MetaboAnalyst 5.0. RESULTS PM2.5 exposure was significantly associated with changes in 218 plasma metabolites (p < 0.05). Non-targeted metabolomic analysis identified 29 and 7 metabolic pathways associated with PM2.5 exposure and trace elements, respectively, primarily associated with lipid metabolism, including linoleic acid metabolism. Significant overlaps of metabolomic pathways were observed in chromium (Cr) and PM2.5. A total of 29 human metabolic pathways affected by PM2.5 exposure were identified in the human study, of which 17 common to both humans and rats, including glycerophospholipid metabolism. These metabolites and pathways are related to metabolic disorders, with PM2.5-related metabolites showing associations with diseases like diabetes (P = 0.049). CONCLUSIONS These findings highlight the important role of Cr in PM2.5-induced metabolic changes, emphasizing the need to monitor specific PM2.5 components for assessing health risks and informing public health policies.
Collapse
Affiliation(s)
- Quan Zhou
- Fuzhou Center for Disease Control and Prevention afliated to Fujian Medical University, Fuzhou, Fujian 350209, China; Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian 350209, China
| | - Liangping Chen
- School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Chenzhou He
- School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xiaoying Liu
- Fuzhou Center for Disease Control and Prevention afliated to Fujian Medical University, Fuzhou, Fujian 350209, China; Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian 350209, China
| | - Wenli Wang
- School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Shuling Kang
- Fuzhou Center for Disease Control and Prevention afliated to Fujian Medical University, Fuzhou, Fujian 350209, China; Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian 350209, China
| | - Yu Jiang
- School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jianjun Xiang
- School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xiaoyang Zhang
- Fuzhou Center for Disease Control and Prevention afliated to Fujian Medical University, Fuzhou, Fujian 350209, China; Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian 350209, China.
| | - Chuancheng Wu
- School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
3
|
Galsuren J, Dambadarjaa D, Tighe RM, Gray GC, Zhang J. Particulate Matter Exposure and Viral Infections: Relevance to Highly Polluted Settings such as Ulaanbaatar, Mongolia. Curr Environ Health Rep 2025; 12:22. [PMID: 40268823 DOI: 10.1007/s40572-025-00484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
PURPOSE OF REVIEW Particulate matter (PM), a ubiquitous significant component of the ambient air pollution mixture, significantly contributes to increased global risk for chronic cardiopulmonary diseases, acute hospitalizations, and deaths. One of the causes of this increased risk is because PM exposure increases the incidence and severity of respiratory infections. The respiratory system is particularly vulnerable to air pollution and its impact on infection as it is a key site for exposure both to inhaled pollutants and infectious microbes or viruses. This review examines the current understanding of how PM affects antiviral host defense responses and possible underlying mechanisms. RECENT FINDINGS While numerous studies have associated adverse health outcomes with combined or sequential exposure to inhaled pollutants and viruses, defining causal relationships and mechanisms remains limited. Particularly limited, are contemporary data focuses on low- and middle-income countries, including heavily polluted regions such as Ulaanbaatar, Mongolia. This manuscript focuses on how (1) PM, serving as a carrier for viruses, enhances the transmission of viruses; (2) PM impairs immune defense to viruses; and (3) PM impacts epithelial cell functions to exacerbate viral infections. Given the significant public health hazards on PM, particularly in heavily polluted regions such as Southeast Asia, Middle East and Africa, it is critical to define specific mechanisms of PM on respiratory infection and how their impact may differ in these highly polluted regions. Ultimately, this could devise future public health measures and interventions to limit this substantial public health risk.
Collapse
Affiliation(s)
- Jargalsaikhan Galsuren
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia
| | - Davaalkham Dambadarjaa
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia
| | - Robert M Tighe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University, Durham, NC, 27710, USA
| | - Gregory C Gray
- Department of Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Junfeng Zhang
- Duke Nicholas School of the Environment, Durham, NC, 27705, USA.
| |
Collapse
|
4
|
Xiong Y, Shan S, Fu X, Zhao W, Han Y, Xu Y, Qu Y, Sun X, Lu S, Guo J, Lu W. Multi-omics analysis of the protective effects of Platycodon grandiflorum -derived inulin-type fructan against low-concentration PM 2.5-induced lung microenvironment changes in rats. Int J Biol Macromol 2025; 310:142484. [PMID: 40220836 DOI: 10.1016/j.ijbiomac.2025.142484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/15/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
In northern China, haze events frequently occur during winter, and PM2.5 is recognized as the most significant particulate matter in haze, posing a major threat to human health. Therefore, we employed a PM2.5 inhalation exposure system to investigate the protective effects of Platycodon grandiflorum inulin-type fructan (PGPI-1-a) on low-concentration PM2.5-induced lung microenvironment changes. Our findings revealed that long-term (4-month) PM2.5 exposure did not cause apparent pathological alterations in rat lungs but induced lung inflammation, which was alleviated by PGPI-1-a intervention. Multi-omics analysis demonstrated that PGPI-1-a restored abnormally expressed lung proteins, improved lung microbiota disorders, and regulated serum metabolite imbalances related to lipid and amino acid metabolism, ameliorating low-concentration PM2.5-induced lung microenvironment changes. These results suggest that Platycodon grandiflorum inulin-type fructan could serve as a potential dietary supplement for mitigating PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Yi Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Shan Shan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xinjing Fu
- Chinese Acad Med Sci, Inst Lab Anim Sci, Beijing Key Lab Anim Models Emerging & Remerging, Key Lab Human Dis Comparat Med, Chinese Minist Hlt, Beijing, China
| | - Wenjie Zhao
- Chinese Acad Med Sci, Inst Lab Anim Sci, Beijing Key Lab Anim Models Emerging & Remerging, Key Lab Human Dis Comparat Med, Chinese Minist Hlt, Beijing, China
| | - Yunlin Han
- Chinese Acad Med Sci, Inst Lab Anim Sci, Beijing Key Lab Anim Models Emerging & Remerging, Key Lab Human Dis Comparat Med, Chinese Minist Hlt, Beijing, China
| | - Yanfeng Xu
- Chinese Acad Med Sci, Inst Lab Anim Sci, Beijing Key Lab Anim Models Emerging & Remerging, Key Lab Human Dis Comparat Med, Chinese Minist Hlt, Beijing, China
| | - Yajin Qu
- Chinese Acad Med Sci, Inst Lab Anim Sci, Beijing Key Lab Anim Models Emerging & Remerging, Key Lab Human Dis Comparat Med, Chinese Minist Hlt, Beijing, China
| | - Xiuping Sun
- Chinese Acad Med Sci, Inst Lab Anim Sci, Beijing Key Lab Anim Models Emerging & Remerging, Key Lab Human Dis Comparat Med, Chinese Minist Hlt, Beijing, China
| | - Shuwen Lu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jianguo Guo
- Chinese Acad Med Sci, Inst Lab Anim Sci, Beijing Key Lab Anim Models Emerging & Remerging, Key Lab Human Dis Comparat Med, Chinese Minist Hlt, Beijing, China.
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
5
|
Song C, Zhou L, Xiong Y, Zhao L, Guo J, Zhang L, Han Y, Yang H, Xu Y, Zhao W, Shan S, Sun X, Zhang B, Guo J. Five-month real-ambient PM 2.5 exposure impairs learning in Brown Norway rats: Insights from multi omics-based analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118065. [PMID: 40147172 DOI: 10.1016/j.ecoenv.2025.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
PM2.5, recognized as a potential pathogenic factor for nervous system diseases, remains an area with many unknowns, particularly regarding its effects on human health. After five-month real-ambient PM2.5 exposure, we observed no significant pathological damage to the lung, liver, spleen, or kidney tissues. However, PM2.5 exposure led to neuronal degeneration in the hippocampal CA1 region of Brown Norway (BN) rats. The level of IL-6, IL-13, IL-1β, IL-12, IL-4, GRO/KC, MIP-1α, CM-CSF significantly increased in lung lavage fluid (P < 0.05 for all). Notably, we detected a slight impairment in spatial learning ability, as evidenced by the Barnes maze training outcomes. There were no significant changes in the bacterial community in lung lavage fluid (P = 0.621), but the bacterial community in the gut significantly changed (P < 0.001), with more species identified (P < 0.05). The metabolomic analysis revealed 147 and 149 significantly changed metabolites in the pulmonary system and serum, respectively (P < 0.05). PM2.5 exposure caused a decrease in Nervonic acid (NA) in both the lung and serum, which likely contributed to spatial learning impairment (P < 0.01). The correlation between lung metabolites, gut bacterial species, and serum metabolites indicated that PM2.5 exposure likely impaired spatial learning through the lung-gut-brain axis pathway. Lung and serum metabolic disorders and intestinal microbial imbalance occurred in BN rats post-five-month real-ambient PM2.5 exposure. There were two potential ways that PM2.5 exposure caused the decline of spatial learning ability in wild-type BN rats: (1) PM2.5 exposure led to a significant decrease of neuroprotective Nervonic acid in lung and serum metabolites. (2) PM2.5 exposure likely led to reduced spatial learning ability through the lung-gut-brain axis.
Collapse
Affiliation(s)
- Chenchen Song
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Li Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Yi Xiong
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Lianlian Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China; Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China.
| | - Jindan Guo
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Ling Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Yunlin Han
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Hu Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Yanfeng Xu
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Wenjie Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Shan Shan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiuping Sun
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| | - Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China.
| | - Jianguo Guo
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| |
Collapse
|
6
|
Xiong J, Yu X, Zhang P, Li Y, Ma Y, Xu L, Zhang S, Gao J, Liu J, Zhao Z, Wei Y. Optimization of Catalytic Soot Oxidation by 3DOM Perovskite-Type La 0.5-xK xSr 0.5CoO 3-δ Catalysts: Structural Insights and K Substitution. Chemistry 2025; 31:e202404379. [PMID: 39929778 DOI: 10.1002/chem.202404379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
A series of 3DOM La0.5-xKxSr0.5CoO3-δ catalysts were synthesized using colloidal crystal templating and citric acid complexation methods. The substitution of K ions for A-site La ions was found to markedly enhance the catalysts' intrinsic activity, with the La0.4K0.1Sr0.5CoO3-δ catalyst showing exceptional performance comparable to commercial precious metal catalysts. The La0.4K0.1Sr0.5CoO3-δ catalyst demonstrated the highest catalytic activity, with T10, T50, and T90 values of 280 °C, 335 °C, and 387 °C, respectively. The enhancement in intrinsic activity is primarily attributed to the electron-donating effect of K ions which maintains charge conservation and consequently increases the concentration of surface oxygen vacancies, leading to the formation of abundant active oxygen species. Additionally, the catalysts exhibited a highly ordered macroporous structure with interconnected pores, facilitating the diffusion of soot particles and enhancing contact efficiency with active sites. These findings not only advance the understanding of the structure-performance relationship in perovskite catalysts but also pave the way for the development of cost-effective catalysts for low-temperature soot abatement.
Collapse
Affiliation(s)
- Jing Xiong
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| | - Xiaoxiao Yu
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| | - Yuanfeng Li
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| | - Yaxiao Ma
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| | - Linsheng Xu
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| | - Sicheng Zhang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| | - Jie Gao
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, 18# Fuxue Road, Chang Ping District, Beijing, 102249, P. R. China
| |
Collapse
|
7
|
Han H, Peng X, Huang M, Zhao W, Yang S, Lan Z, Cai S, Zhao H. PM2.5 Exposure Aggravates Inflammatory Response and Mucus Production in 16HBE Cells through Inducing Oxidative Stress and RAGE Expression. Cell Biochem Biophys 2025; 83:941-951. [PMID: 39294419 DOI: 10.1007/s12013-024-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
Particulate matter 2.5 (PM2.5)-induced oxidative stress has been extensively proposed as a pivotal event in lung diseases. Receptor for advanced glycation end-products (RAGE) is a receptor of pro-inflammatory ligands that has been supported to be implied in the progression of multiple lung diseases. This study attempts to delineate the specific effects of PM2.5 on human bronchial epithelial 16HBE cells in vitro and figure out whether PM2.5 functions via mediating oxidative stress and RAGE. In PM2.5-challenged 16HBE cells, MTT assay detected cell viability. ELISA estimated inflammatory levels. Flow cytometry analysis measured ROS activity and related assay kits examined oxidative stress levels. Western blot tested nuclear factor E2-related factor 2 (Nrf2), RAGE, β-catenin, and mucin 5AC (MUC5AC) expression. Immunofluorescence staining evaluated nuclear translocation of β-catenin. It was noticed that PM2.5 exposure exacerbated inflammatory response, oxidative stress, and mucus production. Additionally, PM2.5 elevated RAGE expression while declined Nrf2 expression as well as stimulated the nuclear translocation of β-catenin. Furthermore, RAGE inhibition or nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor VAS2870 mitigated inflammatory response, oxidative stress, and mucus generation in PM2.5-exposed 16HBE cells. In addition, RAGE inhibition or VAS2870 raised Nrf2 expression, reduced RAGE expression, and hampered β-catenin nuclear translocation. Briefly, PM2.5 might act as a leading driver of inflammatory response and mucus production in lung injury, the mechanism of which might be related to the activation of oxidative stress and the up-regulation of RAGE.
Collapse
Affiliation(s)
- Huishan Han
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of General Practice, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minyu Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuluan Yang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihan Lan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Yun EH, Bashir KMI, Lee J, Chung H, Kwon YS, Choi JS, Ku SK. Protective Effects of Atractylodis Rhizoma Extracts on Lung Injury Induced by Particulate Matter 2.5 in Mice. Antioxidants (Basel) 2025; 14:127. [PMID: 40002314 PMCID: PMC11851628 DOI: 10.3390/antiox14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigated the lung-protective effects of Atractylodis Rhizoma extracts (the root of Atractylodes japonica Koidz. ex Kitam), known as AJ extracts, in mitigating subacute pulmonary injuries caused by particulate matter 2.5 (PM2.5) exposure in Balb/c mice. AJ was given orally at concentrations of 400, 200, and 100 mg/kg, demonstrating a promising impact by mitigating oxidative stress and inflammation associated with phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and p38 mitogen-activated protein kinase α (p38 MAPKα) pathways and reducing mucus overproduction. These protective effects were achieved through the downregulation of p38 MAPKα and PI3K/Akt mRNA expressions, enhanced anti-inflammatory and antioxidant activities, and increased mucolytic expectorant effects arbitrated by elevated lung acetylcholine (ACh) and substance P levels, along with decreased mRNA expressions of MUC5AC and MUC5B. Importantly, these outcomes occurred without significant hepatotoxicity. While all AJ dosages provided dose-dependent pulmonary protection, their effects were less pronounced than those of dexamethasone (DEXA) at 0.75 mg/kg. However, AJ uniquely exhibited mucolytic expectorant activities absent in DEXA-treated mice. The results indicate that A. japonica may serve as a potential candidate for creating alternative treatments for respiratory conditions or as an ingredient in functional foods.
Collapse
Affiliation(s)
- Eun-Hee Yun
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-H.Y.); (Y.-S.K.)
| | - Khawaja Muhammad Imran Bashir
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
- German Engineering Research and Development Center for Life Science Technologies in Medicine and Environment, Busan 46742, Republic of Korea
| | - Jeongjun Lee
- GAPI BIO Co., Ltd., Hwaseong 18622, Republic of Korea; (J.L.); (H.C.)
| | - Hunsuk Chung
- GAPI BIO Co., Ltd., Hwaseong 18622, Republic of Korea; (J.L.); (H.C.)
| | - Young-Sam Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (E.-H.Y.); (Y.-S.K.)
| | - Jae-Suk Choi
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
9
|
Ojo A, Bello D, Heavner K, Lucas K, Bello A. Self-reported Symptoms Associated With the Use of Printer and Photocopier Machines: Results From the Nano-Control, International Foundation Survey. J Occup Environ Med 2024; 66:891-902. [PMID: 39095051 DOI: 10.1097/jom.0000000000003197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
OBJECTIVES This study aimed to document adverse health effects among office, copy, and print shop workers using the Nano-Control, International Foundation Survey. METHODS Self-reported information on 16 health outcomes and three surrogate exposure variables were collected from 1998 individuals between 1999 and 2010. Logistic regression models, adjusted for age, gender, and smoking status, assessed the association between printer exposure and health symptoms. RESULTS Among the participants, 61.9% were office workers, 5.5% were technicians, and 23.3% held other professions. Technicians had a higher risk for cancer compared to office workers (odds ratio [OR], 2.5; P < 0.01). Visible toner dust exposure was associated with chronic fatigue (OR, 9.6; P < 0.01), bronchial hyperresponsiveness (OR, 5.1; P < 0.01), cardiovascular diseases (OR, 3.6; P < 0.01), asthma, allergies, and other diseases (OR range, 1.4-3.2; P < 0.01). CONCLUSIONS The increased chronic and acute health risks among these workers warrant further investigations of causal associations.
Collapse
Affiliation(s)
- Abimbola Ojo
- From the Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, Massachusetts (A.O., K.H., A.B.); Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, Massachusetts (D.B.); and Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany (K.L.)
| | | | | | | | | |
Collapse
|
10
|
Jurkiewicz T, Marty AS. Air Pollution and the Prevalence of Keratoconus: Is There a Connection? Ophthalmic Epidemiol 2024:1-9. [PMID: 39389008 DOI: 10.1080/09286586.2024.2399765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE Keratoconus is a progressive, asymmetrical corneal ectasia with multifactorial origin. Three identified risk factors for keratoconus include exposure to ultraviolet (UV) rays, eye rubbing, and atopy. Other factors like pollution would play a role in the physiopathology of keratoconus. In this study we investigate the effects of particles matter (PM) of 2.5 and 10 μm, but also nitrogen dioxide (NO2) and the correlation with the prevalence in the scientific literature. METHOD A literature review was performed using four databases (PubMed, Research gate, Google scholar and International Journal of Keratoconus and Ectatic Corneal Diseases) according to strict selection criteria. Levels of fine particles and nitrogen dioxide were extracted from available World Health Organization (WHO) databases and correlated with prevalences from epidemiological studies. RESULTS The mean pollution rate in the selected studies was 26.88 ± 25.26 μg/m3 for PM2.5 , 58.23 ± 60.98 μg/m3 for PM10 and 24.79 ± 12.58 μg/m3 for NO2. Pearson correlation tests revealed a significant positive correlation between prevalence of keratoconus with particles rate of PM2.5 (R = 0.58; p < 0.001), PM10 (R = 0.67; p < 0.001) and NO2 (R = 0.64; p = 0.00016). CONCLUSION Fine particles appear to be a risk factor for keratoconus. These pollutants may act indirectly by exacerbating known risk factors such as atopy and eye rubbing. Atmospheric pollution may also have a direct effect on the cornea, by disturbing the structure of the epithelium and increasing cell apoptosis.
Collapse
Affiliation(s)
- Tristan Jurkiewicz
- Ophthalmology, Centre d'exploration de la rétine Kléber (CERK), Lyon, France
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université de Lyon, Bron, France
| | | |
Collapse
|
11
|
Yu S, Xu C, Tang X, Wang L, Hu L, Li L, Zhou X, Li Q. Exendin-4 blockade of T1R2/T1R3 activation improves Pseudomonas aeruginosa-related pneumonia in an animal model of chemically induced diabetes. Inflamm Res 2024; 73:1185-1201. [PMID: 38748233 PMCID: PMC11214611 DOI: 10.1007/s00011-024-01891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE Poorly controlled diabetes frequently exacerbates lung infection, thereby complicating treatment strategies. Recent studies have shown that exendin-4 exhibits not only hypoglycemic but also anti-inflammatory properties. This study aimed to explore the role of exendin-4 in lung infection with diabetes, as well as its association with NOD1/NF-κB and the T1R2/T1R3 sweet taste receptor. METHODS 16HBE human bronchial epithelial cells cultured with 20 mM glucose were stimulated with lipopolysaccharide (LPS) isolated from Pseudomonas aeruginosa (PA). Furthermore, Sprague‒Dawley rats were fed a high-fat diet, followed by intraperitoneal injection of streptozotocin and intratracheal instillation of PA. The levels of TNF-α, IL-1β and IL-6 were evaluated using ELISAs and RT‒qPCR. The expression of T1R2, T1R3, NOD1 and NF-κB p65 was assayed using western blotting and immunofluorescence staining. Pathological changes in the lungs of the rats were observed using hematoxylin and eosin (H&E) staining. RESULTS At the same dose of LPS, the 20 mM glucose group produced more proinflammatory cytokines (TNF-α, IL-1β and IL-6) and had higher levels of T1R2, T1R3, NOD1 and NF-κB p65 than the normal control group (with 5.6 mM glucose). However, preintervention with exendin-4 significantly reduced the levels of the aforementioned proinflammatory cytokines and signaling molecules. Similarly, diabetic rats infected with PA exhibited increased levels of proinflammatory cytokines in their lungs and increased expression of T1R2, T1R3, NOD1 and NF-κB p65, and these effects were reversed by exendin-4. CONCLUSIONS Diabetic hyperglycemia can exacerbate inflammation during lung infection, promote the increase in NOD1/NF-κB, and promote T1R2/T1R3. Exendin-4 can ameliorate PA-related pneumonia with diabetes and overexpression of NOD1/NF-κB. Additionally, exendin-4 suppresses T1R2/T1R3, potentially through its hypoglycemic effect or through a direct mechanism. The correlation between heightened expression of T1R2/T1R3 and an intensified inflammatory response in lung infection with diabetes requires further investigation.
Collapse
Affiliation(s)
- Shanjun Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Chaoqun Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Emergency and Trauma College, Hainan Medical University, Haikou, Hainan, 579199, China
| | - Xiang Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Lijun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Lihua Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Liang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China.
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China.
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China.
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China.
| |
Collapse
|
12
|
Sun K, Sun Y, Du X, Zhang X, Ma Z, Gao Y, Liang X. Lnc-Clic5 as a sponge for miR-212-5p to inhibit cow barn PM 2.5-induced apoptosis in rat alveolar macrophages. Toxicology 2024; 504:153797. [PMID: 38583737 DOI: 10.1016/j.tox.2024.153797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Particulate matter 2.5 (PM2.5) is a highly hazardous airborne particulate matter that poses a significant risk to humans and animals. Urban airborne particulate matter contributes to the increased incidence and mortality of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), in humans. However, the specific mechanism by which PM2.5 affects animals in barn environments is yet to be elucidated. In this study, we investigated the effect of exposure to cow barn PM2.5 on rat alveolar macrophages (NR8383) and found that it induced apoptosis via the miR-212-5p/RASSF1 pathway. We found that lnc-Clic5 expression was downregulated in NR8383 cells exposed to cow barn PM2.5. Lnc-Clic5 plays a competitive endogenous RNA (ceRNA) regulatory role by sponging miR-212-5p to attenuate the regulation of RASSF1. Moreover, lnc-Clic5 overexpression inhibited NR8383 apoptosis by targeting the miR-212-5p/RASSF1 pathway. Co-treatment with miR-212-5p and lnc-Clic5 in the presence of cow barn PM2.5 revealed that lnc-Clic5 reversed NR8383 cell apoptosis induced by PM2.5 when miR-212-5p was overexpressed. These findings contribute to the study of ncRNAs and ceRNAs regulating PM2.5-induced apoptosis in animal farms, provide therapeutic targets for lung macrophage apoptosis, and may be useful for further evaluating the toxicological effects of PM2.5 in farmhouses on the respiratory systems of humans and animals.
Collapse
Affiliation(s)
- Ke Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yize Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaojun Liang
- Ningxia Academy of Agriculture and Forestry, Yinchuan 750002, China.
| |
Collapse
|
13
|
Gulati S, Bansal A, Pal A, Mittal N, Sharma A, Gared F. Estimating PM 2.5 utilizing multiple linear regression and ANN techniques. Sci Rep 2023; 13:22578. [PMID: 38114578 PMCID: PMC10730540 DOI: 10.1038/s41598-023-49717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
The accurate prediction of air pollutants, particularly Particulate Matter (PM), is critical to support effective and persuasive air quality management. Numerous variables influence the prediction of PM, and it's crucial to combine the most relevant input variables to ensure the most dependable predictions. This study aims to address this issue by utilizing correlation coefficients to select the most pertinent input and output variables for an air pollution model. In this work, PM2.5 concentration is estimated by employing concentrations of sulfur dioxide, nitrogen dioxide, and PM10 found in the air through the application of Artificial Neural Networks (ANNs). The proposed approach involves the comparison of three ANN models: one trained with the Levenberg-Marquardt algorithm (LM-ANN), another with the Bayesian Regularization algorithm (BR-ANN), and a third with the Scaled Conjugate Gradient algorithm (SCG-ANN). The findings revealed that the LM-ANN model outperforms the other two models and even surpasses the Multiple Linear Regression method. The LM-ANN model yields a higher R2 value of 0.8164 and a lower RMSE value of 9.5223.
Collapse
Affiliation(s)
- Sumita Gulati
- Department of Mathematics, S. A. Jain College, Ambala, Haryana, 134003, India
| | - Anshul Bansal
- Department of Chemistry, S. A. Jain College, Ambala, Haryana, 134003, India
| | - Ashok Pal
- Department of Mathematics, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Nitin Mittal
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Abhishek Sharma
- Department of Computer Engineering and Applications, GLA University, Mathura, 281406, India
| | - Fikreselam Gared
- Faculty of Electrical and Computer Engineering, Bahir Dar Institue of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| |
Collapse
|
14
|
Yin B, Ren J, Cui Q, Liu X, Wang Z, Pei H, Zuo J, Zhang Y, Wen R, Sun X, Zhang W, Ma Y. Astaxanthin alleviates fine particulate matter (PM 2.5)-induced lung injury in rats by suppressing ferroptosis and apoptosis. Food Funct 2023; 14:10841-10854. [PMID: 37982854 DOI: 10.1039/d3fo03641c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Objectives: Fine particulate matter (PM2.5), a small molecule particulate pollutant, can reach the lungs via respiration and cause lung damage. Currently, effective strategies and measures are lacking to prevent and treat the pulmonary toxicity of PM2.5. Astaxanthin (ASX), a natural xanthophyll carotenoid, has attracted attention due to its unique biological activity. Our research aims to probe into the prevention and treatment of ASX on PM2.5-induced lung injury and clarify its potential mechanism. Methods: Sprague-Dawley (SD) rats were given olive oil and different concentrations of ASX orally daily for 21 days. PM2.5 suspension was instilled into the trachea of rats every two days for one week to successfully develop the PM2.5 exposure model in the PM2.5-exposed and ASX-treated groups of rats. The bronchoalveolar lavage fluid (BALF) was collected, and the content of lung injury-related markers was detected. Histomorphological changes and expression of markers associated with oxidative stress, inflammation, iron death, and apoptosis were detected in lung tissue. Results: PM2.5 exposure can cause changes in lung histochemistry and increase the expression levels of TP, AKP, ALB, and LDH in the BALF. Simultaneously, inflammatory responses and oxidative stress were promoted in rat lung tissue after exposure to particulate matter. Additionally, ASX preconditioning can alleviate histomorphological changes, oxidative stress, and inflammation caused by PM2.5 and reduce PM2.5-related ferroptosis and apoptosis. Conclusion: ASX preconditioning can alleviate lung injury after PM2.5 exposure by inhibiting ferroptosis and apoptosis.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuanyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Ziyi Wang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Xiaoya Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| | - Weican Zhang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
| |
Collapse
|
15
|
Sun K, Sun Y, Jia Y, Duan X, Ma Z, Zhang X, Wang L, Zhu Y, Gao Y, Basang W. MicroRNA miR-212-5p Regulates the MEK/ERK Signaling Pathway by Targeting A-Raf proto-oncogene serine/threonine-protein kinase ( ARAF) to Regulate Cowshed PM 2.5-Induced NR8383 Apoptosis. TOXICS 2023; 11:981. [PMID: 38133382 PMCID: PMC10748134 DOI: 10.3390/toxics11120981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Objective: To investigate the role of miR-212-5p-targeted ARAF during the apoptosis of rat alveolar macrophages induced by cowshed PM2.5. Methods: miRNA and related target genes and pathways were predicted using the KEGG, TargetScan, and other prediction websites. NR8383 macrophages were treated with cowshed PM2.5 to establish an in vitro lung injury model in rats; meanwhile, for the assessment of cell viability, apoptosis, intracellular calcium ions, and mitochondrial membrane potential in NR8383 cells, RT-qPCR was used to detect the expression of miR-212-5p and the target gene ARAF. Results: The bioinformatic analyses showed that miR-212-5p and ARAF were involved in PM2.5-associated cellular damage. Exposure to different concentrations (0 μg/mL, 60 μg/mL, 180 μg/mL, 300 μg/mL) with different durations (0 h, 12 h, 24 h, 48 h) of cowshed PM2.5 resulted in apoptosis, increased intracellular calcium ions, and decreased mitochondrial membrane potential. The miR-212-5p mimic group showed an up-regulation of Bax and cleaved Caspase 3 expression but decreased Bcl2 expression compared to the NC group, and overexpression of ARAF up-regulated the expression of p-MEK1/2 and p-ERK1/2 and simultaneously reversed the above phenomena. Conclusions: miR-212-5p targets ARAF to affect the cowshed PM2.5-induced apoptosis through the MEK/ERK signaling pathway, providing a potential target for relevant farming industry and pathology studies.
Collapse
Affiliation(s)
- Ke Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yize Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Yunna Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Xinran Duan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Zhenhua Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| |
Collapse
|
16
|
Shi W, Zhang T, Yu Y, Luo L. Association of indoor solid fuel use and long-term exposure to ambient PM 2.5 with sarcopenia in China: A nationwide cohort study. CHEMOSPHERE 2023; 344:140356. [PMID: 37802484 DOI: 10.1016/j.chemosphere.2023.140356] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Little is known about the association between air pollution exposure and sarcopenia in Asia. We aimed to investigate the associations of indoor solid fuel use and long-term exposure to ambient fine particulate matter (PM2.5) with sarcopenia in China. METHODS Using a nationally population-representative study, 12,723 participants aged at least 45 years across 125 cities from the China Health and Retirement Longitudinal Study were enrolled in 2011, and further 3110 participants were followed up until 2013. Sarcopenia status was classified according to the Asian Working Group for Sarcopenia 2019 criteria. Household fuel types used for heating and cooking were assessed using a standard questionnaire. Ambient annual PM2.5 was estimated using satellite-based spatiotemporal models. Multinomial logistic regression as well as the multiplicative interaction and additive interaction analysis were used to explore the associations of indoor solid fuel and ambient PM2.5 with different status of sarcopenia. RESULTS Of the 12,723 participants, 6071 (47.7%) were men. In the cross-sectional analyses, compared with clean fuel, using solid fuel for heating and cooking, separately or simultaneously, was significantly associated with a higher risk of both possible sarcopenia and sarcopenia. Each 10 μg/m3 increment of PM2.5 was positively related to possible sarcopenia (adjusted odds ratio, [aOR] 1.04, 1.02-1.07) and sarcopenia (1.06, 1.01-1.12). We found a significant interaction between solid fuel use for heating and ambient PM2.5 exposure with possible sarcopenia. During a two-year follow-up, solid fuel use was associated with incident possible sarcopenia (aOR 1.59, 1.17-2.15). These associations did not differ by sex and age, while participants living in a house with poor cleanliness might have a higher risk of sarcopenia. CONCLUSIONS Indoor solid fuel use and long-term exposure to ambient PM2.5 were associated with a higher risk of sarcopenia among Chinese adults. These findings provide implications for promoting healthy aging by reducing air pollution.
Collapse
Affiliation(s)
- Wenming Shi
- School of Public Health, Fudan University, Shanghai, 200032, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China.
| | - Tiantian Zhang
- School of Social Development and Public Policy, Fudan University, Shanghai, 200433, China; Fudan University Center for Population and Development Policy Studies, Fudan University, Shanghai, 200433, China; Fudan Institute on Ageing, Fudan University, Shanghai, 200433, China
| | - Yongsheng Yu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Luo
- School of Public Health, Fudan University, Shanghai, 200032, China; Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Neto AB, Ferraro AA, Vieira SE. Acute and subchronic exposure to urban atmospheric pollutants aggravate acute respiratory failure in infants. Sci Rep 2023; 13:16888. [PMID: 37803025 PMCID: PMC10558532 DOI: 10.1038/s41598-023-43670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
Urban air pollution is a major factor that affects the respiratory health of children and adolescents. Less studied is exposure during the first two years of life. This study analyzed the influence of acute and subchronic exposure to urban air pollutants on the severity of acute respiratory failure (ARF) in the first two years of life. This population-based study included 7364 infants hospitalized with ARF. Acute exposure was considered to have occurred 1, 3 and 7 days before hospitalization and subchronic exposure was considered the mean of the last 30 and 60 days. We found that for acute exposure, significant increases in days of hospitalization (LOS) occurred at lag 1 day for NO2 (0.24), SO2 (6.64), and CO (1.86); lag 3 days for PM10 (0.30), PM2.5 (0.37), SO2 (10.8), and CO (0.71); and lag 7 days for NO2 (0.16), SO2 (5.07) and CO (0.87). Increases in the risk of death occurred at lag 1 day for NO2 (1.06), SO2 (3.64), and CO (1.28); and lag 3 days for NO2 (1.04), SO2 (2.04), and CO (1.19). Subchronic exposures at 30 and 60 days occurred for SO2 (9.18, 3.77) and CO (6.53, 2.97), respectively. The associations were more pronounced with higher temperatures and lower relative humidity levels. We concluded that acute and subchronic exposure to higher atmospheric concentrations of all the pollutants studied were associated with greater severity of ARF. The greatest increases in LOS and risk of death occurred with hot and dry weather.
Collapse
Affiliation(s)
| | | | - Sandra E Vieira
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Zhang Y, Xu X, Zhang G, Li Q, Luo Z. The association between PM2.5 concentration and the severity of acute asthmatic exacerbation in hospitalized children: A retrospective study in Chongqing, China. Pediatr Pulmonol 2023; 58:2733-2745. [PMID: 37530510 DOI: 10.1002/ppul.26557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/07/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Ambient PM2.5 is associated with asthma exacerbation. The association between the concentration of PM2.5 and the severity of asthma exacerbation has yet to be thoroughly clarified. The study aims to explore the association between the piror 30 days average concentration of PM2.5 and the severity of acute asthma exacerbation in hospitalized children. METHODS A total of 269 children with acute exacerbation of asthma were enrolled and divided into three groups according to the PM2.5 exposure concentrations: group 1 (PM2.5: <37.5 μg/m3 ), group 2 (PM2.5: 37.5-75 μg/m3 ), group 3 (PM2.5: ≥75 μg/m3 ), respectively. The ordered logistic regression modeling was conducted to explore the influence of daily PM2.5 concentration on the clinical severity of children's asthma exacerbation. Multiple linear regression was conducted to explore the association between the concentration of PM2.5 and the length of stay in the hospital (LOS). We also conducted a receiver operating characteristic (ROC) curve analysis to explore the cutoff value of PM2.5 to predict the children's asthma exacerbation. RESULTS There was no statistical difference among the three groups of children in gender, age, body mass index, ethnicity, the first diagnosis of asthma, allergic history, passive smoke exposure, or family history of asthma. There was a statistically significant difference in many hospitalization characteristics (p < 0.05) among the three groups of children. Significant differences were found in terms of accessory muscles of respiration (p = 0.005), respiratory failure (p = 0.012), low respiratory tract infectious (p = 0.020), and the severity of asthma exacerbation (p < 0.001) among the three groups. PM2.5 concentration was primarily positively correlated to neutrophile inflammation. The ordered multivariate logistic regression model showed that higher PM2.5 concentrations were significantly associated with greater odds of more severe asthma exacerbation in one and two-pollutant models. The adjusted odds ratio of severe asthma exacerbation was 1.029 (1.009, 1.049) in the one-pollutant model. The most significant odds ratio of severe asthma exacerbation was 1.050 (1.027, 1.073) when controlling NO2 in the two-pollutant models. Multiple linear regression showed that PM2.5 concentration was significantly associated with longer LOS in both one-pollutant and two-pollutant models. By performing ROC analysis, the average daily concentration of 44.5 µg/m3 of PM2.5 (AUC = 0.622, p = 0.002) provided the best performance to predict severe asthma of children exacerbation with a sensitivity of 59.2% and a specificity of 63.8%. CONCLUSION The increased prior 30 days average concentration of PM2.5 was associated with greater asthma exacerbation severity and longer length of stay in the hospital of children with asthma exacerbation.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Respiratory, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Ximing Xu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Big Data Center for Children's Medical Care, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guangli Zhang
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qinyuan Li
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Pradhan SH, Gibb M, Kramer AT, Sayes CM. Peripheral (lung-to-brain) exposure to diesel particulate matter induces oxidative stress and increased markers for systemic inflammation. ENVIRONMENTAL RESEARCH 2023; 231:116267. [PMID: 37257747 DOI: 10.1016/j.envres.2023.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Combustion-derived air pollution is a complex environmental toxicant that has become a global health concern due to urbanization. Air pollution contains pro-inflammatory stimulants such as fine and ultrafine particulate matter, gases, volatile organic compounds, and metals. This study is focused on the particulate phase, which has been shown to induce systemic inflammation after chronic exposure due to its ability to travel to the lower airway, resulting in the activation of local immune cell populations, releasing acute phase reactants to mitigate ongoing inflammation. The systemic response is a potential mechanism for the co-morbidity associated with regions with high pollution and neuropathology. We exposed diesel particulate matter (DPM) to a pulmonary cell-derived in vitro model where macrophages mimic the diffusion of cytokines into the peripheral circulation to microglia. Alveolar macrophages (transformed U937) were inoculated with resuspended DPM in an acute exposure (24-h incubation) and analyzed for MCP-1 expression and acute phase reactants (IL-1β, IL-6, IL-8, and TNF-α). Post-exposure serum was collected and filtered from cultured alveolar macrophages, introduced to a healthy culture of microglial cells (HMC3), and measured for neurotoxic cytokines, oxidative stress, and pattern recognition receptors. After DPM exposure, the macrophages significantly upregulated all measured acute phase reactants, increased H2O2 production, and increased MCP-1 expression. After collection and filtration to remove excess particulates, microglia cells were incubated with the collected serum for 48 h to allow for cytokine diffusion between the periphery of microglia. Microglia significantly upregulated IL-6, IL-8, and oxidative stress with a moderate increase in IL-1β and TNF-α. As a marker required for signaling tissue damage, CD14 indicated that compared to direct inoculation of DPM, peripheral exposure resulted in the potent activation of microglia cells. The specificity and potency of the response have implications for neuropathology through lung-to-brain mechanisms after inhalation of environmental pollutants.
Collapse
Affiliation(s)
- Sahar H Pradhan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA
| | - Alec T Kramer
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
20
|
Garcia A, Santa-Helena E, De Falco A, de Paula Ribeiro J, Gioda A, Gioda CR. Toxicological Effects of Fine Particulate Matter (PM 2.5): Health Risks and Associated Systemic Injuries-Systematic Review. WATER, AIR, AND SOIL POLLUTION 2023; 234:346. [PMID: 37250231 PMCID: PMC10208206 DOI: 10.1007/s11270-023-06278-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/29/2023] [Indexed: 05/31/2023]
Abstract
Previous studies focused on investigating particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) have shown the risk of disease development, and association with increased morbidity and mortality rates. The current review investigate epidemiological and experimental findings from 2016 to 2021, which enabled the systemic overview of PM2.5's toxic impacts on human health. The Web of Science database search used descriptive terms to investigate the interaction among PM2.5 exposure, systemic effects, and COVID-19 disease. Analyzed studies have indicated that cardiovascular and respiratory systems have been extensively investigated and indicated as the main air pollution targets. Nevertheless, PM2.5 reaches other organic systems and harms the renal, neurological, gastrointestinal, and reproductive systems. Pathologies onset and/or get worse due to toxicological effects associated with the exposure to this particle type, since it can trigger several reactions, such as inflammatory responses, oxidative stress generation and genotoxicity. These cellular dysfunctions lead to organ malfunctions, as shown in the current review. In addition, the correlation between COVID-19/Sars-CoV-2 and PM2.5 exposure was also assessed to help better understand the role of atmospheric pollution in the pathophysiology of this disease. Despite the significant number of studies about PM2.5's effects on organic functions, available in the literature, there are still gaps in knowledge about how this particulate matter can hinder human health. The current review aimed to approach the main findings about the effect of PM2.5 exposure on different systems, and demonstrate the likely interaction of COVID-19/Sars-CoV-2 and PM2.5.
Collapse
Affiliation(s)
- Amanda Garcia
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Eduarda Santa-Helena
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Anna De Falco
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Joaquim de Paula Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Adriana Gioda
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Carolina Rosa Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| |
Collapse
|
21
|
Martínez Morales S, Cerón Bretón JG, Carbajal N, Cerón Bretón RM, Lara Severino R, Kahl JD, Carrillo Ávila JR, Carranco Lozada SE, Espinosa Guzmán A, Pech Pech IE, Garcia Martinez R, Robles Heredia JC, Hernández López G, Solís Canul JA, Uc Chi MP. PM 2.5-bound trace metals in an urban area of Northern Mexico during the COVID-19 pandemic: characterization, sources, and health risk. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:1-20. [PMID: 37359394 PMCID: PMC10191825 DOI: 10.1007/s11869-023-01372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
Abstract A field study was carried out in the Metropolitan Area of Monterrey (MAM), the second most populated city in Mexico, characterized by increasing urbanization, high traffic density, and intense industrial activity. These characteristics commonly present high concentrations of air pollutants leading to the degradation of air quality. PM2.5 was analyzed for heavy metals at two urban sites located within the MAM (Juarez and San Bernabe) in order to determine sources, health risk, morphology, and elemental content during the COVID-19 pandemic (autumn 2020 and spring 2021). Twenty-four-hour samples of PM2.5 were collected at each site during 30-day periods using high-volume equipment. Gravimetric concentrations and 11 metals were measured (Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Ni, Cr, and Pb) by different analytical techniques (flame atomic absorption spectroscopy, graphite furnace atomic absorption spectroscopy, and inductively coupled plasma optical emission spectroscopy). Selected samples were analyzed by scanning electron microscopy-energy-disperse spectroscopy in order to characterize their morphology and elemental content. PM2.5 concentrations exceeded the Mexican standard and WHO guidelines in Juarez during spring 2021. Cu, Cd, and Co were highly enriched by anthropogenic sources, and Ni, K, Cr, and Pb had a moderate enrichment. Mg, Mn, and Ca were of crustal origin. Bivariate statistics and PCA confirmed that alkaline metals originated from crustal sources and that the main sources of trace metals included traffic emissions, resuspension from soil/road dust, steel industry, smelting, and non-exhaust emissions at both sites. Lifetime cancer risk coefficients did not exceed the permissible levels established by EPA and WHO, implying that local residents are not at risk of developing cancer. Non-carcinogenic risk coefficients revealed that there is a possible risk of suffering cardiovascular and respiratory diseases due to inhalation of cobalt at the study sites. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11869-023-01372-7.
Collapse
Affiliation(s)
- Stephanie Martínez Morales
- Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, 78216 San Luis Potosí, México
| | | | - Noel Carbajal
- Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, 78216 San Luis Potosí, México
| | - Rosa Maria Cerón Bretón
- Universidad Autónoma del Carmen, Facultad de Química, Ciudad del Carmen, 24180 Campeche, Mexico
| | - Reyna Lara Severino
- Universidad Autónoma del Carmen, Facultad de Ciencias de la Salud, Ciudad del Carmen, 24115 Campeche, Mexico
| | - Jonathan D.W. Kahl
- University of Wisconsin Milwaukee, School of Freshwater Science, 53201 Milwaukee, USA
| | - Jair Rafael Carrillo Ávila
- Secretaría de Medio Ambiente del Estado de Nuevo León, Sistema Integral de Monitoreo Ambiental, Nuevo León 64010 Monterrey, Mexico
| | | | - Alberto Espinosa Guzmán
- Universidad Autónoma de Campeche, Centro de Investigación en Corrosión, San Francisco de Campeche, Campeche, 24079 Mexico
| | - Ildefonso Esteban Pech Pech
- Universidad Autónoma de Campeche, Centro de Investigación en Corrosión, San Francisco de Campeche, Campeche, 24079 Mexico
| | - Rocío Garcia Martinez
- Universidad Nacional Autónoma de México, Instituto de Ciencias de la Atmósfera y Cambio Climático, Departamento de Ciencias Ambientales, 04510 Mexico City, Mexico
| | | | | | - Jose Angel Solís Canul
- Universidad Autónoma del Carmen, Facultad de Química, Ciudad del Carmen, 24180 Campeche, Mexico
| | - Martha Patricia Uc Chi
- Universidad Autónoma del Carmen, Facultad de Química, Ciudad del Carmen, 24180 Campeche, Mexico
| |
Collapse
|
22
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
23
|
Déméautis T, Bouyssi A, Chapalain A, Guillemot J, Doublet P, Geloen A, George C, Menotti J, Glehen O, Devouassoux G, Bentaher A. Chronic Exposure to Secondary Organic Aerosols Causes Lung Tissue Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6085-6094. [PMID: 37014236 DOI: 10.1021/acs.est.2c08753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, secondary organic aerosols (SOAs) emerged as a predominant component of fine particulate matter. However, the pathogenic mechanism(s) of SOAs are still poorly understood. Herein, we show that chronic exposure of mice to SOAs resulted in lung inflammation and tissue destruction. Histological analyses found lung airspace enlargement associated with massive inflammatory cell recruitment predominated by macrophages. Concomitant with such cell influx, our results found changes in the levels of a series of inflammatory mediators in response to SOA. Interestingly, we observed that the expression of the genes encoding for TNF-α and IL-6 increased significantly after one month of exposure to SOAs; mediators that have been largely documented to play a role in chronic pulmonary inflammatory pathologies. Cell culture studies confirmed these in vivo findings. Of importance as well, our study indicates increased matrix metalloproteinase proteolytic activity suggesting its contribution to lung tissue inflammation and degradation. Our work represents the first in vivo study, which reports that chronic exposure to SOAs leads to lung inflammation and tissue injury. Thus, we hope that these data will foster new studies to enhance our understanding of the underlying pathogenic mechanisms of SOAs and perhaps help in the design of therapeutic strategies against SOA-mediated lung injury.
Collapse
Affiliation(s)
- Tanguy Déméautis
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Alexandra Bouyssi
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Annelise Chapalain
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Johann Guillemot
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Alain Geloen
- University of Lyon, UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69622 Villeurbanne, France
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Jean Menotti
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Olivier Glehen
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
- Service de chirurgie digestive et endocrinienne, CHU de Lyon HCL - GH Sud, 165 Chemin du Grand Revoyet, 69495 Pierre-Benite, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
- Service de Pneumologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, UCB Lyon 1, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| |
Collapse
|
24
|
Li D, Shen L, Zhang D, Wang X, Wang Q, Qin W, Gao Y, Li X. Ammonia-induced oxidative stress triggered proinflammatory response and apoptosis in pig lungs. J Environ Sci (China) 2023; 126:683-696. [PMID: 36503793 DOI: 10.1016/j.jes.2022.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/17/2023]
Abstract
Ammonia, a common toxic gas, is not only one of the main causes of haze, but also can enter respiratory tract and directly affect the health of humans and animals. Pig was used as an animal model for exploring the molecular mechanism and dose effect of ammonia toxicity to lung. In this study, the apoptosis of type II alveolar epithelial cells was observed in high ammonia exposure group using transmission electron microscopy. Gene and protein expression analysis using transcriptome sequencing and western blot showed that low ammonia exposure induced T-cell-involved proinflammatory response, but high ammonia exposure repressed the expression of DNA repair-related genes and affected ion transport. Moreover, high ammonia exposure significantly increased 8-hydroxy-2-deoxyguanosine (8-OHdG) level, meaning DNA oxidative damage occurred. In addition, both low and high ammonia exposure caused oxidative stress in pig lungs. Integrated analysis of transcriptome and metabolome revealed that the up-regulation of LDHB and ND2 took part in high ammonia exposure-affected pyruvate metabolism and oxidative phosphorylation progress, respectively. Inclusion, oxidative stress mediated ammonia-induced proinflammatory response and apoptosis of porcine lungs. These findings may provide new insights for understanding the ammonia toxicity to workers in livestock farms and chemical fertilizer plants.
Collapse
Affiliation(s)
- Daojie Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Shen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaotong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Qin
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Gao
- College of Engineering, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
25
|
Liu Y, Xu J, Shi J, Zhang Y, Ma Y, Zhang Q, Su Z, Zhang Y, Hong S, Hu G, Chen Z, Jia G. Effects of short-term high-concentration exposure to PM 2.5 on pulmonary tissue damage and repair ability as well as innate immune events. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121055. [PMID: 36632972 DOI: 10.1016/j.envpol.2023.121055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Short-term heavy air pollution still occurs frequently worldwide, especially during the winter heating period in some developing countries, which is usually accompanied by the temporary explosive growth of PM2.5. The pulmonary damage caused by PM2.5 exposure has been determined, but there have been few studies on the repair ability after the cessation of exposure and the important role of innate immune events. This study established a short-term (30 days) high-concentration (15 mg/kg body weight) PM2.5 exposure and recovery (15 days of exposure cessation) model by intratracheal instillation. The results showed that short-term PM2.5 exposure increased the content of collagen fiber in rat lung tissue, which was significantly repaired after recovery by 15 days of exposure cessation. Meanwhile, exposure to PM2.5 also caused changes in lung epithelial function, macrophage polarization and cell autophagy function. Most of these changes could be restored or reversed to a certain extent after recovery. However, there were also some biomarkers, including CLDN18.1, SP-A, SP-D, iNOS, CD206, Beclin1, p62 and LC3B, that were still significantly different between the exposure and control groups after recovery, suggesting that some toxic effects, especially epithelial function damage, were not completely repaired. In addition, there was a significant correlation between pulmonary fibrosis and innate immunity. The present study demonstrated that short-term high-concentration exposure to PM2.5 could cause temporary lung tissue damage and related innate immune events in rats, and the repair ability existed after the cessation of exposure, but part of the damage that required special attention still persisted.
Collapse
Affiliation(s)
- Yu Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Jiayu Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| | - Guiping Hu
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100083, China
| |
Collapse
|
26
|
Deng L, Ma M, Li S, Zhou L, Ye S, Wang J, Yang Q, Xiao C. Protective effect and mechanism of baicalin on lung inflammatory injury in BALB/cJ mice induced by PM2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114329. [PMID: 36442400 DOI: 10.1016/j.ecoenv.2022.114329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The public health harms caused by fine particulate matter (PM2.5) have become a global focus, with PM2.5 exposure recognized as a critical risk factor for global morbidity and mortality. Chronic inflammation is the common pathophysiological feature of respiratory diseases induced by PM2.5 and is the most critical cause of all these diseases. However, presently there is a lack of effective preventive and therapeutic approaches for inflammatory lung injuries caused by PM2.5 exposure. Baicalin is a herb-derived effective flavonoid compound with multiple health benefits. This study established a murine lung inflammatory injury model via inhalation of PM2.5 aerosols. The data showed that after baicalin intervention, lung injury pathological score of baicalin (4.16 ± 0.54, 3.33 ± 0.76, 4.00 ± 0.45) and claricid (3.00 ± 0.78) treatments were markedly lower than PM2.5-treated mice (6.17 ± 0.31), and pathological damage was alleviated. Compared to the PM2.5 group, the spleen and lung indexes in the baicalin and claricid groups were significantly reduced. The inflammatory cytokines of TNF-α, IL-18, and IL-1β in serum, alveolar lavage fluid, and lung tissue were significantly decreased in the baicalin and claricid groups. The expressions of inflammatory pathway-related genes and proteins HMGB1, NLRP3, ASC, and caspase-1 were up-regulated in the PM2.5 group. The expressions of these genes and proteins were significantly decreased following baicalin treatment. The lung function indicators showed that the MV (65.94 ± 8.19 mL), sRaw (1.79 ± 0.08 cm H2O.s), and FRC (0.52 ± 0.01 mL) in the PM2.5 group were higher than in the control and baicalin groups, and respiratory function was improved by baicalin. PM2.5 exposure markedly altered the bacterial composition at the genus level. The dominant flora relative abundances of uncultured_bacterium_f_Muribaculaceae, Streptococcus, and Lactobacillus, were decreased from the control group (9.20%, 8.53%, 6.21%) to PM2.5 group (6.26%, 5.49%, 4.77%), respectively. Following baicalin intervention, the relative abundances were 9.72%, 6.65%, and 3.57%, respectively. Therefore, baicalin could potentially prevent and improve mice lung inflammatory injury induced by PM2.5 exposure. Baicalin might provide a protective role by balancing oropharyngeal microbiota and affecting the expression of the HMGB1/Caspase1 pathway.
Collapse
Affiliation(s)
- Lili Deng
- College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; Department of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Mingyue Ma
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, Liaoning 110034, China; Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning 110034, China
| | - Shuying Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning 110034, China
| | - Lin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Sun Ye
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning 110034, China
| | - Juan Wang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning 110034, China
| | - Qiaoqiao Yang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, Liaoning 110034, China
| | - Chunling Xiao
- College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146, North Huanghe Street, Yuhong District, Shenyang, Liaoning 110034, China; School of Health Management, Shenyang Polytechnic College, Shenyang, Liaoning, 110045, China.
| |
Collapse
|
27
|
Li L, Song M, Zhou J, Sun X, Lei Y. Ambient particulate matter exposure causes visual dysfunction and retinal neuronal degeneration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114231. [PMID: 36327781 DOI: 10.1016/j.ecoenv.2022.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
PM2.5 pollution is related to neurotoxic and vascular effects in eye diseases such as glaucoma. This study investigates the adverse effects of PM2.5 exposure on visual function and retinal neurons. A versatile aerosol concentration enrichment system was used to expose mice to either control air or PM2.5 polluted air. Six months after PM2.5 exposure, visual function was measured by electroretinography (ERG). Hematoxylin and eosin staining and immunofluorescence staining were used for histopathological analysis. Protein markers of apoptosis, astrocytic reactivity, inflammatory cytokines, lipid peroxidation, protein nitration and DNA damage response were quantified with ELISA, western blot or detected using immunofluorescence and immunohistochemistry. After six months of exposure, PM2.5-exposed mice responded poorly to light stimuli compared with those exposed to the control air. PM2.5 exposure caused retinal thinning and reduction in the expression of retinal ganglion cell-selective marker RNA-binding protein with multiple splicing (RBPMS). Further, positive TUNEL staining was observed in the inner nucleus and outer nuclear layers of the retinae after exposure to PM2.5, which was accompanied by the activation of apoptosis signaling molecules p53, caspase-3 and Bax. PM2.5 induced the release of inflammatory cytokines including tumor necrosis factor-α and cleaved interleukin-1β. Furthermore, increased levels of 8-OHdG and γ-H2AX in the mouse retinea were indicative of DNA single and double strand breaks by PM2.5 exposure, which activated PARP-1 mediated DNA damage and repair. In conclusion, this study demonstrates sub-chronic systemic exposure to concentrated PM2.5 causes visual dysfunction and retinal neuronal degeneration. DATA AVAILABILITY: The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Liping Li
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Maomao Song
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China; Shanghai Typhoon Institute, CMA, Shanghai 200030, China; Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200031, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China.
| |
Collapse
|
28
|
Liu H, Nie H, Lai W, Shi Y, Liu X, Li K, Tian L, Xi Z, Lin B. Different exposure modes of PM 2.5 induces bronchial asthma and fibrosis in male rats through macrophage activation and immune imbalance induced by TIPE2 methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114200. [PMID: 36274320 DOI: 10.1016/j.ecoenv.2022.114200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/02/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Exposure to PM2.5 can aggravate the occurrence and development of bronchial asthma and fibrosis. Here, we investigated the differences in bronchial injury caused by different exposure modes of PM2.5 (high concentration intermittent exposure and low concentration continuous exposure), and the mechanism of macrophage activation and respiratory immune imbalance induced by PM2.5, leading to bronchial asthma and airway fibrosis using animal and cell models. A "PM2.5 real-time online concentrated animal whole-body exposure system" was used to conduct PM2.5 respiratory exposure of Wistar rats for 12 weeks, which can enhance oxidative stress in rat bronchus, activate epithelial cells and macrophages, release chemokines, recruit inflammatory cells, release inflammatory factors and extracellular matrix, promote bronchial mucus hypersecretion, inhibit the expression of epithelial cytoskeletal proteins, destroy airway barrier, and induce asthma. Furthermore, PM2.5 induced M2 polarization in lung bronchial macrophages through JAK/STAT and PI3K/Akt signaling pathways, and compared with low concentration continuous exposure, high concentration intermittent exposure of PM2.5 could regulate significantly higher expression of TIPE2 protein through promoter methylation of TIPE2 DNA, thereby activating PI3K/Akt signaling pathway and more effectively inducing M2 polarization of macrophages. Additionally, activated macrophages release IL-23, and activated epithelial cells and macrophages released TGF-β1, which promoted the differentiation of Th17 cells, triggered the Th17 dominant immune response, and activated the TGF-β1/Smad2 signaling pathway, finally causing bronchial fibrosis. Moreover, when the total amount of PM2.5 exposure was equal, high concentration-intermittent exposure was more serious than low concentration-continuous exposure. In vitro experiments, the co-culture models of PM2.5 with BEAS-2B, WL-38 and rat primary alveolar macrophages further confirmed that PM2.5 could induce the macrophage activation through oxidative stress and TIPE2 DNA methylation, and activate the TGF-β1/Smad2 signaling pathway, leading to the occurrence of bronchial fibrosis.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Xuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
29
|
Zeng Y, Jin H, Wang J, Guo C, Chen W, Tan Y, Wang L, Zhou Z. An optimized method for intratracheal instillation in mice. J Pharmacol Toxicol Methods 2022; 118:107230. [DOI: 10.1016/j.vascn.2022.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
|
30
|
Anderson A, Rezamand P, Skibiel AL. Effects of wildfire smoke exposure on innate immunity, metabolism, and milk production in lactating dairy cows. J Dairy Sci 2022; 105:7047-7060. [PMID: 35717334 DOI: 10.3168/jds.2022-22135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
Abstract
Wildfires are particularly prevalent in the Western United States, home to more than 2 million dairy cows that produce more than 25% of the nation's milk. Wildfires emit fine particulate matter (PM2.5) in smoke, which is a known air toxin and is thought to contribute to morbidity in humans by inducing inflammation. The physiological responses of dairy cows to wildfire PM2.5 are unknown. Herein we assessed the immune, metabolic, and production responses of lactating Holstein cows to wildfire PM2.5 inhalation. Cows (primiparous, n = 7; multiparous, n = 6) were monitored across the wildfire season from July to September 2020. Cows were housed in freestall pens and thus were exposed to ambient air quality. Air temperature, relative humidity, and PM2.5 were obtained from a monitoring station 5.7 km from the farm. Animals were considered to be exposed to wildfire PM2.5 if daily average PM2.5 exceeded 35 µg/m3 and wildfire and wind trajectory mapping showed that the PM2.5 derived from active wildfires. Based on these conditions, cows were exposed to wildfire PM2.5 for 7 consecutive days in mid-September. Milk yield was recorded daily and milk components analysis conducted before, during, and after exposure. Blood was taken from the jugular vein before, during, and after exposure and assayed for hematology, blood chemistry, and blood metabolites. Statistical analysis was conducted using mixed models including PM2.5, temperature-humidity index (THI), parity (primiparous or multiparous), and their interactions as fixed effects and cow as a random effect. Separate models included lags up to 7 d to identify delayed and persistent effects from wildfire PM2.5 exposure. Exposure to elevated PM2.5 from wildfire smoke resulted in lower milk yield during exposure and for 7 d after last exposure and higher blood CO2 concentration, which persisted for 1 d following exposure. We observed a positive PM2.5 by THI interaction for eosinophil and basophil count and a negative PM2.5 by THI interaction for red blood cell count and hemoglobin concentration after a 3-d lag. Neutrophil count was also lower with a combination of higher THI and PM2.5. We found no discernable effect of PM2.5 on haptoglobin concentration. Effects of PM2.5 and THI on metabolism were contingent on day of exposure. On lag d 0, blood urea nitrogen (BUN) was reduced with higher combined THI and PM2.5, but on subsequent lag days, THI and PM2.5 had a positive interaction on BUN. Conversely, THI and PM2.5 had a positive interacting effect on nonesterified fatty acids (NEFA) on lag d 0 but subsequently caused a reduction in circulating NEFA concentration. Our results suggest that exposure to high wildfire-derived PM2.5, alone or in concert with elevated THI, alters systemic metabolism, milk production, and the innate immune system.
Collapse
Affiliation(s)
- Ashly Anderson
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow 83844
| | - Pedram Rezamand
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow 83844
| | - Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow 83844.
| |
Collapse
|
31
|
Tian Y, Wang H, Wang M, Li X, Lu F, Ma S, Wang W, Wang J, Tang J, Wu J, Feng P, Fu Y, Han S, Liu T, Chen H, Hou H, Hu Q. Evaluation of inhalation toxicology after a 90-day xylitol aerosol exposure in Sprague-Dawley rats. Toxicol Appl Pharmacol 2022; 446:116045. [DOI: 10.1016/j.taap.2022.116045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/26/2022]
|
32
|
Liu G, Li Y, Zhou J, Xu J, Yang B. PM2.5 deregulated microRNA and inflammatory microenvironment in lung injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103832. [PMID: 35189342 DOI: 10.1016/j.etap.2022.103832] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
PM2.5 negatively affects human health, particularly lung injury. However, the role of PM2.5-regulated miRNAs in lung injury remains unknown. MiRNA array results showed mmu-miR-467c-5p regulated Prdx6 expression to adapt to lung injury condition, and deregulated miRNAs regulated macrophages to build a localized inflammatory microenvironment. In addition, miRNAs were transferred into adjacent alveolar epithelial cells, regulating the expressions of cell injury signaling pathway-targeted genes, and accelerating local lung tissue injury. NO and RAGE were increased in the coculture supernatant, and SPD was decreased. PM2.5 exposure induced local lung injury, promoted inflammation in local lung tissues, increased capillary permeability in the lung tissue, and rearranged the local lung tissue structure. We also confirmed in AECOPD patients TNF-α and IL-1β levels are obviously higher than healthy person. These findings provide new mechanistic insights regarding PM2.5 and targeted miRNAs in the inflammatory microenvironment, which increases our knowledge of PM2.5-lung injury interactions.
Collapse
Affiliation(s)
- Guangyan Liu
- Department of Pathogen Biology, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, People's Republic of China.
| | - Yunxia Li
- Department of Respiratory Medicine, Affiliated Center Hospital of Shenyang Medical College, No. 5, Nanqi West Road, Shenyang, People's Republic of China.
| | - Jiaming Zhou
- Franklin and Marshall College, 415 Harrisburg Ave, Lancaster City, PA, USA.
| | - Jia Xu
- Department of Pathogen Biology, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, People's Republic of China.
| | - Biao Yang
- Department of Pathogen Biology, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, People's Republic of China.
| |
Collapse
|
33
|
Ren F, Xu J, Zhang J, Xu X, Huang L, Sun W, Li R, Li F. PM2.5 induced lung injury through upregulating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis. Immunobiology 2022; 227:152207. [DOI: 10.1016/j.imbio.2022.152207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
|
34
|
Liu H, Hu T, Wang M. Impact of Air Pollution on Residents' Medical Expenses: A Study Based on the Survey Data of 122 Cities in China. Front Public Health 2022; 9:743087. [PMID: 34988046 PMCID: PMC8720779 DOI: 10.3389/fpubh.2021.743087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/29/2021] [Indexed: 12/29/2022] Open
Abstract
Background: With the development of the social economy, air pollution has resulted in increased social costs. Medical costs and health issues due to air pollution are important aspects of environmental governance in various countries. Methods: This study uses daily air pollution monitoring data from 122 cities in China to empirically investigate the impact of air pollution on residents' medical expenses using the Heckman two-stage and instrumental variable methods, matching data from the 2018 China Health and Retirement Longitudinal Study (CHARLS) survey. Results: The study found that poor air quality, measured by the air quality index (AQI), significantly increased the probability of chronic lung disease, heart disease, and self-rated poor health. Additionally, the AQI (with an effect of 4.51%) significantly impacted health-seeking behavior and medical expenses. The medical expenditure effects of mild, moderate, severe, and serious pollution days were 3.27, 7.21, 8.62, and 42.66%, respectively. Conclusion: In the long run, residents' health in areas with a higher air pollution index, indicating poor air quality, is negatively impacted. The more extreme the pollution, the higher the probability of residents' medical treatment and the subsequent increase in medical expenses. Group and regional heterogeneity also play a role in the impact of air pollution on medical expenses. Compared with the existing literature, this study is based on individuals aged 15 years and above and produces reliable research conclusions.
Collapse
Affiliation(s)
- Huan Liu
- School of Public Administration, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Tiantian Hu
- School of Political Science and Public Administration, Wuhan University, Wuhan, China
| | - Meng Wang
- School of Public Administration, Zhejiang University of Finance and Economics, Hangzhou, China
| |
Collapse
|
35
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
36
|
Yang S, Cheng Y, Chen Z, Liu T, Yin L, Pu Y, Liang G. In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112837. [PMID: 34619472 DOI: 10.1016/j.ecoenv.2021.112837] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 05/22/2023]
Abstract
Nanoplastics, including polystyrene nanoplastics (PS-NPs), are widely existed in the atmosphere, which can be directly and continuously inhaled into the human body, posing a serious threat to the respiratory system. Therefore, it is urgent to estimate the potential pulmonary toxicity of airborne NPs and understand its underlying mechanism. In this research, we used two types of human lung epithelial cells (bronchial epithelium transformed with Ad12-SV40 2B, BEAS-2B) and (human pulmonary alveolar epithelial cells, HPAEpiC) to investigate the association between lung injury and PS-NPs. We found PS-NPs could significantly reduce cell viability in a dose-dependent manner and selected 7.5, 15 and 30 μg/cm2 PS-NPs as the exposure dosage levels. Microarray detection revealed that 770 genes in the 7.5 μg/cm2 group and 1951 genes in the 30 μg/cm2 group were distinctly altered compared to the control group. Function analysis suggested that redox imbalance might play central roles in PS-NPs induced lung injury. Further experiments verified that PS-NPs could break redox equilibrium, induce inflammatory effects, and triggered apoptotic pathways to cause cell death. Importantly, we found that PS-NPs could decrease transepithelial electrical resistance by depleting tight junctional proteins. Result also demonstrated that PS-NPs-treated cells increased matrix metallopeptidase 9 and Surfactant protein A levels, suggesting the exposure of PS-NPs might reduce the repair ability of the lung and cause tissue damage. In conclusion, nanoplastics could induce oxidative stress and inflammatory responses, followed by cell death and epithelial barrier destruction, which might result in tissue damage and lung disease after prolonged exposure.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China.
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, PR China.
| |
Collapse
|
37
|
Tian Y, Wang H, Chen H, Li X, Lu F, Ma S, Wang W, Wu J, Tang J, Feng P, Fu Y, Han S, Liu T, Hou H, Hu Q. Toxicity evaluation in rats following 28 days of inhalation exposure to xylitol aerosol. Toxicol Res (Camb) 2021; 10:1177-1186. [PMID: 34956621 PMCID: PMC8692747 DOI: 10.1093/toxres/tfab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 01/31/2024] Open
Abstract
Xylitol has reported to decrease gingival inflammation and nasopharyngeal pneumonia, which indicated that xylitol may have potential application in respiratory diseases. Although some studies have reported the inhalation toxicity of xylitol, however, the longest period tested was only for 14 days. The inhalation toxicity of xylitol is insufficient. This work investigated the potential subacute toxicity of xylitol according to the OECD TG 412. Rats were randomly divided into a control group and different dosage groups (2 g/m3, 3 g/m3, 5 g/m3), and exposed for 6 hours/day, 5 days/week for 28 days. At the end of the exposure or recovery period, clinical signs, mortality, body weight, food consumption, hematology, blood biochemistry, gross pathology, organ weight, and histopathology were examined. Compared with the control group, rats of both sexes in the exposure groups exhibited no significant changes in body weight, organ mass, and food uptake. After the xylitol exposure, aspartate aminotransferase activity in the xylitol group (3 g/m3) was significantly higher than that in the control group, while other blood indicators and pathological changes of liver and the analysis of the recovery group showed no changes, suggesting that xylitol exerted no observable toxic effect on the liver. Finally, other observations including the histopathology of target organs and hematology also showed no alterations. These results indicated that xylitol had no significant inhalation toxicity at doses up to 5 g/m3. These subacute inhalation toxicity results of xylitol showed that its no-observed-adverse-effect concentration (NOAEC) in rats was determined to 5 g/m3.
Collapse
Affiliation(s)
- Yushan Tian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Xianmei Li
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Fengjun Lu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Shuhao Ma
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Wenming Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Jia Wu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Jiayou Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Pengxia Feng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Yaning Fu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Shulei Han
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Tong Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, PR China
| |
Collapse
|
38
|
Qin F, Fan Z, Xu M, Wang Z, Dong Y, Qu C, Cui S, Zhao L, Zhao J. Amelioration of Ambient Particulate Matter (PM 2.5)-Induced Lung Injury in Rats by Aerobic Exercise Training. Front Physiol 2021; 12:731594. [PMID: 34764879 PMCID: PMC8576392 DOI: 10.3389/fphys.2021.731594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ambient particulate matter (PM2.5), as an inflammation-inducing factor, increases the prevalence of lung injury. The aim of this study was to examine the protective effect and mechanism of aerobic exercise on PM2.5 exposure-induced lung injury. Forty Wistar rats were randomly divided into four groups: sedentary+PM2.5 exposure, exercise+PM2.5 exposure, sedentary, and exercise groups. All rats in the exercise-related groups underwent 8-week aerobic interval treadmill training (5daysweek−1, 1hday−1). PM-exposed rats were exposed to ambient PM2.5 (6h day−1) for 3weeks after the 8-week exercise intervention. Then, ventilation function, histopathological changes, and inflammation responses of pulmonary tissue were examined. Results showed that PM2.5 exposure induced lung injury as manifested by decreased pulmonary function, abnormal histopathological changes, and increased pro-inflammatory cytokine levels (tumor necrosis factor-α and Interleukin-1α). Aerobic exercise alleviated the airway obstruction, reduced respiratory muscle strength, bronchial mucosal exfoliation, ultrastructure damage, and inflammatory responses induced by PM2.5 in exercise-related groups. The benefits of exercise were related with the downregulation of p38-mitogen-activated protein kinase (MAPK), and the subsequent inhibition of the pathways of the cyclooxygenase 2 (COX-2) product, prostaglandin E2 (PGE2). Thus, pre-exercise training may be an effective way to protect against PM2.5-induced lung inflammatory injury in rats.
Collapse
Affiliation(s)
- Fei Qin
- Sport Biological Center, China Institute of Sport Science, Beijing, China.,School of Physical Education, Jinan University, Guangzhou, China
| | - Zhengzheng Fan
- Sport Biological Center, China Institute of Sport Science, Beijing, China
| | - Minxiao Xu
- Sport Biological Center, China Institute of Sport Science, Beijing, China.,Institute of Physical Education and Training, Capital University of Physical Education and Sports, Beijing, China
| | - Zhongwei Wang
- Sport Biological Center, China Institute of Sport Science, Beijing, China
| | - Yanan Dong
- Athletic Sports Research Lab, Beijing Institute of Sports Science, Beijing, China
| | - Chaoyi Qu
- Sport Biological Center, China Institute of Sport Science, Beijing, China
| | - Shuqiang Cui
- Athletic Sports Research Lab, Beijing Institute of Sports Science, Beijing, China
| | - Lina Zhao
- Sport Biological Center, China Institute of Sport Science, Beijing, China
| | - Jiexiu Zhao
- Sport Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
39
|
Wang L, Bao S, Liu X, Wang F, Zhang J, Dang P, Wang F, Li B, Lin Y. Low-dose exposure to black carbon significantly increase lung injury of cadmium by promoting cellular apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112703. [PMID: 34479021 DOI: 10.1016/j.ecoenv.2021.112703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter 2.5 (PM2.5) has adverse biological effects on major living organs in the body, including lungs. The complex composition of PM2.5, including carbon black and heavy metals, cause toxic effects to the lung. Nonetheless, there exists considerable knowledge gaps regarding the impact of carbon black (CB) on environmental health and safety (EHS). Thus far, the synergistic effects of CB have not gained much attention in past decades. Here, we showed that combined exposure of CB and Cadmium (Cd) enhance the cytotoxicity by altering the state of cell membrane. Specially, CB caused cell membrane collapse and increased the permeability of cells, and remarkedly enhanced the metal Cd toxicity. Furthermore, upon pre-treatment sublethal-dose CB, the increased intracellular Cd brought about a significantly amount of lactate dehydrogenase (LDH) and high expression of metallothionein-1 (MT-1) in human lung epithelial cell line (BEAS-2B) cells, and ultimately resulted an increased cellular toxicity. The lung of mice exposed CBs and Cd presented remarkably inflammation than Cd alone. Mechanistic exploration deciphered that CB pre-treatment triggered cell damage via apoptosis due to Cd exposure. Collectively, our findings reveal a novel path for understanding the impact of CB on EHS with its synergistic effects, through which nanomaterials might exert detrimental effects on organisms.
Collapse
Affiliation(s)
- Lingjuan Wang
- Tianjin Medical University General Hospital, Tianjin 300211, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanyu Bao
- Tianjin Medical University General Hospital, Tianjin 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fan Wang
- Tianjin Medical University General Hospital, Tianjin 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinwei Zhang
- Tianjin Medical University General Hospital, Tianjin 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pengyu Dang
- Tianjin Medical University General Hospital, Tianjin 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin 300211, China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yi Lin
- Tianjin Medical University General Hospital, Tianjin 300211, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
40
|
Li Y, Batibawa JW, Du Z, Liang S, Duan J, Sun Z. Acute exposure to PM 2.5 triggers lung inflammatory response and apoptosis in rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112526. [PMID: 34303042 DOI: 10.1016/j.ecoenv.2021.112526] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Severe haze events, especially with high concentration of fine particulate matter (PM2.5), are frequent in China, which have gained increasing attention among public. The purpose of our study was explored the toxic effects and potential damage mechanisms about PM2.5 acute exposure. Here, the diverse dosages of PM2.5 were used to treat SD rats and human bronchial epithelial cell (BEAS-2B) for 24 h, and then the bioassays were performed at the end of exposure. The results show that acute exposure to diverse dosages of PM2.5 could trigger the inflammatory response and apoptosis. The severely oxidative stress may contribute to the apoptosis. Also, the activation of Nrf2-ARE pathway was an important compensatory process of antioxidant damage during the early stage of acute exposure to PM2.5. Furthermore, the HO-1 was suppression by siRNA that promoted cell apoptosis triggered by PM2.5. In other words, enhancing the expression of HO-1 may mitigate the cell apoptosis caused by acute exposure to PM2.5. In summary, our findings present the first time that prevent or mitigate the damage triggered by PM2.5 through antioxidant approaches was a promising strategy.
Collapse
Affiliation(s)
- Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Josevata Werelagi Batibawa
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
41
|
Pei C, Wang F, Huang D, Shi S, Wang X, Wang Y, Li S, Wu Y, Wang Z. Astragaloside IV Protects from PM2.5-Induced Lung Injury by Regulating Autophagy via Inhibition of PI3K/Akt/mTOR Signaling in vivo and in vitro. J Inflamm Res 2021; 14:4707-4721. [PMID: 34557015 PMCID: PMC8453246 DOI: 10.2147/jir.s312167] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction Prolonged exposure to air polluted with airborne fine particulate matter (PM2.5) can increase respiratory disease risk. Astragaloside IV (AS-IV) is one of the main bioactive substances in the traditional Chinese medicinal herb, Astragalus membranaceus Bunge. AS-IV has numerous pharmacological properties; whereas there are few reports on the prevention of PM2.5-induced lung injury by AS-IV through modulation of the autophagic pathway. This study aimed to investigate the protective effects and the underlying mechanisms of AS-IV in PM2.5-induced lung injury rats and rat alveolar macrophages (NR8383 cells). Methods The pneumotoxicity model was established by intratracheal injection of PM2.5 in rats, and PM2.5 challenge in NR8383 cells. The severity of lung injury was evaluated by wet weight to dry weight ratio and McGuigan pathology scoring. Inflammatory factors and oxidative stress were detected through ELISA. The expressions of p-PI3K, p-Akt, and p-mTOR proteins were analyzed by immunohistochemistry. Immunofluorescence and transmission electron microscopy were used to detect autophagosomes. The expressions of autophagy marker protein (LC3B and p62), PI3K/Akt/mTOR signaling and NF-κB translocation were detected by Western blot in lung tissue and NR8383 cells. Results After PM2.5 stimulation, rats showed severe inflammation and oxidative stress, along with inhibition of autophagy in lung tissue. AS-IV not only decreased pulmonary inflammation and oxidative stress by inhibiting nuclear factor kappa B translocation, but also regulated autophagy by inhibiting PI3K/Akt/mTOR signaling. After treatment with 3-methyladenine (a classic PI3K inhibitor, blocking the formation of autophagosomes), the protective effect of AS-IV on PM2.5-induced lung injury was further strengthened. In parallel, using Western blot, immunohistochemistry, and transmission electron microscopy, we demonstrated that AS-IV restore autophagic flux mainly through regulating the degradation of autophagosomes rather than suppressing the formation in vivo and in vitro. Conclusion Our data indicated that AS-IV protects from PM2.5-induced lung injury in vivo and in vitro by inhibiting the PI3K/Akt/mTOR pathway to regulate autophagy and inflammation.
Collapse
Affiliation(s)
- Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
42
|
Loaiza-Ceballos MC, Marin-Palma D, Zapata W, Hernandez JC. Viral respiratory infections and air pollutants. AIR QUALITY, ATMOSPHERE, & HEALTH 2021; 15:105-114. [PMID: 34539932 PMCID: PMC8441953 DOI: 10.1007/s11869-021-01088-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/01/2021] [Indexed: 05/17/2023]
Abstract
Air pollution is a public health issue of global importance and a risk factor for developing cardiorespiratory diseases. These contaminants induce reactive oxygen species (ROS) and increased pro-inflammatory cytokines such as IL-1β, IL-6, and IL-8, triggering the inflammatory response that alters cell and tissue homeostasis and facilitates the development of diseases. The effects of air pollutants such as ozone, particulate matter (PM10, PM2.5, and PM0.1), and indoor air pollutants on respiratory health have been widely reported. For instance, epidemiological and experimental studies have shown associations between hospital admissions for individual diseases and increased air pollutant levels. This review describes the association and relationships between exposure to air pollutants and respiratory viral infections, especially those caused by the respiratory syncytial virus and influenza virus. The evidence suggests that exposure to air contaminants induces inflammatory states, modulates the immune system, and increases molecules' expression that favors respiratory viruses' pathogenesis and affects the respiratory system. However, the mechanisms underlying these interactions have not yet been fully elucidated, so it is necessary to develop new studies to obtain information that will allow health and policy decisions to be made for the adequate control of respiratory infections, especially in the most vulnerable population, during periods of maximum air pollution.
Collapse
Affiliation(s)
| | - Damariz Marin-Palma
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellin, Colombia
| | - Wildeman Zapata
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellin, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
| |
Collapse
|
43
|
Lin CY, Chen WL, Chen TZ, Lee SH, Liang HJ, Chou CCK, Tang CH, Cheng TJ. Lipid changes in extrapulmonary organs and serum of rats after chronic exposure to ambient fine particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147018. [PMID: 34088028 DOI: 10.1016/j.scitotenv.2021.147018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) is able to pass through the respiratory barrier to enter the circulatory system and can consequently spread to the whole body to cause toxicity. Although our previous studies have revealed significantly altered levels of phosphorylcholine-containing lipids in the lungs of rats after chronic inhalation exposure to PM2.5, the effects of PM2.5 on phosphorylcholine-containing lipids in the extrapulmonary organs have not yet been elucidated. In this study, we examined the lipid effects of chronic PM2.5 exposure on various organs and serum by using a rat inhalation model followed by a mass spectrometry-based lipidomic approach. Male Sprague-Dawley rats were continuously exposed at the whole body level to nonfiltered and nonconcentrated ambient air from the outside environment of Taipei city for 8 months, while the control rats inhaled filtered air simultaneously. After exposure, serum samples and various organs, including the testis, pancreas, heart, liver, kidney, spleen, and epididymis, were collected for lipid extraction and analysis to examine the changes in phosphorylcholine-containing lipids after exposure. The results from the partial least squares discriminant analysis models demonstrated that the lipid profiles in the PM2.5 exposure group were different from those in the control group in the rat testis, pancreas, heart, liver, kidney and serum. The greatest PM2.5-induced lipid effects were observed in the testes. Decreased lyso-phosphatidylcholines (PCs) as well as increased unsaturated diacyl-PCs and sphingomyelins in the testes may be related to maintaining the membrane integrity of spermatozoa, antioxidation, and cell signaling. Additionally, our results showed that decreased PC(16:0/18:1) was observed in both the serum and testes. In conclusion, exposure to chronic environmental concentrations of PM2.5 caused lipid perturbation, especially in the testes of rats. This study highlighted the susceptibility of the testes and suggested possible molecular events for future study.
Collapse
Affiliation(s)
- Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Wen-Ling Chen
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ting-Zhen Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
44
|
Feng YM, Thijs L, Zhang ZY, Bijnens EM, Yang WY, Wei FF, Janssen BG, Nawrot TS, Staessen JA. Glomerular function in relation to fine airborne particulate matter in a representative population sample. Sci Rep 2021; 11:14646. [PMID: 34282189 PMCID: PMC8290004 DOI: 10.1038/s41598-021-94136-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/30/2021] [Indexed: 11/11/2022] Open
Abstract
From 1990 until 2017, global air-pollution related mortality increased by 40%. Few studies addressed the renal responses to ultrafine particulate [≤ 2.5 µm (PM2.5)], including black carbon (BC), which penetrate into the blood stream. In a Flemish population study, glomerular filtration estimated from serum creatinine (eGFR) and the urinary albumin-to-creatinine ratio were measured in 2005–2009 in 820 participants (women, 50.7%; age, 51.1 years) with follow-up of 523 after 4.7 years (median). Serum creatinine, eGFR, chronic kidney disease (eGFR < 60 mL/min/1.73 m2) and microalbuminuria (> 3.5/> 2.5 mg per mmol creatinine in women/men) were correlated in individual participants via their residential address with PM2.5 [median 13.1 (range 0.3–2.9) μg/m3] and BC [1.1 (0.3–18) μg/m3], using mixed models accounting for address clusters. Cross-sectional and longitudinally, no renal outcome was associated with PM2.5 or BC in models adjusted for sex and baseline or time varying covariables, including age, blood pressure, heart rate, body mass index, plasma glucose, the total-to-HDL serum cholesterol ratio, alcohol intake, smoking, physical activity, socioeconomic class, and antihypertensive treatment. The subject-level geocorrelations of eGFR change with to BC and PM2.5 were 0.13 and 0.02, respectively (P ≥ 0.68). In conclusion, in a population with moderate exposure, renal function was unrelated to ultrafine particulate.
Collapse
Affiliation(s)
- Ying-Mei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China. .,Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
| | - Lutgarde Thijs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Zhen-Yu Zhang
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Esmée M Bijnens
- Center for Environment Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wen-Yi Yang
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.,Shanghai General Hospital, Shanghai, China
| | - Fang-Fei Wei
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.,Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Bram G Janssen
- Center for Environment Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Center for Environment Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jan A Staessen
- Non-Profit Research Institute Alliance for the Promotion of Preventive Medicine, Mechlin, Belgium. .,Biomedical Sciences Group, Faculty of Medicine, University of Leuven, Leuven, Belgium.
| |
Collapse
|
45
|
Li M, Nabi G, Sun Y, Wang Y, Wang L, Jiang C, Cao P, Wu Y, Li D. The effect of air pollution on immunological, antioxidative and hematological parameters, and body condition of Eurasian tree sparrows. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111755. [PMID: 33396078 DOI: 10.1016/j.ecoenv.2020.111755] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
Air pollution constitutes potential threats to wildlife and human health; therefore, it must be monitored accurately. However, little attention has been given to understanding the toxicological effects induced by air pollution and the suitability of bird species as bioindicators. The Eurasian tree sparrow (Passer montanus), a human commensal species, was used as a study model to examine toxic metal accumulation, retention of particulate matter (PM), immunological and antioxidant capacities, and hematological parameters in birds inhabiting those areas with relatively higher (Shijiazhuang city) or lower (Chengde city) levels of PM2.5 and PM10 in China. Our results showed that Shijiazhuang birds had significantly more particle retention in the lungs and toxic metal (including aluminum, arsenic, cadmium, iron, manganese, and lead) accumulation in the feathers relative to Chengde birds. They also had lower superoxide dismutase, albumin, immunoglobulin M concentrations in the lung lavage fluid, and total antioxidant capacity (T-AOC) in the lungs and hearts. Furthermore, although they had higher proportions of microcytes, hypochromia, and polychromatic erythrocytes in the peripheral blood (a symptom of anemia), both populations exhibited comparable body conditions, white cell counts, heterophil and lymphocyte ratios, and plasma T-AOC and corticosterone levels. Therefore, our results not only confirmed that Shijiazhuang birds experienced a greater burden from environmental PM and toxic metals but also identified a suite of adverse effects of environmental pollution on immunological, antioxidative, and hematological parameters in multiple tissues. These findings contribute to our understanding of the physiological health consequences induced by PM exposure in wild animals. They suggest that free-living birds inhabiting urban areas could be used as bioindicators for evaluating the adverse effects induced by environmental pollution.
Collapse
Affiliation(s)
- Mo Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China; Life Sciences College of Cangzhou Normal University, Cangzhou, China
| | - Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanfeng Sun
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China; Ocean College of Hebei Agricultural University, Qinhuangdao, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Limin Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuan Jiang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuefeng Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
46
|
Badamjav R, Zhang L, Sonom D, Wu YH, Kou JP, Yu BY, Li F. Thalictrum minus L. ameliorates particulate matter-induced acute lung injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113379. [PMID: 32916235 DOI: 10.1016/j.jep.2020.113379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/17/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thalictrum minus L., which is widespread across Eurasia, is utilized as a folk medicine for treating dysentery, bedsore, fungal infection and lung inflammation in China, Mongolia and Iran. AIM OF THE STUDY A Mongolian folk medicinal plant named Thalictrum minus L. (TML) has been extensively used for the treatment of lung inflammation, bacterial and fungal infection and tuberculosis. Our present study aims to investigate the effectiveness of TML against particulate matter (PM)-induced acute lung injury (ALI) and the potential underlying mechanisms. MATERIALS AND METHODS Initially, HPLC-Q-TOF was applied for the qualitative analysis and HPLC was used for quantitative analysis of main components in TML. Then, the mice model of ALI was induced by PM via intratracheally instilled with 50 mg/kg body weight of Standard Reference Material1648a (SRM1648a), and TML (10, 20, 40 mg/kg) were administered orally 1 h prior to PM. The efficacy and molecular mechanisms in the presence or absence of TML were elucidated. RESULTS Eleven main ingredients were detected in TML and the contents of homoorientin and berberine were quantified. Additionally, the results demonstrated that TML profoundly inhibited weight loss in mice and ameliorated lung pathological injury induced by PM. Furthermore, we also found that TML significantly decreased the lung wet to dry weight (W/D) ratios, reduced total protein in bronchoalveolar lavage fluid (BALF), and effectively attenuated PM-induced increased leukocyte and macrophages in BALF. Meanwhile, TML could pronouncedly inhibited myeloperoxidase (MPO) activity in lung tissues, decreased the PM-induced inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β), reduced nitric oxide (NO) and increased superoxide dismutase (SOD) in BALF. In addition, TML markedly facilitated the expression of p-AMPK-Nrf2 and suppressed the expression of KEAP, prohibited the activation of the MAPKs-NLRP3/caspase-1 and cyclooxygenase-2 (COX2), and inhibited apoptotic pathways. CONCLUSION These findings indicated that TML attenuated PM-induced ALI through suppressing the release of inflammatory cytokines and alleviating oxidative damage correlated with the AMPK-Nrf2/KEAP signaling pathways, MAPKs-NLRP3/caspase-1 signaling pathways, as well as apoptotic pathways.
Collapse
Affiliation(s)
- Rentsen Badamjav
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; Mongolian University of Pharmaceutical Science, Ulaanbaatar, Mongolia.
| | - Lu Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Dolgor Sonom
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; Mongolian University of Pharmaceutical Science, Ulaanbaatar, Mongolia.
| | - Yun-Hao Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Jun-Ping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
47
|
Environmentally Relevant Iron Oxide Nanoparticles Produce Limited Acute Pulmonary Effects in Rats at Realistic Exposure Levels. Int J Mol Sci 2021; 22:ijms22020556. [PMID: 33429876 PMCID: PMC7827273 DOI: 10.3390/ijms22020556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Iron is typically the dominant metal in the ultrafine fraction of airborne particulate matter. Various studies have investigated the toxicity of inhaled nano-sized iron oxide particles (FeOxNPs) but their results have been contradictory, with some indicating no or minor effects and others finding effects including oxidative stress and inflammation. Most studies, however, did not use materials reflecting the characteristics of FeOxNPs present in the environment. We, therefore, analysed the potential toxicity of FeOxNPs of different forms (Fe3O4, α-Fe2O3 and γ-Fe2O3) reflecting the characteristics of high iron content nano-sized particles sampled from the environment, both individually and in a mixture (FeOx-mix). A preliminary in vitro study indicated Fe3O4 and FeOx-mix were more cytotoxic than either form of Fe2O3 in human bronchial epithelial cells (BEAS-2B). Follow-up in vitro (0.003, 0.03, 0.3 µg/mL, 24 h) and in vivo (Sprague–Dawley rats, nose-only exposure, 50 µg/m3 and 500 µg/m3, 3 h/d × 3 d) studies therefore focused on these materials. Experiments in vitro explored responses at the molecular level via multi-omics analyses at concentrations below those at which significant cytotoxicity was evident to avoid detection of responses secondary to toxicity. Inhalation experiments used aerosol concentrations chosen to produce similar levels of particle deposition on the airway surface as were delivered in vitro. These were markedly higher than environmental concentrations. No clinical signs of toxicity were seen nor effects on BALF cell counts or LDH levels. There were also no significant changes in transcriptomic or metabolomic responses in lung or BEAS-2B cells to suggest adverse effects.
Collapse
|
48
|
Xin L, Wang J, Sun J, Zhang C, Tong X, Wan J, Feng J, Tian H, Zhang Z. Cellular effects of PM 2.5 from Suzhou, China: relationship to chemical composition and endotoxin content. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:287-299. [PMID: 32809125 DOI: 10.1007/s11356-020-10403-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Exposure to PM2.5 can cause adverse health outcomes. In this study, we analyzed PM2.5 samples collected from suburban and urban sites, including a traffic tunnel in Suzhou, China, for their physicochemical properties, endotoxin contents, and effects on HepG2 and A549 cells in vitro. The greatest cellular responses, including oxidative stress, cytotoxicity, genotoxicity, inflammatory, and transcriptional activation of stress-responsive genes (i.e., HSPA1A, GADD45α), were observed in cells treated with traffic tunnel PM2.5. Cytokine expression was also measured and closely correlated with endotoxin content, while other toxic effects were largely related to PM2.5-bound metals and polycyclic aromatic hydrocarbons (PAHs). These findings suggested that chemical and biological composition of PM2.5, including adsorbed trace metals, PAHs, and endotoxin, may contribute significantly to their toxicity. In addition to commonly used in vitro toxicity tests, HSPA1A and GADD45α promoter-driven luciferase reporter cells may provide a potential new tool for rapid screening and quantification of PM2.5 toxicity.
Collapse
Affiliation(s)
- Lili Xin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jianshu Wang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, Jiangsu, China
| | - Jiaojiao Sun
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Chen Zhang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Xing Tong
- Laboratory Center, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jianmei Wan
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Jialiang Feng
- Institute of Environmental Pollution and Health, Shanghai University, Shanghai, 200444, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Zengli Zhang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
49
|
Wang YS, Chang LC, Chang FJ. Explore Regional PM2.5 Features and Compositions Causing Health Effects in Taiwan. ENVIRONMENTAL MANAGEMENT 2021; 67:176-191. [PMID: 33201258 DOI: 10.1007/s00267-020-01391-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Chemical compositions of atmospheric fine particles like PM2.5 prove harmful to human health, particularly to cardiopulmonary functions. Multifaceted health effects of PM2.5 have raised broader, stronger concerns in recent years, calling for comprehensive environmental health-risk assessments to offer new insights into air-pollution control. However, there have been few studies adopting local air-quality-monitoring datasets or local coefficients related to PM2.5 health-risk assessment. This study aims to assess health effects caused by PM2.5 concentrations and metal toxicity using epidemiological and toxicological methods based on long-term (2007-2017) hourly monitoring datasets of PM2.5 concentrations in four cities of Taiwan. The results indicated that (1) PM2.5 concentrations and hazardous substances varied substantially from region to region, (2) PM2.5 concentrations significantly decreased after 2013, which benefited mainly from two actions against air pollution, i.e., implementing air-pollution-control strategies and raising air-quality standards for certain emission sources, and (3) under the condition of low PM2.5 concentrations, high health risks occurred in eastern Taiwan on account of toxic substances adsorbed on PM2.5 surface. It appears that under the condition of low PM2.5 concentrations, the results of epidemiological and toxicological health-risk assessments may not agree with each other. This raises a warning that air-pollution control needs to consider toxic substances adsorbed in PM2.5 and region-oriented control strategies are desirable. We hope that our findings and the proposed transferable methodology can call on domestic and foreign authorities to review current air-pollution-control policies with an outlook on the toxicity of PM2.5.
Collapse
Affiliation(s)
- Yi-Shin Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Li-Chiu Chang
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, 25137, Taiwan
| | - Fi-John Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
50
|
Chang YS, Abimannan S, Chiao HT, Lin CY, Huang YP. An ensemble learning based hybrid model and framework for air pollution forecasting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38155-38168. [PMID: 32621183 DOI: 10.1007/s11356-020-09855-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
As advance of economy and industry, the impact of air pollution has gradually gained attention. In order to predict air quality, there were many studies that exploited various machine learning techniques to build predictive model for pollutant concentration or air quality prediction. However, enhancing the prediction performance always is the common problem of existing studies. Traditional templates based on machine learning and deep learning methods, such as GBTR (gradient boosted tree regression), SVR (support vector machine-based regression), and LSTM (long short-term memory), are most promising approaches to address these problems. Some previous researches showed that ensemble learning technology can improve predictive performance of other domains. In order to improve the accuracy of forecasting, in this paper, we propose a hybrid model and framework to improve the forecasting accuracy of air pollution. We not only exploit stacking-based ensemble learning scheme with Pearson correlation coefficient to calculate the correlation between different machine learning models to integrate various forecasting models together, but also construct a framework based on Spark+Hadoop machine learning and TensorFlow deep learning framework to physically integrate these models to demonstrate the next 1 to 8 h' air pollution forecasting. We also conduct experiments and compare the result with GBTR, SVR, LSTM, and LSTM2 (version 2) models to demonstrate the proposed hybrid model's predictive performance. The experimental results show that the hybrid model is superior to the existing models used for predicting air pollution.
Collapse
Affiliation(s)
- Yue-Shan Chang
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City, Taiwan.
| | | | | | - Chi-Yeh Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City, Taiwan
| | - Yo-Ping Huang
- National Taipei University of Technology, Taipei City, Taiwan
| |
Collapse
|