1
|
A Sizova E, A Miroshnikov S, V Notova S, V Skalny A, V Yausheva E, M Kamirova A, A Tinkov A. The effects of the housing system and milk productivity on serum and fecal levels of essential and toxic trace elements and minerals in Red Steppe dairy cows. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5062-5077. [PMID: 39899206 DOI: 10.1007/s11356-025-36021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The objective of the present study was to evaluate serum and fecal trace element and mineral levels in Red Steppe dairy cows with different daily milk yields during the transition from feedlot to pasture. Serum and fecal trace element and mineral levels were assessed using the inductively coupled plasma mass spectrometry. The obtained data demonstrate that serum Ca, Mg, K, and Na levels increased significantly in the pasture period, and this increase is more profound in cows with higher milk yield. In turn, circulating levels of B, Co, Cr, Fe, I, and Se significantly decreased in the pasture period. Despite the lack of group differences in the feedlot period, serum B, Cr, and Fe levels in the pasture period were higher in cows with higher milk yield. In turn, circulating Co and I concentrations were higher in the cows with lower milk yield. Finally, the levels of toxic trace elements in the pasture period were found to be higher in cows with lower milk productivity. Discriminant analysis demonstrated that the groups of cows with different milk productivity were clearly discriminated only in the pasture period. Despite a significant change in fecal trace element and mineral content upon transition from feedlot to pasture, only minor group differences between cows with different daily milk yields were observed. These findings demonstrate that despite the lack of differences in dietary trace element and mineral intake, cows with different milk productivity are characterized by distinct patterns of serum trace element and mineral content.
Collapse
Affiliation(s)
- Elena A Sizova
- Federal Research Centre of Biological Systems and Agrotechnologiesof the , Russian Academy of Sciences, Orenburg, Russia.
- Orenburg State University, Orenburg, Russia.
| | | | | | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| | - Elena V Yausheva
- Federal Research Centre of Biological Systems and Agrotechnologiesof the , Russian Academy of Sciences, Orenburg, Russia
| | - Aina M Kamirova
- Federal Research Centre of Biological Systems and Agrotechnologiesof the , Russian Academy of Sciences, Orenburg, Russia
| | - Alexey A Tinkov
- Federal Research Centre of Biological Systems and Agrotechnologiesof the , Russian Academy of Sciences, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
2
|
Yan M, Wang W, Jin L, Deng G, Han X, Yu X, Tang J, Han X, Ma M, Ji L, Zhao K, Zou L. Emerging antibiotic and heavy metal resistance in spore-forming bacteria from pig manure, manure slurry and fertilized soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123270. [PMID: 39541816 DOI: 10.1016/j.jenvman.2024.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Spore-forming bacteria (SFB), like Bacillus, are the gram-positive bacteria with broad-spectrum activity that is one of the commonly used strains of probiotics. However, these bacteria also have significant resistance. In this study, we systematically investigated pig manure, manure slurry and soil by 16S rRNA high-throughput sequencing and traditional culture techniques. We found the SFB was widespread in manure, manure slurry and soil, Firmicutes was one of the main dominant phyla in pig manure, manure slurry and soil, the relative abundance of Bacillus were 0.98%, 0.01%, and 2.57%, respectively, and metals such as copper have complex relationships with bacteria. We isolated 504 SFB from 369 samples, with the highest number identified as Bacillus subtilis. SFB strains showed varying degrees of antibiotic resistance; the greatest against erythromycin, followed by imipenem. The MICs of SFB varied greatly against different heavy metals; with high (est) resistance against Zn2+, followed by Cu2+. Second-generation whole genome sequencing (WGS) revealed that nine Bacillus strains carried different subtypes of vancomycin resistance genes, among which vanRM had the highest frequency. The strain W129 included the vanRA-vanRM-vanSA-vanZF cluster. The nine Bacillus strains also contained antibiotic genes such as aminoglycoside (ant(9)-Ia), β-lactam (bcII), and macrolide (msrE). Twenty-six Bacillus isolates carried copper resistance clusters, including csoR-copZ, copA-copZ-csoR, and copZ-copA. WGS showed that strain W166 carried 11 vancomycin resistance genes and 11 copper resistance genes. There were 4 vancomycin resistance genes and 14 copper resistance genes on the W129 chromosome. Strain W129 also harbors the plasmid pLKYM01 that contains an intact transposon consisting of insertion sequence and vancomycin resistance genes vanYF and vanRA. This study explores the potential risks of using pig manure and fertilized soil to inform safe and effective use of probiotics in agriculture. It highlights scientific evidence for concern over the safe utilization and control of animal waste products.
Collapse
Affiliation(s)
- Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guoyou Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xinfeng Han
- College of Veterinary Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Junni Tang
- College of Food Sciences and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Ji
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
3
|
Liu L, Wang J, Zhai J, Yan D, Lin Z. Regional disparities and technological approaches in heavy metal remediation: A comprehensive analysis of soil contamination in Asia. CHEMOSPHERE 2024; 366:143485. [PMID: 39374671 DOI: 10.1016/j.chemosphere.2024.143485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Rapid industrialization and urbanization in Asia have significantly increased heavy metal emissions, leading to severe challenges in soil contamination. This review critically examines the diverse sources of heavy metal pollution, regional disparities in contamination levels, and various remediation strategies across Asia. The connections between pollution sources and the resulting heavy metal contamination are explored, with a focus on individual assessments of pollution status in East Asia, South Asia, Southeast Asia, Central Asia, and West Asia. These assessments consider human, geographical, policy, and economic factors. The advantages and limitations of physical, chemical, and biological remediation techniques, as well as their combined applications, are analyzed. Additionally, the importance of regulatory measures, sustainable practices, and public awareness is emphasized for ensuring the long-term health and sustainability of Asian soils. This review aims to contribute to the sustainable development of Asian soils by providing region-specific strategies for the effective remediation of heavy metal contamination.
Collapse
Affiliation(s)
- Lu Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jialin Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jieru Zhai
- Heilongjiang Provincial Energy Conservation Monitoring Center, No.139 Wenchang Street, Nangang District, Harbin, Heilongjiang Province, 150001, PR China
| | - Dapeng Yan
- Harbin Dan Shao Da Environmental Protection Technology Co., Ltd, PR China
| | - Zhengda Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
4
|
Lee G, Jang SE, Jeong WG, Tsang YF, Baek K. Stabilization mechanism and long-term stability of endogenous heavy metals in manure-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174801. [PMID: 39009162 DOI: 10.1016/j.scitotenv.2024.174801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Pyrolysis has been proposed to stabilize heavy metals present in livestock manure. However, many studies have not considered the applicability of manure-derived biochar containing endogenous heavy metals as an agricultural fertilizer. This study investigated the mechanisms through which pyrolysis stabilizes endogenous heavy metals in swine manure and the long-term stability of endogenous heavy metals in the biochar. As pyrolysis temperature increased from 300 °C to 700 °C, the potential ecological risk index decreased from 46.3 to 4.8 because the unstable fraction converted to organic-sulfide bonds and residues. Biochar prepared at 600 °C was the most stable and met the World Health Organization's phyto-availability standards (Cu 10 mg/kg, Zn 0.6 mg/kg). Fourier transform infrared spectroscopy and X-ray diffraction analyses indicated that endogenous heavy metals were stabilized by complexation with organic matter and precipitated as metal-phosphate forms. After 40 cycles of wet-dry aging, the leachability of heavy metals (Cu 6.0 mg/kg, Zn 460.6 mg/kg) from biochar was still lower than that of swine manure (Cu 102.5 mg/kg and Zn 704.9 mg/kg), indicating the long-term stability of the heavy metals in the biochar. Pyrolysis dramatically lowered the environmental threat posed by endogenous heavy metals, demonstrating the applicability of swine manure-derived biochar compared to manure.
Collapse
Affiliation(s)
- Gabeen Lee
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Department of Science and Environmental Studies, State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Se-Eun Jang
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Won-Gune Jeong
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong.
| | - Kitae Baek
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
5
|
Su Y, Zhou L, Zhuo Q, Fang C, You J, Han L, Huang G. Microbial mechanisms involved in negative effects of amoxicillin and copper on humification during composting of dairy cattle manure. BIORESOURCE TECHNOLOGY 2024; 399:130623. [PMID: 38518876 DOI: 10.1016/j.biortech.2024.130623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Livestock manure often contains various pollutants. The aim of this study was to investigate how adding amoxicillin (AMX), Cu, and both AMX and Cu (ACu) affected humification during composting and the microbial mechanisms involved. The cellulose degradation rates were 16.96%, 10.86%, and 9.01% lower, the humic acid contents were 18.71%, 12.89%, and 16.78% lower, and the humification degrees were 24.72%, 24.16%, and 15.73% lower for the AMX, Cu, and ACu treatments, respectively, than the control. Adding AMX and Cu separately or together inhibited humic acid formation and decreased the degree of humification, but the degree of humification was decreased less by ACu than by AMX or Cu separately. The ACu treatment decreased the number of core bacteria involved in humic acid formation and decreased carbohydrate and amino acid metabolism during the maturing period, and thereby delayed humic acid formation and humification. The results support composting manure containing AMX and Cu.
Collapse
Affiliation(s)
- Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Xinjiang 843300, China
| | - Qianting Zhuo
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; College of Agriculture, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Jia You
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Li J, Xu Y, Zhang Y, Liu Z, Gong H, Fang W, OUYang Z, Li W, Xu L. Quantifying the mitigating effect of organic matter on heavy metal availability in soils with different manure applications: A geochemical modelling study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116321. [PMID: 38608382 DOI: 10.1016/j.ecoenv.2024.116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Manure is one of the main sources of heavy metal (HM) pollution on farmlands. It has become the focus of global ecological research because of its potential threat to human health and the sustainability of food systems. Soil pH and organic matter are improved by manure and play pivotal roles in determining soil HM behavior. Geochemical modeling has been widely used to assess and predict the behavior of soil HMs; however, there remains a research gap in manure applications. In this study, a geochemical model (LeachXS) coupled with a pH-dependent leaching test with continuously simulations over a broad pH range was used to determine the effects and pollution risks of pig or cattle manure separate application on soil HMs distribution. Both pig and cattle manure applications led to soil pH reduction in alkaline soils and increased organic matter content. Pig manure application resulted in a potential 90.5-156.0 % increase in soil HM content. Cattle manure did not cause significant HM contamination. The leaching trend of soil HMs across treatments exhibited a V-shaped change, with the lowest concentration at pH = 7, gradually increasing toward strong acids and bases. The dissolved organic matter-bound HM content directly increased the HM availability, especially for Cu (up to 8.4 %) after pig manure application. However, more HMs (Cr, Cu, Zn, Ni) were in the particulate organic matter-bound state than in other solid phases (e.g., Fe-Al(hydr) oxides, clay minerals), which inhibited the HMs leaching by more than 19.3 % after cattle manure application. Despite these variations, high HM concentrations introduced by pig manure raised the soil contamination risk, potentially exceeding 40 times at pH ±1. When manure is returned to the field, reducing its HM content and mitigating possible pollution is necessary to realize the healthy and sustainable development of circular agriculture.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yitao Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Liu
- Yellow River Delta Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Shandong Dongying Institute of Geographic Sciences, Dongying 257000, China
| | - Huarui Gong
- Yellow River Delta Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Shandong Dongying Institute of Geographic Sciences, Dongying 257000, China
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhu OUYang
- Yellow River Delta Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiwei Li
- Natural Resources Bureau of Yucheng City, Dezhou, Shandong 251299, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
7
|
Du JX, Ma YH, Nawab S, Yong YC. Simultaneous Electrochemical Detection of Cu 2+ and Zn 2+ in Pig Farm Wastewater. SENSORS (BASEL, SWITZERLAND) 2024; 24:2475. [PMID: 38676092 PMCID: PMC11053575 DOI: 10.3390/s24082475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
In recent years, the rapid development of pig farming has led to a large quantity of heavy metal-polluted wastewater. Thus, it was desirable to develop a simple heavy metal detection method for fast monitoring of the wastewater from the pig farms. Therefore, there was an urgent need to develop a simple method for rapidly detecting heavy metal ions in pig farm wastewater. Herein, a simple electrochemical method for simultaneous detection of Cu2+ and Zn2+ was developed and applied to pig farm wastewater. With a glassy carbon electrode and anodic stripping voltammetry, simultaneous detection of Cu2+ and Zn2+ in water was achieved without the need for complicated electrode modification. Furthermore, it was found that the addition of Cd2+ can enhance the response current of the electrode to Zn2+, which increased the signal by eight times. After systematic optimization, the limit of detection (LOD) of 9.3 μg/L for Cu2+ and 45.3 μg/L for Zn2+ was obtained. Finally, it was successfully applied for the quantification of Cu2+ and Zn2+ with high accuracy in pig farm wastewater. This work provided a new and simple solution for fast monitoring of the wastewater from pig farms and demonstrated the potential of electrochemical measurement for application in modern animal husbandry.
Collapse
Affiliation(s)
| | | | | | - Yang-Chun Yong
- Biofuels Institute and Institute for Energy Research, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (J.-X.D.); (Y.-H.M.); (S.N.)
| |
Collapse
|
8
|
Potortì AG, Lopreiato V, Nava V, Litrenta F, Lo Turco V, Santini A, Liotta L, Di Bella G. The use of olive cake in the diet of dairy cows improves the mineral elements of Provola cheese. Food Chem 2024; 436:137713. [PMID: 37857194 DOI: 10.1016/j.foodchem.2023.137713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Mineral elements (Ca, Na, K, Mg, Zn, Ti, Sr, Fe, Ni, Ba, Cr, Mn, Cu, Se, Cd, Mo, B, V, As, Pb and Hg) in Provola cheeses obtained from dairy cows fed with two different integrated diets (Biotrak) and without olive cake (Control) were determined to discriminate between the two different cheeses. The results showed that cheeses from the Biotrak group presented higher values of essential elements. Selenium (Se) was found to be the most interesting: in Biotrak cheeses the content of Se was in the range of 0.112 to 0.281 mg/kg, about twice the content of Se in cheeses from the Control group. Among the toxic elements, only Cd was found in the samples, but at low levels (in average lower than 0.11 mg/kg). Therefore, the use of olive cake in animal feed is a good strategy to improve the mineral profile of the product obtained.
Collapse
Affiliation(s)
- Angela Giorgia Potortì
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Vincenzo Nava
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Federica Litrenta
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci 13, 98168 Messina, Italy; Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy.
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80049 Napoli, Italy
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| |
Collapse
|
9
|
Chung MH, Hung KH, Ma MC, Liu MY, Lin RW. Comparative Study of Heavy Metal Blood Serum Level Between Organic and Conventional Farmers in Eastern Taiwan. Saf Health Work 2024; 15:110-113. [PMID: 38496289 PMCID: PMC10944154 DOI: 10.1016/j.shaw.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 03/19/2024] Open
Abstract
Numerous studies have indicated that organic fertilizers (OFer) might contain heavy metals (HMs) that present health risks to organic farmers (OFar). This study compared the concentrations of six HMs (Zn, Ni, Cd, Cu, Pb, Cr) in the blood of two distinct groups of farmers: 30 OFar from a designated organic area in eastern Taiwan, and 74 conventional farmers (CFar) from neighboring non-organic designated regions. The findings revealed that the OFar exhibited higher levels of Zn (1202.70 ± 188.74 μg/L), Cr (0.20 ± 0.09 μg/L), and Ni (2.14 ± 1.48 μg/L) in their blood compared to the CFar (988.40 ± 163.16 μg/L, 0.18 ± 0.15 μg/L, and 0.77 ± 1.23 μg/L), respectively. The disparities in Zn, Cr, and Ni levels were measured at 214.3 μg/L, 0.02 μg/L, and 1.37 μg/L, respectively. Furthermore, among the OFar, those who utilized green manures (GM) displayed significantly elevated blood levels of Zn (1279.93 ± 156.30 μg/L), Cr (0.24 ± 0.11 μg/L), and Ni (1.94 ± 1.38 μg/L) compared to individuals who exclusively employed chemical fertilizers (CFer) (975.42 ± 165.35 μg/L, 0.19 ± 0.16 μg/L, and 0.74 ± 1.20 μg/L), respectively. The differences in Zn, Cr, and Ni levels were measured at 304.51 μg/L, 0.05 μg/L, and 1.20 μg/L, respectively. As a result, OFar should be careful in choosing OFer and avoid those that may have heavy metal contamination.
Collapse
Affiliation(s)
- Mei-Hua Chung
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mi-Chia Ma
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Yu Liu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan
| | - Ru-Wei Lin
- Institute of Food Safety Management, National Pingtung University of Science & Technology Pingtung, Taiwan
- Department of Plant Industry, National Pingtung University of Science & Technology Pingtung, Taiwan
| |
Collapse
|
10
|
Liu W, Cao D, Wang Y, Xu Z, Li G, Nghiem LD, Luo W. Occurrence and transformation of heavy metals during swine waste treatment: A full scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164947. [PMID: 37336415 DOI: 10.1016/j.scitotenv.2023.164947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
This study tracked the fate of nine detected heavy metals in an industrial swine farm with integrated waste treatment, including anoxic stabilization, fixed-film anaerobic digestion, anoxic-oxic (A/O), and composting. Results show that heavy metals exhibited different transformation behaviors in the treatment streamline with Fe, Zn, Cu and Mn as the most abundant ones in raw swine waste. The overall removal of water-soluble heavy metals averaged at 30 %, 24 % and 42 % by anoxic stabilization, anaerobic digestion and A/O unit, respectively. In particular, anoxic stabilization could effectively remove Cu, Mn and Ni; while A/O unit was highly effective for Fe, Cr and Zn elimination from water-soluble states. As such, the environmental risk of liquid products for agricultural irrigation decreased gradually to the safe pollution level in swine waste treatment. Furthermore, heavy metals in the solid (slurry) phase of these bioprocesses could be immobilized with the passivation rate in the range of 42-70 %. Nevertheless, heavy metals preferably transformed from liquid to biosolids to remain their environmental risks when biosolids were used as organic fertilizer in agriculture, thereby requiring effective strategies to advance their passivation in all bioprocesses, particularly composting as the last treatment unit.
Collapse
Affiliation(s)
- Wancen Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Dingge Cao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yongfang Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District 215128, Jiangsu Province, China.
| |
Collapse
|
11
|
Liu S, Tu X, Chen X, Mo L, Liu Y, Xu J, Deng M, Wu Y. Effects of single and combined exposure to zinc and two tetracycline antibiotics on zebrafish at the early stage. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109522. [PMID: 36427668 DOI: 10.1016/j.cbpc.2022.109522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Tetracycline antibiotics (TCs) and heavy metals are commonly used in livestock and poultry farming, leading to their coexistence in the aquatic environment. This coexistence causes combined toxicity to aquatic organisms. Here, zebrafish embryos were exposed to chlortetracycline (CTC), oxytetracycline (OTC), zinc chloride (ZnCl2), and their combinations for 120 h to evaluate their adverse effects on the growth, antioxidant system, immune system, and endocrine system during the early stage of life. OTC/ZnCl2 combined exposure significantly reduced the body weight, whereas the TCs/ZnCl2 combination significantly increased the heart rate of zebrafish larvae, suggesting growth impairment induced by TCs and ZnCl2. Further, combined groups showed more prominent toxicity to the antioxidant system than single groups, as revealed by related levels of enzyme activity and gene expression. In addition, the levels of most pro-inflammatory genes were downregulated, and those of NF-κB-related genes were upregulated in all treatment groups, indicating an immunosuppressive response and the potential role of NF-κB signaling, while the combined treatment was not more toxic than TCs or ZnCl2 alone. Similarly, hormone and endocrine related gene levels were determined. Although both single and combined exposures caused certain endocrine-disrupting effects, the combined exposure did not result in higher toxicity than a single exposure. Our findings showed that a mixture of TCs and ZnCl2 might exert greater toxic effects as compared to a single compound on some systems, providing fundamental data on the toxic effects of single and combined TC and ZnCl2 exposure on aquatic organisms, although studies are needed to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xun Tu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xi Chen
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Limin Mo
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Jiaojiao Xu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mi Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Yongming Wu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
12
|
Triassi M, Cerino P, Montuori P, Pizzolante A, Trama U, Nicodemo F, D’Auria JL, De Vita S, De Rosa E, Limone A. Heavy Metals in Groundwater of Southern Italy: Occurrence and Potential Adverse Effects on the Environment and Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1693. [PMID: 36767059 PMCID: PMC9914834 DOI: 10.3390/ijerph20031693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
This study reports the data on the contamination caused by heavy metals in the groundwater of the Campania Plain (CP) in Southern Italy. A total of 1093 groundwater samples were obtained from the following aquifers: coastal plains (GAR, VCP, VES, SAR, and SEL), volcanic districts (PHLE and VES), and carbonate massifs (MAS and LAT). In this study, the investigation depth ranged from 5 m (GAR) to 200 m (PHLE). The sequence of heavy metal content in groundwater samples was B > Fe > Al > Mn > Zn > Ba > Ni > As > Cu > V > Se > Pb > Cd. The heavy metal pollution index (HPI) and heavy metal evaluation (HEI) demonstrated that the study areas in which groundwater samples were sampled are not risk zones. Moreover, health risk assessment shows that hazard index (HI) values for heavy metals were found to be significantly low in groundwater samples. In non-carcinogenic risk evaluation for the adult group, the risk was low, whereas for children and infants, the risk was >1 for arsenic alone. Carcinogenic risk assessment (CR) was found lower for adults, children, and infants. The Jenks optimization method was used to evaluate the distribution of heavy metals in the groundwater of CP, and the principal component analysis technique (PCA) was employed to determine the source of heavy metals, and it was found that mixed sources (natural and anthropogenic) may be responsible for heavy metals presence.
Collapse
Affiliation(s)
- Maria Triassi
- Department of Public Health, “Federico II” University, Via Sergio Pansini nº 5, 80131 Naples, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute nº 2, 80055 Portici, Italy
| | - Paolo Montuori
- Department of Public Health, “Federico II” University, Via Sergio Pansini nº 5, 80131 Naples, Italy
| | - Antonio Pizzolante
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute nº 2, 80055 Portici, Italy
| | - Ugo Trama
- General Directorate of Health, Campania Region, Centro Direzionale is. C3, 80143 Naples, Italy
| | - Federico Nicodemo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute nº 2, 80055 Portici, Italy
| | - Jacopo Luigi D’Auria
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute nº 2, 80055 Portici, Italy
| | - Sabato De Vita
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute nº 2, 80055 Portici, Italy
| | - Elvira De Rosa
- Department of Public Health, “Federico II” University, Via Sergio Pansini nº 5, 80131 Naples, Italy
| | - Antonio Limone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute nº 2, 80055 Portici, Italy
| |
Collapse
|
13
|
Dong Z, Wang J, Wang L, Zhu L, Wang J, Zhao X, Kim YM. Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3343-3358. [PMID: 34559332 DOI: 10.1007/s10653-021-01102-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs.
Collapse
Affiliation(s)
- Zikun Dong
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China.
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Xiang Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
14
|
Meng J, Zhang H, Cui Z, Guo H, Mašek O, Sarkar B, Wang H, Bolan N, Shan S. Comparative study on the characteristics and environmental risk of potentially toxic elements in biochar obtained via pyrolysis of swine manure at lab and pilot scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153941. [PMID: 35189204 DOI: 10.1016/j.scitotenv.2022.153941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Pyrolysis is considered as a promising method to immobilize potentially toxic elements (PTEs) in animal manures. However, comparative study on characteristics and environmental risk of PTEs in biochar obtained by pyrolysis of animal manure at different reactors are lacking. In this study, swine manure was pyrolyzed at 300-600 °C in a lab-scale or pilot-scale reactor with the aim to investigate their effects on characteristics and environmental risk of As, Cd, Cu, Ni, Pb, and Zn in swine manure biochar. Results showed that biochars produced from pilot scale had lower pH and carbon (C) content but higher oxygen (O) content than those from lab scale. Biochars from pilot scale had higher total PTEs (except Cd) concentrations and releasable PTEs (except Pb) but lower CaCl2-extractable PTEs and phytotoxicity germination index (GI) to radish seedings than those from lab scale. Chemical speciation analysis indicated that PTEs in biochar produced from pilot-scale fast pyrolysis at 400 °C had higher percentage of more stable fraction (F5 fraction) and lower potential ecological risk index (RI) than those from lab-scale slow pyrolysis. These findings demonstrated that bioavailability and potential ecological risk of PTE in swine manure biochar were greatly decrease in the pilot-scale pyrolysis reactor and the optimum temperature was 400 °C considering the lowest potential ecological risk index.
Collapse
Affiliation(s)
- Jun Meng
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Henglei Zhang
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Zhonghua Cui
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China.
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3FF, UK
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Shengdao Shan
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China.
| |
Collapse
|
15
|
Wang L, Han X, Liang T, Yan X, Yang X, Pei Z, Tian S, Wang S, Lima EC, Rinklebe J. Cosorption of Zn(II) and chlortetracycline onto montmorillonite: pH effects and molecular investigations. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127368. [PMID: 34879563 DOI: 10.1016/j.jhazmat.2021.127368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Ionic antibiotics and metals generally coexist, and their interaction can affect their sorption behaviors onto soil minerals, therefore determining their environmental hazards. This study investigated the sorption and cosorption of Zn(II) and chlortetracycline (CTC) onto montmorillonite at different solution pH (3-10) using batch experiments and extended X-ray absorption fine structure (EXAFS) analysis. The Langmuir model could reproduce well the sorption isotherms of Zn(II) and CTC. The presence of CTC/Zn(II) could promote the maximum sorption capacity (Qm) of Zn(II)/CTC, based on site energy distribution (SED) theory. Generally, Zn(II) sorption increased with pH increasing. Comparatively, CTC sorption decreased as pH increased till approximately pH 5.0, then increased continuously with pH increasing. Both CTC and Zn(II) co-existence enhanced their individual sorption in both acidic and neutral environments. The processes behind CTC and Zn(II) sorption mainly included cation exchange and surface complexation. The EXAFS data evidenced that the presence of CTC could alter the species of Zn(II) on montmorillonite via surface complexation at pH 4.5 and 7.5, with Zn-CTC complexes being the predominant species on montmorillonite at pH 7.5. At pH 9.5, Zn(II) may exist onto montmorillonite in precipitated form similar to Zn-Al hydrotalcite-like compound (HTlc) regardless of CTC presence.
Collapse
Affiliation(s)
- Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Han
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Liang
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiulan Yan
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Yang
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Beijing 100085, China
| | - Shuhan Tian
- Institute of Geographical Sciences and Natural Resources Research, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
16
|
Wang X, Fernandes de Souza M, Mench MJ, Li H, Ok YS, Tack FMG, Meers E. Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118627. [PMID: 34871647 DOI: 10.1016/j.envpol.2021.118627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Copper (Cu), as an essential element, is added to animal feed to stimulate growth and prevent disease. The forage crop alfalfa (Medicago sativa L.) produced during Cu phytoextraction may be considered a biofortified crop to substitute the Cu feed additives for livestock production, beneficially alleviating Cu contamination in soils and reducing its input into agriculture systems. To assess this, alfalfa was grown in three similar soils with different Cu levels, i.e., 11, 439 and 779 mg kg-1 for uncontaminated soil (A), moderately Cu-contaminated soil (B) and highly Cu-contaminated soil (C), respectively. EDDS (Ethylenediamine-N,N'-disuccinic acid) was applied to the soils seven days before the first cutting at four rates (0, 0.5, 2 and 5 mmol kg-1) to enhance bioavailable Cu uptake. Alfalfa grew well in soils A and B but not in the highly Cu-contaminated soil. After applying EDDS, a significant biomass reduction of the first cutting shoot was only observed with 5 mmol kg-1 EDDS in the highly Cu-contaminated soil, with a 45% (P < 0.05) decrease when compared to the control. Alfalfa grown in the three soils gradually wilted after the first cutting with 5 mmol kg-1 EDDS, and Cu concentrations in the first cutting shoot were augmented strongly, by 250% (P < 0.05), 3500% (P < 0.05) and 6700% (P < 0.05) compared to the controls, respectively. Cu concentrations in alfalfa shoots were found to be higher in this study than in some fodder plants and further augmented in soils with higher Cu levels and with EDDS application. These findings suggest that alfalfa grown on clean soils or soils with up to 450 mg Cu kg-1 (with appropriate EDDS dosages) has the potential to be considered as a partial Cu supplementation for livestock. This research laid the foundation for the integration between Cu-phytoextraction and Cu-biofortification for livestock.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Marcella Fernandes de Souza
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | - Haichao Li
- Department of Environment, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
17
|
Chen X, Du Z, Guo T, Wu J, Wang B, Wei Z, Jia L, Kang K. Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118624. [PMID: 34864104 DOI: 10.1016/j.envpol.2021.118624] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution was the main risk during livestock manures composting, in which microorganisms played a vital role. However, response strategies of microbial community to heavy metals stress (HMS) remained largely unclear. Therefore, the objective of this study was to reveal the ecological adaptation and counter-effect of bacterial community under HMS during chicken manures composting, and evaluating environmental implications of HMS on composting. The degradation of organic matters (more than 6.4%) and carbohydrate (more than 19.8%) were enhanced under intense HMS, suggesting that microorganisms could quickly adapt to the HMS to ensure smooth composting. Meanwhile, HMS increased keystone nodes and strengthened significant positive correlation relationships between genera (p < 0.05), indicating that bacteria resisted HMS through cooperating during composting. In addition, different bacterial groups performed various functions to cope with HMS. Specific bacterial groups responded to HMS, and certain groups regulated bacterial networks. Therefore, bacterial community had the extraordinary potential to deal with HMS and guarantee chicken manures composting even in the presence of high concentrations of heavy metals.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhuang Du
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Liming Jia
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin, 150056, China
| |
Collapse
|
18
|
Chen X, Lin H, Dong Y, Li B, Yin T, Liu C. Simultaneous high-efficiency removal of sulfamethoxazole and zinc (II) from livestock and poultry breeding wastewater by a novel dual-functional bacterium, Bacillus sp. SDB4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6237-6250. [PMID: 34448142 DOI: 10.1007/s11356-021-15804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The complex mixtures of antibiotics and heavy metals are commonly existed in livestock and poultry breeding wastewater. Effective and simultaneous removal of these toxic compounds by microorganisms, especially single strains, remains a considerable challenge. In this study, a novel functional strain SDB4, isolated from duck manure and identified as Bacillus sp., has been shown to possess high removal capabilities for both sulfamethoxazole (SMX) and Zn2+. The maximum removal efficiency achieved 73.97% for SMX and 84.06% for Zn2+ within 48 h in the single pollution system. It has great potential for eliminating SMX along with Zn2+, 78.45% of SMX and 52.91% of Zn2+ were removed in the 20 mg·L-1 SMX and 100 mg·L-1 Zn2+ binary system. Furthermore, the SMX-biotransformation capability of SDB4 was enhanced at low concentrations of Zn2+ (below 100 mg·L-1). The SMX biotransformation and Zn2+ adsorption data fitted well with the pseudo-first-order kinetic model, indicating that the two pollutants were in accordance with the same removal rule. N4-acetyl-SMX was identified as the main stable transformation product during SMX removal. FTIR analyses revealed that OH, NH2, C=O, C-N/N-H, and C-O-C played major roles in the adsorption of Zn2+. Our study of the dually functioning strain SDB4 provides a potential application for the simultaneous biological removal of antibiotics and heavy metals.
Collapse
Affiliation(s)
- Xi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Tingting Yin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
19
|
Zhou S, Su S, Meng L, Liu X, Zhang H, Bi X. Potentially toxic trace element pollution in long-term fertilized agricultural soils in China: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147967. [PMID: 34323815 DOI: 10.1016/j.scitotenv.2021.147967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 05/23/2023]
Abstract
Fertilization results in potentially toxic trace element (PTTE) pollution in agricultural soils. However, it is unclear which factors determine the effect sizes of fertilization on PTTEs at the multiple spatial-temporal scale. This work synthesized 379 observations in 78 field sites (3-35 years) across China's main grain producing areas, and showed that long-term organic fertilization significantly enhanced total Cu, Zn and Cd by 25.7%, 18.9% and 66.6%, and soil available Cu, Zn and Cd by 60.5%, 155.3% and 83.6%, respectively; whereas long-term inorganic fertilization increased only available Cu, Zn and Cd by an average of 6.3%. Organic fertilizer (OF) type and application rate dominated the variation of PTTE concentrations, where approximately one-half of Cd pollution (42.6% of total Cd and 47% of available Cd) was observed. Furthermore, OFs containing Cd less than 1 mg kg-1 were recommended to be safely applied to agricultural soils. Soil type was main factor under long-term inorganic fertilization determining available PTTE variation, resulted in higher pollution risk in some soils such as Alfisols and Semi-hydromorphic soils, where we suggested the use of lower amounts of P fertilizers or the application of ones having small amounts of PTTEs. In short, long-term organic fertilization caused serious pollution of PTTEs especially Cd in Chinese croplands, and some strategies with a focus towards reducing the pollution risk must be developed, e.g., promoting straw return, forbidding Cd addition to feeds and feed additives, and improving carbon sequestration efficiency (CSE) of OFs and thus soil organic matter (SOM).
Collapse
Affiliation(s)
- Shiwei Zhou
- School of Agriculture, Ludong University, Yantai 264025, Shandong, China
| | - Shu Su
- College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ling Meng
- Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Xiao Liu
- School of Agriculture, Ludong University, Yantai 264025, Shandong, China
| | - Hongyuan Zhang
- School of Agriculture, Ludong University, Yantai 264025, Shandong, China
| | - Xiaoli Bi
- Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
20
|
Li Y, Lv H, Xue C, Dong N, Bi C, Shan A. Plant Polyphenols: Potential Antidotes for Lead Exposure. Biol Trace Elem Res 2021; 199:3960-3976. [PMID: 33236294 DOI: 10.1007/s12011-020-02498-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Lead is one of the most common heavy metal elements and has high biological toxicity. Long-term lead exposure will induce the contamination of animal feed, water, and food, which can cause chronic lead poisoning including nephrotoxicity, hepatotoxicity, neurotoxicity, and reproductive toxicity in humans and animals. In the past few decades, lead has caused widespread concern because of its significant threat to health. A large number of in vitro and animal experiments have shown that oxidative stress plays a key role in lead toxicity, and endoplasmic reticulum (ER) stress and the mitochondrial apoptosis pathway can also be induced by lead toxicity. Therefore, plant polyphenols have attracted attention, with their advantages of being natural antioxidants and having low toxicity. Plant polyphenols can resist lead toxicity by chelating lead with their special chemical molecular structure. In addition, scavenging active oxygen and improving the level of antioxidant enzymes, anti-inflammatory, and anti-apoptosis are also the key to relieving lead poisoning by plant polyphenols. Various plant polyphenols have been suggested to be useful in alleviating lead toxicity in animals and humans and are believed to have good application prospects.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Chongpeng Bi
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
21
|
Guo K, Zhao Y, Cui L, Cao Z, Zhang F, Wang X, Feng J, Dai M. The Influencing Factors of Bacterial Resistance Related to Livestock Farm: Sources and Mechanisms. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.650347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacterial resistance is a complex scientific issue. To manage this issue, we need to deeply understand the influencing factors and mechanisms. Based on the background of livestock husbandry, this paper reviews the factors that affect the acquisition of bacterial resistance. Meanwhile, the resistance mechanism is also discussed. “Survival of the fittest” is the result of genetic plasticity of bacterial pathogens, which brings about specific response, such as producing adaptive mutation, gaining genetic material or changing gene expression. To a large extent, bacterial populations acquire resistance genes directly caused by the selective pressure of antibiotics. However, mobile resistance genes may be co-selected by other existing substances (such as heavy metals and biocides) without direct selection pressure from antibiotics. This is because the same mobile genetic elements as antibiotic resistance genes can be co-located by the resistance determinants of some of these compounds. Furthermore, environmental factors are a source of resistance gene acquisition. Here, we describe some of the key measures that should be taken to mitigate the risk of antibiotic resistance. We call on the relevant governments or organizations around the world to formulate and improve the monitoring policies of antibiotic resistance, strengthen the supervision, strengthen the international cooperation and exchange, and curb the emergence and spread of drug-resistant strains.
Collapse
|
22
|
Guo X, Zhu L, Zhong H, Li P, Zhang C, Wei D. Response of antibiotic and heavy metal resistance genes to tetracyclines and copper in substrate-free hydroponic microcosms with Myriophyllum aquaticum. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125444. [PMID: 33621774 DOI: 10.1016/j.jhazmat.2021.125444] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands for antibiotics and heavy metals removal have become important reservoirs of antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs), especially in the substrates. Here, substrate-free hydroponic microcosms of Myriophyllum aquaticum were established; tetracyclines (TCs) and Cu(II) were added to evaluate the behaviours of ARGs and MRGs in the microcosms. Several ARGs, MRGs, and mobile genetic elements (MGE) were detected in the biofilms attached to the plants, ranging from 0.5 to 2.3 × 108 copies/g dry weight. ARGs and MRGs exhibited higher relative abundances in the effluent suspended solids (SS); however, their absolute amounts were much lower than those in conventionally constructed wetlands. Microcosms with TCs and Cu(II) exhibited a higher level of resistant genes than those with compound added singularly owing to co-selection pressure. The existence of TCs and copper significantly changed the microbial communities in the microcosms. The exogenous input of TC/Cu(II) and microbial community structure were the factors driving the occurrence of ARGs, whereas MRGs were more correlated with the copper addition. Thus, reducing the exogenous inputs of antibiotics /heavy metals and SS of the effluent is suggested for the mitigation of resistant genes in phytoremediation technologies working in the absence of conventional substrates.
Collapse
Affiliation(s)
- Xuan Guo
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China.
| | - Lin Zhu
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hua Zhong
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China
| | - Peng Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China
| | - Chengjun Zhang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China.
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
23
|
Yasotha A, Dabadé DS, Singh VP, Sivakumar T. Risk assessment of heavy metals in milk from cows reared around industrial areas in India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1799-1815. [PMID: 33123929 DOI: 10.1007/s10653-020-00758-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
This study assessed the health risk associated with exposure to heavy metals through consumption of milk from cows reared around industrial areas in India. Heavy metals, namely Cu, Zn, Cr, Pb, and Cd, were determined in water and forage from four locations as well as in milk produced by dairy cattle raised in these locations, using inductively coupled plasma-mass spectrometry. A quantitative risk assessment using probabilistic approaches was performed to assess the exposure of adults and children to the heavy metals via milk consumption. In milk samples, the highest levels of Cd and Pb were 0.18 mg L-1 and 0.37 mg L-1, respectively, which were above the international permissible levels. Possible sources of Pb in the milk could be the industrial by-products and wastes or automobiles exhaust gas. Significant (P < 0.05) positive relationships were found between the concentration of Cu, Cr, Pb, and Cd in milk and in the environmental samples (water or forage). Exposure assessment showed that milk consumers were mostly exposed to Zn, Cd, and Pb, with 63.7%, 51.2%, and 41.2% of children exposed to a dose greater than the references dose for these metals, respectively. Our results suggest that industrial activities lead to possible transfer of heavy metals to cows from their rearing environment (water, plant), which can be accumulated and cause potential health risks to milk consumers. The outcome of this study can be used by policy makers to manage the potential health risk.
Collapse
Affiliation(s)
- A Yasotha
- Department of Livestock Production Management, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007, India
| | - D Sylvain Dabadé
- Laboratory of Food Sciences, University of Abomey-Calavi, 03 B.P., 2819, Jericho-Cotonou, Benin.
| | - Vijay Pal Singh
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Food Safety and Standards Authority of India, New Delhi, 110025, India
| | - T Sivakumar
- Department of Livestock Production Management, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007, India
| |
Collapse
|
24
|
Yang F, Tian X, Han B, Zhao R, Li J, Zhang K. Tracking high-risk β-lactamase gene (bla gene) transfers in two Chinese intensive dairy farms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116593. [PMID: 33548670 DOI: 10.1016/j.envpol.2021.116593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Extended-spectrum β-lactam antibiotics are critically important antibiotics for humans, but their use in food-animals poses a potential threat for public health. This paper addressed the occurrence of high-risk β-lactamase genes (bla genes) in intensive dairy farms, and assessed the effects of different waste treatment technologies at dairies on the propagation and dissemination of bla genes. Results showed that ESBL genes (blaTEM-1, blaOXA-1), ampC β-lactamase genes (blaampC) and carbapenemase genes (blaGES-1, blaNDM) were prevalent in dairy cow waste, and even prevailed through each processing stage of solid manure and dairy wastewater. Significant levels of bla genes were present in the final lagoon (from 104 to 106 copies/mL, representing from 10% to 151%, of raw influent levels), raising the possibility of dissemination to the receiving environment. This concern was validated by the investigation on farmland that had long-term undergone wastewater irrigation, where causing an increase in bla gene levels in soils (approximately 1-3 orders of magnitude). More troublesomely, considerable levels of certain bla genes were still observed in the bedding material (up to 105 and 107 copies/g), which would directly threaten the dairy cow health. Otherwise, correlation analysis showed that both bacterial community and environmental factors played important roles in the bla genes abundances in dairy farms. This study demonstrated the prevalence of high-risk bla genes in dairy farms, and also underscored that dairy waste was a non-ignored great source of multidrug resistance for their surroundings.
Collapse
Affiliation(s)
- Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xueli Tian
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Run Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jiajia Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
25
|
Awasthi SK, Duan Y, Liu T, Zhang Z, Pandey A, Varjani S, Awasthi MK, Taherzadeh MJ. Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting? JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124593. [PMID: 33316669 DOI: 10.1016/j.jhazmat.2020.124593] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, the influence of coconut shell biochar addition (CSB) on heavy metals (Cu and Zn) resistance bacterial fate and there correlation with physicochemical parameters were evaluated during poultry manure composting. High-throughput sequencing was carried out on five treatments, namely T1-T5, where T2 to T5 were supplemented with 2.5%, 5%, 7.5% and 10% CSB, while T1 was used as control for the comparison. The results of HMRB indicated that the relative abundance of major potential bacterial host altered were Firmicutes (52.88-14.32%), Actinobacteria (35.20-4.99%), Bacteroidetes (0.05-15.07%) and Proteobacteria (0.01-20.28%) with elevated biochar concentration (0%-10%). Beta and alpha diversity as well as network analysis illustrated composting micro-environmental ecology with exogenous additive biochar to remarkably affect the dominant resistant bacterial community distribution by adjusting the interacting between driving environmental parameters with potential host bacterial in composting. Ultimately, the amendment of 7.5% CSB into poultry manure composting was able to significantly reduce the HMRB abundance, improve the composting efficiency and end product quality.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Frontier Research Lab, Yonsei University, Seoul, South Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar - 382010, Gujarat, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | | |
Collapse
|
26
|
Hill D, Morra MJ, Stalder T, Jechalke S, Top E, Pollard AT, Popova I. Dairy manure as a potential source of crop nutrients and environmental contaminants. J Environ Sci (China) 2021; 100:117-130. [PMID: 33279025 DOI: 10.1016/j.jes.2020.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/12/2023]
Abstract
Although animal manure is applied to agricultural fields for its nutrient value, it may also contain potential contaminants. To determine the variability in such contaminants as well as in valuable nutrients, nine uncomposted manure samples from Idaho dairies collected during 2.5 years were analyzed for macro- and micro-nutrients, hormones, phytoestrogens, antibiotics, veterinary drugs, antibiotic resistance genes, and genetic elements involved in the spread of antibiotic resistance. Total N ranged from 6.8 to 30.7 (C:N of 10 to 21), P from 2.4 to 9.0, and K from 10.2 to 47.7 g/kg manure. Zn (103 - 348 mg/kg) was more abundant than Cu (56 - 127 mg/kg) in all samples. Phytoestrogens were the most prevalent contaminants detected, with concentrations fluctuating over time, reflecting animal diets. This is the first study to document the presence of flunixin, a non-steroidal anti-inflammatory drug, in solid stacked manure from regular dairy operations. Monensin was the most frequently detected antibiotic. Progesterones and sulfonamides were regularly detected. We also investigated the relative abundance of several types of plasmids involved in the spread of antibiotic resistance in clinical settings. Plasmids belonging to the IncI, IncP, and IncQ1 incompatibility groups were found in almost all manure samples. IncQ1 plasmids, class 1 integrons, and sulfonamide resistance genes were the most widespread and abundant genetic element surveyed, emphasizing their potential role in the spread of antibiotic resistance. The benefits associated with amending agricultural soils with dairy manure must be carefully weighed against the potential negative consequences of any manure contaminants.
Collapse
Affiliation(s)
- Danika Hill
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | - Matthew J Morra
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | | | - Sven Jechalke
- Justus Liebig University Giessen, Institute for Phytopathology, 35392 Gießen, Germany
| | - Eva Top
- Department of Biology, University of Idaho, ID 83844-3051, USA
| | - Anne T Pollard
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | - Inna Popova
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA.
| |
Collapse
|
27
|
Liu C, Liu Y, Feng C, Wang P, Yu L, Liu D, Sun S, Wang F. Distribution characteristics and potential risks of heavy metals and antimicrobial resistant Escherichia coli in dairy farm wastewater in Tai'an, China. CHEMOSPHERE 2021; 262:127768. [PMID: 32777611 DOI: 10.1016/j.chemosphere.2020.127768] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 05/11/2023]
Abstract
Heavy metals and antimicrobial resistant bacteria in livestock and poultry environments can cause declines in production and significant economic losses, leading to potential environmental and public health issues. In this study, the heavy metal pollution status of livestock breeding water bodies in the Dawen river basin of Shandong Province in China was evaluated, and a total of 10 heavy metals were measured. In addition, antimicrobial susceptibility tests were conducted for Escherichia coli strains isolated from the water samples. The results showed that among all the metals, copper, zinc, and iron were detected at each sampling point, followed by nickel (detection rate of 95.74%), arsenic (detection rate of 89.36%), selenium (detection rate of 68.09%), lead (detection rate of 27.66%), and mercury (detection rate of 12.77%). Cadmium and hexavalent chromium were not detected. The contents of nine heavy metals were below the existing water standard values in China, whereas the iron pollution index in the water body in the study area was large and may pose a potential risk. A total of 17 E. coli isolates showed different resistance to β-lactams, aminoglycosides, tetracyclines, quinolone antibiotics and chloramphenicol, but were mainly resistant to β-lactams and tetracyclines. The detection rate of the tetA resistance gene was relatively high, indicating the overuse of cephalosporins and tetracyclines. The results of the present study might provide evidence of metal pollution and theoretical basis on the treatment of colibacillosis in the livestock industries.
Collapse
Affiliation(s)
- Cong Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Yu Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Peng Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China
| | - Lanping Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
28
|
Chen X, Zhao Y, Zhao X, Wu J, Zhu L, Zhang X, Wei Z, Liu Y, He P. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting: Sensitive, resistant and actor. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122858. [PMID: 32473324 DOI: 10.1016/j.jhazmat.2020.122858] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals (HM) pollution exerts an effect on microbial community composition and structure during composting, the way how microbial community responses to HM pressure is remain poorly understood though. The aim of this study was to explore functional roles of microorganisms based on selective pressures of HM (Cu, Zn and Cd). The results of microbial resistance showed that the toxicity of metals to microorganisms were Cu > Zn > Cd during composting. Cu and Zn were more toxic for microorganisms during composting when compared with Cd. However, microorganisms had a longer lag period to grow under Zn stress through microbial tolerance determination. In addition, the microbial catalase activity generally decreased and protease activity generally increased, thus microorganisms became more adaptable to HM stress during composting. The experimental results confirmed the existence of sensitive, resistant and actor microorganisms during beef cattle and chicken manures composting. Ultimately, the resistant, sensitive and actor microorganisms at genus level were distinguished under HM pressure based on the network analysis and structural equation models, including 85 resistant microorganisms, 5 sensitive microorganisms and 6 actor microorganisms. This would be helpful to understand the microbial succession process under HM stress and identify functional strains of HM remediation.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yan Liu
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Pingping He
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|
29
|
Qian XY, Shen GX, Wang ZQ, Chen XH, Zhao QJ, Bai YJ, Tang ZZ. Application of dairy manure as fertilizer in dry land in East China: field monitoring and model estimation of heavy metal accumulation in surface soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36913-36919. [PMID: 32577963 DOI: 10.1007/s11356-020-09786-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Manure-based fertilizer is usually applied to agricultural soils to increase soil fertility and improve soil quality. However, this practice has an impact on the soil environment, e.g., increasing heavy metal contents. The aim of this study was to evaluate and estimate the accumulation tendencies of eight heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb), manganese (Mn), and zinc (Zn) in a soil fertilized continuously with dairy manure through a 5 years' field-scale experiment. Contents of the As, Cd, Cr, Cu, Mn, and Zn gradually increased with the fertilization time of dairy manure at the stable rate of around 326 t hm-2 year-1, leading to annual mean increases of 3.6%, 2.4%, 3.9%, 3.8%, 4.2%, and 6.1%, respectively. Based on the prediction of a dynamic mass balance model using the current practice, the contents of Cd and Zn in the fertilized soil would reach the Chinese standard values for agricultural soils in 48 and 35 years. The mitigation measures, such as lower application rates, for the environmental risk of heavy metal accumulation should be considered.
Collapse
Affiliation(s)
- Xiao-Yong Qian
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| | - Gen-Xiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhen-Qi Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Xiao-Hua Chen
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Qing-Jie Zhao
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Yu-Jie Bai
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zheng-Ze Tang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| |
Collapse
|
30
|
Guo X, Liu M, Zhong H, Li P, Zhang C, Wei D, Zhao T. Potential of Myriophyllum aquaticum for phytoremediation of water contaminated with tetracycline antibiotics and copper. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110867. [PMID: 32507744 DOI: 10.1016/j.jenvman.2020.110867] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Water pollution caused by antibiotics and heavy metals has attracted considerable concern, and efficient approaches are urgently needed for their removal. The objective of this study was to investigate the potential of Myriophyllum aquaticum for long-term phytoremediation of wastewater containing tetracycline (TC) antibiotics and copper. Seven hydroponic microcosms were constructed, spiked with tetracycline, oxytetracycline (OTC) and chlortetracycline (CTC) (300-30,000 μg/L), alone or simultaneously with Cu (II), and operated for 12 weeks. The TC removal efficiencies using the hydroponic microcosms here were commensurate or higher than those in previous studies. However, the Cu/TC ratio greatly affected the removal, accumulation of TCs by M. aquaticum, and plant growth. Low levels of Cu (II) (<1000 μg/L) promoted TC removal, but excessive Cu (II) (>10,000 μg/L) impeded it. Mass balance analysis showed that most TCs (45%-64% on average) accumulated in the roots of M. aquaticum. Plant biomass was correlated with the removal of COD, TN, TP, and NH4+-N (p ≤ 0.05) but not with removal of the TCs. Proteobacteria, Bacteroidetes, and Fusobacteria were dominant in the microbial communities, but they showed little correlation with the TC removal. M. aquaticum can be employed as an effective means of TC removal from water. The co-existence of heavy metals should be considered when evaluating the removal potential of TCs in phytoremediation.
Collapse
Affiliation(s)
- Xuan Guo
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Mingming Liu
- Beijing Beike Environmental Engineering Co., Ltd., Beijing, 100080, China
| | - Hua Zhong
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Peng Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China.
| | - Chengjun Zhang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China.
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Tongke Zhao
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| |
Collapse
|
31
|
Wang Y, Liu Y, Zhan W, Zheng K, Wang J, Zhang C, Chen R. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139060. [PMID: 32498182 DOI: 10.1016/j.scitotenv.2020.139060] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Various types of biochar have been widely used to remediate soil contamination from heavy metals (HMs) and to reduce HM mobility and bioavailability in soils in recent years. Most researchers have paid attention to the beneficial effects of biochar during the remediation process, but few have emphasized their negative effects and the challenges for their application. In this review, the negative effects and challenges of applying biochar for the remediation of HM-contaminated soils are thoroughly summarized and discussed, including the changeable characteristics of biochar, biochar over-application, toxic substances in biochar, activation of some HMs in soils by biochar, nonspecific adsorption, and the negative influences of biochar on soil microorganisms and plants. In addition, further research directions and several recommendations (standardization, long-term field experiments, mechanisms research and designer biochars) were also proposed to enable the large-scale application of biochar for the remediation of HM-contaminated soils.
Collapse
Affiliation(s)
- Yangyang Wang
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China; Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yidan Liu
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Kaixuan Zheng
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China
| | - Junnan Wang
- National Demonstration Center for Environmental and Planning, Henan University, Kaifeng 475004, China
| | - Chaosheng Zhang
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China.
| |
Collapse
|
32
|
Wan J, Chen L, Li Q, Ye Y, Feng X, Zhou A, Long X, Xia D, Zhang TC. A novel hydrogel for highly efficient adsorption of Cu(II): synthesis, characterization, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26621-26630. [PMID: 32378102 DOI: 10.1007/s11356-020-09082-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Among the Cu(II) removal methods, adsorption is a favorable technique and has attracted large attention because of its effectiveness and low cost. In quest of seeking for a favorable adsorbent with a high Cu(II) adsorption capacity and excellent reusability, researchers have paid much attention to hydrogels with three-dimensional networks. In this study, a novel hydrogel (P(AMPS-co-VDT) hydrogel) based on free-radical polymerization was synthesized with ionic monomer sodium 2-acrylamido-2-methylpropane sulfate (AMPS-Na+) and 2-vinyl-4, 6-diamino-1, 3, 5-triazine (VDT) and applied for Cu(II) adsorption in aqueous solutions. The hydrogel was characterized for swelling performance, surface morphology, functional groups, thermal gravimetric behavior, and elements. The maximum Cu(II) adsorption capacity (175.75 mg/g) was relatively high compared with other hydrogels. The P(AMPS-co-VDT) hydrogel also was found to have a relatively good Cu(II) desorption and reuse behavior. The adsorption mechanism could be chelation and ion exchange. This work provides a new hydrogel for effective Cu(II) removal in the future.
Collapse
Affiliation(s)
- Jun Wan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Lin Chen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan Municipal Engineering Design & Research Institute Co.,Ltd., Wuhan, 430023, China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Yuxuan Ye
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaonan Feng
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Aijiao Zhou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuejun Long
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China.
| | - Tian C Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| |
Collapse
|
33
|
Shen X, Zeng J, Zhang D, Wang F, Li Y, Yi W. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135283. [PMID: 31822406 DOI: 10.1016/j.scitotenv.2019.135283] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The comprehensive analysis of environmental risk for heavy metals in pig manure was essential for optimization of pyrolysis conditions and scientific utilization of pig manure biochars as soil amendment. However, in previous studies, the selected pyrolysis temperature points were limited and temperature interval was large, it's was difficult to accurately verify the effect of pyrolysis temperature on chemical speciation and environmental risk of heavy metals. Therefore, in this study, pig manure was pyrolyzed at 300-700 °C with a small interval of 50 °C to study the effect of pyrolysis temperature on characteristics and environmental risk of Cr, Mn, Cu and Zn in pig manure biochar. Results indicated that the characteristics of biochars (>500 °C) were relatively stable. The biochar obtained at 700 °C exhibited the largest surface area (8.28 m2 g-1) and pore volume (25.17 m3 kg-1), secondly is the biochar derived at 500 °C. The total percentages of exchangeable and acid fraction and reducible fraction decreased from 16.98% to 9.43% for Cr, 85.60% to 65.55% for Mn, 57.26% to 10.61% for Cu, 37.90% to 13.78% for Zn, respectively, suggesting that exchangeable and acid fraction and reducible fraction of Cr, Mn, Cu and Zn in pig manure were transformed into oxidizable and residual fractions after pyrolysis. The leaching rates, risk assessment code and potential ecological risk index values significantly decreased after pyrolysis and presented lower value at 500 and 700 °C. Biochars derived at 300-700 °C conditions posed no phytotoxicity with germination index >80%. Correlation analyses revealed that larger surface area, pore volume and pH values of biochars may help to immobilize heavy metals and reduce bioavailability. These findings demonstrated that bioavailability and toxicity of Cr, Mn, Cu and Zn in pig manure biochar were greatly reduced after pyrolysis and the optimum temperature was 500 °C considering energy cost.
Collapse
Affiliation(s)
- Xiuli Shen
- Shandong Research Center of Engineering and Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Jianfei Zeng
- Institution of Environment and Sustainable Development in Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Deli Zhang
- Shandong Research Center of Engineering and Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Fang Wang
- Shandong Research Center of Engineering and Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yongjun Li
- Shandong Research Center of Engineering and Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Weiming Yi
- Shandong Research Center of Engineering and Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China.
| |
Collapse
|
34
|
Wang W, Zhu Z, Zhang M, Wang S, Qu C. Synthesis of a novel magnetic multi-amine decorated resin for the adsorption of tetracycline and copper. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Li H, Xu W, Dai M, Wang Z, Dong X, Fang T. Assessing heavy metal pollution in paddy soil from coal mining area, Anhui, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:518. [PMID: 31359141 DOI: 10.1007/s10661-019-7659-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal pollution in agricultural soil has negative impact on crop quality and eventually on human health. A total of 24 top soil samples were collected from paddy field near the Zhangji Coal Mine in Huainan City, Anhui Province. Seven heavy metals (Cu, Zn, As, Cr, Cd, Pb, and Ni) were selected to evaluate the pollution status through total content and chemical speciation, geo-accumulation index (Igeo), and risk assessment code (RAC) and investigate leaching behavior of heavy metals under simulated rainfall. The results of present study indicated that mining activities were responsible for elevated Cu and Cd in surrounding paddy soil. Based on the results of chemical speciation, most heavy metals were associated with the residual fraction, and the environmental risk of heavy metals in soil was sequenced as Pb > Cd > Ni > As > Zn > Cu > Cr. It revealed that Pb in soil would pose a higher environmental risk due to its higher reducible fraction, then followed by Cd, Ni, As, and Zn, which would pose a medium risk. The result of simulated rainfall leaching analysis showed that heavy metals could be categorized into two groups: concentrations of Cu, Ni, Cd, Zn, and Cr in the leachates displayed a continuous decrease tendency with the increase in accumulative simulated rain volume; whereas leachable tendency of As and Pb was enhanced with increasing leaching time and rain volume. Generally, the leaching percentage of heavy metals followed the sequence of As > Zn > Ni > Cd > Cr > Cu > Pb. More attention should be paid to the higher environmental risk of Pb and higher leaching percentage of As with regard to ecosystem safety and human health.
Collapse
Affiliation(s)
- Hui Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Wenjing Xu
- Agricultural Engineering Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Mingwei Dai
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhiwen Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xinju Dong
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA
| | - Ting Fang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| |
Collapse
|
36
|
Guo X, Wang P, Li P, Zhang C. Effect of Cu(II) on adsorption of tetracycline by natural zeolite: performance and mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:164-172. [PMID: 31461433 DOI: 10.2166/wst.2019.259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to investigate the effect of Cu(II) on the adsorption performance and mechanism of tetracycline (TC) adsorption by natural zeolite (NZ) in aqueous solution. Low levels of Cu(II) (<0.01 mmol/L) enhanced the extent of TC adsorption from ∼0.4 mg/g (in the absence of Cu(II)) to ∼0.5 mg/g (with 0.01 mmol/L Cu(II)), resulting in 99% removal of the total TC content. The TC adsorption gradually decreased with increase in the initial pH, but the coexistence of Cu(II) lowered the extent of decrease. The adsorption process was better simulated by the pseudo-second-order kinetics model, but the isotherm model that was more fitting changed from the Langmuir to the Freundlich model as Cu(II) increased, indicating the coexistence of Cu(II) and TC altered the adsorption mechanisms. However, the residual TC in solution increased from 0 to ∼6 mg/L as the concentration of Cu(II) increased from 0 to 1 mmol/L, suggesting a competition between TC and Cu(II) for the adsorption sites in NZ. Fourier transform infrared spectroscopy analysis showed that the functional groups on the surface of NZ changed after the adsorption of TC, suggesting that complex reactions had occurred on the surface of the adsorbent.
Collapse
Affiliation(s)
- Xuan Guo
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant Nutrition and Resources, Beijing 100097, China E-mail:
| | - Pengchao Wang
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Li
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant Nutrition and Resources, Beijing 100097, China E-mail:
| | - Chengjun Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant Nutrition and Resources, Beijing 100097, China E-mail:
| |
Collapse
|