1
|
Wies B, Valls I, Fernandes A, Ubalde-López M, Rocabois A, Vrijheid M, Slama R, Nieuwenhuijsen M. Urban environment and children's health: An umbrella review of exposure response functions for health impact assessment. ENVIRONMENTAL RESEARCH 2024; 263:120084. [PMID: 39369784 DOI: 10.1016/j.envres.2024.120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Urban settlements have become the main living environment. Understanding the impact of urban exposures on human health has therefore become a growing area of research. Up-to-date knowledge about the influence of urban exposures on pregnant women's and children's health is especially relevant, as they are particularly vulnerable to certain external influences. AIM This review aims to provide a synthesis of systematic reviews with meta-analyses reporting on an association between the urban environmental risk factors and health outcomes in pregnancy, infants, children and adolescents. METHODS We conducted an umbrella review, methodically analysing systematic reviews with meta-analyses, published between January 2016 and December 2022 in PubMed or Scopus. Adhering to the PRISMA checklist, we searched for free text using Medical Subject Headings (MeSH) terms related to air pollution, noise pollution, temperature, green space exposure, built and food environment, health outcomes, children (aged 0-18 years), pregnancy and systematic reviews with meta-analyses. We extracted key characteristics of each included study and assessed the quality of the included studies via the R-AMSTAR 2 tool. RESULTS Twenty-four studies met our inclusion criteria and identified 104 associations including 15 exposures and 60 health outcomes. The most frequently studied associations were related to air pollutants, followed by the built and food environment and noise. Birth outcomes (including low birth weight, pre-term birth or stillbirth) were the most commonly affected health outcomes, followed by respiratory outcomes such as asthma or respiratory infections. A total of 45 exposure-response function were reported to be statistically significant, including 10 exposures and 23 health effects. CONCLUSION This umbrella review provides an overview of the evidence and availability of exposure response functions between selected urban exposures and child health outcomes. This helps to identify research gaps and to build the basis for health impact assessment.
Collapse
Affiliation(s)
- Blanche Wies
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Inés Valls
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Amanda Fernandes
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mònica Ubalde-López
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Audrey Rocabois
- French National Institute of Health and Medical Research (Inserm), University Grenoble Alpes, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Martine Vrijheid
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rémy Slama
- French National Institute of Health and Medical Research (Inserm), University Grenoble Alpes, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Mark Nieuwenhuijsen
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
2
|
Sebők-Welker T, Posta E, Ágrez K, Rádosi A, Zubovics EA, Réthelyi MJ, Ulbert I, Pászthy B, Bunford N. The Association Between Prenatal Maternal Stress and Adolescent Affective Outcomes is Mediated by Childhood Maltreatment and Adolescent Behavioral Inhibition System Sensitivity. Child Psychiatry Hum Dev 2024; 55:1-21. [PMID: 36738426 PMCID: PMC11362206 DOI: 10.1007/s10578-023-01499-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/05/2023]
Abstract
Prenatal maternal stress is linked to offspring outcomes; however, there is little research on adolescents, behavioral, transdiagnostic outcomes, or the mechanisms through which relations operate. We examined, in N = 268 adolescents (Mage = 15.31 years; SD = 1.063; 57.8% boys) whether prenatal maternal stress is associated with adolescent affective outcomes; whether this association is mediated, serially, by childhood home atmosphere and adolescent behavioral inhibition system (BIS) sensitivity; and whether mediational effects are moderated by adolescent attention-deficit/hyperactivity disorder or maternal internalizing symptomology. Prenatal maternal daily stress and major life events were associated with adolescent outcomes through childhood negative atmosphere/neglect and BIS sensitivity, with no evidence of moderation. Results have implications regarding the effect of prenatal maternal stress on offspring outcomes and regarding corresponding sensitive periods.
Collapse
Affiliation(s)
- T Sebők-Welker
- Developmental and Translational Neuroscience Research Group Developmental and Translational Neuroscience Research Group, Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
- Doctoral School of Mental Health Sciences, Semmelweis University, Balassa U. 6, Budapest, 1083, Hungary
| | - E Posta
- Developmental and Translational Neuroscience Research Group Developmental and Translational Neuroscience Research Group, Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
| | - K Ágrez
- Developmental and Translational Neuroscience Research Group Developmental and Translational Neuroscience Research Group, Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
| | - A Rádosi
- Developmental and Translational Neuroscience Research Group Developmental and Translational Neuroscience Research Group, Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
- Doctoral School of Mental Health Sciences, Semmelweis University, Balassa U. 6, Budapest, 1083, Hungary
| | - E A Zubovics
- Developmental and Translational Neuroscience Research Group Developmental and Translational Neuroscience Research Group, Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
| | - M J Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa U. 6, Budapest, 1083, Hungary
| | - I Ulbert
- Integrative Neuroscience Research Group, Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter Utca 50/A, Budapest, 1083, Hungary
| | - B Pászthy
- 1st Department of Paediatrics, Semmelweis University, Bókay János U. 53-54, Budapest, 1083, Hungary
| | - N Bunford
- Developmental and Translational Neuroscience Research Group Developmental and Translational Neuroscience Research Group, Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary.
| |
Collapse
|
3
|
An Z, Shen L, Lu Y, Yao B, Wu H, Niu T, Wu W, Song J. Acute effects of ambient nitrogen dioxide pollution on outpatient visits for neurological diseases in Xinxiang, China. BMC Public Health 2024; 24:2648. [PMID: 39334108 PMCID: PMC11437807 DOI: 10.1186/s12889-024-19907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that exposure to air pollution acts as a potential trigger for neurological diseases (NDs), yet the current knowledge regarding the impact of ambient nitrogen dioxide (NO2) on the patients with NDs remains limited. In this study, we conducted a time-series study to evaluate the association between short-term exposure to NO2 and hospital visits for NDs in Xinxiang, China. METHODS An over-dispersed Poisson generalized additive model was used to analyze the association between ambient NO2 concentrations and daily outpatient visits for NDs from January 1, 2015 to December 31, 2017. The model adjusted for meteorological factors, temporal trends, day of the week, and public holidays. The concentrations of air pollutants were collected from four air quality stations in Xinxiang. RESULTS A total of 38, 865 outpatient visits for NDs were retrieved during the study period. 86.5% of the patients were below the age of 65 years. It was revealed that a 10 µg/m3 increase in NO2 at lag 0 was associated with a significant rise of 1.50% (95% CI: 0.45-2.56%) in outpatient visits for NDs, which was stronger during the cold season. However, the overall results from stratified analyses did not reach statistical significance. CONCLUSIONS Short-term exposure to NO2 is associated with increased outpatient visits for NDs. These findings underscore the need for implementing mitigating measures to reduce the neurological health effects of air pollutants.
Collapse
Affiliation(s)
- Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- College of Life Sciences, Henan Normal University, 453003, Xinxiang, Henan, China
| | - Lingling Shen
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yuanyuan Lu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Bin Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Tianqi Niu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
4
|
Chen Y, Kuang T, Zhang T, Cai S, Colombo J, Harper A, Han TL, Xia Y, Gulliver J, Hansell A, Zhang H, Baker P. Associations of air pollution exposures in preconception and pregnancy with birth outcomes and infant neurocognitive development: analysis of the Complex Lipids in Mothers and Babies (CLIMB) prospective cohort in Chongqing, China. BMJ Open 2024; 14:e082475. [PMID: 38960456 PMCID: PMC11227797 DOI: 10.1136/bmjopen-2023-082475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVES To investigate the associations of traffic-related air pollution exposures in early pregnancy with birth outcomes and infant neurocognitive development. DESIGN Cohort study. SETTING Eligible women attended six visits in the maternity clinics of two centres, the First Affiliated Hospital of Chongqing Medical University and Chongqing Health Centre for Women and Children. PARTICIPANTS Women who were between 20 and 40 years of age and were at 11-14 weeks gestation with a singleton pregnancy were eligible for participation. Women were excluded if they had a history of premature delivery before 32 weeks of gestation, maternal milk allergy or aversion or severe lactose intolerance. 1273 pregnant women enrolled in 2015-2016 and 1174 live births were included in this analysis. EXPOSURES Air pollution concentrations at their home addresses, including particulate matter with diameter ≤2.5 µm (PM2.5) and nitrogen dioxide (NO2), during pre-conception and each trimester period were estimated using land-use regression models. OUTCOME MEASURES Birth outcomes (ie, birth weight, birth length, preterm birth, low birth weight, large for gestational age and small for gestational age (SGA) status) and neurodevelopment outcomes measured by the Chinese version of Bayley Scales of Infant Development. RESULTS An association between SGA and per-IQR increases in NO2 was found in the first trimester (OR: 1.57, 95% CI: 1.06 to 2.32) and during the whole pregnancy (OR: 1.33, 99% CI: 1.01 to 1.75). Both PM2.5 and NO2 exposure in the 90 days prior to conception were associated with lower Psychomotor Development Index scores (β: -6.15, 95% CI: -8.84 to -3.46; β: -2.83, 95% CI: -4.27 to -1.39, respectively). Increased NO2 exposure was associated with an increased risk of psychomotor development delay during different trimesters of pregnancy. CONCLUSIONS Increased exposures to NO2 during pregnancy were associated with increased risks of SGA and psychomotor development delay, while increased exposures to both PM2.5 and NO2 pre-conception were associated with adverse psychomotor development outcomes at 12 months of age. TRIAL REGISTRATION NUMBER ChiCTR-IOR-16007700.
Collapse
Affiliation(s)
- Yingxin Chen
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Tao Kuang
- Department of Public Health and Management, Zunyi Medical and Pharmaceutical College, Zunyi, China
| | - Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Samuel Cai
- Department of Health Sciences, University of Leicester, Leicester, Leicestershire, UK
| | | | | | - Ting-Li Han
- University of Auckland Liggins Institute, Auckland, New Zealand
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing, China
| | - Yinyin Xia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | | | - Anna Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Philip Baker
- College of Medicine, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Xin J, Luo Y, Xiang W, Zhu S, Niu H, Feng J, Sun L, Zhang B, Zhou X, Yang W. Measurement of the burdens of neonatal disorders in 204 countries, 1990-2019: a global burden of disease-based study. Front Public Health 2024; 11:1282451. [PMID: 38264240 PMCID: PMC10803531 DOI: 10.3389/fpubh.2023.1282451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Neonatal disorders are facing serious public health challenges. Previous studies were based on limited data sources and had a narrow geographical scope. We aim to understand the trends of alteration in the burden of neonatal disorders from 1990 to 2019 in 204 countries and territories. METHODS Data were investigated from the Global Burden of Disease Study 2019. First, we visualized the burden of neonatal disorders using the number of cases and the age-standardized incidence rate (ASIR), death rate (ASDR), and disability-adjusted life years (ASR-DALYs) from 1990 to 2019. Second, estimated annual percentage changes (EAPCs) were used to evaluate the temporal trends of disease burden during different periods. Finally, the sociodemographic index (SDI) and human development index (HDI) were used to determine whether there exists a correlation between socioeconomic development level, human development level, and potential burden consequences. RESULTS Overall, in the past 30 years, the ASIR trends have remained relatively steady, whereas the ASDR and ASR-DALYs have declined. However, the burden of neonatal disorders varied greatly in various regions and countries. Among 21 regions, the ASIR trend had the largest increase in Central Latin America (EAPC = 0.42, 95%CI = 0.33-0.50). Conversely, the ASDR and ASR-DALYs experienced the largest decrease in Central Europe (EAPC = -5.10, 95%CI = -5.28 to 4.93) and East Asia (EAPC = -4.07, 95%CI = -4.41 to 3.73), respectively. Among 204 countries, the ASIR (EAPC = 3.35, 95%CI = 3.13-3.56) trend in Greece displayed the most significant increase, while the ASDR (EAPC = 1.26, 95%CI = 1.01-1.50) and ASR-DALYs (EAPC = 1.26, 95%CI = 1.03-1.49) trends in Dominica experienced the most substantial increase. Furthermore, there was a strong correlation between the EAPCs in ASIR, ASDR, ASR-DALYs, and SDI or HDI in 2019, with some exceptions. In addition, countries with elevated levels of HDI experienced a faster increase in ASDR and ASR-DALYs for neonatal disorders. CONCLUSION Although the burden of neonatal disorders shows a downward trend from 1990 to 2019, it is still not optimistic. It is necessary to implement a multi-pronged approach to reduce the increasing burden of neonatal disorders.
Collapse
Affiliation(s)
- Juan Xin
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Continuing Education and Training Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Yiwen Luo
- School of Public Health, Jiaotong University Health Science Center, Xi’an, China
| | - Wanwan Xiang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Jiaotong University Health Science Center, Xi’an, China
| | - Sijing Zhu
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Niu
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Jiaotong University Health Science Center, Xi’an, China
| | - Jiayuan Feng
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Jiaotong University Health Science Center, Xi’an, China
| | - Landi Sun
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Jiaotong University Health Science Center, Xi’an, China
| | - Boxing Zhang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Jiaotong University Health Science Center, Xi’an, China
| | - Xihui Zhou
- Department of Pediatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
Fu J, Lin Q, Ai B, Li M, Luo W, Huang S, Yu H, Yang Y, Lin H, Wei J, Su X, Zhang Z. Associations between maternal exposure to air pollution during pregnancy and trajectories of infant growth: A birth cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115792. [PMID: 38064789 DOI: 10.1016/j.ecoenv.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE We examined the relationships between infants' growth trajectories and prenatal exposure to air pollution, which is still under-investigated. METHODS A birth cohort study was constructed using medical records of pregnant women and infants born between 2015 and 2019 in Foshan, China. Using satellite-based spatial-temporal models, prenatal exposure to air pollutants including particulate matter with an aerodynamic dimension of < 2.5 µm (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) was assessed at each woman's residence. Latent class growth modeling was used to identify trajectories of physical (body length and weight) growth and neurodevelopment, which were repeatedly measured within 1 year after birth. Logistic regression models were used to investigate the associations between prenatal exposure to air pollution and the risks of growth disorders, adjusting for an array of potential confounders. RESULTS We identified two growth trajectories for body length [normal: 3829 (93%); retardation: 288 (7%)], three for weight [normal: 2475 (59.6%); retardation: 390 (9.4%); overgrowth: 1287 (31%)], and two for neurodevelopment [normal: 956 (66.1%); retardation: 491 (33.9%)]. For exposure over whole pregnancy, SO2 was associated with an increased risk of body length retardation (OR for per 1 µg/m3 increment: 1.09, 95%CI: 1.01-1.17); PM2.5 (OR: 1.05, 95%CI: 1.03-1.07), SO2 (OR: 1.15, 95%CI: 1.08-1.22), and NO2 (OR: 1.05, 95%CI: 1.03-1.07) were positively associated with neurodevelopmental retardation. Such associations appeared stronger for exposures over the first and second trimesters. No significant associations were detected for weight growth. CONCLUSIONS Maternal exposure to air pollution during pregnancy was associated with higher risks of impairments in both physical growth, particularly body length, and neurodevelopment.
Collapse
Affiliation(s)
- Jiaying Fu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qingmei Lin
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Baozhuo Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Meijun Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weidong Luo
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Saijun Huang
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Hong Yu
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jing Wei
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xi Su
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China.
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Guilbert A, Bernard JY, Peyre H, Costet N, Hough I, Seyve E, Monfort C, Philippat C, Slama R, Kloog I, Chevrier C, Heude B, Ramus F, Lepeule J. Prenatal and childhood exposure to ambient air pollution and cognitive function in school-age children: Examining sensitive windows and sex-specific associations. ENVIRONMENTAL RESEARCH 2023; 235:116557. [PMID: 37423370 DOI: 10.1016/j.envres.2023.116557] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Combined effect of both prenatal and early postnatal exposure to ambient air pollution on child cognition has rarely been investigated and periods of sensitivity are unknown. This study explores the temporal relationship between pre- and postnatal exposure to PM10, PM2.5, NO2 and child cognitive function. METHODS Using validated spatiotemporally resolved exposure models, pre- and postnatal daily PM2.5, PM10 (satellite based, 1 km resolution) and NO2 (chemistry-transport model, 4 km resolution) concentrations at the mother's residence were estimated for 1271 mother-child pairs from the French EDEN and PELAGIE cohorts. Scores representative of children's General, Verbal and Non-Verbal abilities at 5-6 years were constructed based on subscale scores from the WPPSI-III, WISC-IV or NEPSY-II batteries, using confirmatory factor analysis (CFA). Associations of both prenatal (first 35 gestational weeks) and postnatal (60 months after birth) exposure to air pollutants with child cognition were explored using Distributed Lag Non-linear Models adjusted for confounders. RESULTS Increased maternal exposure to PM10, PM2.5 and NO2, during sensitive windows comprised between the 15th and the 33rd gestational weeks, was associated with lower males' General and Non-verbal abilities. Higher postnatal exposure to PM2.5 between the 35th and 52nd month of life was associated with lower males' General, Verbal and Non-verbal abilities. Some protective associations were punctually observed for the very first gestational weeks or months of life for both males and females and the different pollutants and cognitive scores. DISCUSSION These results suggest poorer cognitive function at 5-6 years among males following increased maternal exposure to PM10, PM2.5 and NO2 during mid-pregnancy and child exposure to PM2.5 around 3-4 years. Apparent protective associations observed are unlikely to be causal and might be due to live birth selection bias, chance finding or residual confounding.
Collapse
Affiliation(s)
- Ariane Guilbert
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, Inserm, CNRS, 38700, La Tronche, France.
| | - Jonathan Y Bernard
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), 75004, Paris, France
| | - Hugo Peyre
- Centre de Ressources Autisme Languedoc-Roussillon et Centre d'Excellence sur l'Autisme et les Troubles Neuro-développementaux, CHU Montpellier, 34090, Montpellier, France; Université Paris-Saclay, UVSQ, Inserm, CESP, Team DevPsy, 94807, Villejuif, France; Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, EHESS, CNRS, 75005, Paris, France
| | - Nathalie Costet
- Team of Epidemiology and Exposure Science in Health and Environment, Research Center on Environmental and Occupational Health (IRSET), Inserm, Université Rennes, EHESP, 35000, Rennes, France
| | - Ian Hough
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, Inserm, CNRS, 38700, La Tronche, France; Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Institute of Environmental Geosciences (IGE), Université Grenoble Alpes, 38400, Saint Martin D'Hères, France
| | - Emie Seyve
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, Inserm, CNRS, 38700, La Tronche, France
| | - Christine Monfort
- Team of Epidemiology and Exposure Science in Health and Environment, Research Center on Environmental and Occupational Health (IRSET), Inserm, Université Rennes, EHESP, 35000, Rennes, France
| | - Claire Philippat
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, Inserm, CNRS, 38700, La Tronche, France
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, Inserm, CNRS, 38700, La Tronche, France
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Cécile Chevrier
- Team of Epidemiology and Exposure Science in Health and Environment, Research Center on Environmental and Occupational Health (IRSET), Inserm, Université Rennes, EHESP, 35000, Rennes, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), 75004, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, EHESS, CNRS, 75005, Paris, France
| | - Johanna Lepeule
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, Inserm, CNRS, 38700, La Tronche, France.
| |
Collapse
|
8
|
Bos B, Barratt B, Batalle D, Gale-Grant O, Hughes EJ, Beevers S, Cordero-Grande L, Price AN, Hutter J, Hajnal JV, Kelly FJ, David Edwards A, Counsell SJ. Prenatal exposure to air pollution is associated with structural changes in the neonatal brain. ENVIRONMENT INTERNATIONAL 2023; 174:107921. [PMID: 37058974 PMCID: PMC10410199 DOI: 10.1016/j.envint.2023.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Prenatal exposure to air pollution is associated with adverse neurologic consequences in childhood. However, the relationship between in utero exposure to air pollution and neonatal brain development is unclear. METHODS We modelled maternal exposure to nitrogen dioxide (NO2) and particulate matter (PM2.5 and PM10) at postcode level between date of conception to date of birth and studied the effect of prenatal air pollution exposure on neonatal brain morphology in 469 (207 male) healthy neonates, with gestational age of ≥36 weeks. Infants underwent MR neuroimaging at 3 Tesla at 41.29 (36.71-45.14) weeks post-menstrual age (PMA) as part of the developing human connectome project (dHCP). Single pollutant linear regression and canonical correlation analysis (CCA) were performed to assess the relationship between air pollution and brain morphology, adjusting for confounders and correcting for false discovery rate. RESULTS Higher exposure to PM10 and lower exposure to NO2 was strongly canonically correlated to a larger relative ventricular volume, and moderately associated with larger relative size of the cerebellum. Modest associations were detected with higher exposure to PM10 and lower exposure to NO2 and smaller relative cortical grey matter and amygdala and hippocampus, and larger relaive brainstem and extracerebral CSF volume. No associations were found with white matter or deep grey nuclei volume. CONCLUSIONS Our findings show that prenatal exposure to air pollution is associated with altered brain morphometry in the neonatal period, albeit with opposing results for NO2 and PM10. This finding provides further evidence that reducing levels of maternal exposure to particulate matter during pregnancy should be a public health priority and highlights the importance of understanding the impacts of air pollution on this critical development window.
Collapse
Affiliation(s)
- Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Ben Barratt
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Oliver Gale-Grant
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Sean Beevers
- MRC Centre for Environment and Health, Imperial College London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Frank J Kelly
- MRC Centre for Environment and Health, Imperial College London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
9
|
Yang Y, Yang T, Zhou J, Cao Z, Liao Z, Zhao Y, Su X, He J, Hua J. Prenatal exposure to concentrated ambient PM 2.5 results in spatial memory defects regulated by DNA methylation in male mice offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35142-35152. [PMID: 36526934 PMCID: PMC10017658 DOI: 10.1007/s11356-022-24663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Ambient fine particulate matter (PM2.5) exposures during pregnancy could lead to adverse birth outcomes, including neurobehavioral development defects. However, limited studies explored the effects and potential epigenetic mechanisms of maternal PM2.5 exposure on offspring spatial memory defects. This study aims to explore the effects and underlying epigenetic mechanisms of maternal concentrated ambient PM2.5 exposure in male mice offspring with spatial memory defects. Pregnant female C57BL/6 mice were exposed daily to concentrated ambient PM2.5 (CAP) or filtered air (FA) throughout gestation, with the concentration of particulates (102.99 ± 78.74 μg/m3) and (2.78 ± 1.19 μg/m3), respectively. Adult male mice offspring were subsequently assessed for spatial learning and memory ability using Morris Water Maze tests and locomotor activities in open field tests. The hippocampus of the male mice offspring was harvested to test mRNA expression and DNA methylation. Results from the probe test of Morris Water Maze showed that the mice offspring in the CAP group had shorter swimming distance travelled in the target quadrant, shorter duration in the target quadrant, and less number of entries into the target quadrant (p < 0.05), suggesting spatial memory impairments. The acquisition trials of Morris Water Maze did not show a significant difference in learning ability between the groups. The mRNA level of interleukin 6 (IL-6) in the CAP group hippocampus (10.80 ± 7.03) increased significantly compared to the FA group (1.08 ± 0.43). Interestingly, the methylation levels of the CpG sites in the IL-6 promoter region declined significantly in the CAP group, (5.66 ± 0.83)% vs. (4.79 ± 0.48)%. Prenatal exposure to concentrated ambient PM2.5 induced long-lasting spatial memory defects in male mice offspring. The underlying biological mechanism might be mediated by an inflammatory reaction which is regulated by DNA methylation.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Yang
- Department of Social Medicine, School of Public Health, Fudan University, Shanghai, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
- Shanghai Typhoon Institute, CMA, Shanghai, China
- Department of Atmospheric and Oceanic Sciences, & Institute of Atmospheric Sciences, Fudan University, Shanghai, China
| | - Zhijuan Cao
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Yan Zhao
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiujuan Su
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia He
- School of Medicine, Tongji University, Shanghai, China
| | - Jing Hua
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Marín D, Orozco LY, Narváez DM, Ortiz-Trujillo IC, Molina FJ, Ramos CD, Rodriguez-Villamizar L, Bangdiwala SI, Morales O, Cuellar M, Hernández LJ, Henao EA, Lopera V, Corredor A, Toro MV, Groot H, Villamil-Osorio M, Muñoz DA, Hincapié RC, Amaya F, Oviedo AI, López L, Morales-Betancourt R, Marín-Ochoa BE, Sánchez-García OE, Marín JS, Abad JM, Toro JC, Pinzón E, Builes JJ, Rueda ZV. Characterization of the external exposome and its contribution to the clinical respiratory and early biological effects in children: The PROMESA cohort study protocol. PLoS One 2023; 18:e0278836. [PMID: 36662732 PMCID: PMC9858469 DOI: 10.1371/journal.pone.0278836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/01/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Air pollution contains a mixture of different pollutants from multiple sources. However, the interaction of these pollutants with other environmental exposures, as well as their harmful effects on children under five in tropical countries, is not well known. OBJECTIVE This study aims to characterize the external exposome (ambient and indoor exposures) and its contribution to clinical respiratory and early biological effects in children. MATERIALS AND METHODS A cohort study will be conducted on children under five (n = 500) with a one-year follow-up. Enrolled children will be followed monthly (phone call) and at months 6 and 12 (in person) post-enrolment with upper and lower Acute Respiratory Infections (ARI) examinations, asthma development, asthma control, and genotoxic damage. The asthma diagnosis will be pediatric pulmonologist-based and a standardized protocol will be used. Exposure, effect, and susceptibility biomarkers will be measured on buccal cells samples. For environmental exposures PM2.5 will be sampled, and questionnaires, geographic information, dispersion models and Land Use Regression models for PM2.5 and NO2 will be used. Different statistical methods that include Bayesian and machine learning techniques will be used for the ambient and indoor exposures-and outcomes. This study was approved by the ethics committee at Universidad Pontificia Bolivariana. EXPECTED STUDY OUTCOMES/FINDINGS To estimate i) The toxic effect of particulate matter transcending the approach based on pollutant concentration levels; ii) The risk of developing an upper and lower ARI, based on different exposure windows; iii) A baseline of early biological damage in children under five, and describe its progression after a one-year follow-up; and iv) How physical and chemical PM2.5 characteristics influence toxicity and children's health.
Collapse
Affiliation(s)
- Diana Marín
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Luz Yaneth Orozco
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
- School of Engineering, Universidad de Antioquia, Medellín, Colombia
| | | | | | | | | | - Laura Rodriguez-Villamizar
- Department of Public Health, School of Health, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Shrikant I. Bangdiwala
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
- Statistics Department, Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Olga Morales
- School of Medicine, Pediaciencias Group, Universidad de Antioquia, Noel Clinic, Medellín, Colombia
- Department of Pediatrics, Hospital San Vicente Fundación, Medellín, Colombia
| | - Martha Cuellar
- School of Medicine, Pediaciencias Group, Universidad de Antioquia, Noel Clinic, Medellín, Colombia
- Department of Pediatrics, SOMER Clinic, Medellín, Colombia
| | | | | | - Verónica Lopera
- Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia
| | - Andrea Corredor
- Department of Pediatrics, ONIROS Centro Especializado en Medicina Integral del Sueño, Bogotá, Colombia
| | - María Victoria Toro
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Helena Groot
- Human Genetics Laboratory, Universidad de los Andes, Bogotá, Colombia
| | - Milena Villamil-Osorio
- Department of Pediatrics, Fundación Hospital Pediátrico la Misericordia, Bogotá, Colombia
| | | | | | - Ferney Amaya
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Ana Isabel Oviedo
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Lucelly López
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Beatriz Elena Marín-Ochoa
- School of Social Communications and Journalism, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | | | | | | | - Eliana Pinzón
- Secretaria distrital de Salud, Alcaldia de Bogota, Bogota, Colombia
| | | | - Zulma Vanessa Rueda
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
11
|
Wylie AC, Short SJ. Environmental Toxicants and the Developing Brain. Biol Psychiatry 2023; 93:921-933. [PMID: 36906498 DOI: 10.1016/j.biopsych.2023.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Early life represents the most rapid and foundational period of brain development and a time of vulnerability to environmental insults. Evidence indicates that greater exposure to ubiquitous toxicants like fine particulate matter (PM2.5), manganese, and many phthalates is associated with altered developmental, physical health, and mental health trajectories across the lifespan. Whereas animal models offer evidence of their mechanistic effects on neurological development, there is little research that evaluates how these environmental toxicants are associated with human neurodevelopment using neuroimaging measures in infant and pediatric populations. This review provides an overview of 3 environmental toxicants of interest in neurodevelopment that are prevalent worldwide in the air, soil, food, water, and/or products of everyday life: fine particulate matter (PM2.5), manganese, and phthalates. We summarize mechanistic evidence from animal models for their roles in neurodevelopment, highlight prior research that has examined these toxicants with pediatric developmental and psychiatric outcomes, and provide a narrative review of the limited number of studies that have examined these toxicants using neuroimaging with pediatric populations. We conclude with a discussion of suggested directions that will move this field forward, including the incorporation of environmental toxicant assessment in large, longitudinal, multimodal neuroimaging studies; the use of multidimensional data analysis strategies; and the importance of studying the combined effects of environmental and psychosocial stressors and buffers on neurodevelopment. Collectively, these strategies will improve ecological validity and our understanding of how environmental toxicants affect long-term sequelae via alterations to brain structure and function.
Collapse
Affiliation(s)
- Amanda C Wylie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Center for Health Minds, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
12
|
Song J, Qu R, Sun B, Wang Y, Chen R, Kan H, An Z, Wu H, Li J, Jiang J, Zhang Y, Wu W. Acute effects of ambient nitrogen dioxide exposure on serum biomarkers of nervous system damage in healthy older adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114423. [PMID: 36525948 DOI: 10.1016/j.ecoenv.2022.114423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Ambient nitrogen dioxide (NO2)-induced adverse health effects have been studied, but documented evidence on neural systems is limited. This study aimed to determine the acute effect of NO2 exposure on nervous system damage biomarker levels in healthy older adults. Five rounds of follow-up among 34 healthy retired people were scheduled from December 2018 to April 2019 in Xinxiang, China. The real-time NO2 concentrations were measured using a fixed site monitor. Serum samples were acquired during each round to measure nervous system damage biomarker levels: brain-derived neurotrophic factor (BDNF), neurofilament light chain (NfL), neuron-specific enolase (NSE), protein gene product 9.5 (PGP9.5), and S100 calcium-binding protein B (S100B). A linear mixed-effect model was incorporated to analyze the association between short-term NO2 exposure and serum concentrations of the above-mentioned biomarkers. Stratification analysis based on sex, educational attainment, glutathione S-transferase theta 1 gene (GSTT1) polymorphism, and physical activity intensity was conducted to explore their potential modification effect. The NO2 concentration ranged from 34.7 to 59.0 µg/m3 during the study period. Acute exposure to ambient NO2 was significantly associated with elevated serum levels of NfL, PGP9.5, and BDNF. In response to a 10 µg/m3 increase in NO2 concentration, NfL and PGP9.5 levels increased by 76 % (95 % confidence interval [CI]: 12-140 %) and 54 % (95 % CI: 1-107 %) on the lag0 day, respectively, while BDNF levels increased by 49 % (95 % CI: 2-96 %) at lag4 day. The estimated effect of NO2 on NSE levels in GSTT1-sufficient participants was significantly higher than that in GSTT1-null participants. Intriguingly, the estimation of NO2 on PGP9.5 levels in females was significantly higher than that in males. Most two-pollutant models showed robust results, except for O3, which might have had confounding effects on NO2-induced BDNF stimulation. In summary, acute exposure to NO2 was associated with increased levels of serum nervous system damage biomarker levels including NFL, PGP9.5, and BDNF. The present study provided insights into NO2 exposure-induced adverse neural effects.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Beibei Sun
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
13
|
Wang Z, Qian R, Xiang W, Sun L, Xu M, Zhang B, Yang L, Zhu S, Zeng L, Yang W. Association between noise exposure during pregnancy and pregnancy complications: A meta-analysis. Front Psychol 2022; 13:1026996. [PMID: 36478941 PMCID: PMC9721198 DOI: 10.3389/fpsyg.2022.1026996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Noise exposure has a significant impact on human health. However, the effect of occupational and residential noise on the risk of pregnancy complications was controversial in the literature. This study looked at previous research and performed a meta-analysis to determine how noise exposure during pregnancy affected the risk of pregnancy complications. METHODS Systematic searches were conducted in PubMed, Web of Science, Scopus, Embase, Ovid, and Cochrane, and all relevant studies were included. Two investigators independently evaluated the eligibility of these studies. The risk of bias in each study and the quality and strength of each outcome was evaluated by using the GRADE approach and Navigation Guide. Random effects meta-analysis model was used. RESULTS The meta-analysis retrieved 1,461 study records and finally included 11 studies. Occupational noise exposure during pregnancy was associated with preeclampsia (RR = 1.07, 95%CI: 1.04, 1.10). Neither occupational nor residential noise exposure was associated with hypertensive disorders of pregnancy (HDP) (RR = 1.10, 95%CI: 0.96, 1.25 and RR = 1.05, 95%CI: 0.98, 1.11) or gestational diabetes mellitus (GDM) (RR = 0.94, 95%CI: 0.88, 1.00 and RR = 1.06, 95%CI: 0.98, 1.16). Further bias analysis showed that the results were reliable. All outcomes were rated as low in quality and inadequate evidence of harmfulness in strength. CONCLUSIONS Occupational noise exposure could increase the risk of preeclampsia, according to the findings. There was no clear evidence of a harmful effect of noise exposure during pregnancy on HDP or GDM.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rongkai Qian
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wanwan Xiang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Landi Sun
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mengmeng Xu
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boxing Zhang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Sijing Zhu
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingxia Zeng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Wang T, Wang Y, Cui N. Traffic costs of air pollution: the effect of PM 2.5 on traffic violation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72699-72717. [PMID: 35614355 DOI: 10.1007/s11356-022-20790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Although emerging studies have investigated the effect of air pollution on traffic crashes, it is unclear to scholars whether air pollution affects another road safety problem-traffic violations. To address this gap, the current paper constructs a data set from 1,390,221 traffic violation records of 640,971 drivers from the Wuhan Traffic Management Bureau between January 2018 and December 2018. An ordered logistic regression was conducted to verify our hypotheses. The result shows that PM2.5 has no overall impact on the severity of traffic violations, but each 1% increase in the daily concentration of PM2.5 leads to a 1.02-fold increase in the odds of serious inexperience-related violations and a 0.99-fold decrease in the odds of serious overconfidence-related violations. This effect is the strongest in PM2.5, followed by NO2, and has not been observed in CO and O3. In addition, robustness tests indicate that the relationship between air pollution and traffic violations is consistent among the different subsets (e.g., clear weather, no rain and snow, and good visibility). We also provide valuable practical advice for drivers and traffic authorities.
Collapse
Affiliation(s)
- Tao Wang
- School of Economics and Management, Wuhan University, Wuhan, People's Republic of China
- Research Center For Organizational Marketing of Wuhan University, Wuhan University, Wuhan, People's Republic of China
| | - Yu Wang
- School of Economics and Management, Wuhan University, Wuhan, People's Republic of China.
| | - Nan Cui
- School of Economics and Management, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
15
|
The mediating role of the gut microbiome in the association between ambient air pollution and autistic traits. Int J Hyg Environ Health 2022; 246:114047. [DOI: 10.1016/j.ijheh.2022.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
16
|
Reighard C, Junaid S, Jackson WM, Arif A, Waddington H, Whitehouse AJO, Ing C. Anesthetic Exposure During Childhood and Neurodevelopmental Outcomes: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e2217427. [PMID: 35708687 PMCID: PMC9204549 DOI: 10.1001/jamanetworkopen.2022.17427] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023] Open
Abstract
Importance Clinical studies of neurodevelopmental outcomes after anesthetic exposure have evaluated a range of outcomes with mixed results. Objective To examine via meta-analyses the associations between exposure to general anesthesia and domain-specific neurodevelopmental outcomes in children. Data Sources PubMed/MEDLINE, Embase, CINAHL, Web of Science and the Cochrane Library were searched from inception to August 31, 2021. Study Selection Inclusion criteria were exposures to procedures requiring general anesthesia at younger than 18 years and evaluation of long-term neurodevelopmental function after exposure. Studies lacking unexposed controls or focused on children with major underlying comorbidities were excluded. Data Extraction and Synthesis Extracted variables included effect size; hazard, risk, or odds ratio; number of exposures; procedure type; major comorbidities; age of exposure and assessment; presence of unexposed controls; and study design. Studies were independently reviewed by 2 coders, and review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were pooled using a random-effects model. Main Outcomes and Measures The main outcomes were standardized mean differences (SMD) for scores in the neurodevelopmental domains of academics, behavioral problems, cognition, executive function, general development, language, motor function, nonverbal reasoning, social cognition, and hazard and risk of neurodevelopmental disorder diagnoses. Results A total of 31 studies contributed data for meta-analysis. For each of the assessed neurodevelopmental domains, the numbers of children evaluated ranged from 571 to 63 315 exposed and 802 to 311 610 unexposed. Children with any exposure (single or multiple) had significantly worse behavioral problems scores, indicating more behavioral problems (SMD, -0.10; 95% CI, -0.18 to -0.02; P = .02), and worse scores in academics (SMD, -0.07; 95% CI -0.12 to -0.01; P = .02), cognition (SMD, -0.03; 95% CI, -0.05 to 0.00; P = .03), executive function (SMD, -0.20; 95% CI, -0.32 to -0.09; P < .001), general development (SMD, -0.08; 95% CI, -0.13 to -0.02; P = .01), language (SMD, -0.08; 95% CI, -0.14 to -0.02; P = .01), motor function (SMD, -0.11; 95% CI, -0.21 to -0.02; P = .02), and nonverbal reasoning (SMD, -0.15; 95% CI, -0.27 to -0.02; P = .02). Higher incidences of neurodevelopmental disorder diagnoses were also reported (hazard ratio, 1.19; 95% CI, 1.09 to 1.30; P < .001; risk ratio, 1.81; 95% CI, 1.25 to 2.61; P = .002). Conclusions and Relevance These findings support the hypothesis that associations between anesthetic exposure during childhood and subsequent neurodevelopmental deficits differ based on neurodevelopmental domain.
Collapse
Affiliation(s)
- Charles Reighard
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Shaqif Junaid
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - William M. Jackson
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Ayesha Arif
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Hannah Waddington
- Faculty of Education, Victoria University of Wellington, Wellington, New Zealand
| | | | - Caleb Ing
- Department of Anesthesiology and Epidemiology, Columbia University Vagelos College of Physicians and Surgeons and Mailman School of Public Health, New York, New York
| |
Collapse
|
17
|
Castagna A, Mascheroni E, Fustinoni S, Montirosso R. Air pollution and neurodevelopmental skills in preschool- and school-aged children: A systematic review. Neurosci Biobehav Rev 2022; 136:104623. [PMID: 35331818 DOI: 10.1016/j.neubiorev.2022.104623] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Early life exposure to air pollution has been associated with neurodevelopmental disorders. Emerging evidence are highlighting a possible impact of air pollution on typically developing children. Thirty papers were included in this review to systematically evaluate the association between air pollutants exposure in prenatal and/or postnatal periods and specific neurodevelopmental skills (i.e. intellective functioning, memory and learning, attention and executive functions, verbal language, numeric ability and motor and/or sensorimotor functions) in preschool- and school-age children. Detrimental effects of air pollutants on children's neurodevelopmental skills were observed, although they do not show clinically relevant performance deficits. The most affected domains were global intellective functioning and attention/executive functions. The pollutants that seem to represent the greatest risk are PM2.5, NO₂ and PAHs. Prenatal exposure is primarily associated with child neurodevelopment at pre-school and school ages. Early exposure to air pollutants is related to adverse neurodevelopmental outcomes in the general population of children. Further research is needed to support stronger conclusions.
Collapse
Affiliation(s)
- Annalisa Castagna
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy
| | - Eleonora Mascheroni
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy
| | - Silvia Fustinoni
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Com-munity Health, Università degli Studi di Milano, Milano, Italy; Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Rosario Montirosso
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy.
| |
Collapse
|
18
|
Yu T, Zhou L, Xu J, Kan H, Chen R, Chen S, Hua H, Liu Z, Yan C. Effects of prenatal exposures to air sulfur dioxide/nitrogen dioxide on toddler neurodevelopment and effect modification by ambient temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113118. [PMID: 34979314 DOI: 10.1016/j.ecoenv.2021.113118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Emerging evidence suggests that prenatal exposure to ambient SO2 or NO2 induces fetal brain-damage. However, effects of prenatal exposure to SO2 or NO2 on toddler neurodevelopment and the effect-modification by ambient temperature remain unclear. Therefore, a prospective birth-cohort study was conducted from 2010 to 2012 in Shanghai, and 225 mother-child pairs were followed-up from mid-to-late pregnancy until 24-36 months postpartum. During the whole pregnancy, daily SO2/NO2 and temperature levels were obtained for each woman. Gesell-Development-Schedule was used to assess toddler neurodevelopment in the domains of gross-motor, fine-motor, adaptive-behavior, language and social-behavior. Distributed-lag-nonlinear-models simultaneously accounting for exposure-response and lag-response associations were applied to assess the impacts of prenatal SO2/NO2 exposure on neurodevelopment. Each 10-μg/m3 increase in weekly average SO2 concentrations had adverse associations with gross-motor in gestational-weeks 1-6, with adaptive-behavior in weeks 26-30, and with language in weeks 30-36 (developmental-quotient changes: - 1.17% to - 0.12%, P-values < 0.05). Each 10-μg/m3 increase in weekly average NO2 concentrations had adverse associations with gross-motor in gestational-weeks 33-36, with fine-motor in weeks 26-36 and with social-behavior in weeks 31-36 (developmental-quotient changes: - 0.91% to - 0.20%, P-values < 0.05). The cumulative effects for the whole pregnancy showed that each 10-μg/m3 increase in SO2 induced significant deficits in gross-motor and adaptive-behavior (developmental-quotient changes: - 4.71% and - 4.06%, respectively, P < 0.05). We found prenatal cumulative SO2 exposure induced more deficits in low temperature in language and adaptive-behavior than in high/moderate temperature. Thus, prenatal ambient SO2/NO2 exposure in specific time-windows (1st and 3rd trimesters for SO2; 3rd trimester for NO2) could impair toddler neurodevelopment and low temperature may aggravate the SO2-induced neurotoxicity.
Collapse
Affiliation(s)
- Ting Yu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Leilei Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Jian Xu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Haidong Kan
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032 China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200032 China
| | - Renjie Chen
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032 China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200032 China
| | - Shuwen Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hui Hua
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhiwei Liu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chonghuai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| |
Collapse
|
19
|
Vilcins D, Cortes-Ramirez J, Currie D, Preston P. Early environmental exposures and life-long risk of chronic non-respiratory disease. Paediatr Respir Rev 2021; 40:33-38. [PMID: 34140237 DOI: 10.1016/j.prrv.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Exposure to environmental hazards occurs from the earliest stages of development. There are a broad range of environmental hazards, and virtually all children are exposed to these hazards during the critical period of growth and development. The burden of many chronic diseases continues to rise, and life course studies have shown that early exposure to environmental hazards is associated with non-communicable disease in later years. This review will discuss the environmental exposures associated with four non-respiratory chronic diseases: obesity, diabetes, cardiovascular disease and neurodevelopmental /neurodegenerative conditions.
Collapse
Affiliation(s)
- Dwan Vilcins
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia.
| | - Javier Cortes-Ramirez
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | | | - Paige Preston
- School of Public Health, The University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Abstract
Pregnancy and early childhood are periods with high plasticity in neurological development. Environmental perturbations during these sensitive windows can have lifelong developmental consequences. This review summarizes key findings relevant to the effects of air pollution on neurological development. Mounting evidence suggests that exposure to air pollution, both during pregnancy and childhood, is associated with childhood developmental outcomes ranging from changes in brain structures to subclinical deficits in developmental test scores, and, ultimately, developmental disorders such as attention-deficit/hyperactivity disorders or autism spectrum disorders. Although the biological mechanisms of effects remain to be elucidated, multiple pathways are probably involved and include oxidative stress, inflammation, and/or endocrine disruption. Given the alarming global increase in developmental disorders in recent years, and increased human exposures to pollution, it is critical to reduce personal and community-level exposures through tight collaboration of interdisciplinary and multi-level bodies including community partners, physicians, industry partners, policy makers, public health practitioners, and researchers. WHAT THIS PAPER ADDS: Exposure to air pollution is associated with a range of childhood developmental complications. Biological mechanisms may include oxidative stress, inflammation, and endocrine disruption.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, CA, USA
| |
Collapse
|
21
|
Neurobehavioural and cognitive effects of prenatal exposure to organochlorine compounds in three year old children. BMC Pediatr 2021; 21:99. [PMID: 33637059 PMCID: PMC7908674 DOI: 10.1186/s12887-021-02533-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background We report data of a Belgian observational prospective cohort study regarding cognitive and behavioural development until the age of 36 months in relation to internal exposure to organochlorine pollutants [sum of polychlorinated biphenyls (sum PCB), dioxin-like activity, PCB118, PCB170, hexachlorobenzene (HCB) and p,p’-dichlorodiphenyldichloroethylene (DDE)] measured in cord blood. Methods Participants were recruited as part of an Flemish Environmental Health Survey (2002–2006). Two hundred and six mother-child pairs were recruited. Hundred twenty five toddlers [Reynell Taal Ontwikkelings Schalen (language development, RTOS), Snijders-Oomen Niet-verbale intelligentietest (non-verbal intelligence, SON), Bayley Scales, milestones, Infant Behaviour Questionnaire (IBQ), gender specific play behaviour, Neurobehavioral Evaluation System (NES)-attentional task] and their mothers [Home Observation Measurement of the Environment (HOME), Wechsler Abbreviated Scale of Intelligence (WASI), State-Trait Anxiety Inventory (STAI), general questionnaires] were tested. Statistical analysis was performed with the SPSS program. Much attention was paid to confounding factors. Results In the first years of development, higher organochlorine pollutants were associated with less active children (delayed crawling: sum PCB*HCB (p < 0.05), sumPCB*DDE (p < 0.1); delayed first steps alone: sum PCB (p < 0.5), PCB118 (p < 0.01), PCB170 (p < 0.01), HCB (p < 0.01); less switching between toys: sum PCB (p < 0.01); less switching between toys in boys: PCB118 (p < 0.01), sum PCB(p < 0.01)). At 12 months children with higher dioxin-like activity tended to show less fear responses(p < 0.1) (IBQ 12 months). At 36 months, a slower development of language comprehension (RTOS) was related to all organochlorine exposure parameters(p < 0.1 or p < 0.05) except DDE. Lower nonverbal IQ scores (SON) were related to PCB118 in boys only(p < 0.05 or p < 0.01). Less masculine and more non-gender specific play behaviour was associated with sum PCB in boys and girls at 36 months(p < 0.1). Moreover, PCB118 (p < 0.05), PCB170 (p < 0.1), HCB(p < 0.05) and DDE(p < 0.05) were associated with diminished masculine play behaviour in boys. Conclusion Our data confirm the observations that neurobehavioral development of young children is adversely influenced by environmental concentrations of PCBs, especially in boys. In this context, observation of play behaviour seems to be a reliable, easy to perform and sensitive test to detect neurotoxic effects of chemicals like PCB’s and dioxin-like compounds in very young children. On the basis of our results, we hypothesize that an underarrousal pattern may play a role in the spectrum of effects measured in toddlers prenatally exposed to PCBs and dioxin-like compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02533-2.
Collapse
|