1
|
Deo L, Osborne JW, Benjamin LK. Harnessing microbes for heavy metal remediation: mechanisms and prospects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:116. [PMID: 39738768 DOI: 10.1007/s10661-024-13516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Contamination by heavy metals (HMs) poses a significant threat to the ecosystem and its associated micro and macroorganisms, leading to ill effects on humans which necessitate the requirement of effective remediation strategies. Microbial remediation leverages the natural metabolic abilities of microbes to overcome heavy metal pollution effectively. Some of the mechanisms that aids in the removal of heavy metals includes bioaccumulation, biosorption, and biomineralization. Metals such as Cd, Pb, As, Hg, and Cr are passively adsorbed by energy independent process onto the surface by exopolysaccharide sequestration or utilizing energy to transfer metals into the cell and interact with the biomolecules to be sequestered, or being converted into its various valencies, thereby reducing the toxicity. Application of hyperaccumulators has shown to be effective in the removal of HMs especially while augmented with microbes to the rhizosphere region. Omics studies which include metabolomics and metagenomics provide significant information about the microbial diversities and metabolic processes involved in heavy metal remediation, allowing the development of more reliable and sustainable bioremediation approaches. This review also summarizes the recent advancements in microbial remediation, including genetic engineering and nanotechnology that has revolutionized and offered an unprecedented control and precision in the removal of HMs. These innovations hold a promising stand for enhancing remediation efficiency, scalability, and cost-effectiveness.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Mohan I, Joshi B, Pathania D, Dhar S, Bhau BS. Phytobial remediation advances and application of omics and artificial intelligence: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37988-38021. [PMID: 38780844 DOI: 10.1007/s11356-024-33690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Industrialization and urbanization increased the use of chemicals in agriculture, vehicular emissions, etc., and spoiled all environmental sectors. It causes various problems among living beings at multiple levels and concentrations. Phytoremediation and microbial association are emerging as a potential method for removing heavy metals and other contaminants from soil. The treatment uses plant physiology and metabolism to remove or clean up various soil contaminants efficiently. In recent years, omics and artificial intelligence have been seen as powerful techniques for phytobial remediation. Recently, AI and modeling are used to analyze large data generated by omics technologies. Machine learning algorithms can be used to develop predictive models that can help guide the selection of the most appropriate plant and plant growth-promoting rhizobacteria combination that is most effective at remediation. In this review, emphasis is given to the phytoremediation techniques being explored worldwide in soil contamination.
Collapse
Affiliation(s)
- Indica Mohan
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P., 226001, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
3
|
Nosratabadi S, Kavousi HR, Sarcheshmehpour M, Mansouri M. Assessment of the Cu phytoremediation potential of Chrysanthemum indicum L. and Tagetes erecta L. using analysis of growth and physiological characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42445-42460. [PMID: 38872040 DOI: 10.1007/s11356-024-33941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
In the current study, the Cu phytoremediation ability of two ornamental plants, Chrysanthemum indicum L. and Tagetes erecta L., was tracked concerning the growth and physiological responses. Plants were subjected to varying concentrations of Cu (0, 100, 200, and 400 mg/kg) under the pot experiment for 8 weeks. The results showed that the measured growth and physiological characteristics declined in T. erecta shoots and roots at all tested treatments compared with the control. However, in C. indicum at 100 mg/kg, shoot biomass, shoot total soluble protein, and leaves number remained equal to that of the control and then reduced by rising Cu concentrations, compared with the control. Also, results indicated that in C. indicum, after 56 days of exposure to Cu, the chlorophyll pigments content markedly increased and reached a maximum level at 100 mg/kg dose and gradually declined with enhancing Cu concentrations, compared with the control. Other measured growth and physiological parameters decreased in both tissues of C. indicum in response to Cu usage in the growth medium. The carotenoid content of T. erecta decreased in all studied Cu levels in comparison to the control, but in C. indicum remained unaffected up to 200 mg/kg Cu in comparison to the control and then enhanced with increasing Cu level. The augmentation of antioxidant enzyme activity in two species, especially in roots, reflected the incident of Cu stress as demonstrated by elevated MDA and ion leakage levels. Data concerning copper accumulation in tissues, TF, and BAF showed T. erecta is a weak Cu accumulator and seems not to be an appropriate candidate for Cu phytoremediation. However, the Cu content in shoots and roots of C. indicum increased significantly with an increment in applied Cu level. Also, C. indicum accumulated higher Cu concentrations in the roots than in shoots and exhibited TF < 1, 0.1 < BAF root < 1, and can be considered as a Cu excluder by the phytostabilization mechanism.
Collapse
Affiliation(s)
- Sina Nosratabadi
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid Reza Kavousi
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mehdi Sarcheshmehpour
- Department of Soil Science Engineering, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Mansouri
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Aina OE, Mugivhisa LL, Olowoyo JO, Obi CL. Heavy metals and potential health risk assessment of Lactuca sativa and Daucus carrota from soil treated with organic manures and chemical fertilizer. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:538. [PMID: 38730206 PMCID: PMC11087361 DOI: 10.1007/s10661-024-12687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The large-scale production of food crops with heavy application of chemical fertilizers in the effort to meet the astronomical increase in food demands may be counterproductive to the goal of food security. This study investigated the effect of different soil treatments on the levels of heavy metals (Cr, Cu, Fe, Ni, Pb, and Zn) in two types of vegetables Lactuca sativa (lettuce) and Daucus carrota (carrot). The potential carcinogenic and non-carcinogenic health risks from their consumption were also evaluated. Planting experiment was set up in a randomized block design, with different soil treatments of soil + cow dung (CD), soil + sewage sludge (SS), soil + chemical fertilizer (nitrogen-phosphorus-potassium (NPK)), and untreated soil (UNTRD). The vegetables were harvested at maturity, washed with distilled water, and subjected to an acid digestion process before the levels of heavy metals were measured by inductively coupled plasma spectrometry (ICP-MS). The mean concentrations of the metals in the vegetables across all treatments were below the maximum permissible limits. The pattern of heavy metal accumulation by the vegetables suggested that the lettuce from SS treatment accumulated higher concentrations of heavy metals like Cr (0.20 mg/kg), Cu (3.91 mg/kg), Ni (0.33 mg/kg), and Zn (20.44 mg/kg) than carrot, with highest concentrations of Fe (90.89 mg/kg) and Pb (0.16 mg/kg) recorded in lettuce from NPK treatment. The bioaccumulation factor (BAF) showed that lettuce, a leafy vegetable, has bioaccumulated more heavy metals than carrot, a root vegetable. The BAF was generally below the threshold value of 1 in both vegetables, except in lettuce from NPK and CD treatments and carrot from NPK treatments, with BAF values of 1.6, 1.69, and 1.39, respectively. The cancer risk assessment factors were well below the unacceptable maximum range of 10-4 suggesting that consuming these vegetables might not expose an individual to potential risk of cancer development. The hazard quotient estimations were below the threshold values of 1 for all heavy metals; however, the hazard index (HI) values of 1.27 and 1.58 for lettuce from NPK and SS treatments indicate a potential non-carcinogenic health risk to consumers from intake of all the heavy metals.
Collapse
Affiliation(s)
- O E Aina
- Department of Biology and Environmental Science: School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
| | - L L Mugivhisa
- Department of Biology and Environmental Science: School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - J O Olowoyo
- Department of Health Sciences and The Water School, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - C L Obi
- Department of Biology and Environmental Science: School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
5
|
Mathur J, Panwar R. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21012-21027. [PMID: 38383928 DOI: 10.1007/s11356-024-32499-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The environment in India is contaminated with polycyclic aromatic hydrocarbons (PAHs) due to the occurrence of large anthropogenic activities, i.e., fuel combustion, mineral roasting, and biomass burning. Hence, 13 toxic PAHs were detected: phenanthrene, anthracene, fluoranthene, pyrene, and benz(a) anthracene, ben-zo; (b) fluoranthene, benzo(k) fluoranthene, benzo(a) pyrene, benzo(ghi)perylene, dibenz (ah) anthracene, indeno1,2,3-(cd) pyrene, coronene and coronene in the environment (i.e., ambient particulate matter, road dust, sludge, and sewage) of the most industrialized area. Pollutants such as heavy metals and polycyclic aromatic hydrocarbons co-contaminate the soil and pose a significant hazard to the ecosystem because these pollutants are harmful to both humans and the environment. Phytoremediation is an economical plant-based natural approach for soil clean-up that has no negative impact on ecosystems. The aim of this study was to investigate the effects of pyrene (500 mg kg-1), Zn (150 mg kg-1), Pb (150 mg kg-1), and Cd (150 mg kg-1) alone and in combination on the phytoextraction efficiency of Medicago sativa growing in contaminated soil. Plant biomass, biochemical activities, translocation factors, accumulation of heavy metals, and pyrene removal were determined. After 60 days of planting, compared with those of the control plants, the growth parameters, biomass, and chlorophyll content of the M. sativa plants were significantly lower, and the reactive oxygen species activity, such as proline and polyphenol content and metallothionein protein content, was markedly greater in the pyrene and heavy metal-polluted soils. Furthermore, the combined toxicity of pyrene and all three metals on M. sativa growth and biochemical parameters was significantly greater than that of pyrene, Zn, Pb, or Cd alone, indicating the synergistic effect of pyrene and heavy metals on cytotoxicity. Pyrene stress increased Cd accumulation in M. sativa. After pyrene exposure alone or in combination with Zn-pyrene, a greater pyrene removal rate (85.5-81.44%) was observed than that in Pb-pyrene, Cd-pyrene, and Zn-Pb-Cd-pyrene polluted soils (62.78-71.27%), indicating that zinc can enhance the removal of pyrene from contaminated soil. The resulting hypotheses demonstrated that Medicago sativa can be used as a promising phytoremediation agent for co-contaminated soil.
Collapse
Affiliation(s)
- Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India.
| | - Ritu Panwar
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
6
|
Chen W, Li M, Huang P, Meng D, Ying J, Yang Y, Qiu R, Li H. The application of mixed stabilizing materials promotes the feasibility of the intercropping system of Gynostemma pentaphyllum/Helianthus annuus L. on arsenic contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119284. [PMID: 37839203 DOI: 10.1016/j.jenvman.2023.119284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Intercropping technology and stabilizing materials are common remediation techniques for soils contaminated with heavy metals. This study investigated the feasibility of the Gynostemma pentaphyllum (G. pentaphyllum)/Helianthus annuus L. (H. annuus) intercropping system on arsenic (As) contaminated farmland through field and pot experiments and the regulation of plant As absorption by the application of mixed stabilizing materials in this intercropping system. Field experiments demonstrated that intercropping with H. annuus increased the As concentration in G. pentaphyllum leaves to 1.79 mg kg-1 but still met the requirements of the national food standard of China (2 mg kg-1) (GB2762-2017). Meanwhile, G. pentaphyllum yield in the intercropping system decreased by 15.09%, but the difference was insignificant (P > 0.05). Additionally, the As bioconcentration (BCA) per H. annuus plant in the intercropping system was significantly higher than that in the monoculture system, increasing by 76.37% (P < 0.05). The pot experiment demonstrated that when granite powder, iron sulfate mineral, and "Weidikang" soil conditioner were applied to the soil collectively, G. pentaphyllum leaf As concentration in the intercropping system could be significantly reduced by 42.17%. Rhizosphere pH is the most crucial factor affecting As absorption by G. pentaphyllum in intercropping systems. When these three stabilizing materials were applied simultaneously, the As bioaccumulation (BCA) per H. annuus plant was significantly higher than that of normal intercropping treatment, which increased by 71.12% (P < 0.05), indicating that the application of these stabilizing materials significantly improved the As removal efficiency of the intercropping system. Dissolved organic carbon (DOC) concentration in the rhizosphere soil is the most pivotal factor affecting As absorption by H. annuus. In summary, the G. pentaphyllum-H. annuus intercropping model is worthy of being promoted in moderately As polluted farmland. The application of granite powder, iron sulfate mineral, and "Weidikang" soil conditioner collectively to the soil can effectively enhance the potential of this intercropping model to achieve "production while repairing" in the As polluted farmland.
Collapse
Affiliation(s)
- Weizhen Chen
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Peiyi Huang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Dele Meng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Jidong Ying
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Yanan Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Huashou Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| |
Collapse
|
7
|
Haritash AK. Cadmium Uptake From Soil by Ornamental Metallophytes: A Meta-analytical Approach. ENVIRONMENTAL MANAGEMENT 2023; 71:1087-1097. [PMID: 36573998 DOI: 10.1007/s00267-022-01776-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/20/2022] [Indexed: 06/19/2023]
Abstract
Soil pollution by cadmium (Cd) is a serious issue worldwide affecting environmental and human health. Conventional chemical and physical methods of treating contaminated soil are costly, time-consuming, and less effective. Phytoremediation using ornamental plants is a safe and effective method for the treatment of heavy metal-polluted soil due to their rapid growth and accumulation of biomass, high heavy metal tolerance, and non-edible nature. The present study is the first attempt for the meta-analysis of existing literature on Cd accumulation and translocation by ornamental plants. The uptake and transfer capacity of ornamental plants was measured using the bio-concentration factor (BCF) and translocation factor (TF). The results indicate that ornamental plants have varying Cd-absorption capacities. Among the 49 plant species identified from 31 articles, Helianthus annuus (BCF = 5.785), Impatiens glandulifera (BCF = 4.722), and Crassocephalum crepidioides (BCF = 3.623) represented higher accumulation capacity, whereas Rorippa globosa (TF = 1.653) and Sedum spectabile Boreau (TF = 1.579) represented significantly higher translocation capacity for Cd. The contribution of various environmental factors in influencing BCF was obtained through multiple linear regression analysis. Results showed that soil pH was the major factor influencing the BCF. To further explain the influence of four main factors that are soil pH, soil organic matter (SOM), cation exchange capacity (CEC), and soil Cd concentration on the accumulation efficiency of ornamental plants, a subgroup meta-analysis was performed. Results of the subgroup meta-analysis revealed that the BCF is negatively correlated with the soil pH and SOM, while the estimated limit of soil Cd concentration for growing ornamental plants was up to 50 mg/kg. Results of this study indicate that choosing a native hyperaccumulator is not the sole key to the success of a phytoremediation design, rather the conditions of the pedosphere will determine the regulating factor for efficient removal. In order to overcome the issue of recirculation and gradual release in the rhizosphere, it is important to match the type of hyperaccumulators to the soil environment (pH, CEC, SOM, etc.) to achieve maximum translocation and desired removal. This study will help researchers to pair the right plant with environmental conditions and customize more efficient phytoremediation systems.
Collapse
Affiliation(s)
- Anil Kumar Haritash
- Environmental Microbiology and Bioremediation Laboratory, Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
8
|
Sharma M, Mathur J. Phytoaccumulation of zinc from contaminated soil using ornamental plants species Helianthus annuus L. and Tagetes erecta L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022:1-17. [PMID: 36448490 DOI: 10.1080/15226514.2022.2149692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intensive research on hyperaccumulator plant species provides an alternative method to cleanup heavy metal contaminated sites using these plants. Helianthus annuus and Tagetes erecta are suitable hyperaccumulator plant species for removing zinc (Zn) from contaminated soil because of their high phytoremediation effectiveness. The present study focused on to evaluate comparative efficacy of Zn accumulation using H. annuus and T. erecta. Plantlets were exposed to different Zn concentrations (10, 50, 100, 300, and 500 mg kg-1) for 20, 40, and 60 days while changes in morphological, biochemical, and enzyme activity markers were evaluated. The concentration of Zn in various plant parts was determined using an atomic absorption spectrophotometer (AAS). After 60 days H. annuus showed greatest accumulation of Zn in the root and shoot (216.7 and 109.5 mg kg-1), whereas the Zn accumulation T. erecta (209.5 and 97.84 mg kg-1) was found comparatively less in the root and shoot. The result showed increased polyphenol and proline concentrations with increasing Zn concentrations which were maximal in H. annuus 6.642 mg g-1 and 25.474 µmol g-1, respectively. At 60 days, APX (4.145 mM mg-1), CAT (2.558 mM mg-1), and GR (52.23 mM mg-1) antioxidant enzymatic activities were observed with higher concentrations. Analysis of ultrastructure confirmed Zn transport and localization in root and shoot tissues examined through FESEM-EDX, Fluorescence microscopy, and optical microscopy. The present research findings concluded with the high amount of removal of Zn from contaminated soil using H. annuus and T. erecta for ecofriendly approach to soil cleanup followed by sustainable agriculture.
Collapse
Affiliation(s)
- Mamta Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, India
| | - Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, India
| |
Collapse
|
9
|
Mathur J, Chauhan P, Srivastava S. Comparative evaluation of cadmium phytoremediation potential of five varieties of Helianthus annuus L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:799-810. [PMID: 35997040 DOI: 10.1080/15226514.2022.2110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Helianthus annuus is a potential metal accumulator plant, which can find application in cadmium (Cd) phytoremediation and provide economic gains in terms of oil yield. This study is focused on Cd accumulation analysis, physiological and biochemical responses of five varieties of H. annuus (DRSF-108, DRSF-113, LSFH-171, Phule Bhaskar and KBSH-44). Plantlets of all varieties were treated with various Cd concentrations (10, 50, 100, 300 and 500 mg kg-1) for 20, 40 and 60 days. DRSF-108 showed the maximum total Cd accumulation (430.52 mg kg-1) in whole plant while minimum accumulation was observed in KBSH-44 (150.66 mg kg-1) at 500 mg kg-1 Cd after 60 days. The highest level of proline and polyphenol in DRSF-108 were 27.206 µmol g-1 fw and 6.86 mg g-1 fw, respectively. Antioxidant enzymes (catalase, ascorbate peroxidase and glutathione reductase) also showed increased activity in response to Cd treatment. SEM-EDX analysis of potential accumulator genotype, DRSF-108, showed the distribution of intracellular Cd into plant tissues. Therefore, it is concluded that among five varieties, DRSF-108 was the most potential Cd accumulator and had a higher capacity for Cd tolerance compared to other varieties. Our findings may allow us to extend variety DRSF-108 for sustainable farming and Cd remediation.
Collapse
Affiliation(s)
- Jyoti Mathur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Priti Chauhan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Phytoremediation of Cadmium Contaminated Soil Using Sesbania sesban L. in Association with Bacillus anthracis PM21: A Biochemical Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su132413529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sustainable food production to feed nine to 10 billion people by 2050 is one of the greatest challenges we face in the 21st century. Due to anthropogenic activities, cadmium (Cd) contamination is ubiquitous with deleterious effects on plant and soil microbiota. In the current study, the phytoremediation potential of Sesbania sesban L. was investigated in Cd-spiked soil inoculated with Bacillus anthracis PM21. The Cd-spiked soil drastically reduced important plant attributes; however, inoculation of B. anthracis PM21 significantly (p ≤ 0.05) enhanced root length (17.21%), shoot length (15.35%), fresh weight (37.02%), dry weight (28.37%), chlorophyll a (52.79%), chlorophyll b (48.38%), and total chlorophyll contents (17.65%) at the Cd stress level of 200 mg/kg as compared to the respective control. In addition, bacterial inoculation improved superoxide dismutase (11.98%), peroxidase (12.16%), catalase (25.26%), and relative water content (16.66%) whereas it reduced proline content (16.37%), malondialdehyde content (12.67%), and electrolyte leakage (12.5%). Inoculated plants showed significantly (p ≤ 0.05) higher Cd concentration in the S. sesban root (118.6 mg/kg) and shoot (73.4 mg/kg) with a translocation (0.61) and bioconcentration factor (0.36), at 200 mg/kg Cd. Surface characterization of bacteria through Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) predicted the involvement of various functional groups and cell surface morphology in the adsorption of Cd ions. Amplification of the CzcD gene in strain PM21, improved antioxidant activities, and the membrane stability of inoculated S. sesban plants conferred Cd tolerance of strain PM21. In addition, the evaluated bacterial strain B. anthracis PM21 revealed significant plant growth-promoting potential in S. sesban; thus, it can be an effective candidate for phyto-remediation of Cd-polluted soil.
Collapse
|
11
|
Wang Y, Tan R, Zhou L, Lian J, Wu X, He R, Yang F, He X, Zhu W. Heavy metal fixation of lead-contaminated soil using Morchella mycelium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117829. [PMID: 34333266 DOI: 10.1016/j.envpol.2021.117829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
With the exploitation of lead-zinc deposits, lead content around mining areas has seriously exceeded the recommended level. The most challenging problem is how to reduce lead contamination in soil efficiently. In this study, we developed a method to remediate lead-contaminated soil by adding Morchella mycelium. First, we compared the repair effects of mycelium and hyperaccumulator by conducting pot experiments. Then, we investigated the mechanism through which mycelium repairs lead-contaminated soil by conducting simulation experiments. Results showed that using mycelium was a more efficient way to repair soil than using hyperaccumulator. Compared with the untreated group, mycelium reduced the lead content of crops by 34.83 % and raised dry biomass by 134.05 % when lead addition was 800 mg/kg. After mycelium fixation, soil catalase, urease, cellulase, and sucrase activities were significantly enhanced, and the bioavailability of lead decreased significantly. The lead solution exposure simulation test showed that Morchella mycelium immobilized lead due to its extracellular secretions. That is, mycelium secreted metabolites and lead to form salt crystals, reducing bioavailable lead content. In addition, Morchella mycelium restoration may effectively improve soil fertility and increase crop yields. Thus, mycelium may be used successfully in alternative green repair methods for environmental heavy metal remediation.
Collapse
Affiliation(s)
- Yazhou Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Renhao Tan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Li Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Jie Lian
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Xudong Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Fan Yang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Xinsheng He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China
| | - Wenkun Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Co-Innovation Center for New Energetic Materials, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China.
| |
Collapse
|
12
|
Zahra N, Hafeez MB, Shaukat K, Wahid A, Hasanuzzaman M. Fe toxicity in plants: Impacts and remediation. PHYSIOLOGIA PLANTARUM 2021; 173:201-222. [PMID: 33547807 DOI: 10.1111/ppl.13361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/17/2021] [Accepted: 02/01/2021] [Indexed: 05/07/2023]
Abstract
Fe is the fourth abundant element in the earth crust. Fe toxicity is not often discussed in plant science though it causes severe morphological and physiological disorders, including reduced germination percentage, interferes with enzymatic activities, nutritional imbalance, membrane damage, and chloroplast ultrastructure. It also causes severe toxicity to important biomolecules, which leads to ferroptotic cell death and induces structural changes in the photosynthetic apparatus, which results in retardation of carbon metabolism. However, some agronomic practices like soil remediation through chemicals, nutrients, and organic amendments and some breeding and genetic approaches can provide fruitful results in enhancing crop production in Fe-contaminated soils. Some quantitative trait loci have been reported for Fe tolerance in plants but the function of underlying genes is just emerging. Physiological and molecular mechanism of Fe uptake, translocation, toxicity, and remediation techniques are still under experimentation. In this review, the toxic effects of Fe on seed germination, carbon assimilation, water relations, nutrient uptake, oxidative damages, enzymatic activities, and overall plant growth and development have been discussed. The Fe dynamics in soil rhizosphere and role of remediation strategies, that is, biological, physical, and chemical, have also been described. Use of organic amendments, microbe, phytoremediation, and biological strategies is considered to be both cost and environment friendly for the purification of Fe-contaminated soil, while to ensure better crop yield and quality the manipulation of agronomic practices are suggested.
Collapse
Affiliation(s)
- Noreen Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Kanval Shaukat
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
13
|
Copper Content Inversion of Copper Ore Based on Reflectance Spectra and the VTELM Algorithm. SENSORS 2020; 20:s20236780. [PMID: 33260978 PMCID: PMC7730840 DOI: 10.3390/s20236780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022]
Abstract
Copper is an important national resource, which is widely used in various sectors of the national economy. The traditional detection of copper content in copper ore has the disadvantages of being time-consuming and high cost. Due to the many drawbacks of traditional detection methods, this paper proposes a new method for detecting copper content in copper ore, that is, through the spectral information of copper ore content detection method. First of all, we use chemical methods to analyze the copper content in a batch of copper ores, and accurately obtain the copper content in those ores. Then we do spectrometric tests on this batch of copper ore, and get accurate spectral data of copper ore. Based on the data obtained, we propose a new two hidden layer extreme learning machine algorithm with variable hidden layer nodes and use the regularization standard to constrain the extreme learning machine. Finally, the prediction model of copper content in copper ore is established by using the algorithm. Experiments show that this method of detecting copper ore content using spectral information is completely feasible, and the algorithm proposed in this paper can detect the copper content in copper ores faster and more accurately.
Collapse
|