1
|
Li X, Li T, Wei Y, Jin X, Pillai SC, Zhang J, Chen D, Wu X, Bao Y, Jiang X, Wang H. New insights into interfacial dynamics and mechanisms of biochar-derived dissolved organic matter on arsenic redistribution in Schwertmannite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125419. [PMID: 39615573 DOI: 10.1016/j.envpol.2024.125419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 01/26/2025]
Abstract
Biochar is extensively utilized for the remediation of environments contaminated with heavy metals (HMs). However, its derived-dissolved organic matter (BDOM) can interact with iron oxides, which may adversely influence the retention of HMs. This study investigates the effect of BDOM derived from tobacco stalk (TS) and tobacco petiole (TP) biochar on the redistribution behavior of As(V) in acid mine drainage (AMD)-impacted environments, particularly concentrating on the interactions with Schwertmannite (Sch). Results showed that TP-BDOM, abundant in lignin-like compounds, led to a low-amplitude release of As(V) from Sch under acidic conditions, reaching a maximum value (19.84 μg L-1), significantly lower than the release caused by TS-BDOM (87.46 μg L-1). Subsequently, 88.2% of the released As(V) were re-adsorbed in the TS-BDOM system, while 47.5% were retained in the TP-BDOM system. XRD analysis, in conjunction with SEM and STEM characterizations, confirmed that there were no additional crystalline phases or alterations in the microscopic morphological features of the particles throughout the reaction process. In-situ ATR-FTIR, complemented by 2D-COS analysis, demonstrated that aromatic N-OH groups and carboxylic in BDOMs coordinated to As-Sch, enhancing sulfate and As(V) release. It was also noted that no As(III) was detected under the influences of TP- and TS-BDOM. XPS results indicated that As(V) remained the predominant redox species even in the presence of BDOMs. These findings enhance our insight into BDOM's role in As(V) fate and transport within AMD-contaminated environments.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China.
| | - Tianfu Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao, 999078, PR China
| | - Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Jun Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Dian Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Xiaolian Wu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Yanping Bao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| |
Collapse
|
2
|
Kang Y, Chu Z, Xie X, Li L, Hu J, Li S, Wang Z. Variation in photoactivity of dissolved black carbon during the fractionation process and the role in the photodegradation of various antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136435. [PMID: 39547035 DOI: 10.1016/j.jhazmat.2024.136435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
The composition of dissolved black carbon (DBC) could be influenced by adsorption on minerals, subsequently affecting DBC's photoactivity and the photoconversion of contaminants. This study investigated the changes in photoactivity of DBC after absorption on ferrihydrite at Fe/C ratios of 0, 1.75, 7.50, and 11.25, compared the influences of DBC0 and DBC7.50 on the photodegradation of four typical antibiotics (AB) including sulfadiazine, tetracycline, ofloxacin, and chloramphenicol. The selective adsorption led to the compounds with high aromaticity, high oxidation states, and more oxygen-containing functional groups being more favorably adsorbed on ferrihydrite, further causing the steady-state concentrations of 3DBC*, 1O2, and •OH respectively to drop from 1.83 × 10-13 M, 7.45 × 10-13 M, and 3.32 × 10-16 M in DBC0 to 1.22 × 10-13 M, 0.93 × 10-13 M and 2.30 × 10-16 M in DBC11.25, while the light screening effect factor increased from 0.740-0.921 in DBC0 with above four antibiotics to 0.775-0.970 for that of DBC11.25. Unexpectedly, DBC after adsorption played a dual role in the photodegradation of various antibiotics. This difference might be caused by antibiotics' chemical composition, functional groups interacting with reactive intermediates, and the overlap in UV-vis spectra between antibiotics and DBC. Our data are valuable for understanding the dynamic roles of DBC in the photodegradation of antibiotics.
Collapse
Affiliation(s)
- Yaqi Kang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| | - Zhenkun Chu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China.
| | - Liangyu Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| | - Jiani Hu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| | - Siting Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu, China
| |
Collapse
|
3
|
Ren H, Shen X, Shen D, Wang K, Jiang X, Qadeer A. Regional differences in lead (Pb) and tetracycline (TC) binding behavior of sediment dissolved organic matter (SDOM): Effects of DOM heterogeneity and microbial degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134785. [PMID: 38843634 DOI: 10.1016/j.jhazmat.2024.134785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
Lake Nansi, primarily dominated by macrophytes, faces threats from heavy metals and antibiotics due to human activity. This study investigated sediment dissolved organic matter (SDOM) characteristics and complexation of lead (Pb) and tetracycline (TC) in barren zone (BZ) and submerged macrophytes zone (PZ). Additionally, a microbial degradation experiment was conducted to examine its impact on the regional variations in complexation. SDOM abundance and protein-like materials in PZ was significantly greater than in BZ, indicating a probable contribution from the metabolism and decomposition of submerged macrophytes. Both zones exhibited a higher affinity of SDOM for Pb compared to TC, with all four components participating in Pb complexation. Protein-like materials in PZ had a higher binding ability (LogKPb=4.19 ± 1.07, LogKTC=3.89 ± 0.67) than in BZ (LogKPb=3.98 ± 0.61, LogKTC=3.69 ± 0.13), suggesting a potential presence of organically bound Pb and TC due to the higher abundance of protein-like materials in PZ. Although microbial communities differed noticeably, the degradation patterns of SDOM were similar in both zones, affecting the binding ability of SDOM in each. Notably, the fulvic-like component C4 emerged as the dominant binding material for both Pb and TC in both zones. Degradation might increase the amount of organically bound TC due to the increase in the LogKTC.
Collapse
Affiliation(s)
- Haoyu Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xian Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongbo Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Chen W, Yu S, Zhang H, Wei R, Ni J, Farooq U, Qi Z. Biochar-derived organic carbon promoting the dehydrochlorination of 1,1,2,2-tetrachloroethane and its molecular size effects: Synergies of dipole-dipole and conjugate bases. WATER RESEARCH 2024; 259:121812. [PMID: 38810344 DOI: 10.1016/j.watres.2024.121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
The environmental effects of biochar-derived organic carbon (BDOC) have attracted increasing attention. Nevertheless, it is unknown how BDOC might affect the natural attenuation of widely distributed chloroalkanes (e.g., 1,1,2,2-tetrachloroethane (TeCA)) in aqueous environments. We firstly observed that the kinetic constants (ke) of TeCA dehydrochlorination in the presence of BDOC samples or their different molecular size fractions (<1 kDa, 1∼10 kDa, and >10 kDa) ranged from 9.16×103 to 26.63×103 M-1h-1, which was significantly greater than the ke (3.53×103 M-1h-1) of TeCA dehydrochlorination in the aqueous solution at pH 8.0, indicating that BDOC samples and their different molecular size fractions all could promote TeCA dehydrochlorination. For a given BDOC sample, the kinetic constants (ke) of TeCA dehydrochlorination in the initial pH 9.0 solution was 2∼3 times greater than that in the initial pH 8.0 solution due to more formation of conjugate bases. Interestingly, their DOC concentration normalized kinetic constants (ke/[DOC]) were negatively correlated with SUVA254, and positively correlated with A220/A254 and the abundance of aromatic protein-like/polyphenol-like matters. A novel mechanism was proposed that the CH dipole of BDOC aliphatic structure first bound with the CCl dipole of TeCA to capture the TeCA molecule, then the conjugate bases (-NH-/-NH2 and deprotonated phenol-OH of BDOC) could attack the H atom attached to the β-C atom of bound TeCA, causing a CCl bond breaking and the trichloroethylene formation. Furthermore, a fraction of >1 kDa had significantly greater ke/[DOC] values of TeCA dehydrochlorination than the fraction of <1 kDa because >1 kDa fraction had higher aliphiticity (more dipole-dipole sites) as well as more N-containing species and aromatic protein-like/polyphenol-like matters (more conjugate bases). The results are helpful for profoundly understanding the BDOC-mediated natural attenuation and fate change of chloroalkanes in the environment.
Collapse
Affiliation(s)
- Weifeng Chen
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Shuhan Yu
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Huiying Zhang
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
5
|
Wu J, Fu X, Zhao L, Lv J, Lv S, Shang J, Lv J, Du S, Guo H, Ma F. Biochar as a partner of plants and beneficial microorganisms to assist in-situ bioremediation of heavy metal contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171442. [PMID: 38453085 DOI: 10.1016/j.scitotenv.2024.171442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Synergistic remediation of heavy metal (HM) contaminated soil using beneficial microorganisms (BM) and plants is a common and effective in situ bioremediation method. However, the shortcomings of this approach are the low colonisation of BM under high levels of heavy metal stress (HMS) and the poor state of plant growth. Previous studies have overlooked the potential of biochar to mitigate the above problems and aid in-situ remediation. Therefore, this paper describes the characteristics and physicochemical properties of biochar. It is proposed that biochar enhances plant resistance to HMS and aids in situ bioremediation by increasing colonisation of BM and HM stability. On this basis, the paper focuses on the following possible mechanisms: specific biochar-derived organic matter regulates the transport of HMs in plants and promotes mycorrhizal colonisation via the abscisic acid signalling pathway and the karrikin signalling pathway; promotes the growth-promoting pathway of indole-3-acetic acid and increases expression of the nodule-initiating gene NIN; improvement of soil HM stability by ion exchange, electrostatic adsorption, redox and complex precipitation mechanisms. And this paper summarizes guidelines on how to use biochar-assisted remediation based on current research for reference. Finally, the paper identifies research gaps in biochar in the direction of promoting beneficial microbial symbiotic mechanisms, recognition and function of organic molecules, and factors affecting practical applications.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Xiaofan Fu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jing Shang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jiaxuan Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Shuxuan Du
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Haijuan Guo
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Zhang S, Sun Z, Yao Y, Wang X, Tian S. Spectral characterization of the impact of modifiers and different prepare temperatures on snow lotus medicinal residue-biochar and dissolved organic matter. Sci Rep 2024; 14:8493. [PMID: 38605135 PMCID: PMC11009357 DOI: 10.1038/s41598-024-57553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
This study involved the production of 20 biochar samples derived from secondary medicinal residues of Snow Lotus Oral Liquid, processed within the temperature range of 200-600 °C. Additionally, four medicinal residues, including dissolved organic matter (DOM), from 24 samples obtained using the shaking method, served as the primary source material. The investigation focused on two key factors: the modifier and preparation temperature. These factors were examined to elucidate the spectral characteristics and chemical properties of the pharmaceutical residues, biochar, and DOM. To analyze the alterations in the spectral attributes of biochar and medicinal residues, we employed near-infrared spectroscopy (NIR) in conjunction with Fourier-infrared one-dimensional and two-dimensional correlation spectroscopy. These findings revealed that modifiers enhanced the aromaticity of biochar, and the influence of preparation temperature on biochar was diminished. This observation indicates the stability of the aromatic functional group structure. Comparative analysis indicated that Na2CO3 had a more pronounced structural effect on biochar, which is consistent with its adsorption properties. Furthermore, we utilized the fluorescence indices from UV-visible spectroscopy and excitation-emission-matrix spectra with the PARAFAC model to elucidate the characteristics of the fluorescence components in the DOM released from the samples. The results demonstrated that the DOM released from biochar primarily originated externally. Aromaticity reduction and increased decay will enhance the ability of the biochar to bind pollutants. Those results confirmed the link between the substantial increase in the adsorption performance of the high-temperature modified charcoal in the previous study and the structural changes in the biochar. We investigated the structural changes of biochar and derivative DOM in the presence of two perturbing factors, modifier and preparation temperature. Suitable modifiers were selected. Preparation for the study of adsorption properties of snow lotus medicinal residues.
Collapse
Affiliation(s)
- Sha Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, 830017, Xinjiang, China
| | - Zenghong Sun
- College of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, 830017, Xinjiang, China
| | - Yanna Yao
- Xinjiang Tianshan Lotus Medicine (Co., Ltd.), Changji, 831500, Xinjiang, China
| | - Xinyu Wang
- Xinjiang Tianshan Lotus Medicine (Co., Ltd.), Changji, 831500, Xinjiang, China
| | - Shuge Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, 830017, Xinjiang, China.
| |
Collapse
|
7
|
Zhang X, Si J, Li Y, Chen Z, Ren D, Zhang S. Effects of Ca 2+ and Mg 2+ on Cu binding in hydrophilic and hydrophobic dissolved organic matter fractions extracted from agricultural soil. CHEMOSPHERE 2024; 352:141441. [PMID: 38346521 DOI: 10.1016/j.chemosphere.2024.141441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Dissolved organic matter (DOM) has significant effects on soil copper (Cu) bioavailability. However, little is known about Cu interactions and major cation binding toward hydrophilic and hydrophobic DOM components extracted from soil solutions. In this study, we investigated the influence of major cations (Ca2+/Mg2+) on Cu complexing characteristics on different hydrophilic and hydrophobic DOM fractions using absorbance spectroscopy at different Cu2+ concentrations in the absence/presence of Ca2+/Mg2+. Different compositional hydrophobic and hydrophilic DOM fraction proportions occurred at three agricultural soil sites, with the hydrophobic acid (HOA) fraction accounting for the highest proportion. The addition of Cu2+ generated distinct ultraviolet (UV) bands/peaks (processed by differential linear and differential logarithmic transformation) of three hydrophilic DOM fractions, whereas Cu2+ induced less and weak specific peaks in the differential spectra and differential logarithmic of the HOA fractions, indicating hydrophilic DOM fractions tend to have a higher density of Cu2+ complexation sites. In the presence of either Ca2+/Mg2+, increased depression caused by Cu2+ binding on different DOM fractions was observed with increasing 10, 100, and 1000 μM Ca2+/Mg2+ levels, with more significant variations in peaks/banks for hydrophilic base (HIB) and HOA fractions, and less for hydrophilic acid (HIA) and hydrophilic neutral (HIN) fractions. In our study, the spectral parameters ΔS225-275 and ΔS275-325 were successfully used to quantify Cu amounts bonded to HIA and HIB, respectively. They exhibited strong linear relationships with correlation coefficients (R2) of 0.96 for HIA and 0.87 for HIB, respectively. Furthermore, Mg2+ exhibited stronger competition with Cu for HIA and HIB binding sites when compared with Ca2+.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Jiaxue Si
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ya Li
- EVE Energy CO., LTD, Huizhou, Guangdong, 516000, China.
| | - Zhihua Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Xinxiang, 453007, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China
| |
Collapse
|
8
|
Hou J, Wan H, Liang K, Cui B, Ma Y, Chen Y, Liu J, Wang Y, Liu X, Zhang J, Wei Z, Liu F. Biochar amendment combined with partial root-zone drying irrigation alleviates salinity stress and improves root morphology and water use efficiency in cotton plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166978. [PMID: 37704141 DOI: 10.1016/j.scitotenv.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
An adsorption experiment and a pot experiment were executed in order to explore the mechanisms by which biochar amendment in combination with reduced irrigation affects sodium and potassium uptake, root morphology, water use efficiency, and salinity tolerance of cotton plants. In the adsorption experiment, ten NaCl concentration gradients (0, 50, 100, 150, 200, 250, 300, 350, 400, and 500 mM) were set for testing isotherm adsorption of Na+ by biochar. It was found that the isotherms of Na+ adsorption by wheat straw biochar (WSP) and softwood biochar (SWP) were in accordance with the Langmuir isotherm model, and the Na+ adsorption ability of WSP (55.20 mg g-1) was superior to that of SWP (47.38 mg g-1). The pot experiment consisted three factors, viz., three biochar amendments (no biochar, WSP, and SWP), three irrigation strategies (deficit irrigation, partial root-zone drying irrigation - PRD, full irrigation), and two NaCl concentrations gradients (0 mM and 200 mM). The findings indicated that salinity stress lowered K+ concentration, root length, root surface area, and root volume (RV), but increased Na+ concentration, root average diameter, and root tissue density. However, biochar amendment decreased Na+ concentration, increased K+ concentration, and improved root morphology. In particular, the combination of WSP and PRD increased K+/Na+ ratio, RV, root weight density, root surface area density, water use efficiency, and partial factor productivity under salt stress, which can be a promising strategy to cope with drought and salinity stress in cotton production.
Collapse
Affiliation(s)
- Jingxiang Hou
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heng Wan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China; Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, Wageningen, 6700 AA, Netherlands
| | - Kehao Liang
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Bingjing Cui
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yiting Chen
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Jie Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin Wang
- College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiarui Zhang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenhua Wei
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark.
| |
Collapse
|
9
|
Liang W, Wei S, Lan L, Chen J, Zhou Y, Zhao J, Wang H, Gao R, Zeng F. Effect of microplastics on the binding properties of Pb(ii) onto dissolved organic matter: insights from fluorescence spectra and FTIR combined with two-dimensional correlation spectroscopy. RSC Adv 2023; 13:24201-24210. [PMID: 37583675 PMCID: PMC10423972 DOI: 10.1039/d3ra04189a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Heavy metal cations are a typical type of inorganic pollutant that has persistent distribution characteristics in aquatic environments and are easily adsorbed on carriers, posing serious threats to ecological safety and human health. Some studies have shown that the coexistence of dissolved organic matter (DOM) and microplastics (MPs) promotes the adsorption of heavy metal cations, but the mechanism of promoting the adsorption process has not been thoroughly studied. In this study, the effect of polystyrene microplastics (PSMPs) on the binding properties of Pb2+ onto humic acid (HA) in aquatic environments was investigated by spectral analysis and two-dimensional correlation (2D-COS) analysis. When PSMPs co-existed with HA, the adsorption capacity of Pb2+ increased. On the one hand, Pb2+ is directly adsorbed on HA through the mechanism of complexation reaction, ion exchange and electrostatic interaction. On the other hand, Pb2+ is first adsorbed on PSMPs by electrostatic action and indirectly adsorbed on HA in the form of PSMPs-Pb2+ owing to the interaction between HA and PSMPs, which increases the adsorption amount of Pb2+ on HA. This study is significant for studying the migration and regression of heavy metal cation contaminants when PSMPs co-exist with DOM in an aqueous environment.
Collapse
Affiliation(s)
- Weiqian Liang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Shuyin Wei
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Jinfeng Chen
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Jiawei Zhao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Hao Wang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| |
Collapse
|
10
|
Li D, Chang F, Zhang Y, Duan L, Liu Q, Li H, Hu G, Zhang X, Gao Y, Zhang H. Arsenic migration at the sediment-water interface of anthropogenically polluted Lake Yangzong, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163205. [PMID: 37004769 DOI: 10.1016/j.scitotenv.2023.163205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
The lability and controlling factors of arsenic (As) at the sediment-water interface (SWI) are crucial for understanding As behaviors and fates in As-contaminated areas. In this study, we combined high-resolution (5 mm) sampling using diffusive gradients in thin films (DGT) and equilibrium dialysis sampling (HR-Peeper), sequential extraction (BCR), fluorescence signatures, and fluorescence excitation-emission matrices (EEMs)-parallel factor analysis (PARAFAC) to explore the complex mechanisms of As migration in a typical artificially polluted lake, Lake Yangzong (YZ). The study results showed that a high proportion of the reactive As fractions in sediments can resupply pore water in soluble forms during the change from the dry season (winter, oxidizing period) to the rainy season (summer, reductive period). In dry season, the copresence of Fe oxide-As and organic matter (OM)-As complexes was related to the high dissolved As concentration in pore water and limited exchange between the pore water and overlying water. In the rainy season, with the change in redox conditions, the reduction of Fe-Mn oxides and OM degradation by microorganisms resulted in As deposition and exchange with the overlying water. Partial least squares path modelling (PLS-PM) indicated that OM affected the redox and As migration processes through degradation. Based on comprehensive analyses of the As, Fe, Mn, S and OM levels at the SWI, we suggest that the complexation and desorption of dissolved organic matter and Fe oxides play an important role in As cycling. Our findings shed new light on the cascading drivers of As migration and OM features in seasonal lakes and constitute a valuable reference for scenarios with similar conditions.
Collapse
Affiliation(s)
- Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Haoyu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Youhong Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China; Southwest United Graduate School, Kunming 650500, Yunnan, China.
| |
Collapse
|
11
|
He C, He X, Yuan R, Li N, Jiang J. Binding characteristics of Pb and Zn to low-temperature feces-based biochar-derived DOM revealed by EEM-PARAFAC combined with general and moving-window two-dimensional correlation analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27525-27538. [PMID: 36380180 DOI: 10.1007/s11356-022-24132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Pyrolysis carbonization of human feces has shown potential for converting feces biomass into a soil amendment. However, little is known about the interactions of DOM derived from feces-based biochar produced at low-temperature with heavy metals (HMs). In this study, the binding properties of Pb(II) and Zn(II) with DOM derived from feces-based biochar produced at low pyrolysis temperatures were investigated using EEM-PARAFAC combined with general, and moving-window two-dimensional correlation analyses (2D-COS). The results revealed that DOM from biochar produced at 280 °C exhibited a higher Pb(II) and Zn(II) affinity and more binding sites than DOM produced at 380 °C. The fulvic-like and humic-like components exhibited obvious fluorescence quenching after the heavy metal addition, and the complexes formed with Pb(II) and Zn(II) were more stable. C-H groups exhibited the fastest response to Pb(II) and Zn(II) binding in the FB280 DOM, while the COO- groups of carboxylic acids in the FB380 DOM exhibited the fastest response to Pb(II) and Zn(II). Moreover, the mutation concentration range of components and functional groups in DOM, as analyzed by MW2D-COS, was greater for Zn(II) than for Pb(II). These results provide a more detailed molecular-level understanding of the interaction mechanisms between heavy metals and feces-based biochar-derived DOM and the effect of HM concentration on DOM binding. Further, these results will help to provide a reasonable reference for feces management and feces-based biochar in controlling soil HMs.
Collapse
Affiliation(s)
- Changjun He
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Run Yuan
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Na Li
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Jinyuan Jiang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| |
Collapse
|
12
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
13
|
Cui H, Zhao Y, Zhao L, Song C, Lu Q, Wei Z. Insight into the Soil Dissolved Organic Matter Ligand-Phenanthrene-Binding Properties Based on Parallel Faction Analysis Combined with Two-Dimensional Correlation Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13873-13881. [PMID: 36268899 DOI: 10.1021/acs.jafc.2c06013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) can strongly bind to organic contaminants and control phenanthrene in soil. Herein, four individual parallel factor analysis (PARAFAC) components were found in soil DOM. Component C1 was the humic-like component ligand T, and component C2 was a combination of humic fluorophore ligands M1 and M2. Furthermore, components C3 and C4 were characterized as terrestrial and ubiquitous humic substances. Then, the modified Stern-Volmer complexation model was used to reveal soil DOM component-phenanthrene-binding properties. The overall binding characteristics of a PARAFAC component could not express the phenanthrene-binding properties. Therefore, two-dimensional correlation spectroscopy was used to reveal DOM ligand-phenanthrene-binding properties. After binding with phenanthrene, DOM ligands T, M2, A2, and C1 were quenched but DOM ligands M1, A1, and C2 were excited. The ligands with higher humification presented higher phenanthrene-binding ability. With these promising results, the DOM ligand-phenanthrene-binding characteristics offered theoretical support for soil pollution control.
Collapse
Affiliation(s)
- Hongyang Cui
- College of Life Sciences and Technology, Harbin Normal University, Harbin150025, China
- College of Life Science, Northeast Agricultural University, Heilongjiang150030, People's Republic of China
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Heilongjiang150030, People's Republic of China
| | - Li Zhao
- College of Life Science, Northeast Agricultural University, Heilongjiang150030, People's Republic of China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng252000, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin150025, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin150025, China
- College of Life Science, Northeast Agricultural University, Heilongjiang150030, People's Republic of China
| |
Collapse
|
14
|
He S, Han Z, Li H, Wang J, Guo N, Wu Y. Influence of dissolved organic matter and heavy metals on the utilization of soil-like material mined from different types of MSW landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:312-322. [PMID: 36181741 DOI: 10.1016/j.wasman.2022.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Soil-like material (SLM) mined from municipal solid waste (MSW) landfills can be used as nursery cultivation soil, landfill cover, and as a building material. However, SLM utilization is restrained by heavy metal (HM) contents whose speciation and migration are influenced by their dissolved organic matter (DOM) content. Therefore, the properties of aged refuse and the correlation between DOM and HM forms were studied using samples from different types of MSW landfills. The dominant components of aged refuse were SLM (18.80%-83.51%) and plastics (11.17%-65.51%). The moisture, organic matter, and pH ranged from 29.55% to 57.92%, 15.70%-57.68%, and 7.84-8.51, respectively. The Zn content was highest (455.48-1379.27 mg/kg) in the SLM, followed by Cu (96.29-428.90 mg/kg), Cr (49.10-236.21 mg/kg), Pb (53.52-222.71 mg/kg), and Ni (20.92-39.10 mg/kg). The SLM cannot be used for agriculture because the HM contamination exceeds the multiple of 0.07-7.99. Zinc in the acid-soluble state and reducible state had the highest mobility in SLM. However, Cu and Pb, mainly in the oxidizable state, and Cr and Ni, in the oxidizable and residual states, were relatively stable. In the sanitary and simple MSW landfills, the average proportion of protein-like materials decreased from 84.44% to 82.61% and from 65.58% to 55.94%, respectively, as the landfill depth increased. Both the acid-soluble and oxidizable HM states and all forms of Zn in the SLM were significantly positively correlated with tyrosine-like materials (r = 0.58*-0.87**). Protein-like materials may enhance the mobility of HMs.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment (Chengdu University of Technology), Chengdu 610059, China
| | - Zhiyong Han
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment (Chengdu University of Technology), Chengdu 610059, China.
| | - Hao Li
- College of Ecology and Environment (Chengdu University of Technology), Chengdu 610059, China; Sichaun Institute of Geological Engineering Investigation Group Co., Ltd, Chengdu 610000, China
| | - Jin Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment (Chengdu University of Technology), Chengdu 610059, China
| | - Nanfei Guo
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment (Chengdu University of Technology), Chengdu 610059, China
| | - Yayan Wu
- Chengdu XingRong Environmental Technology Co. Ltd, Chengdu 610108, China
| |
Collapse
|
15
|
Chen L, Zhuang WE, Yang L. Critical evaluation of the interaction between fluorescent dissolved organic matter and Pb(II) under variable environmental conditions. CHEMOSPHERE 2022; 307:135875. [PMID: 35932920 DOI: 10.1016/j.chemosphere.2022.135875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) can strongly influence the behavior and risk of metal pollutants in aquatic ecosystems. However, a comprehensive study on the effects of DOM level and environmental factors on the binding of DOM with Pb(II) is lacking. This study examined the DOM-Pb(II) interaction in the river water under variable DOM level, pH, and major ions, using fluorescence excitation-emission matrices-parallel factor analysis (EEMs-PARAFAC). Four humic-like and one protein-like component were identified, and the abundant humic-like components showed higher Pb(II)-binding fractions (f) than the protein-like component. The f of PARAFAC components decreased while the conditional stability constants (logKM) increased for the diluted DOM, indicating the influence of DOM level on its metal binding. The DOM-Pb(II) interaction was sensitive to changes in pH, with generally higher f and lower logKM at the alkaline condition due to changes in the DOM conformation. The addition of major ions significantly decreased the fluorescence quenching by Pb(II), due to competitive effects and potential DOM conformation changes at elevated ions. Overall, our results show that the DOM-Pb(II) complexation is highly dependent on both the DOM properties and environmental factors, which have implications for optimizing the experimental conditions and for comparing the results in different environments.
Collapse
Affiliation(s)
- Linwei Chen
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Liyang Yang
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China.
| |
Collapse
|
16
|
Fan T, Yao X, Ren H, Liu L, Deng H, Shao K. Regional-scale investigation of the molecular weight distribution and metal-binding behavior of dissolved organic matter from a shallow macrophytic lake using multispectral techniques. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129532. [PMID: 35850067 DOI: 10.1016/j.jhazmat.2022.129532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/18/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In this work, based on excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-FARAFAC) and two-dimensional correlation analysis of synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy, and combination of two spectra (2D-SF-COS, 2D-FTIR-COS, and Hetero-2D-COS), the characteristics and metal-binding behaviors of DOM in Dongping Lake were explored for molecular weight (MW), fluorescence components, and functional groups. The results showed that the entire lake was governed by protein-like materials with low MW(< 1 kDa). The complexation occurred preferentially in protein-like materials for bulk DOM after adding copper (Cu2+) and lead (Pb2+), which were changed by fractionation for MW. The active points were aliphatic C-OH for DOM-Cu and phenol -OH or polysaccharide for DOM-Pb from 2D-FTIR-COS. The protein-like components possessed higher LogK than humic-like component during binding to Cu2+ or Pb2+. Moreover, the complexing affinities of DOM-Cu (LogKCu: 3.26 ± 0.87-4.04 ± 0.49) were higher than those of DOM-Pb (LogKPb: 2.66 ± 0.52-3.78 ± 0.36). On a spatial scale, high LogKCu and LogKPb were found in the center and entrance of the lake, respectively. Humic-like component C2 in the LMW fraction possessed a stronger binding capacity with Cu2+. This study affords new insights into the migration and conversion of HMs in lakes.
Collapse
Affiliation(s)
- Tuantuan Fan
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Xin Yao
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China.
| | - Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Li Liu
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Huanguang Deng
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
17
|
An W, Wu C, Xue S, Liu Z, Liu M, Li W. Effects of biochar/AQDS on As(III)-adsorbed ferrihydrite reduction and arsenic (As) and iron (Fe) transformation: Abiotic and biological conditions. CHEMOSPHERE 2022; 291:133126. [PMID: 34861266 DOI: 10.1016/j.chemosphere.2021.133126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Microbe induced iron (Fe) reduction play an important role in arsenic (As) transformation and the related secondary mineral formation. Meanwhile biochar could react as electron shuttle for this process. Impact of biochar and model electron shuttle anthraquinone-2,6-disulfonate (AQDS) on the chemical/biological iron reduction of As(III)-adsorbed ferrihydrite and the solid-liquid redistribution of As in M1 buffer were studied. Fe reduction results in the release of As adsorbed on ferrihydrite into the solution. Under abiogenic conditions, both biochar and AQDS promoted ferrous production, the chemical oxidation of As(III) and As release. Inoculate with Shewanella oneidensis MR-1, AQDS has greater electronic shuttle function than biochar (with the maximum Fe(II) contents: 154 mg/L > 76.6 mg/L respectively). However, only 12.8 mg/L As was released in the presence of AQDS, which was much lower than that in the presence of biochar (21.6 mg/L), and may be associated with the transformation of As speciation and the formation of secondary minerals. XRD and EDX-SEM confirmed that the As could be fixed by the generated secondary mineral vivianite. The relative contents of vivianite in biological control and AQDS addition were 2.7% and 18.4%, respectively. This study provides information on the transformation and migration of As and Fe with the addition of biochar under anaerobic conditions, which is potential to understand the mechanism of As(III)-contaminated soil remediation.
Collapse
Affiliation(s)
- Wenhui An
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, China.
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Ziyu Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Min Liu
- College of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, China
| |
Collapse
|