1
|
Mayilsamy M, Parthasarathy R, Veeramanoharan R, Rajaiah P. Impact of climatic factors on the occurrence of malaria in hyper, high, moderate and low endemic States in India from 1995 to 2023. Malar J 2025; 24:113. [PMID: 40197352 PMCID: PMC11978134 DOI: 10.1186/s12936-025-05326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Malaria has been surging in India for the past 3 years after reaching the recorded low in 2021. Among the possible reasons for this unexpected surge of cases, such as insufficient surveillance, slow and aggregated data reporting, endemic pockets in the tribal, dense forest areas where control programmes are difficult to reach, the role of climate change due to global warming has gained less attention. Similar to the diverse climatic conditions that prevail in different regions of India, the malaria distribution is also highly variable. Therefore, the impact of the annual average of climatic factors on the annual parasite index (API) in hyper-, high-, moderate-, and low-endemic states was analysed. METHODS The annual malaria data provided by the National Center for Vector Borne Diseases Control, and meteorological data provided by the India Meteorological Department, Pune, and Statista, were used to make temporal trend analysis, scatter plot analysis, clustered scatter plot analysis, and Spearman & Pearson correlation coefficient to determine the impact of climatic factors on the occurrence of malaria in hyper, high, moderate and low endemic States in India. RESULTS While the increasing annual temperature and rainfall negatively influenced the annual parasite index in high, moderate, and low endemic states, both had no influence on API in malaria hyperendemic states. Although minimum and maximum annual rainfall was found to be detrimental to the increase of API in low and moderate endemic states, moderate annual rainfall of high and hyperendemic states was favourable for increasing API. The increasing annual relative humidity negatively influenced the API in high and moderate endemic states and had a positive influence on the API in low endemic states. The humidity did not have any influence over the API in the hyperendemic state. Statistical analysis showed that, except in Mizoram, the annual mean temperature negatively influenced the API in all other states. The annual rainfall and average humidity were shown to be negatively associated with API only in Odisha. CONCLUSION The present study revealed the relationships between annual climatic factors such as temperature, rainfall, and humidity with API in malaria hyper-, high-, moderate- and low endemic states in India.
Collapse
Affiliation(s)
- Muniaraj Mayilsamy
- ICMR-Vector Control Research Centre Field Station, No.4, Sarojini Street, Chinna Chokkikulam, Madurai, 625 002, Tamil Nadu, India.
| | - Rajagopal Parthasarathy
- ICMR-Vector Control Research Centre Field Station, No.4, Sarojini Street, Chinna Chokkikulam, Madurai, 625 002, Tamil Nadu, India
| | - Rajamannar Veeramanoharan
- ICMR-Vector Control Research Centre Field Station, No.4, Sarojini Street, Chinna Chokkikulam, Madurai, 625 002, Tamil Nadu, India
| | - Paramasivan Rajaiah
- ICMR-Vector Control Research Centre Field Station, No.4, Sarojini Street, Chinna Chokkikulam, Madurai, 625 002, Tamil Nadu, India
| |
Collapse
|
2
|
Ning Z, Ma Y, He S, Li G, Xiao T, Ma C, Wu J. The interactive effect of extreme weather events and PM 2.5 on respiratory health among the elderly: a case-crossover study in a high-altitude city. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:331-342. [PMID: 39453518 DOI: 10.1007/s00484-024-02811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
With climate change posing increasing threats and aging populations, understanding the complex relationship between extreme temperatures, PM2.5 pollution, and respiratory health among the elderly is crucial. While some research exists, there remains a significant gap in studying the combined effects of heat waves, cold spells, and PM2.5 on elderly respiratory health in high-altitude regions. We collected data from Xining (2016-2021), including respiratory disease outpatient visits, meteorological, and pollutant data. Employing a case-crossover design and conditional Poisson regression analysis, we investigated the individual and interactive impacts of heat wave, cold spell, and PM2.5 on outpatient visits for respiratory disease among the elderly. We used the relative excess odds due to interaction (REOI), proportion attributable to interaction (AP), and synergy index (S) as quantitative indicators of interaction. Our analysis revealed significant associations between heat wave, cold spell, PM2.5 exposure, and outpatient visits for respiratory disease among the elderly, with odds ratios of 1.10 (95%CI: 1.06, 1.15) and 1.16 (95%CI: 1.13, 1.20), respectively. Moreover, a synergistic effect between cold spell and PM2.5 was observed, particularly affecting vulnerable groups such as female and those aged ≥ 80. The combined exposure to cold spell and elevated PM2.5 levels was estimated to contribute to up to 0.18 (95%CI: 0.17, 0.27) of respiratory outpatient visits. This study underscores the need for urgent interventions, such as reducing PM2.5 exposure and enhancing extreme weather warning systems, to protect the respiratory health of the elderly, especially in high-altitude regions.
Collapse
Affiliation(s)
- Zhenxu Ning
- Department of Public Health, Qinghai University Medical College, Xining, 810016, China
| | - Yanjun Ma
- Qinghai Institute of Health Sciences, Xining, 810000, China
| | - Shuzhen He
- Xining Centre for Disease Control and Prevention, Xining, 810000, China.
| | - Genshan Li
- Department of Public Health, Qinghai University Medical College, Xining, 810016, China
| | - Ting Xiao
- Changsha Stomatological Hospital, School of Dental Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chunguang Ma
- Xining Centre for Disease Control and Prevention, Xining, 810000, China
| | - Jing Wu
- Xining Centre for Disease Control and Prevention, Xining, 810000, China
| |
Collapse
|
3
|
Nyawanda BO, Kariuki S, Khagayi S, Bigogo G, Danquah I, Munga S, Vounatsou P. Forecasting malaria dynamics based on causal relations between control interventions, climatic factors, and disease incidence in western Kenya. J Glob Health 2024; 14:04208. [PMID: 39388683 PMCID: PMC11466501 DOI: 10.7189/jogh.14.04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Background Malaria remains one of the deadliest diseases worldwide, especially among young children in sub-Saharan Africa. Predictive models are necessary for effective planning and resource allocation; however, statistical models suffer from association pitfalls. In this study, we used empirical dynamic modelling (EDM) to investigate causal links between climatic factors and intervention coverage with malaria for short-term forecasting. Methods Based on data spanning the period from 2008 to 2022, we used convergent cross-mapping (CCM) to identify suitable lags for climatic drivers and investigate their effects, interaction strength, and suitability ranges on malaria incidence. Monthly malaria cases were collected at St. Elizabeth Lwak Mission Hospital. Intervention coverage and population movement data were obtained from household surveys in Asembo, western Kenya. Daytime land surface temperature (LSTD), rainfall, relative humidity (RH), wind speed, solar radiation, crop cover, and surface water coverage were extracted from remote sensing sources. Short-term forecasting of malaria incidence was performed using state-space reconstruction. Results We observed causal links between climatic drivers, bed net use, and malaria incidence. LSTD lagged over the previous month; rainfall and RH lagged over the previous two months; and wind speed in the current month had the highest predictive skills. Increases in LSTD, wind speed, and bed net use negatively affected incidence, while increases in rainfall and humidity had positive effects. Interaction strengths were more pronounced at temperature, rainfall, RH, wind speed, and bed net coverage ranges of 30-35°C, 30-120 mm, 67-80%, 0.5-0.7 m/s, and above 90%, respectively. Temperature and rainfall exceeding 35°C and 180 mm, respectively, had a greater negative effect. We also observed good short-term predictive performance using the multivariable forecasting model (Pearson correlation coefficient = 0.85, root mean square error = 0.15). Conclusions Our findings demonstrate the utility of CCM in establishing causal linkages between malaria incidence and both climatic and non-climatic drivers. By identifying these causal links and suitability ranges, we provide valuable information for modelling the impact of future climate scenarios.
Collapse
Affiliation(s)
- Bryan O Nyawanda
- Kenya Medical Research Institute – Centre for Global Health Research, Kisumu, Kenya
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Simon Kariuki
- Kenya Medical Research Institute – Centre for Global Health Research, Kisumu, Kenya
| | - Sammy Khagayi
- Kenya Medical Research Institute – Centre for Global Health Research, Kisumu, Kenya
| | - Godfrey Bigogo
- Kenya Medical Research Institute – Centre for Global Health Research, Kisumu, Kenya
| | - Ina Danquah
- Center for Development Research, University of Bonn, Bonn, Germany
| | - Stephen Munga
- Kenya Medical Research Institute – Centre for Global Health Research, Kisumu, Kenya
| | - Penelope Vounatsou
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Li D, Liu Y, Zhang W, Shi T, Zhao X, Zhao X, Zheng H, Li R, Wang T, Ren X. The association between the scarlet fever and meteorological factors, air pollutants and their interactions in children in northwest China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1989-2002. [PMID: 38884798 DOI: 10.1007/s00484-024-02722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Scarlet fever (SF) is an acute respiratory transmitted disease that primarily affects children. The influence of meteorological factors and air pollutants on SF in children has been proved, but the relevant evidence in Northwest China is still lacking. Based on the weekly reported cases of SF in children in Lanzhou, northwest China, from 2014 to 2018, we used geographical detectors, distributed lag nonlinear models (DLNM), and bivariate response models to explore the influence of meteorological factors and air pollutants with SF. It was found that ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), temperature, pressure, water vapor pressure and wind speed were significantly correlated with SF based on geographical detectors. With the median as reference, the influence of high temperature, low pressure and high pressure on SF has a risk effect (relative risk (RR) > 1), and under extreme conditions, the dangerous effect was still significant. High O3 had the strongest effect at a 6-week delay, with an RR of 5.43 (95%CI: 1.74,16.96). The risk effect of high SO2 was strongest in the week of exposure, and the maximum risk effect was 1.37 (95%CI: 1.08,1.73). The interactions showed synergistic effects between high temperatures and O3, high pressure and high SO2, high nitrogen dioxide (NO2) and high particulate matter with diameter of less than 10 μm (PM10), respectively. In conclusion, high temperature, pressure, high O3 and SO2 were the most important factors affecting the occurrence of SF in children, which will provide theoretical support for follow-up research and disease prevention policy formulation.
Collapse
Affiliation(s)
- Donghua Li
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Yanchen Liu
- Fu Wai Hospital, Chinese Academy of Medical Sciences, Shenzhen Hospital, Nanshan District, Shenzhen city, 518000, Guangdong Province, China
| | - Wei Zhang
- Lanzhou Center for Disease Control and Prevention, Chengguan District, Lanzhou City, 733000, Gansu Province, China
| | - Tianshan Shi
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Xiangkai Zhao
- School of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou City, 450001, Henan Province, China
| | - Xin Zhao
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Hongmiao Zheng
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Rui Li
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Tingrong Wang
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Xiaowei Ren
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China.
| |
Collapse
|
5
|
Tam LT, Thinkhamrop K, Suttiprapa S, Clements ACA, Wangdi K, Suwannatrai AT. Bayesian spatio-temporal modelling of environmental, climatic, and socio-economic influences on malaria in Central Vietnam. Malar J 2024; 23:258. [PMID: 39182127 PMCID: PMC11344946 DOI: 10.1186/s12936-024-05074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Despite the successful efforts in controlling malaria in Vietnam, the disease remains a significant health concern, particularly in Central Vietnam. This study aimed to assess correlations between environmental, climatic, and socio-economic factors in the district with malaria cases. METHODS The study was conducted in 15 provinces in Central Vietnam from January 2018 to December 2022. Monthly malaria cases were obtained from the Institute of Malariology, Parasitology, and Entomology Quy Nhon, Vietnam. Environmental, climatic, and socio-economic data were retrieved using a Google Earth Engine script. A multivariable Zero-inflated Poisson regression was undertaken using a Bayesian framework with spatial and spatiotemporal random effects with a conditional autoregressive prior structure. The posterior random effects were estimated using Bayesian Markov Chain Monte Carlo simulation with Gibbs sampling. RESULTS There was a total of 5,985 Plasmodium falciparum and 2,623 Plasmodium vivax cases during the study period. Plasmodium falciparum risk increased by five times (95% credible interval [CrI] 4.37, 6.74) for each 1-unit increase of normalized difference vegetation index (NDVI) without lag and by 8% (95% CrI 7%, 9%) for every 1ºC increase in maximum temperature (TMAX) at a 6-month lag. While a decrease in risk of 1% (95% CrI 0%, 1%) for a 1 mm increase in precipitation with a 6-month lag was observed. A 1-unit increase in NDVI at a 1-month lag was associated with a four-fold increase (95% CrI 2.95, 4.90) in risk of P. vivax. In addition, the risk increased by 6% (95% CrI 5%, 7%) and 3% (95% CrI 1%, 5%) for each 1ºC increase in land surface temperature during daytime with a 6-month lag and TMAX at a 4-month lag, respectively. Spatial analysis showed a higher mean malaria risk of both species in the Central Highlands and southeast parts of Central Vietnam and a lower risk in the northern and north-western areas. CONCLUSION Identification of environmental, climatic, and socio-economic risk factors and spatial malaria clusters are crucial for designing adaptive strategies to maximize the impact of limited public health resources toward eliminating malaria in Vietnam.
Collapse
Affiliation(s)
- Le Thanh Tam
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Epidemiology, Institute of Malariology, Parasitology, and Entomology Quy Nhon, Quy Nhon, Binh Dinh, Vietnam
| | - Kavin Thinkhamrop
- Health and Epidemiology Geoinformatics Research (HEGER), Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Kinley Wangdi
- HEAL Global Research Centre, Health Research Institute, University of Canberra, Canberra, ACT 2617, Australia
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Apiporn T Suwannatrai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
6
|
Liu Q, Deng J, Yan W, Qin C, Du M, Wang Y, Zhang S, Liu M, Liu J. Burden and trends of infectious disease mortality attributed to air pollution, unsafe water, sanitation, and hygiene, and non-optimal temperature globally and in different socio-demographic index regions. Glob Health Res Policy 2024; 9:23. [PMID: 38937833 PMCID: PMC11212388 DOI: 10.1186/s41256-024-00366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Environmental factors greatly impact infectious disease-related mortality, yet there's a lack of comprehensive global studies on the contemporary burden and trends. This study aims to evaluate the global burden and trends of infectious disease mortality caused by air pollution, unsafe water, poor sanitation, and non-optimal temperature across Socio-Demographic Index (SDI) regions from 1990 to 2019. METHODS This observational study utilized data from the Global Burden of Diseases Study to examine mortality rates from infectious diseases attributed to environmental risk factors between 1990 and 2019, including air pollution, unsafe water, sanitation, handwashing facilities (UWSH), and non-optimal temperatures. Age-standardized mortality rates (ASMRs) and estimated annual percentage change (EAPC) were utilized to present infectious disease mortality, and its trajectory influenced by environmental risk factors over the years. Nonlinear regression was conducted to explore the association between the SDI and ASMRs across regions from 1990 to 2019. RESULTS In 2019, global infectious disease deaths linked to air pollution, UWSH, and non-optimal temperature reached a startling 2,556,992. Disease mortality varied widely across SDI regions, with the highest number of deaths due to air pollution and UWSH in Low SDI regions, and deaths from non-optimal temperature primarily in High SDI regions. Age disparities emerged, with children under five and the elderly most affected. However, an increasing mortality trend was observed among seniors (65-69, 75-79, and over 80) in High SDI regions due to enteric infections linked to UWSH. Globally, a consistent decrease in ASMR was seen from 1990 to 2019 for all diseases connected to these factors, except for respiratory infections linked to non-optimal temperature. CONCLUSIONS Our study underscores the significant impact of air pollution, UWSH, and non-optimal temperatures on global infectious disease mortality, particularly among vulnerable groups such as children and the elderly. It's important to tackle these challenges with targeted interventions aiming to enhance environmental quality, improve water and sanitation systems, and control extreme temperatures. In addition, international cooperation is essential for bridging regional disparities and driving global public health initiatives forward, thereby helping achieve Sustainable Development Goals more effectively.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wenxin Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Chenyuan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yaping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Shimo Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Haidian District, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Haidian District, Beijing, China.
- Institute for Global Health and Development, Peking University, Haidian District, Beijing, China.
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China.
- Institute of Environmental Medicine, Peking University, Beijing, China.
| |
Collapse
|
7
|
Ning Z, He S, Liao X, Ma C, Wu J. Cold waves and fine particulate matter in high-altitude Chinese cities: assessing their interactive impact on outpatient visits for respiratory disease. BMC Public Health 2024; 24:1377. [PMID: 38778299 PMCID: PMC11110372 DOI: 10.1186/s12889-024-18896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Extreme weather events like heatwaves and fine particulate matter (PM2.5) have a synergistic effect on mortality, but research on the synergistic effect of cold waves and PM2.5 on outpatient visits for respiratory disease, especially at high altitudes in climate change-sensitive areas, is lacking. METHODS we collected time-series data on meteorological, air pollution, and outpatient visits for respiratory disease in Xining. We examined the associations between cold waves, PM2.5, and outpatient visits for respiratory disease using a time-stratified case-crossover approach and distributional lag nonlinear modeling. Our analysis also calculated the relative excess odds due to interaction (REOI), proportion attributable to interaction (AP), and synergy index (S). We additionally analyzed cold waves over time to verify climate change. RESULTS Under different definitions of cold waves, the odds ratio for the correlation between cold waves and outpatient visits for respiratory disease ranged from 0.95 (95% CI: 0.86, 1.05) to 1.58 (1.47, 1.70). Exposure to PM2.5 was significantly associated with an increase in outpatient visits for respiratory disease. We found that cold waves can synergize with PM2.5 to increase outpatient visits for respiratory disease (REOI > 0, AP > 0, S > 1), decreasing with stricter definitions of cold waves and longer durations. Cold waves' independent effect decreased over time, but their interaction effect persisted. From 8.1 to 21.8% of outpatient visits were due to cold waves and high-level PM2.5. People aged 0-14 and ≥ 65 were more susceptible to cold waves and PM2.5, with a significant interaction for those aged 15-64 and ≥ 65. CONCLUSION Our study fills the gap on how extreme weather and PM2.5 synergistically affect respiratory disease outpatient visits in high-altitude regions. The synergy of cold waves and PM2.5 increases outpatient visits for respiratory disease, especially in the elderly. Cold wave warnings and PM2.5 reduction have major public health benefits.
Collapse
Affiliation(s)
- Zhenxu Ning
- Department of Public Health, Faculty of Medicine, Qinghai University, Xining, China
| | - Shuzhen He
- Xining Centre for Disease Control and Prevention, Xining, China.
| | - Xinghao Liao
- Department of Public Health, Faculty of Medicine, Qinghai University, Xining, China
| | - Chunguang Ma
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Jing Wu
- Xining Centre for Disease Control and Prevention, Xining, China
| |
Collapse
|
8
|
Ning Z, He S, Liu Q, Ma H, Ma C, Wu J, Ma Y, Zhang Y. Effects of the interaction between cold spells and fine particulate matter on mortality risk in Xining: a case-crossover study at high altitude. Front Public Health 2024; 12:1414945. [PMID: 38813422 PMCID: PMC11133570 DOI: 10.3389/fpubh.2024.1414945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Background With global climate change, the health impacts of cold spells and air pollution caused by PM2.5 are increasingly aggravated, especially in high-altitude areas, which are particularly sensitive. Exploring their interactions is crucial for public health. Methods We collected time-series data on meteorology, air pollution, and various causes of death in Xining. This study employed a time-stratified case-crossover design and conditional logistic regression models to explore the association between cold spells, PM2.5 exposure, and various causes of death, and to assess their interaction. We quantitatively analyzed the interaction using the relative excess odds due to interaction (REOI), attributable proportion due to interaction (AP), and synergy index (S). Moreover, we conducted stratified analyses by average altitude, sex, age, and educational level to identify potential vulnerable groups. Results We found significant associations between cold spells, PM2.5, and various causes of death, with noticeable effects on respiratory disease mortality and COPD mortality. We identified significant synergistic effects (REOI>0, AP > 0, S > 1) between cold spells and PM2.5 on various causes of death, which generally weakened with a stricter definition of cold spells and longer duration. It was estimated that up to 9.56% of non-accidental deaths could be attributed to concurrent exposure to cold spells and high-level PM2.5. High-altitude areas, males, the older adults, and individuals with lower educational levels were more sensitive. The interaction mainly varied among age groups, indicating significant impacts and a synergistic action that increased mortality risk. Conclusion Our study found that in high-altitude areas, exposure to cold spells and PM2.5 significantly increased the mortality risk from specific diseases among the older adults, males, and those with lower educational levels, and there was an interaction between cold spells and PM2.5. The results underscore the importance of reducing these exposures to protect public health.
Collapse
Affiliation(s)
- Zhenxu Ning
- Department of Public Health, Faculty of Medicine, Qinghai University, Xining, China
| | - Shuzhen He
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Qiansheng Liu
- Department of Public Health, Faculty of Medicine, Qinghai University, Xining, China
| | - Haibin Ma
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Chunguang Ma
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Jing Wu
- Xining Centre for Disease Control and Prevention, Xining, China
| | - Yanjun Ma
- Qinghai Institute of Health Sciences, Xining, China
| | - Youxia Zhang
- Qinghai Province Cardio Cerebrovascular Disease Specialist Hospital, Xining, China
| |
Collapse
|
9
|
Cheng C, Liu Y, Han C, Fang Q, Cui F, Li X. Effects of extreme temperature events on deaths and its interaction with air pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170212. [PMID: 38246371 DOI: 10.1016/j.scitotenv.2024.170212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/17/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Both extreme temperature events (ETEs) and air pollution affected human health, and their effects were often not independent. Previous studies have provided limited information on the interactions between ETEs and air pollution. METHODS We collected data on deaths (non-accidental, cardiovascular, and respiratory) in Zibo City along with daily air pollution and meteorological data from January 2015 to December 2019. Distributed lag non-linear model was used to explore the health effects of ETEs on deaths. Non-parametric binary response model, hierarchical model and joint effect model were used to further explore the interaction between ETEs and air pollution in different seasons. Meanwhile, subgroup analysis by gender and age (≥ 65 years old and < 65 years old) was conducted to identify the vulnerable population. RESULTS ETEs increased death risk, especially for cardiovascular and respiratory deaths. Heat waves had a stronger impact than cold spells. Cold spells had a longer lag and fluctuating trend. Heat waves had a short-term impact, followed by a decrease. Females and those aged ≥ 65 were more affected, but subgroup differences were not significant. During ETEs and non-ETEs, there were different effects on deaths with per IQR increase in air pollutant concentrations. Joint effect models revealed that there was a significant interaction between ETEs and air pollution on non-accidental deaths. The interaction between PM2.5 and cold spells was antagonistic in the cold season. In the warm season, the health effects of heat waves and high O3 concentration were enhanced. The relative excess risk due to interaction (RERI) of cold spells and PM2.5 in total population was -0.09 (95 % CI: -0.17, -0.01), and 9 % (95 % CI: 1 %, 17 %) of the total effect was attributable to interaction. Subgroup analysis confirmed the interactions in females and those aged ≥ 65. CONCLUSIONS Significant association observed between ETEs and deaths. Females and ≥ 65 age groups were vulnerable. There were interactions between ETEs and air pollution. The effect of PM2.5 on deaths decreased during cold spells, while the effect of O3 increased during heat waves. In addition to improving air quality, it is necessary to further strengthen the prevention and control of ETEs.
Collapse
Affiliation(s)
- Chuanlong Cheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Ma'anshan Center for Disease Control and Prevention, Ma'anshan 243000, Anhui, China
| | - Chuang Han
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qidi Fang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feng Cui
- Zibo Center for Disease Control and Prevention, Zibo, Shandong, China
| | - Xiujun Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Liu Q, Wang Y, Deng J, Yan W, Qin C, Du M, Liu M, Liu J. Association of temperature and precipitation with malaria incidence in 57 countries and territories from 2000 to 2019: A worldwide observational study. J Glob Health 2024; 14:04021. [PMID: 38385445 PMCID: PMC10882640 DOI: 10.7189/jogh.14.04021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The transmission of malaria is known to be affected by climatic factors. However, existing studies on the impact of temperature and precipitation on malaria incidence offer no clear-cut conclusions, and there is a lack of research on a global scale. We aimed to estimate the association of temperature and precipitation with malaria incidence globally from 2000 to 2019. METHODS We used meteorological data from the National Centers for Environmental Information and malaria incidence data from the Global Burden of Disease Study 2019 to calculate effect sizes through quasi-Poisson generalised linear models while controlling for confounders. RESULTS 231.4 million malaria cases occurred worldwide in 2019. National annual average temperature and precipitation were associated with malaria incidence, with an increase in the age-standardised incidence rate (ASIR) of 2.01% (95% confidence interval (CI) = 2.00, 2.02) and 6.04% (95% CI = 6.00, 6.09) following one unit increase of national annual average temperature and precipitation. In subgroup analysis, we found that malaria incidence in Asian countries was most affected by temperature, while the incidence in African countries was most affected by precipitation (P < 0.05). Stratified by age, children under five were most affected by both temperature and precipitation (P < 0.05). We additionally found that the impact of the national annual average temperature on malaria incidence increased over time (P < 0.05). CONCLUSIONS We advocate for a comprehensive approach to malaria prevention, focussed on addressing the impact of climate factors through international collaboration, adaptive measures, and targeted interventions for vulnerable populations.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yaping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wenxin Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chenyuan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Haidian District, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Haidian District, Beijing, China
- Institute for Global Health and Development, Peking University, Haidian District, Beijing, China
| |
Collapse
|
11
|
Haq IU, Mehmood Z, Khan GA, Kainat B, Ahmed B, Shah J, Sami A, Nazar MS, Xu J, Xiang H. Modeling the effect of climatic conditions and topography on malaria incidence using Poisson regression: a Retrospective study in Bannu, Khyber Pakhtunkhwa, Pakistan. Front Microbiol 2024; 14:1303087. [PMID: 38287956 PMCID: PMC10822983 DOI: 10.3389/fmicb.2023.1303087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Background Malaria has been identified as a crucial vector-borne disease around the globe. The primary aim of this study was to investigate the incidence of malaria in the district of Bannu and its relationship with climatic conditions such as temperature, rainfall, relative humidity, and topography. Methods Secondary data were obtained from the metrological office and government hospitals across the district for 5 years (2013-2017). A Poisson regression model was applied for the statistical analysis. Results and discussion The number of reported cases of malaria was 175,198. The regression analysis showed that temperature, relative humidity, and rainfall had a significant association (p < 0.05) with malaria incidence. In addition, the topographic variables were significantly associated (p < 0.05) with malaria incidence in the region. The percent variation in the odds ratio of incidence was 4% for every unit increase in temperature and 2% in humidity. In conclusion, this study indicated that the temperature, humidity, rainfall, and topographic variables were significantly associated with the incidence of malaria. Effective malaria control and interventions integrated with climatic factors must be considered to overcome the disease burden.
Collapse
Affiliation(s)
- Ijaz Ul Haq
- Department of Public Health & Nutrition, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Zafar Mehmood
- Department of Maths, Stats & Computer Science, The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Gausal Azam Khan
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Bushra Kainat
- Department of Public Health & Nutrition, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Bilal Ahmed
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jahan Shah
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Amtul Sami
- Department of Health Biotechnology, Women University, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Subhan Nazar
- Department of Public Health & Nutrition, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Jielian Xu
- Department of Clinical Nutrition, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - He Xiang
- Department of Clinical Nutrition, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Lu G, Zhao L, Chai L, Cao Y, Chong Z, Liu K, Lu Y, Zhu G, Xia P, Müller O, Zhu G, Cao J. Assessing the risk of malaria local transmission and re-introduction in China from pre-elimination to elimination: A systematic review. Acta Trop 2024; 249:107082. [PMID: 38008371 DOI: 10.1016/j.actatropica.2023.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Assessing the risk of malaria local transmission and re-introduction is crucial for the preparation and implementation of an effective elimination campaign and the prevention of malaria re-introduction in China. Therefore, this review aims to evaluate the risk factors for malaria local transmission and re-introduction in China over the period of pre-elimination to elimination. Data were obtained from six databases searched for studies that assessed malaria local transmission risk before malaria elimination and re-introduction risk after the achievement of malaria elimination in China since the launch of the NMEP in 2010, employing the keywords "malaria" AND ("transmission" OR "re-introduction") and their synonyms. A total of 8,124 articles were screened and 53 articles describing 55 malaria risk assessment models in China from 2010 to 2023, including 40 models assessing malaria local transmission risk (72.7%) and 15 models assessing malaria re-introduction risk (27.3%). Factors incorporated in the 55 models were extracted and classified into six categories, including environmental and meteorological factors (39/55, 70.9%), historical epidemiology (35/55, 63.6%), vectorial factors (32/55, 58.2%), socio-demographic information (15/26, 53.8%), factors related to surveillance and response capacity (18/55, 32.7%), and population migration aspects (13/55, 23.6%). Environmental and meteorological factors as well as vectorial factors were most commonly incorporated in models assessing malaria local transmission risk (29/40, 72.5% and 21/40, 52.5%) and re-introduction risk (10/15, 66.7% and 11/15, 73.3%). Factors related to surveillance and response capacity and population migration were also important in malaria re-introduction risk models (9/15, 60%, and 6/15, 40.0%). A total of 18 models (18/55, 32.7%) reported the modeling performance. Only six models were validated internally and five models were validated externally. Of 53 incorporated studies, 45 studies had a quality assessment score of seven and above. Environmental and meteorological factors as well as vectorial factors play a significant role in malaria local transmission and re-introduction risk assessment. The factors related to surveillance and response capacity and population migration are more important in assessing malaria re-introduction risk. The internal and external validation of the existing models needs to be strengthened in future studies.
Collapse
Affiliation(s)
- Guangyu Lu
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, China.
| | - Li Zhao
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Liying Chai
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yuanyuan Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Zeyin Chong
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Kaixuan Liu
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yan Lu
- Nanjing Health and Customs Quarantine Office, Nanjing, China
| | - Guoqiang Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Pengpeng Xia
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Olaf Müller
- Institute of Global Health, Medical School, Ruprecht-Karls-University Heidelberg, Germany
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Leal Filho W, May J, May M, Nagy GJ. Climate change and malaria: some recent trends of malaria incidence rates and average annual temperature in selected sub-Saharan African countries from 2000 to 2018. Malar J 2023; 22:248. [PMID: 37641080 PMCID: PMC10464074 DOI: 10.1186/s12936-023-04682-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Malaria is still a disease of massive burden in Africa, also influenced by climate change. The fluctuations and trends of the temperature and precipitation are well-known determinant factors influencing the disease's vectors and incidence rates. This study provides a concise account of malaria trends. It describes the association between average temperature and malaria incidence rates (IR) in nine sub-Saharan African countries: Nigeria, Ethiopia, South Africa, Kenya, Uganda, Ghana, Mozambique, Zambia and Zimbabwe. The incidence of malaria can vary both in areas where the disease is already present, and in regions where it is present in low numbers or absent. The increased vulnerability to the disease under increasing average temperatures and humidity is due to the new optimal level for vector breeding in areas where vector populations and transmission are low, and populations are sensitive due to low acquired immunity. METHODS A second source trend analysis was carried out of malaria cases and incidence rates (the number of new malaria cases per 1000 population at risk per year) with data from the World Health Organization (WHO) and average annual mean temperature from 2000 to 2018 from the World Bank's Climate Change Knowledge Portal (CCKP). Additionally, descriptive epidemiological methods were used to describe the development and trends in the selected countries. Furthermore, MS Excel was chosen for data analysis and visualization. RESULTS Findings obtained from this article align with the recent literature, highlighting a declining trend (20-80%) of malaria IR (incidence rate) from 2000 to 2018. However, malaria IR varies considerably, with high values in Uganda, Mozambique, Nigeria and Zambia, moderate values in Ghana, Zimbabwe, and Kenya, and low values in South Africa and Ethiopia in 2018. Evidence suggests varying IRs after average temperature fluctuations in several countries (e.g., Zimbabwe, Ethiopia). Also, an inverse temperature-IR relationship occurs, the sharp decrease of IR during 2012-2014 and 2000-2003, respectively, occurred with increasing average temperatures in Ghana and Nigeria. The decreasing trends and fluctuations, partly accompanying the temperature, should result from the intervention programmes and rainfall variability. The vulnerability and changing climate could arrest the recent trends of falling IR. CONCLUSION Thus, malaria is still a crucial public health issue in sub-Saharan Africa, although a robust decreasing IR occurred in most studied countries.
Collapse
Affiliation(s)
- Walter Leal Filho
- Research and Transfer Centre "Sustainable Development and Climate Change Management", Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Julia May
- Research and Transfer Centre "Sustainable Development and Climate Change Management", Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany.
| | - Marta May
- Research and Transfer Centre "Sustainable Development and Climate Change Management", Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Gustavo J Nagy
- Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, UdelaR, Montevideo, Uruguay
| |
Collapse
|
14
|
Rahmani AA, Susanna D, Febrian T. The relationship between climate change and malaria in South-East Asia: A systematic review of the evidence. F1000Res 2023; 11:1555. [PMID: 37867624 PMCID: PMC10585202 DOI: 10.12688/f1000research.125294.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background: Climatic change is an inescapable fact that implies alterations in seasons where weather occurrences have their schedules shift from the regular and magnitudes intensify to more extreme variations over a multi-year period. Southeast Asia is one of the many regions experiencing changes in climate and concurrently still has endemicities of malaria. Given that previous studies have suggested the influence of climate on malaria's vector the Anopheles mosquitoes and parasite the Plasmodium group, this study was conducted to review the evidence of associations made between malaria cases and climatic variables in Southeast Asia throughout a multi-year period. Methods: Our systematic literature review was informed by the PRISMA guidelines and registered in PROSPERO: CRD42022301826 on 5 th February 2022. We searched for original articles in English and Indonesian that focused on the associations between climatic variables and malaria cases. Results: The initial identification stage resulted in 535 records of possible relevance and after abstract screening and eligibility assessment we included 19 research articles for the systematic review. Based on the reviewed articles, changing temperatures, precipitation, humidity and windspeed were considered for statistical association across a multi-year period and are correlated with malaria cases in various regions throughout Southeast Asia. Conclusions: According to the review of evidence, climatic variables that exhibited a statistically significant correlation with malaria cases include temperatures, precipitation, and humidity. The strength of each climatic variable varies across studies. Our systematic review of the limited evidence indicates that further research for the Southeast Asia region remains to be explored.
Collapse
Affiliation(s)
- Ardhi Arsala Rahmani
- Doctoral Program in Public Health, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia
| | - Dewi Susanna
- Department of Environmental Health, Faculty of Public Health, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia
| | - Tommi Febrian
- Global Green Growth Institute (GGGI), Jakarta, Daerah Khusus Ibukota (DKI), 12950, Indonesia
| |
Collapse
|
15
|
Zheng Y, Emam M, Lu D, Tian M, Wang K, Peng X. Analysis of the effect of temperature on tuberculosis incidence by distributed lag non-linear model in Kashgar city, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11530-11541. [PMID: 36094714 PMCID: PMC9466343 DOI: 10.1007/s11356-022-22849-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to explore the effect of temperature on tuberculosis (TB) incidence using the distributed lag non-linear model (DLNM) from 2017 to 2021 in Kashgar city, the region with higher TB incidence than national levels, and assist public health prevention and control measures. From January 2017 to December 2021, a total of 8730 cases of TB were reported, with the higher incidence of male than that of female. When temperature was below 1 °C, it was significantly correlated with TB incidence compared to the median observed temperature (15 °C) at lag 7, 14, and 21, and lower temperatures showed larger RR (relative risk) values. High temperature produced a protective effect on TB transmission, and higher temperature from 16 to 31 °C has lower RR. In discussion stratified by gender, the maximum RRs were achieved for both male group and female group at - 15 °C with lag 21, reporting 4.28 and 2.02, respectively. At high temperature (higher than 20 °C), the RR value of developing TB for female group was significantly larger than 1. In discussion stratified by age, the maximum RRs were achieved for all age groups (≤ 35, 36-64, ≥ 65) at - 15 °C with lag 21, reporting 3.20, 2.07, and 3.45, respectively. When the temperature was higher than 20 °C, the RR of the 36-64-year-old group and the ≥ 65-year-old group was significantly larger than 1 at lag 21, while significantly smaller than 1 for cumulative RR at lag 21, reporting 0.11, 95% confidence interval (CI) (0.01, 0.83) and 0.06, 95% CI (0.01, 0.44), respectively. In conclusion, low temperature, especially in extreme level, acts as a high-risk factor inducing TB transmission in Kashgar city. Males exhibit a significantly higher RR of developing TB at low temperature than female, as well as the elderly group in contrast to the young or middle-aged groups. High temperature has a protective effect on TB transmission in the total population, but female and middle-aged and elderly groups are also required to be alert to the delayed RR induced by it.
Collapse
Affiliation(s)
- Yanling Zheng
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
| | - Mawlanjan Emam
- Center for Disease Control and Prevention, Kashgar, China
| | - Dongmei Lu
- Center of Respiratory and Critical Care Medicine of the People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Maozai Tian
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China
| | - Kai Wang
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China
| | - Xiaowang Peng
- Center for Disease Control and Prevention, Kashgar, China.
| |
Collapse
|
16
|
Wu Y, Huang C. Climate Change and Vector-Borne Diseases in China: A Review of Evidence and Implications for Risk Management. BIOLOGY 2022; 11:biology11030370. [PMID: 35336744 PMCID: PMC8945209 DOI: 10.3390/biology11030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Vector-borne diseases are among the most rapidly spreading infectious diseases and are widespread all around the world. In China, many types of vector-borne diseases have been prevalent in different regions, which is a serious public health problem with significant association with meteorological factors and weather events. Under the background of current severe climate change, the outbreaks and transmission of vector-borne diseases have been proven to be impacted greatly due to rapidly changing weather conditions. This study summarizes research progress on the association between climate conditions and all types of vector-borne diseases in China. A total of seven insect-borne diseases, two rodent-borne diseases, and a snail-borne disease were included, among which dengue fever is the most concerning mosquito-borne disease. Temperature, rainfall, and humidity have the most significant effect on vector-borne disease transmission, while the association between weather conditions and vector-borne diseases shows vast differences in China. We also make suggestions about future research based on a review of current studies. Abstract Vector-borne diseases have posed a heavy threat to public health, especially in the context of climate change. Currently, there is no comprehensive review of the impact of meteorological factors on all types of vector-borne diseases in China. Through a systematic review of literature between 2000 and 2021, this study summarizes the relationship between climate factors and vector-borne diseases and potential mechanisms of climate change affecting vector-borne diseases. It further examines the regional differences of climate impact. A total of 131 studies in both Chinese and English on 10 vector-borne diseases were included. The number of publications on mosquito-borne diseases is the largest and is increasing, while the number of studies on rodent-borne diseases has been decreasing in the past two decades. Temperature, precipitation, and humidity are the main parameters contributing to the transmission of vector-borne diseases. Both the association and mechanism show vast differences between northern and southern China resulting from nature and social factors. We recommend that more future research should focus on the effect of meteorological factors on mosquito-borne diseases in the era of climate change. Such information will be crucial in facilitating a multi-sectorial response to climate-sensitive diseases in China.
Collapse
Affiliation(s)
- Yurong Wu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
- School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
- School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
- Institute of Healthy China, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
17
|
A Quantitative Analysis of Factors Influencing Organic Matter Concentration in the Topsoil of Black Soil in Northeast China Based on Spatial Heterogeneous Patterns. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2021. [DOI: 10.3390/ijgi10050348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Black soil is fertile, abundant with organic matter (OM) and is exceptional for farming. The black soil zone in northeast China is the third-largest black soil zone globally and produces a quarter of China’s commodity grain. However, the soil organic matter (SOM) in this zone is declining, and the quality of cultivated land is falling off rapidly due to overexploitation and unsustainable management practices. To help develop an integrated protection strategy for black soil, this study aimed to identify the primary factors contributing to SOM degradation. The geographic detector, which can detect both linear and nonlinear relationships and the interactions based on spatial heterogeneous patterns, was used to quantitatively analyze the natural and anthropogenic factors affecting SOM concentration in northeast China. In descending order, the nine factors affecting SOM are temperature, gross domestic product (GDP), elevation, population, soil type, precipitation, soil erosion, land use, and geomorphology. The influence of all factors is significant, and the interaction of any two factors enhances their impact. The SOM concentration decreases with increased temperature, population, soil erosion, elevation and terrain undulation. SOM rises with increased precipitation, initially decreases with increasing GDP but then increases, and varies by soil type and land use. Conclusions about detailed impacts are presented in this paper. For example, wind erosion has a more significant effect than water erosion, and irrigated land has a lower SOM content than dry land. Based on the study results, protection measures, including conservation tillage, farmland shelterbelts, cross-slope ridges, terraces, and rainfed farming are recommended. The conversion of high-quality farmland to non-farm uses should be prohibited.
Collapse
|