1
|
Lenning OB, Myhre R, Vadla MS, Omdal R, Martínez Jarreta B, Gómez Moreno Á, De Blas I, Braut GS. Do genetic variants of the Y chromosome affect mortality from COVID-19. Scand J Public Health 2025:14034948251333236. [PMID: 40230068 DOI: 10.1177/14034948251333236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
AIMS During the early stages of the COVID-19 pandemic, significant differences in mortality patterns emerged based on sex and geographical regions. While we were studying on the heredity of variants of the Y chromosome, we observed that regional variations in mortality rates appeared to correlate with the geographical distribution of certain variants of the Y chromosome. This observation led us to propose that some genes on the Y chromosome, with an influence on immune responses, may represent a confounding factor in the observed geographical mortality differences. METHODS In this analysis, we investigate the potential associations between COVID-19 morbidity and disease-specific mortality and specific Y chromosome variants. The study is based on publicly available pandemic data validated by state authorities or presented in scientific literature documented in PubMed and Medline. RESULTS We find that Y chromosome haplogroups in different populations exhibit wave-like patterns corresponding with persistent global disparities in COVID-19-related mortality. CONCLUSIONS These findings warrant further research to uncover possible new pathophysiological mechanisms.
Collapse
Affiliation(s)
- Ole Bernt Lenning
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | - Ronny Myhre
- Norwegian Institute of Public Health, Division of Health Data and Digitalization, Department of Genetics and Bioinformatics (HDGB), Oslo, Norway
| | | | - Roald Omdal
- Research Department, Stavanger University Hospital, Clinical Immunology Research Group, Stavanger, Norway
| | - Begoña Martínez Jarreta
- Facultad de Medicina/Faculty of Medicine, Universidad de Zaragoza/University of Zaragoza, Zaragoza (Spain), Spain
| | - Ángel Gómez Moreno
- Dpto. of Hispanic Literature and Bibliography, Universidad Complutense de Madrid, Madrid, Spain
| | - Ignacio De Blas
- Facultad of Veterinary Sciences, Instituto Universitario de Investigación Mixto, Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
| | - Geir Sverre Braut
- Research Department, Stavanger University Hospital and Department of Social Science, Western Norway University of Applied Sciences, Stavanger, Norway
| |
Collapse
|
2
|
Nwaubani DA, Baral R, Solomon T, Idris O, Sherchan SP. Wastewater surveillance of Candida auris in Baltimore. Int J Hyg Environ Health 2025; 263:114486. [PMID: 39571395 DOI: 10.1016/j.ijheh.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Candida auris (C. auris), an opportunistic fungus causing disease, poses a growing global health concern due to its significant mortality rate, resistance to antifungal treatment, and ability to persist in healthcare settings. Over a span of 47 weeks, untreated wastewater samples were regularly gathered from two wastewater treatment plants (referred to as WWTP-A and WWTP-B) in Baltimore, from July 27, 2022, to June 23, 2023. Throughout the study period, 110 primary influent (PI) samples were collected from both WWTP-A and WWTP-B. A quantitative polymerase chain reaction (qPCR) method was used to analyze C. auris captured on filters (0.45 μm) from these samples. Positive C. auris detection (11.81%) occurred in the influent samples, with a higher frequency of detection in WWTP-B. Influent wastewater concentrations ranged from 1.2 to 7.9 log10 gene copies per liter (gc/L). Interestingly, seasonal analysis showed that C. auris presence in wastewater was more pronounced during the spring season, indicating a sustained existence of the pathogen as seasons changed. Integration of wastewater surveillance and clinical data reveals temporal correlations in C. auris dynamics. The resulting Pearson correlation coefficient of 0.27 reveals a weak positive correlation between the number of new C. auris cases in Baltimore and the quantity of detected gene copies in wastewater. This study marks the first instance of detecting C. auris in Baltimore's wastewater. The results emphasize that wastewater monitoring could serve as an additional early warning tool for anticipating and managing future outbreaks of C. auris.
Collapse
Affiliation(s)
- Daniel A Nwaubani
- Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD, 21251, USA
| | - Rakshya Baral
- Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD, 21251, USA
| | - Tamunobelema Solomon
- Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD, 21251, USA
| | - Oladele Idris
- Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD, 21251, USA
| | - Samendra P Sherchan
- Center of Research Excellence in Wastewater based Epidemiology, Morgan State University, Baltimore, MD, 21251, USA.
| |
Collapse
|
3
|
Hemnani M, da Silva PG, Thompson G, Poeta P, Rebelo H, Mesquita JR. Detection and Prevalence of Coronaviruses in European Bats: A Systematic Review. ECOHEALTH 2024; 21:125-140. [PMID: 39580592 PMCID: PMC11649736 DOI: 10.1007/s10393-024-01688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 11/25/2024]
Abstract
Bats are known hosts for a wide range of coronaviruses (CoVs), including those that cause severe acute respiratory syndrome (SARS-CoV-1) and Middle East respiratory syndrome (MERS-CoV). With the emergence of the COVID-19 pandemic caused by the SARS-CoV-2 virus, it has become increasingly important to understand the diversity and prevalence of CoVs in bat populations. This systematic review aimed to compile studies that have sampled CoVs from bats across Europe and assessed various aspects related to the testing of bat samples, including the country where the bats were collected, the CoV genomic region studied, the CoV genera that were detected, and the identification of bat species that were found to be carrying CoV. We identified 30 studies that assessed CoVs presence in bats across multiple countries including Italy, Germany, and various other nations with one or two studies each, which tested them for CoVs using a variety of matrices. CoVs were found in nine genera of bats, and the genomic regions included RdRp, ORF1a gene, as well as full genome, detecting α- and/or β-CoVs, with most of them being detectable only in faeces. This review provides a comprehensive overview of the CoVs detected in bats across Europe and highlights the importance of continued surveillance and monitoring of bat populations for potential emerging zoonotic CoVs.
Collapse
Affiliation(s)
- Mahima Hemnani
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, 4050-313, Porto, Portugal
| | - Priscilla Gomes da Silva
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, 4050-313, Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Gertrude Thompson
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, 4050-313, Porto, Portugal
- CIBIO/InBIO, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os Montes e Alto Douro, 5000-801, Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 1099-085, Caparica, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os Montes e Alto Douro, 5000-801, Vila Real, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Vila Real, Portugal
| | - Hugo Rebelo
- CIBIO/InBIO, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - João R Mesquita
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, 4050-313, Porto, Portugal.
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal.
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| |
Collapse
|
4
|
da Silva PG, Gonçalves J, Rodriguéz E, García-Encina PA, Nascimento MSJ, Sousa SIV, Mesquita JR. SARS-CoV-2 RNA Presence in Outdoor Air of Public Spaces in Valladolid During Winter, 2021. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 17:4. [PMID: 39614965 PMCID: PMC11608306 DOI: 10.1007/s12560-024-09615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/04/2024] [Indexed: 01/23/2025]
Abstract
As SARS-CoV-2 continues to evolve and herd immunity establishes, an increasing number of asymptomatic infections have been reported, increasing the risk of airborne spread of the virus. Most of the studies regarding SARS-CoV-2 RNA presence in air refer to indoor environments, with few studies having reported SARS-CoV-2 RNA in outdoor air. The aim of this study was to assess the presence of SARS-CoV-2 RNA at two different settings, crowded outdoor versus empty outdoor environments in Valladolid, Spain, during winter 2021. Using a Coriolis® air sampler, samples were taken from nine different locations within the city center. RNA extraction and a one-step RT-qPCR were carried out. Six out of the 20 air samples were found to be positive, and they were all obtained from crowded outdoor environments. These results highlight that although in less quantity, SARS-CoV-2 RNA is still present in outdoor air, especially at moments of relaxed mitigation efforts and depending on the number of people present.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa E Translacional Em Saúde Populacional (ITR), Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - José Gonçalves
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network Associate Laboratory, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Elisa Rodriguéz
- Institute of Sustainable Processes, Valladolid University, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Valladolid University, Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain
| | | | - Sofia I V Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João R Mesquita
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal.
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal.
- Laboratório Para a Investigação Integrativa E Translacional Em Saúde Populacional (ITR), Porto, Portugal.
| |
Collapse
|
5
|
Kumawat P, Agarwal LK, Sharma K. An Overview of SARS-CoV-2 Potential Targets, Inhibitors, and Computational Insights to Enrich the Promising Treatment Strategies. Curr Microbiol 2024; 81:169. [PMID: 38733424 DOI: 10.1007/s00284-024-03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/18/2024] [Indexed: 05/13/2024]
Abstract
The rapid spread of the SARS-CoV-2 virus has emphasized the urgent need for effective therapies to combat COVID-19. Investigating the potential targets, inhibitors, and in silico approaches pertinent to COVID-19 are of utmost need to develop novel therapeutic agents and reprofiling of existing FDA-approved drugs. This article reviews the viral enzymes and their counter receptors involved in the entry of SARS-CoV-2 into host cells, replication of genomic RNA, and controlling the host cell physiology. In addition, the study provides an overview of the computational techniques such as docking simulations, molecular dynamics, QSAR modeling, and homology modeling that have been used to find the FDA-approved drugs and other inhibitors against SARS-CoV-2. Furthermore, a comprehensive overview of virus-based and host-based druggable targets from a structural point of view, together with the reported therapeutic compounds against SARS-CoV-2 have also been presented. The current study offers future perspectives for research in the field of network pharmacology investigating the large unexplored molecular libraries. Overall, the present in-depth review aims to expedite the process of identifying and repurposing drugs for researchers involved in the field of COVID-19 drug discovery.
Collapse
Affiliation(s)
- Pooja Kumawat
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
6
|
Constantin AM, Noertjojo K, Sommer I, Pizarro AB, Persad E, Durao S, Nussbaumer-Streit B, McElvenny DM, Rhodes S, Martin C, Sampson O, Jørgensen KJ, Bruschettini M. Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings. Cochrane Database Syst Rev 2024; 4:CD015112. [PMID: 38597249 PMCID: PMC11005086 DOI: 10.1002/14651858.cd015112.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
BACKGROUND Although many people infected with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) experience no or mild symptoms, some individuals can develop severe illness and may die, particularly older people and those with underlying medical problems. Providing evidence-based interventions to prevent SARS-CoV-2 infection has become more urgent with the potential psychological toll imposed by the coronavirus disease 2019 (COVID-19) pandemic. Controlling exposures to occupational hazards is the fundamental method of protecting workers. When it comes to the transmission of viruses, workplaces should first consider control measures that can potentially have the most significant impact. According to the hierarchy of controls, one should first consider elimination (and substitution), then engineering controls, administrative controls, and lastly, personal protective equipment. This is the first update of a Cochrane review published 6 May 2022, with one new study added. OBJECTIVES To assess the benefits and harms of interventions in non-healthcare-related workplaces aimed at reducing the risk of SARS-CoV-2 infection compared to other interventions or no intervention. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Web of Science Core Collections, Cochrane COVID-19 Study Register, World Health Organization (WHO) COVID-19 Global literature on coronavirus disease, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, and medRxiv to 13 April 2023. SELECTION CRITERIA We included randomised controlled trials (RCTs) and non-randomised studies of interventions. We included adult workers, both those who come into close contact with clients or customers (e.g. public-facing employees, such as cashiers or taxi drivers), and those who do not, but who could be infected by coworkers. We excluded studies involving healthcare workers. We included any intervention to prevent or reduce workers' exposure to SARS-CoV-2 in the workplace, defining categories of intervention according to the hierarchy of hazard controls (i.e. elimination; engineering controls; administrative controls; personal protective equipment). DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were incidence rate of SARS-CoV-2 infection (or other respiratory viruses), SARS-CoV-2-related mortality, adverse events, and absenteeism from work. Our secondary outcomes were all-cause mortality, quality of life, hospitalisation, and uptake, acceptability, or adherence to strategies. We used the Cochrane RoB 2 tool to assess risk of bias, and GRADE methods to evaluate the certainty of evidence for each outcome. MAIN RESULTS We identified 2 studies including a total of 16,014 participants. Elimination-of-exposure interventions We included one study examining an intervention that focused on elimination of hazards, which was an open-label, cluster-randomised, non-inferiority trial, conducted in England in 2021. The study compared standard 10-day self-isolation after contact with an infected person to a new strategy of daily rapid antigen testing and staying at work if the test is negative (test-based attendance). The trialists hypothesised that this would lead to a similar rate of infections, but lower COVID-related absence. Staff (N = 11,798) working at 76 schools were assigned to standard isolation, and staff (N = 12,229) working at 86 schools were assigned to the test-based attendance strategy. The results between test-based attendance and standard 10-day self-isolation were inconclusive for the rate of symptomatic polymerase chain reaction (PCR)-positive SARS-CoV-2 infection (rate ratio (RR) 1.28, 95% confidence interval (CI) 0.74 to 2.21; 1 study; very low-certainty evidence). The results between test-based attendance and standard 10-day self-isolation were inconclusive for the rate of any PCR-positive SARS-CoV-2 infection (RR 1.35, 95% CI 0.82 to 2.21; 1 study; very low-certainty evidence). COVID-related absenteeism rates were 3704 absence days in 566,502 days-at-risk (6.5 per 1000 working days) in the control group and 2932 per 539,805 days-at-risk (5.4 per 1000 working days) in the intervention group (RR 0.83, 95% CI 0.55 to 1.25). We downgraded the certainty of the evidence to low due to imprecision. Uptake of the intervention was 71% in the intervention group, but not reported for the control intervention. The trial did not measure our other outcomes of SARS-CoV-2-related mortality, adverse events, all-cause mortality, quality of life, or hospitalisation. We found seven ongoing studies using elimination-of-hazard strategies, six RCTs and one non-randomised trial. Administrative control interventions We found one ongoing RCT that aims to evaluate the efficacy of the Bacillus Calmette-Guérin (BCG) vaccine in preventing COVID-19 infection and reducing disease severity. Combinations of eligible interventions We included one non-randomised study examining a combination of elimination of hazards, administrative controls, and personal protective equipment. The study was conducted in two large retail companies in Italy in 2020. The study compared a safety operating protocol, measurement of body temperature and oxygen saturation upon entry, and a SARS-CoV-2 test strategy with a minimum activity protocol. Both groups received protective equipment. All employees working at the companies during the study period were included: 1987 in the intervention company and 1798 in the control company. The study did not report an outcome of interest for this systematic review. Other intervention categories We did not find any studies in this category. AUTHORS' CONCLUSIONS We are uncertain whether a test-based attendance policy affects rates of PCR-positive SARS-CoV-2 infection (any infection; symptomatic infection) compared to standard 10-day self-isolation amongst school and college staff. A test-based attendance policy may result in little to no difference in absenteeism rates compared to standard 10-day self-isolation. The non-randomised study included in our updated search did not report any outcome of interest for this Cochrane review. As a large part of the population is exposed in the case of a pandemic, an apparently small relative effect that would not be worthwhile from the individual perspective may still affect many people, and thus become an important absolute effect from the enterprise or societal perspective. The included RCT did not report on any of our other primary outcomes (i.e. SARS-CoV-2-related mortality and adverse events). We identified no completed studies on any other interventions specified in this review; however, eight eligible studies are ongoing. More controlled studies are needed on testing and isolation strategies, and working from home, as these have important implications for work organisations.
Collapse
Affiliation(s)
- Alexandru Marian Constantin
- Department of Internal Medicine Clinical Hospital Colentina, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation, Danube University Krems, Krems, Austria
| | | | - Isolde Sommer
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation, University for Continuing Education Krems, Krems, Austria
| | | | - Emma Persad
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation, University for Continuing Education Krems, Krems, Austria
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Solange Durao
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | - Barbara Nussbaumer-Streit
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation, University for Continuing Education Krems, Krems, Austria
| | - Damien M McElvenny
- Centre for Occupational and Environmental Health, University of Manchester, Manchester, UK
- Institute of Occupational Medicine, Edinburgh, UK
| | - Sarah Rhodes
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester, UK
| | | | | | - Karsten Juhl Jørgensen
- Centre for Evidence-Based Medicine Odense (CEBMO) and Cochrane Denmark, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Matteo Bruschettini
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
7
|
Thi Khanh HN, De Troeyer K, Smith P, Demoury C, Casas L. The impact of ambient temperature and air pollution on SARS-CoV2 infection and Post COVID-19 condition in Belgium (2021-2022). ENVIRONMENTAL RESEARCH 2024; 246:118066. [PMID: 38159667 DOI: 10.1016/j.envres.2023.118066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION The associations between non-optimal ambient temperature, air pollution and SARS-CoV-2 infection and post COVID-19 condition (PCC) remain constrained in current understanding. We conducted a retrospective analysis to explore how ambient temperature affected SARS-CoV-2 infection in individuals who later developed PCC compared to those who did not. We investigated if these associations were modified by air pollution. METHODS We conducted a bidirectional time-stratified case-crossover study among individuals who tested positive for SARS-CoV-2 between May 2021 and June 2022. We included 6302 infections, with 2850 PCC cases. We used conditional logistic regression and distributed lag non-linear models to obtain odds ratios (OR) and 95% confidence intervals (CI) for non-optimal temperatures relative to the period median temperature (10.6 °C) on lags 0 to 5. For effect modification, daily average PM2.5 concentrations were categorized using the period median concentration (8.8 μg/m3). Z-tests were used to compare the results by PCC status and PM2.5. RESULTS Non-optimal cold temperatures increased the cumulative odds of infection (OR = 1.93; 95%CI:1.67-2.23, OR = 3.53; 95%CI:2.72-4.58, for moderate and extreme cold, respectively), with the strongest associations observed for non-PCC cases. Non-optimal heat temperatures decreased the odds of infection except for moderate heat among PCC cases (OR = 1.32; 95%CI:0.89-1.96). When PM2.5 was >8.8 μg/m3, the associations with cold were stronger, and moderate heat doubled the odds of infection with later development of PCC (OR = 2.18; 95%CI:1.01-4.69). When PM2.5 was ≤8.8 μg/m3, exposure to non-optimal temperatures reduced the odds of infection. CONCLUSION Exposure to cold increases SARS-CoV2 risk, especially on days with moderate to high air pollution. Heated temperatures and moderate to high air pollution during infection may cause PCC. These findings stress the need for mitigation and adaptation strategies for climate change to reduce increasing trends in the frequency of weather extremes that have consequences on air pollution concentrations.
Collapse
Affiliation(s)
- Huyen Nguyen Thi Khanh
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium; Institute of Environmental Medicine (IMM), Karolinska Institutet, Sweden.
| | - Katrien De Troeyer
- Social Epidemiology and Health Policy, Department Family Medicine and Population Health, University of Antwerp, Doornstraat 331, 2610, Wilrijk, Belgium.
| | - Pierre Smith
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium; Institute of Health and Society (IRSS), Université catholique de Louvain, Brussels, Belgium.
| | - Claire Demoury
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium.
| | - Lidia Casas
- Social Epidemiology and Health Policy, Department Family Medicine and Population Health, University of Antwerp, Doornstraat 331, 2610, Wilrijk, Belgium; Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Belgium.
| |
Collapse
|
8
|
Shousha HI, Ayman H, Hashem MB. Climate Changes and COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:217-231. [PMID: 39102199 DOI: 10.1007/978-3-031-61943-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Climatic change, which influences population growth and land usage, has been theorized to be linked to the emergence and spread of new viruses like the currently unfolding COVID-19 pandemic. In this chapter, we explain how climate change may have altered the beginning, transmission, and maybe even the sickness consequences of the COVID-19 pandemic. Where possible, we also provide mechanistic explanations for how this may have occurred. We have presented evidence that suggests climate change may have had a role in the establishment and transmission of SARS-CoV-2 infection, and most possibly even in some of its clinical effects. Human activities bringing people into closer contact with bats and animals like pangolins that potentially represent the intermediate hosts, and evidence that climate-induced changes in vegetation are the main reservoir source of coronaviruses for human infection, are among the explanations. Although there are still unsubstantiated indications that the first viral pathogen may have escaped from a laboratory, it is possible that this encounter took place in the field or in marketplaces in the instance of COVID-19. We also present the argument that climate change is working to enhance transmission between diseased and uninfected humans, and this is true regardless of the source of the original development of the disease. Changes in temperature and humidity make it easier for viruses to survive, and the impacts of industrial pollution induce people to cough and sneeze, which releases highly infectious aerosols into the air. These three factors combine to make this a more likely scenario than it would otherwise be. We suggest that changes in climate are contributing to create conditions that are favorable for the development of more severe symptoms of illness. It is more difficult to build the argument for this circumstance, and much of it is indirect. However, climate change has caused some communities to adjust their nutritional habits, both in terms of the quantity of food they eat and the quality of the foods they consume. The effects frequently become apparent as a result of alterations that are imposed on the microbiome of the gut, which, in turn, influence the types of immune responses that are produced. The incidence of comorbidities like diabetes and animal vectors like bats that transmit other illnesses that modify vulnerability to SARS-CoV-2 are also two examples of the factors that have been affected by climate change. In order to curb the development of infectious illnesses caused by new viruses, it is necessary to understand the connection between environmental dynamics and the emergence of new coronaviruses. This knowledge should lead to initiatives aimed at reducing global greenhouse gas emissions.
Collapse
Affiliation(s)
- Hend Ibrahim Shousha
- Faculty of Medicine, Endemic Medicine and Hepatogastroenterology, Cairo University, Giza, Egypt.
| | - Hedy Ayman
- Faculty of Medicine, Endemic Medicine and Hepatogastroenterology, Cairo University, Giza, Egypt
| | - Mohamed B Hashem
- Faculty of Medicine, Endemic Medicine and Hepatogastroenterology, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
da Silva PG, Hemnani M, Gonçalves J, Rodriguéz E, García-Encina PA, Nascimento MSJ, Sousa SIV, Myrmel M, Mesquita JR. Airborne SARS-CoV-2 is more frequently detected in environments related to children and elderly but likely non-infectious, Norway, 2022. Virol J 2023; 20:275. [PMID: 38001529 PMCID: PMC10675927 DOI: 10.1186/s12985-023-02243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigates the presence of SARS-CoV-2 in indoor and outdoor environments in two cities in Norway between April and May 2022. With the lifting of COVID-19 restrictions in the country and a focus on vaccination, this research aims to shed light on the potential for virus transmission in various settings. Air sampling was conducted in healthcare and non-healthcare facilities, covering locations frequented by individuals across different age groups. The study found that out of 31 air samples, only four showed the presence of SARS-CoV-2 RNA by RT-qPCR, with no viable virus detected after RNAse pre-treatment. These positive samples were primarily associated with environments involving children and the elderly. Notably, sequencing revealed mutations associated with increased infectivity in one of the samples. The results highlight the importance of considering children as potential sources of virus transmission, especially in settings with prolonged indoor exposure. As vaccination coverage increases globally, and with children still representing a substantial unvaccinated population, the study emphasizes the need to re-implement mask-wearing mandates indoors and in public transport to reduce virus transmission. The findings have implications for public health strategies to control COVID-19, particularly in the face of new variants and the potential for increased transmission during the autumn and winter seasons.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Mahima Hemnani
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - José Gonçalves
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid, 47011, Spain
| | - Elisa Rodriguéz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid, 47011, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina s/n, Valladolid, 47011, Spain
| | | | - Sofia I V Sousa
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Mette Myrmel
- Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João R Mesquita
- ICBAS-School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal.
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal.
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
- Virology Unit, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
10
|
Romeo A, Pellegrini R, Gualtieri M, Benassi B, Santoro M, Iacovelli F, Stracquadanio M, Falconi M, Marino C, Zanini G, Arcangeli C. Experimental and in silico evaluations of the possible molecular interaction between airborne particulate matter and SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165059. [PMID: 37353034 PMCID: PMC10284444 DOI: 10.1016/j.scitotenv.2023.165059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
During the early stage of the COVID-19 pandemic (winter 2020), the northern part of Italy has been significantly affected by viral infection compared to the rest of the country leading the scientific community to hypothesize that airborne particulate matter (PM) could act as a carrier for the SARS-CoV-2. To address this controversial issue, we first verified and demonstrated the presence of SARS-CoV-2 RNA genome on PM2.5 samples, collected in the city of Bologna (Northern Italy) in winter 2021. Then, we employed classical molecular dynamics (MD) simulations to investigate the possible recognition mechanism(s) between a newly modelled PM2.5 fragment and the SARS-CoV-2 Spike protein. The potential molecular interaction highlighted by MD simulations suggests that the glycans covering the upper Spike protein regions would mediate the direct contact with the PM2.5 carbon core surface, while a cloud of organic and inorganic PM2.5 components surround the glycoprotein with a network of non-bonded interactions resulting in up to 4769 total contacts. Moreover, a binding free energy of -207.2 ± 3.9 kcal/mol was calculated for the PM-Spike interface through the MM/GBSA method, and structural analyses also suggested that PM attachment does not alter the protein conformational dynamics. Although the association between the PM and SARS-CoV-2 appears plausible, this simulation does not assess whether these established interactions are sufficiently stable to carry the virus in the atmosphere, or whether the virion retains its infectiousness after the transport. While these key aspects should be verified by further experimental analyses, for the first time, this pioneering study gains insights into the molecular interactions between PM and SARS-CoV-2 Spike protein and will support further research aiming at clarifying the possible relationship between PM abundance and the airborne diffusion of viruses.
Collapse
Affiliation(s)
- Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Roberto Pellegrini
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Maurizio Gualtieri
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy; Department of Earth and Environmental Sciences, Piazza della Scienza 1, University of Milano-Bicocca, Milano
| | - Barbara Benassi
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Massimo Santoro
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Milena Stracquadanio
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Carmela Marino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy
| | - Gabriele Zanini
- Division of Models and Technologies for Risks Reduction, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 40129 Bologna, Italy
| | - Caterina Arcangeli
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123 Rome, Italy.
| |
Collapse
|
11
|
Yang J, Sun D, Xia T, Shi S, Suo J, Kuang H, Sun N, Hu H, Zheng Z, Zhou Y, Li X, Chen S, Huang H, Yan Z. Monitoring Prevalence and Persistence of Environmental Contamination by SARS-CoV-2 RNA in a Makeshift Hospital for Asymptomatic and Very Mild COVID-19 Patients. Int J Public Health 2023; 68:1605994. [PMID: 37767017 PMCID: PMC10520216 DOI: 10.3389/ijph.2023.1605994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Objective: To investigate the details of environmental contamination status by SARS-CoV-2 in a makeshift COVID-19 hospital. Methods: Environmental samples were collected from a makeshift hospital. The extent of contamination was assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for SARS-CoV-2 RNA from various samples. Results: There was a wide range of total collected samples contaminated with SARS-CoV-2 RNA, ranging from 8.47% to 100%. Results revealed that 70.00% of sewage from the bathroom and 48.19% of air samples were positive. The highest rate of contamination was found from the no-touch surfaces (73.07%) and the lowest from frequently touched surfaces (33.40%). The most contaminated objects were the top surfaces of patient cubic partitions (100%). The median Ct values among strongly positive samples were 33.38 (IQR, 31.69-35.07) and 33.24 (IQR, 31.33-34.34) for ORF1ab and N genes, respectively. SARS-CoV-2 relic RNA can be detected on indoor surfaces for up to 20 days. Conclusion: The findings show a higher prevalence and persistence in detecting the presence of SARS-CoV-2 in the makeshift COVID-19 hospital setting. The contamination mode of droplet deposition may be more common than contaminated touches.
Collapse
Affiliation(s)
- Jinyan Yang
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Dan Sun
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Tingting Xia
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Shi Shi
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Jijiang Suo
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Huihui Kuang
- Department of Laboratory Medicine, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Nana Sun
- Department of Laboratory Medicine, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Hongyan Hu
- Department of Laboratory Medicine, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Zhecheng Zheng
- Department of Health Economics Management, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Yang Zhou
- Department of Health Economics Management, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Xiaocui Li
- Department of Cardiology, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Shaojuan Chen
- Department of Cardiology, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Haiqiang Huang
- Department of Radiotherapy, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Zhongqiang Yan
- Department of Disease Prevention and Control, The Second Medical Center of People’s Liberation Army of China General Hospital, Beijing, China
| |
Collapse
|
12
|
Wang J, Huang Y, Dong Y, Wu B. Assessment of the impact of reopening strategies on the spatial transmission risk of COVID-19 based on a data-driven transmission model. Sci Rep 2023; 13:11146. [PMID: 37429885 DOI: 10.1038/s41598-023-37297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
COVID-19 has dramatically changed people's mobility geste patterns and affected the operations of different functional spots. In the environment of the successful reopening of countries around the world since 2022, it's pivotal to understand whether the reopening of different types of locales poses a threat of wide epidemic transmission. In this paper, by establishing an epidemiological model based on mobile network data, combining the data handed by the Safegraph website, and taking into account the crowd inflow characteristics and the changes of susceptible and latent populations, the trends of the number of crowd visits and the number of epidemic infections at different functional points of interest after the perpetration of continuing strategies were simulated. The model was also validated with daily new cases in ten metropolitan areas in the United States from March to May 2020, and the results showed that the model fitted the evolutionary trend of realistic data more accurately. Further, the points of interest were classified into risk levels, and the corresponding reopening minimum standard prevention and control measures were proposed to be implemented according to different risk levels. The results showed that restaurants and gyms became high-risk points of interest after the perpetration of the continuing strategy, especially the general dine-in restaurants were at higher risk levels. Religious exertion centers were the points of interest with the loftiest average infection rates after the perpetration of the continuing strategy. Points of interest such as convenience stores, large shopping malls, and pharmacies were at a lower risk for outbreak impact after the continuing strategy was enforced. Based on this, continuing forestallment and control strategies for different functional points of interest are proposed to provide decision support for the development of precise forestallment and control measures for different spots.
Collapse
Affiliation(s)
- Jing Wang
- School of Economics and Management, Fuzhou University, Fuzhou, 350116, China.
- Emergency Management Research Center, Fuzhou University, Fuzhou, 350116, China.
| | - YuHui Huang
- School of Economics and Management, Fuzhou University, Fuzhou, 350116, China
| | - Ying Dong
- School of Economics and Management, Fuzhou University, Fuzhou, 350116, China
| | - BingYing Wu
- School of Economics and Management, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
13
|
Bahramian A. Influence of indoor environmental conditions on airborne transmission and lifetime of sneeze droplets in a confined space: a way to reduce COVID-19 spread. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44067-44085. [PMID: 36680724 PMCID: PMC9867553 DOI: 10.1007/s11356-023-25421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Effects of indoor temperature (T∞) and relative humidity (RH∞) on the airborne transmission of sneeze droplets in a confined space were studied over the T∞ range of 15-30 °C and RH∞ of 22-62%. In addition, a theoretical evaporation model was used to estimate the droplet lifetime based on experimental data. The results showed that the body mass index (BMI) of the participants played an important role in the sneezing jet velocity, while the impact of the BMI and gender of participants was insignificant on the size distribution of droplets. At a critical relative humidity RH∞,crit of 46%, the sneezing jet velocity and droplet lifetime were roughly independent of T∞. At RH∞ < RH∞,crit, the sneezing jet velocity decreased by increasing T∞ from 15 to 30 °C, while its trend was reversed at RH∞ > RH∞,crit. The maximum spreading distance of aerosols increased by decreasing the RH∞ and increasing T∞, while the droplet lifetime increased by decreasing T∞ at RH∞ > RH∞,crit. The mean diameter of aerosolized droplets was less affected by T∞ than the large droplets at RH∞ < RH∞,crit, while the mean diameter and number fraction of aerosols were more influenced by RH∞ than the T∞ in the range of 46% ≤ RH∞ ≤ 62%. In summary, this study suggests suitable indoor environmental conditions by considering the transmission rate and lifetime of respiratory droplets to reduce the spread of COVID-19.
Collapse
Affiliation(s)
- Alireza Bahramian
- Department of Chemical Engineering, Hamedan University of Technology, P.O. Box, Hamedan, 65155, Iran.
| |
Collapse
|
14
|
Moazeni M, Rahimi M, Ebrahimi A. What are the Effects of Climate Variables on COVID-19 Pandemic? A Systematic Review and Current Update. Adv Biomed Res 2023; 12:33. [PMID: 37057247 PMCID: PMC10086649 DOI: 10.4103/abr.abr_145_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 04/15/2023] Open
Abstract
The climatological parameters can be different in various geographical locations. Moreover, they have possible impacts on COVID-19 incidence. Therefore, the purpose of this systematic review article was to describe the effects of climatic variables on COVID-19 pandemic in different countries. Systematic literature search was performed in Scopus, ISI Web of Science, and PubMed databases using ("Climate" OR "Climate Change" OR "Global Warming" OR "Global Climate Change" OR "Meteorological Parameters" OR "Temperature" OR "Precipitation" OR "Relative Humidity" OR "Wind Speed" OR "Sunshine" OR "Climate Extremes" OR "Weather Extremes") AND ("COVID" OR "Coronavirus disease 2019" OR "COVID-19" OR "SARS-CoV-2" OR "Novel Coronavirus") keywords. From 5229 articles, 424 were screened and 149 were selected for further analysis. The relationship between meteorological parameters is variable in different geographical locations. The results indicate that among the climatic indicators, the temperature is the most significant factor that influences on COVID-19 pandemic in most countries. Some studies were proved that warm and wet climates can decrease COVID-19 incidence; however, the other studies represented that warm location can be a high risk of COVID-19 incidence. It could be suggested that all climate variables such as temperature, humidity, rainfall, precipitation, solar radiation, ultraviolet index, and wind speed could cause spread of COVID-19. Thus, it is recommended that future studies will survey the role of all meteorological variables and interaction between them on COVID-19 spread in specific small areas such as cities of each country and comparison between them.
Collapse
Affiliation(s)
- Malihe Moazeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rahimi
- Department of Combat Desertification, Faculty of Desert Studies, Semnan University, Semnan, Iran
| | - Afshin Ebrahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Runlian H, Xinjie D, Ahmed O, Cho E, Chung S. Application of Stress and Anxiety to Viral Epidemics-6 to Measure the Anxiety Response of Cold Chain Practitioners During the COVID-19 Post-Pandemic Era in China. Psychiatry Investig 2023; 20:75-83. [PMID: 36891591 PMCID: PMC9996138 DOI: 10.30773/pi.2022.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/31/2022] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE This study explored the psychometric properties of the Chinese version of the Stress and Anxiety to Viral Epidemics-6 Items (SAVE-6) scale for cold chain practitioners exposed to moderate-to-high risk of infection. METHODS A total of 233 cold chain practitioners participated in an anonymous online survey, conducted from October to November 2021. The questionnaire comprised participant demographic characteristics, the Chinese version of SAVE-6, the Generalized Anxiety Disorders-7 (GAD-7), and the Patient Health Questionnaire-9 (PHQ-9) scales. RESULTS Based on the results of the parallel analysis, the single-structure model of the Chinese version of SAVE-6 was adopted. The scale showed satisfactory internal consistency (Cronbach's alpha=0.930) and good convergent validity based on Spearman's correlation coefficient with the GAD-7 (rho=0.616, p<0.001) and PHQ-9 (rho=0.540, p<0.001) scale scores. The optimal cutoff score for Chinese Stress and Anxiety to Viral Epidemics-9 Items was identified as ≥12 (area under the curve=0.797, Sensitivity=0.76, Specificity=0.66) for cold chain practitioners. CONCLUSION The Chinese version of the SAVE-6 scale has good psychometric properties and can be applied as a reliable and valid rating scale to assess the anxiety response of cold chain practitioners in the post-pandemic era.
Collapse
Affiliation(s)
- He Runlian
- Department of Nursing, Taiyuan Central Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Du Xinjie
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Oli Ahmed
- Department of Psychology, University of Chittagong, Chattogram, Bangladesh.,National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - Eulah Cho
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seockhoon Chung
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Alidadi M, Sharifi A. Effects of the built environment and human factors on the spread of COVID-19: A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158056. [PMID: 35985590 PMCID: PMC9383943 DOI: 10.1016/j.scitotenv.2022.158056] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 05/25/2023]
Abstract
Soon after its emergence, COVID-19 became a global problem. While different types of vaccines and treatments are now available, still non-pharmacological policies play a critical role in managing the pandemic. The literature is enriched enough to provide comprehensive, practical, and scientific insights to better deal with the pandemic. This research aims to find out how the built environment and human factors have affected the transmission of COVID-19 on different scales, including country, state, county, city, and urban district. This is done through a systematic literature review of papers indexed on the Web of Science and Scopus. Initially, these databases returned 4264 papers, and after different stages of screening, we found 166 relevant papers and reviewed them. The empirical papers that had at least one case study and analyzed the effects of at least one built environment factor on the spread of COVID-19 were selected. Results showed that the driving forces can be divided into seven main categories: density, land use, transportation and mobility, housing conditions, demographic factors, socio-economic factors, and health-related factors. We found that among other things, overcrowding, public transport use, proximity to public spaces, the share of health and services workers, levels of poverty, and the share of minorities and vulnerable populations are major predictors of the spread of the pandemic. As the most studied factor, density was associated with mixed results on different scales, but about 58 % of the papers reported that it is linked with a higher number of cases. This study provides insights for policymakers and academics to better understand the dynamic roles of the non-pharmacological driving forces of COVID-19 at different levels.
Collapse
Affiliation(s)
- Mehdi Alidadi
- Graduate School of Engineering and Advanced Sciences, Hiroshima University, Hiroshima, Japan.
| | - Ayyoob Sharifi
- Graduate School of Humanities and Social Science, Network for Education and Research on Peace and Sustainability (NERPS), and the Center for Peaceful and Sustainable Futures (CEPEAS), Hiroshima University, Japan.
| |
Collapse
|
17
|
Ford JD, Zavaleta-Cortijo C, Ainembabazi T, Anza-Ramirez C, Arotoma-Rojas I, Bezerra J, Chicmana-Zapata V, Galappaththi EK, Hangula M, Kazaana C, Lwasa S, Namanya D, Nkwinti N, Nuwagira R, Okware S, Osipova M, Pickering K, Singh C, Berrang-Ford L, Hyams K, Miranda JJ, Naylor A, New M, van Bavel B. Interactions between climate and COVID-19. Lancet Planet Health 2022; 6:e825-e833. [PMID: 36208645 PMCID: PMC9534524 DOI: 10.1016/s2542-5196(22)00174-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 05/22/2023]
Abstract
In this Personal View, we explain the ways that climatic risks affect the transmission, perception, response, and lived experience of COVID-19. First, temperature, wind, and humidity influence the transmission of COVID-19 in ways not fully understood, although non-climatic factors appear more important than climatic factors in explaining disease transmission. Second, climatic extremes coinciding with COVID-19 have affected disease exposure, increased susceptibility of people to COVID-19, compromised emergency responses, and reduced health system resilience to multiple stresses. Third, long-term climate change and prepandemic vulnerabilities have increased COVID-19 risk for some populations (eg, marginalised communities). The ways climate and COVID-19 interact vary considerably between and within populations and regions, and are affected by dynamic and complex interactions with underlying socioeconomic, political, demographic, and cultural conditions. These conditions can lead to vulnerability, resilience, transformation, or collapse of health systems, communities, and livelihoods throughout varying timescales. It is important that COVID-19 response and recovery measures consider climatic risks, particularly in locations that are susceptible to climate extremes, through integrated planning that includes public health, disaster preparedness, emergency management, sustainable development, and humanitarian response.
Collapse
Affiliation(s)
- James D Ford
- Priestley International Centre for Climate, University of Leeds, Leeds, UK.
| | - Carol Zavaleta-Cortijo
- Intercultural Citizenship and Indigenous Health Unit, Cayetano Heredia University, Lima, Peru
| | - Triphini Ainembabazi
- Department of Geography, Geo-Informatics, and Climatic Sciences, Makerere University, Kampala, Uganda
| | - Cecilia Anza-Ramirez
- Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Joana Bezerra
- Community Engagement, Rhodes University, Makhanda, South Africa
| | | | | | - Martha Hangula
- Department of Livestock Production, Agribusiness, and Economics, University of Namibia, Oshakati, Namibia
| | | | - Shuaib Lwasa
- Department of Geography, Geo-Informatics, and Climatic Sciences, Makerere University, Kampala, Uganda
| | | | - Nosipho Nkwinti
- Community Engagement, Rhodes University, Makhanda, South Africa
| | | | - Samuel Okware
- Uganda National Health Research Organisation, Entebbe, Uganda
| | - Maria Osipova
- Arctic State Institute of Culture and Arts, North-Eastern Federal University, Yakutsk, Russia
| | - Kerrie Pickering
- Sustainability Research Centre, University of the Sunshine Coast, Buderim, QLD, Australia
| | - Chandni Singh
- School of Environment and Sustainability, Indian Institute for Human Settlements, Bangalore, India
| | - Lea Berrang-Ford
- Priestley International Centre for Climate, University of Leeds, Leeds, UK
| | - Keith Hyams
- Department of Politics and International Studies, University of Warwick, Coventry, UK
| | - J Jaime Miranda
- Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Angus Naylor
- School of Public Health and Social Policy, University of Victoria, Victoria, BC, Canada
| | - Mark New
- Environmental and Geographical Science, University of Cape Town, Cape Town, South Africa
| | - Bianca van Bavel
- Priestley International Centre for Climate, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Baker CA, Gibson KE. Persistence of SARS-CoV-2 on surfaces and relevance to the food industry. Curr Opin Food Sci 2022; 47:100875. [PMID: 35784376 PMCID: PMC9238272 DOI: 10.1016/j.cofs.2022.100875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Determining the prevalence and persistence of viruses outside the human host aids our ability to characterize exposure risk across multiple transmission pathways. Since 2020, the Coronavirus Disease 2019 pandemic has resulted in a surge of research regarding severe acute respiratory syndrome-coronavirus-type 2 (SARS-CoV-2) and its potential to spread via direct and indirect contact transmission routes. Here, the authors discuss the current state of the science concerning SARS-CoV-2 transmission via contaminated surfaces and its persistence on environmental surfaces. This review aims to provide the reader with an overview of the currently published SARS-CoV-2 persistence studies, factors impacting persistence, guidelines for performing persistence studies, limitation of current data, and future directions for assessing SARS-CoV-2 persistence on fomites.
Collapse
Affiliation(s)
- Christopher A Baker
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| |
Collapse
|
19
|
Baker CA, Hamilton AN, Chandran S, Poncet AM, Gibson KE. Transfer of Phi6 Bacteriophage Between Human Skin and Surfaces Common to Consumer-Facing Environments. J Appl Microbiol 2022; 133:3719-3727. [PMID: 36083101 DOI: 10.1111/jam.15809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to determine the extent of Phi6 (Φ6) transfer between skin and surfaces relevant to consumer-facing environments based on inoculum matrix, surface type, and contact time. METHODS AND RESULTS Φ6 transfer rates were determined from skin-to-fomite and fomite-to-skin influenced by inoculum matrix (artificial saliva and tripartite), surface type (aluminum, plastic, stainless steel, touchscreen, vinyl, and wood) and contact time (5 and 10 s). Significant differences in estimated means were observed based on surface type (both transfer directions), inoculum matrix (skin-to-fomite), and contact time (both transfer directions). During a sequential transfer experiment from fomite-to-skin, the maximum number of consecutive transfer events observed was 3.33 ± 1.19, 2.33 ± 1.20, and 1.67 ± 1.21 for plastic, touchscreen, and vinyl, respectively. CONCLUSIONS Contact time significantly impacted Φ6 transfer rates, which may be attributed to skin absorption dynamics. Surface type should be considered for assessing Φ6 transfer rates. SIGNIFICANCE AND IMPACT OF THE STUDY Although the persistence of Φ6 on fomites has been characterized, limited data is available regarding the transfer of Φ6 amongst skin and fomites. Determining Φ6 transfer rates for surfaces in consumer-facing environments based on these factors is needed to better inform future virus transmission mitigation strategies.
Collapse
Affiliation(s)
- Christopher A Baker
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR.,Current address: U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, 20740, Maryland
| | - Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR
| | - Sahaana Chandran
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR
| | - Aurelie M Poncet
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas System Division of Agriculture, 72701, Fayetteville, AR
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 72704, Fayetteville, AR
| |
Collapse
|
20
|
Viveros ML, Azimi S, Pichon E, Roose-Amsaleg C, Bize A, Durandet F, Rocher V. Wild type and variants of SARS-COV-2 in Parisian sewage: presence in raw water and through processes in wastewater treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67442-67449. [PMID: 36029443 PMCID: PMC9418656 DOI: 10.1007/s11356-022-22665-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/18/2022] [Indexed: 05/30/2023]
Abstract
The presence of SARS-CoV-2 RNA has been extensively reported at the influent of wastewater treatment plants (WWTPs) worldwide, and its monitoring has been proposed as a potential surveillance tool to early alert of epidemic outbreaks. However, the fate of the SARS-CoV-2 RNA in the treatment process of WWTP has not been widely studied yet; therefore, in this study, we aimed to evaluate the efficiency of treatment processes in reducing SARS-CoV-2 RNA levels in wastewater. The treatment process of three WWTPs of the Parisian area in France was monitored on six different weeks over a period of 2 months (from April 14 to June 9, 2021). SARS-CoV-2 RNA copies were detected using digital polymerase chain reaction (dPCR). Investigation on the presence of variants of concern (Del69-70, E484K, and L452R) was also performed. Additionally, SARS-CoV-2 RNA loads in the WWTPs influents were expressed as the viral concentration in per population equivalent (PE) and showed a good correlation with French public health indicators (incidence rate). SARS-CoV-2 RNA loads were notably reduced along the water treatment lines of the three WWTPs studied (2.5-3.4 log reduction). Finally, very low SARS-CoV-2 RNA loads were detected in effluents (non-detected in over half of the samples) which indicated that the potential risk of the release of wastewater effluents to the environment is probably insignificant, in the case of WWTPs enabling an efficient biological removal of nitrogen.
Collapse
Affiliation(s)
| | - Sam Azimi
- SIAAP - Direction Innovation, 82 avenue Kléber, 92700, Colombes, France
| | - Elodie Pichon
- GEOBIOMICS, 335 rue Louis Lépine, 34000, Montpellier, France
| | | | - Ariane Bize
- PRocédés biOtechnologiques Au Service de L'Environnement, INRAE Université Paris-Saclay, INRAE, 92761, Antony, France
| | | | - Vincent Rocher
- SIAAP - Direction Innovation, 82 avenue Kléber, 92700, Colombes, France
| |
Collapse
|
21
|
Iqbal N, Rafiq M, Masooma, Tareen S, Ahmad M, Nawaz F, Khan S, Riaz R, Yang T, Fatima A, Jamal M, Mansoor S, Liu X, Ahmed N. The SARS-CoV-2 differential genomic adaptation in response to varying UVindex reveals potential genomic resources for better COVID-19 diagnosis and prevention. Front Microbiol 2022; 13:922393. [PMID: 36016784 PMCID: PMC9396647 DOI: 10.3389/fmicb.2022.922393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a pandemic disease reported in almost every country and causes life-threatening, severe respiratory symptoms. Recent studies showed that various environmental selection pressures challenge the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infectivity and, in response, the virus engenders new mutations, leading to the emergence of more virulent strains of WHO concern. Advance prediction of the forthcoming virulent SARS-CoV-2 strains in response to the principal environmental selection pressures like temperature and solar UV radiation is indispensable to overcome COVID-19. To discover the UV-solar radiation-driven genomic adaption of SARS-CoV-2, a curated dataset of 2,500 full-grade genomes from five different UVindex regions (25 countries) was subjected to in-depth downstream genome-wide analysis. The recurrent variants that best respond to UV-solar radiations were extracted and extensively annotated to determine their possible effects and impacts on gene functions. This study revealed 515 recurrent single nucleotide variants (rcntSNVs) as SARS-CoV-2 genomic responses to UV-solar radiation, of which 380 were found to be distinct. For all discovered rcntSNVs, 596 functional effects (rcntEffs) were detected, containing 290 missense, 194 synonymous, 81 regulatory, and 31 in the intergenic region. The highest counts of missense rcntSNVs in spike (27) and nucleocapsid (26) genes explain the SARS-CoV-2 genomic adjustment to escape immunity and prevent UV-induced DNA damage, respectively. Among all, the most commonly observed rcntEffs were four missenses (RdRp-Pro327Leu, N-Arg203Lys, N-Gly204Arg, and Spike-Asp614Gly) and one synonymous (ORF1ab-Phe924Phe) functional effects. The highest number of rcntSNVs found distinct and were uniquely attributed to the specific UVindex regions, proposing solar-UV radiation as one of the driving forces for SARS-CoV-2 differential genomic adaptation. The phylogenetic relationship indicated the high UVindex region populating SARS-CoV-2 as the recent progenitor of all included samples. Altogether, these results provide baseline genomic data that may need to be included for preparing UVindex region-specific future diagnostic and vaccine formulations.
Collapse
Affiliation(s)
- Naveed Iqbal
- Faculty of Life Sciences and Informatics, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Muhammad Rafiq
- Faculty of Life Sciences and Informatics, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Masooma
- Faculty of Life Sciences and Informatics, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Sanaullah Tareen
- Faculty of Life Sciences and Informatics, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Maqsood Ahmad
- Faculty of Life Sciences and Informatics, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Faheem Nawaz
- Faculty of Life Sciences and Informatics, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Sumair Khan
- Faculty of Life Sciences and Informatics, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Rida Riaz
- Department of Microbiology, Quaid i Azam University, Islamabad, Pakistan
| | - Ting Yang
- Beijing Genomic Institute (BGI), Shenzhen, China
| | - Ambrin Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Shahid Mansoor
- Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Xin Liu
- Beijing Genomic Institute (BGI), Shenzhen, China
| | - Nazeer Ahmed
- Faculty of Life Sciences and Informatics, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| |
Collapse
|
22
|
Klein MD, Sciaudone M, Richardson D, Lacayo R, McClean CM, Kharabora O, Murray K, Zivanovich MM, Strohminger S, Gurnett R, Markmann AJ, Bhowmik DR, Salgado EM, Castro-Arroyo E, Aiello AE, Boyce RM, Juliano JJ, Bowman NM. SARS-CoV-2 seroprevalence and risk factors among meat packing, produce processing, and farm workers. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000619. [PMID: 36962464 PMCID: PMC10022315 DOI: 10.1371/journal.pgph.0000619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/27/2022] [Indexed: 11/18/2022]
Abstract
Meat packing, produce processing, and farm workers are known to have an elevated risk of COVID-19, but occupational risk factors in this population are unclear. We performed an observational cohort study of meat packing, produce processing, and farm workers in North Carolina in fall 2020. Blood, saliva, and nasal turbinate samples were collected to assess for SARS-CoV-2 seropositivity. Risk factors for SARS-CoV-2 seropositivity were investigated using chi-square tests, two-sample t-tests, and adjusted risk ratio analyses. Among 118 enrolled workers, the baseline SARS-CoV-2 seroprevalence was 50.0%. Meat packing plant workers had the highest SARS-CoV-2 seroprevalence (64.6%), followed by farm workers (45.0%) and produce processing workers (10.0%), despite similar sociodemographic characteristics. Compared to SARS-CoV-2 seronegative workers, seropositive workers were more likely to work in loud environments that necessitated yelling to communicate (RR: 1.83, 95% CI: 1.25-2.69), work in cold environments (RR: 1.58, 95% CI: 1.12-2.24), or continue working despite developing symptoms at work (RR: 1.63, 95% CI: 1.14-2.32). After adjusting for age and working despite symptoms, high occupational noise levels were associated with a 1.72 times higher risk of SARS-CoV-2 seropositivity (95% CI: 1.16-2.55). Half of food processing workers showed evidence of past SARS-CoV-2 infection, a prevalence five times higher than most of the United States population at the time of the study. Work environments with loud ambient noise may pose elevated risks for SARS-CoV-2 transmission. Our findings also highlight the disproportionate burden of COVID-19 among underserved and economically disadvantaged Latinx communities in the United States.
Collapse
Affiliation(s)
- Melissa D. Klein
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Michael Sciaudone
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - David Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Roberto Lacayo
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Colleen M. McClean
- School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Oksana Kharabora
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Katherine Murray
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Miriana Moreno Zivanovich
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Stephen Strohminger
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rachel Gurnett
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Alena J. Markmann
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - D. Ryan Bhowmik
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Emperatriz Morales Salgado
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Edwin Castro-Arroyo
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Allison E. Aiello
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ross M. Boyce
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jonathan J. Juliano
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Natalie M. Bowman
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
23
|
Toumi A, Boudriga S, Mandour YM, Mekki AA, Knorr M, Strohmann C, Kirchhoff JL, Sobeh M. Design of Novel Enantiopure Dispirooxindolopyrrolidine-Piperidones as Promising Candidates toward COVID-19: Asymmetric Synthesis, Crystal Structure and In Silico Studies. Molecules 2022; 27:molecules27123945. [PMID: 35745069 PMCID: PMC9228936 DOI: 10.3390/molecules27123945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the effectiveness of COVID-19 vaccines, there is still an urgent need for discovering new anti-viral drugs to address the awful spread and transmission of the rapidly modifiable virus. In this study, the ability of a small library of enantiomerically pure spirooxindolopyrrolidine-grafted piperidones to inhibit the main protease of SARS-CoV-2 (Mpro) is evaluated. These spiroheterocycles were synthesized by 1,3-dipolar cycloaddition of various stabilized azomethine ylides with chiral dipolarophiles derived from N-[(S)-(-)-methylbenzyl]-4-piperidone. The absolute configuration of contiguous carbons was confirmed by a single crystal X-ray diffraction analysis. The binding of these compounds to SARS-CoV-2 Mpro was investigated using molecular docking and molecular dynamics simulation. Three compounds 4a, 4b and 4e exhibited stable binding modes interacting with the key subsites of the substrate-binding pocket of SARS-CoV-2 Mpro. The synthesized compounds represent potential leads for the development of novel inhibitors of SARS-CoV-2 main protease protein for COVID-19 treatment.
Collapse
Affiliation(s)
- Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia;
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia;
- Correspondence: (S.B.); (M.S.)
| | - Yasmine M. Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt; (Y.M.M.); (A.A.M.)
| | - Ahmed A. Mekki
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt; (Y.M.M.); (A.A.M.)
| | - Michael Knorr
- Institut UTINAM-UMR CNRS 6213, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France;
| | - Carsten Strohmann
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (C.S.); (J.-L.K.)
| | - Jan-Lukas Kirchhoff
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (C.S.); (J.-L.K.)
| | - Mansour Sobeh
- AgroBioSciences Research, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, Ben Guerir 43150, Morocco
- Correspondence: (S.B.); (M.S.)
| |
Collapse
|
24
|
Emergence of SARS-CoV-2 New Variants and Their Clinical Significance. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:7336309. [PMID: 35669528 PMCID: PMC9167142 DOI: 10.1155/2022/7336309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Abstract
COVID-19 is a respiration-related disease caused by SARS-CoV-2 and was identified in China's Wuhan city. More than 223 countries are affected by the disease worldwide. The new variants of the COVID-19 virus are causing problems, from average to life-threatening pneumonia and acute respiratory distress syndrome (ARDS). Presently, there are 170 vaccine candidates, out of which 10 have been approved by the WHO for vaccination, such as Ad26.COV2.S, Pfizer/BioNTech, COVISHIELD, Covovax, Moderna, KoviVac, and some other vaccines to combat the deadly SARS-CoV-2 infection. From all these vaccines, Pfizer/BioNTech and Moderna are showing the highest efficacy against COVID-19. These vaccines are highly efficient against COVID-19 disease, but their potentiality against new variants remains a question. COVID-19 vaccines are highly effective at preventing severe illnesses, hospitalizations, and death. The antibodies elicited by earlier infection or vaccination are the key for possible protection against SARS-CoV-2. The problem has been exacerbated by new information from Africa on the origins of the novel contagious SARS-CoV-2 strain. These new strains occur due to unique mutations in the spike protein, which modify SARS-CoV-2 transmission and infection capabilities, limiting the efficacy of the COVID-19 vaccination. Hence, there is a need to find a potential vaccine against it.
Collapse
|
25
|
Pizarro AB, Persad E, Durao S, Nussbaumer-Streit B, Engela-Volker JS, McElvenny D, Rhodes S, Stocking K, Fletcher T, Martin C, Noertjojo K, Sampson O, Verbeek JH, Jørgensen KJ, Bruschettini M. Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings. Cochrane Database Syst Rev 2022; 5:CD015112. [PMID: 35514111 PMCID: PMC9073086 DOI: 10.1002/14651858.cd015112.pub2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Although many people infected with SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) experience no or mild symptoms, some individuals can develop severe illness and may die, particularly older people and those with underlying medical problems. Providing evidence-based interventions to prevent SARS-CoV-2 infection has become more urgent with the spread of more infectious SARS-CoV-2 variants of concern (VoC), and the potential psychological toll imposed by the coronavirus disease 2019 (COVID-19) pandemic. Controlling exposures to occupational hazards is the fundamental method of protecting workers. When it comes to the transmission of viruses, such as SARS-CoV-2, workplaces should first consider control measures that can potentially have the most significant impact. According to the hierarchy of controls, one should first consider elimination (and substitution), then engineering controls, administrative controls, and lastly, personal protective equipment (PPE). OBJECTIVES To assess the benefits and harms of interventions in non-healthcare-related workplaces to reduce the risk of SARS-CoV-2 infection relative to other interventions, or no intervention. SEARCH METHODS We searched MEDLINE, Embase, Web of Science, Cochrane COVID-19 Study Register, the Canadian Centre for Occupational Health and Safety (CCOHS), Clinicaltrials.gov, and the International Clinical Trials Registry Platform to 14 September 2021. We will conduct an update of this review in six months. SELECTION CRITERIA We included randomised control trials (RCT) and planned to include non-randomised studies of interventions. We included adult workers, both those who come into close contact with clients or customers (e.g. public-facing employees, such as cashiers or taxi drivers), and those who do not, but who could be infected by co-workers. We excluded studies involving healthcare workers. We included any intervention to prevent or reduce workers' exposure to SARS-CoV-2 in the workplace, defining categories of intervention according to the hierarchy of hazard controls, i.e. elimination; engineering controls; administrative controls; personal protective equipment. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were incidence rate of SARS-CoV-2 infection (or other respiratory viruses), SARS-CoV-2-related mortality, adverse events, and absenteeism from work. Our secondary outcomes were all-cause mortality, quality of life, hospitalisation, and uptake, acceptability, or adherence to strategies. We used the Cochrane RoB 2 tool to assess the risk of bias, and GRADE methods to assess the certainty of evidence for each outcome. MAIN RESULTS Elimination of exposure interventions We included one study examining an intervention that focused on elimination of hazards. This study is an open-label, cluster-randomised, non-inferiority trial, conducted in England in 2021. The study compared standard 10-day self-isolation after contact with an infected person to a new strategy of daily rapid antigen testing and staying at work if the test is negative (test-based attendance). The trialists hypothesised that this would lead to a similar rate of infections, but lower COVID-related absence. Staff (N = 11,798) working at 76 schools were assigned to standard isolation, and staff (N = 12,229) at 86 schools to the test-based attendance strategy. The results between test-based attendance and standard 10-day self-isolation were inconclusive for the rate of symptomatic PCR-positive SARS-COV-2 infection rate ratio ((RR) 1.28, 95% confidence interval (CI) 0.74 to 2.21; 1 study, very low-certainty evidence)). The results between test-based attendance and standard 10-day self-isolation were inconclusive for the rate of any PCR-positive SARS-COV-2 infection (RR 1.35, 95% CI 0.82 to 2.21; 1 study, very low-certainty evidence). COVID-related absenteeism rates were 3704 absence days in 566,502 days-at-risk (6.5 per 1000 days at risk) in the control group and 2932 per 539,805 days-at-risk (5.4 per 1000 days at risk) in the intervention group (RR 0.83; 95% CI 0.55 to 1.25). The certainty of the evidence was downgraded to low, due to imprecision. Uptake of the intervention was 71 % in the intervention group, but not reported for the control intervention. The trial did not measure other outcomes, SARS-CoV-2-related mortality, adverse events, all-cause mortality, quality of life, and hospitalisation. We found one ongoing RCT about screening in schools, using elimination of hazard strategies. Personal protective equipment We found one ongoing non-randomised study on the effects of closed face shields to prevent COVID-19 transmission. Other intervention categories We did not find studies in the other intervention categories. AUTHORS' CONCLUSIONS We are uncertain whether a test-based attendance policy affects rates of PCR-postive SARS-CoV-2 infection (any infection; symptomatic infection) compared to standard 10-day self-isolation amongst school and college staff. Test-based attendance policy may result in little to no difference in absence rates compared to standard 10-day self-isolation. As a large part of the population is exposed in the case of a pandemic, an apparently small relative effect that would not be worthwhile from the individual perspective may still affect many people, and thus, become an important absolute effect from the enterprise or societal perspective. The included study did not report on any other primary outcomes of our review, i.e. SARS-CoV-2-related mortality and adverse events. No completed studies were identified on any other interventions specified in this review, but two eligible studies are ongoing. More controlled studies are needed on testing and isolation strategies, and working from home, as these have important implications for work organisations.
Collapse
Affiliation(s)
| | - Emma Persad
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation, Danube University Krems, Krems, Austria
| | - Solange Durao
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | - Barbara Nussbaumer-Streit
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation, Danube University Krems, Krems, Austria
| | - Jean S Engela-Volker
- Division of Population Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Damien McElvenny
- Centre for Occupational and Environmental Health, University of Manchester, Manchester, UK
| | - Sarah Rhodes
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester, UK
| | - Katie Stocking
- Centre for Biostatistics, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tony Fletcher
- Epidemiology Department, Public Health England Centre for Radiation Chemical and Environmental Hazards (CRCE), London, UK
| | | | | | | | | | - Karsten Juhl Jørgensen
- Centre for Evidence-Based Medicine Odense (CEBMO) and Cochrane Denmark, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Matteo Bruschettini
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
26
|
Bartolomeu M, Braz M, Costa P, Duarte J, Pereira C, Almeida A. Evaluation of UV-C Radiation Efficiency in the Decontamination of Inanimate Surfaces and Personal Protective Equipment Contaminated with Phage ϕ6. Microorganisms 2022; 10:593. [PMID: 35336168 PMCID: PMC8954440 DOI: 10.3390/microorganisms10030593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
To help halt the global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appropriate disinfection techniques are required. Over the last years, the interest in Ultraviolet-C (UV-C) radiation as a method to disinfect inanimate surfaces and personal protective equipment (PPE) has increased, mainly to efficiently disinfect and prevent SARS-CoV-2 from spreading and allow for the safe reuse of said equipment. The bacteriophage ϕ6 (or simply phage ϕ6) is an RNA virus with a phospholipid envelope and is commonly used in environmental studies as a surrogate for human RNA-enveloped viruses, including SARS-CoV-2. The present study investigated the use of two new UV irradiation systems ((2)2.4W and (8)5.5W)) constituted by conventional mercury UV-C lamps with a strong emission peak at ~254 nm to potentially inactivate phage ϕ6 on different surfaces (glass, plastic, stainless steel, and wood) and personal protective equipment, PPE, (surgical and filtering facepiece 2, FFP2, masks, a clear acetate visor, and disposable protective clothing). The results showed that both UV-C systems were effective in inactivating phage ϕ6, but the UV-C sterilizing chamber (8)5.5W had the best disinfection performance on the tested surfaces. The inactivation effectiveness is material-dependent on all surfaces, reaching the detection limit of the method at different times (between 60 and 240 s of irradiation). The glass surface needed less time to reduce the virus (30 s) when compared with plastic, stainless, and wood surfaces (60 s). The virus inactivation was more effective in the disposable surgical and FFP2 masks (60 and 120 s, respectively) than in the disposable vest and clear acetate visor (240 s). Overall, this study suggests that UV-C lamps with peak emission at ~254 nm could provide rapid, efficient, and sustainable sanitization procedures to different materials and surfaces. However, dosage and irradiation time are important parameters to be considered during their implementation as a tool in the fight against human coronaviruses, namely against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | - Carla Pereira
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (M.B.); (P.C.); (J.D.)
| | - Adelaide Almeida
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (M.B.); (P.C.); (J.D.)
| |
Collapse
|
27
|
Ishmatov A. "SARS-CoV-2 is transmitted by particulate air pollution": Misinterpretations of statistical data, skewed citation practices, and misuse of specific terminology spreading the misconception. ENVIRONMENTAL RESEARCH 2022; 204:112116. [PMID: 34562486 PMCID: PMC8489301 DOI: 10.1016/j.envres.2021.112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 05/03/2023]
Abstract
In epidemiology, there are still outdated myths associated with the spread of respiratory infections. Recently, we have witnessed the origination of a new misconception, to the effect that SARS-CoV-2 is transmitted in the open air by way of particulate air pollution (atmospheric particulate matter (PM)). There is no evidence to support the idea behind this misconception. Nevertheless, more and more people are involved in animated debate and the number of studies concerning atmospheric PM as a carrier of SARS-CoV-2 is growing rapidly. In this work, the origin of the misconception was investigated, and the published papers which have contributed to the spread of this myth were analyzed. The results show that the following factors lie behind the origin and spread of the misconception: a) The specific terminology is not always clearly defined or consistently used by scientists. In particular, the terms 'particulate matter', 'atmospheric aerosol particles', 'air pollutants', and 'atmospheric aerosols' need to be clarified, and besides they are often equated to 'infectious aerosols', 'virus-bearing aerosols', 'bio-aerosols', 'virus-laden particles', 'respiratory aerosol/droplets', and 'droplet nuclei'. b) Authors misinterpret statistical data and information from other sources. Interpretation of the correlation between PM levels and the increasing incidence and severity of COVID-19 infection, is often changed from "PM may reflect the indirect action of certain atmospheric conditions that maintain infectious nuclei suspended for prolonged periods, parameters that also act on atmospheric pollutants" to "PM could cause an increase in infectious droplets/aerosols containing SARS-CoV-2." This is a dramatic change to the meaning. Moreover, it is often not taken into account that PM may reflect activities in areas with high population density and this population density at the same time contributes to the spread COVID-19. c) Skewed citation practices. Many authors cite a hypothetical conclusion from an original study, then other authors cite the papers of these authors as primary sources. This practice leads to the effect that there are many witnesses to a 'phenomenon' that did not ever occur. Thus, the terminology used in interdisciplinary communications should be more nuanced and defined precisely. Authors should be more careful when citing unconfirmed data (and hypotheses) as well as in interpreting statistical data so as to avoid confusion and spreading false information. This is especially important now in the era of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Alexander Ishmatov
- Research Institute of Experimental and Clinical Medicine, Timakova St., Bild. 2., Novosibirsk, 630117, Russian Federation; Kazan Federal University, Kremlyovskaya St. 18, Kazan, 420008, Russian Federation; Togliatti State University, Belorusskaya St. 14, Togliatti, 445020, Russian Federation.
| |
Collapse
|
28
|
Yassin MF, Aldashti HA. Stochastic analysis of the relationship between atmospheric variables and coronavirus disease (COVID-19) in a hot, arid climate. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:500-516. [PMID: 34156152 PMCID: PMC8427079 DOI: 10.1002/ieam.4481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/02/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The rapid outbreak of the coronavirus disease (COVID-19) has affected millions of people all over the world and killed hundreds of thousands. Atmospheric conditions can play a fundamental role in the transmission of a virus. The relationship between several atmospheric variables and the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are therefore investigated in this study, in which the State of Kuwait, which has a hot, arid climate, is considered during free movement (without restriction), partial lockdown (partial restrictions), and full lockdown (full restriction). The relationship between the infection rate, growth rate, and doubling time for SARS-CoV-2 and atmospheric variables are also investigated in this study. Daily data describing the number of COVID-19 cases and atmospheric variables, such as temperature, relative humidity, wind speed, visibility, and solar radiation, were collected for the period February 24 to May 30, 2020. Stochastic models were employed to analyze how atmospheric variables can affect the transmission of SARS-CoV-2. The normal and lognormal probability and cumulative density functions (PDF and CDF) were applied to analyze the relationship between atmospheric variables and COVID-19 cases. The Spearman's rank correlation test and multiple regression model were used to investigate the correlation of the studied variables with the transmission of SARS-CoV-2 and to confirm the findings obtained from the stochastic models. The results indicate that relative humidity had a significant negative correlation with the number of COVID-19 cases, whereas positive correlations were observed for cases of infection and temperature, wind speed, and visibility. The infection rate for SARS-CoV-2 is directly proportional to the air temperature, wind speed, and visibility, whereas inversely related to the humidity. The lowest growth rate and longest doubling time of the COVID-19 infection occurred during the full lockdown period. The results in this study may help the World Health Organization (WHO) make specific recommendations about the outbreak of COVID-19 for decision-makers around the world. Integr Environ Assess Manag 2022;18:500-516. © 2021 SETAC.
Collapse
Affiliation(s)
- Mohamed F. Yassin
- Environmental Pollution and Climate ProgramKuwait Institute for Research and Science, SafatKuwait
| | - Hassan A. Aldashti
- Department of MeteorologyDirectorate General of Civil Aviation, SafatKuwait
| |
Collapse
|
29
|
Liu J, Zheng T, Xia W, Xu S, Li Y. Cold chain and severe acute respiratory syndrome coronavirus 2 transmission: a review for challenges and coping strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:50-65. [PMID: 35658108 PMCID: PMC9047647 DOI: 10.1515/mr-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/13/2021] [Indexed: 06/15/2023]
Abstract
Since June 2020, the re-emergence of coronavirus disease 2019 (COVID-19) epidemics in parts of China was linked to the cold chain, which attracted extensive attention and heated discussions from the public. According to the typical characteristics of these epidemics, we speculated a possible route of transmission from cold chain to human. A series of factors in the supply chain contributed to the epidemics if the cold chain were contaminated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as temperature, humidity, personal hygiene/protection, and disinfection. The workers who worked in the cold chain at the receiving end faced a higher risk of being infected when they were not well protected. Facing the difficult situation, China put forward targeted and powerful countermeasures to block the cold chain-related risk. However, in the context of the unstable pandemic situation globally, the risk of the cold chain needs to be recognized and evaluated seriously. Hence, in this review, we reviewed the cold chain-related epidemics in China, analyzed the possible mechanisms, introduced the Chinese experience, and suggested coping strategies for the global epidemic prevention and control.
Collapse
Affiliation(s)
- Jiangtao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
30
|
Berdida DJE, Grande RAN. Quality of life and academic resilience of Filipino nursing students during the COVID-19 pandemic: a cross-sectional study. Int J Nurs Educ Scholarsh 2022; 18:ijnes-2021-0115. [PMID: 34995025 DOI: 10.1515/ijnes-2021-0115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/21/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Studies on quality of life (QoL) and academic resilience among nursing students during the Coronavirus disease (COVID-19) pandemic remain underreported. This study investigated the relationship between nursing students' QoL and academic resilience and their predictors during the COVID-19 pandemic. METHODS A descriptive survey, cross-sectional study that used two self-reported questionnaire scales to evaluate the QoL and academic resilience of Filipino nursing students (n=924). Chi-squared test and multiple regression were used to analyze the data. RESULTS There was no significant association between the QoL and academic resilience to participants' profile variables. Gender and year level of nursing students were significant predictors of QoL and academic resilience. CONCLUSIONS Our study concludes that a better understanding of the QoL and academic resilience, which are two distinct concepts critical in developing a student's mental well-being, will help stakeholders in nursing education establish effective psychoeducation programs for nursing students.
Collapse
Affiliation(s)
| | - Rizal Angelo N Grande
- Mental Health Nursing Department, College of Nursing, University of Ha'il, Ha'il City, KSA.,College of Health Allied and Medical Professions, University of San Agustin, Iloilo City, Iloilo, Philippines
| |
Collapse
|
31
|
Hachem M, Bensefa-Colas L, Momas I. Changes in air quality in-taxis and in working conditions of taxi drivers pre- and post-lockdown, during the COVID-19 pandemic in the Paris area. INDOOR AIR 2022; 32:e12967. [PMID: 34866247 DOI: 10.1111/ina.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
We evaluated the impact of the lockdown restriction measures in the Paris area on the variation of in-vehicle ultrafine particle (UFP) and black carbon (BC) concentrations between the pre- and post-lockdown period and professional drivers' working conditions and practices. The study was conducted with 33 taxi drivers. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth® , respectively, on two typical working days pre- and post-lockdown. Job characteristics were self-reported. Our results showed that post-lockdown, both the number of clients and journey duration significantly decreased. Taxi drivers opened their windows significantly more and reduced the use of air recirculation. UFP decreased significantly by 32% and BC by 31% post-lockdown, with a weaker positive correlation compared to pre-lockdown. The reduction of in-vehicle UFP was due mainly to the reduction of traffic flow and ventilation settings, though the latter probably varied according to traffic conditions. The variation of in-vehicle BC also tended to be related to the decrease in traffic flow post-lockdown. We emphasize the role of traffic emissions on in-vehicle air pollution and that preventive measures such ventilation settings would help to minimize the exposure of professional drivers and passengers to air pollutants.
Collapse
Affiliation(s)
- Melissa Hachem
- Paris University, CRESS-INSERM UMR_1153, INRAE, HERA Team, Paris, France
| | - Lynda Bensefa-Colas
- Paris University, CRESS-INSERM UMR_1153, INRAE, HERA Team, Paris, France
- Department of Occupational and Environmental Diseases, Hôtel-Dieu Hospital, APHP, Centre-Paris University, Paris, France
| | - Isabelle Momas
- Paris University, CRESS-INSERM UMR_1153, INRAE, HERA Team, Paris, France
| |
Collapse
|
32
|
Locas A, Brassard J, Rose-Martel M, Lambert D, Green A, Deckert A, Illing M. Comprehensive Risk Pathway of the Qualitative Likelihood of Human Exposure to Severe Acute Respiratory Syndrome Coronavirus 2 from the Food Chain. J Food Prot 2022; 85:85-97. [PMID: 34499732 PMCID: PMC9906280 DOI: 10.4315/jfp-21-218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/08/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT A group of experts from all Canadian federal food safety partners was formed to monitor the potential issues relating to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) food contamination, to gather and consider all of the relevant evidence and to determine the impact for Canadian food safety. A comprehensive risk pathway was generated to consider the likelihood of a SARS-CoV-2 contamination event at any of the relevant steps of the food processing and handling chain and the potential for exposure and transmission of the virus to the consumer. The scientific evidence was reviewed and assessed for each event in the pathway, taking into consideration relevant elements that could increase or mitigate the risk of contamination. The advantage of having an event-wise contextualization of the SARS-CoV-2 transmission pathway through the food chain is that it provides a systematic and consistent approach to evaluate any new data and communicate its importance and impact. The pathway also increases the objectivity and consistency of the assessment in a rapidly evolving and high-stakes situation. Based on our review and analysis, there is currently no comprehensive epidemiological evidence of confirmed cases of SARS-CoV-2, or its known variants, causing coronavirus disease 2019 from transmission through food or food packaging. Considering the remote possibility of exposure through food, the likelihood of exposure by ingestion or contact with mucosa is considered negligible to very low, and good hygiene practices during food preparation should continue to be followed. HIGHLIGHTS
Collapse
Affiliation(s)
- Annie Locas
- Canadian Food Inspection Agency, 1400 Merivale, Ottawa, Ontario, Canada K1A 0Y9,Author for correspondence. Tel: 613-773-6539
| | - Julie Brassard
- Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec, Canada J2S 8E3
| | - Megan Rose-Martel
- Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Ontario, Canada K1A 0K9
| | - Dominic Lambert
- Canadian Food Inspection Agency, 3400 Casavant Boulevard West, Saint-Hyacinthe, Quebec, Canada J2S 8E3
| | - Alyssa Green
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| | - Anne Deckert
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| | - Michelle Illing
- Canadian Food Inspection Agency, 1400 Merivale, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
33
|
Walkable City and Military Enclaves: Analysis and Decision-Making Approach to Support the Proximity Connection in Urban Regeneration. SUSTAINABILITY 2022. [DOI: 10.3390/su14010457] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Accessibility and urban walkability are the cornerstones of urban policies for the contemporary city, which needs to be oriented towards sustainable development principles and models. Such aims are included in the objectives of the 2030 Agenda, as well as in the ambitious objectives of the ‘European Green Deal’. These concepts are closely linked to the paradigm of a sustainable city—livable, healthy and inclusive—based on a system of high-quality public spaces and on a network of services and infrastructures, both tangible and intangible, capable of strengthening and building new social, economic and environmental relationships. It is necessary to recognize potential opportunities for connection and permeability in consolidated urban environments. These are very often fragmented and are characterized by enclaves of very different kinds. Ghettoes and gated communities, old industrial plants and military installations and facilities, to cite a few, represent examples of cases where closures on urban fabrics are realized, impeding full walkability and accessibility. Within such a framework, the present research is aimed at focusing on a particular set of enclaves, such as those represented by the military sites being reconfigured to civilian use, a phenomenon that characterizes many urban areas in the world; in Europe; and in Italy, in particular, given the recent history and the Cold War infrastructure heritage. In such a sense, the city of Cagliari (Sardinia Island, Italy) represents an interesting case study as it is characterized by the presence of a series of military complexes; real ‘enclaves’ influencing the proximity connections; and, more generally, walkability. Building on previous research and analysis of policies and projects aimed at reintroducing, even partially, this military asset into civilian life (Green Barracks Project (GBP)-2019), this paper proposes and applies a methodology to evaluate the effects of urban regeneration on walkability in a flexible network logic, oriented to the ‘15 min city’ model or, more generally, to the renewed, inclusive, safe “city of proximity”, resilient and sustainable.
Collapse
|
34
|
Hernandez-Garcia E, Chrysikou E, Kalea AZ. The Interplay between Housing Environmental Attributes and Design Exposures and Psychoneuroimmunology Profile-An Exploratory Review and Analysis Paper in the Cancer Survivors' Mental Health Morbidity Context. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10891. [PMID: 34682637 PMCID: PMC8536084 DOI: 10.3390/ijerph182010891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Adult cancer survivors have an increased prevalence of mental health comorbidities and other adverse late-effects interdependent with mental illness outcomes compared with the general population. Coronavirus Disease 2019 (COVID-19) heralds an era of renewed call for actions to identify sustainable modalities to facilitate the constructs of cancer survivorship care and health care delivery through physiological supportive domestic spaces. Building on the concept of therapeutic architecture, psychoneuroimmunology (PNI) indicators-with the central role in low-grade systemic inflammation-are associated with major psychiatric disorders and late effects of post-cancer treatment. Immune disturbances might mediate the effects of environmental determinants on behaviour and mental disorders. Whilst attention is paid to the non-objective measurements for examining the home environmental domains and mental health outcomes, little is gathered about the multidimensional effects on physiological responses. This exploratory review presents a first analysis of how addressing the PNI outcomes serves as a catalyst for therapeutic housing research. We argue the crucial component of housing in supporting the sustainable primary care and public health-based cancer survivorship care model, particularly in the psychopathology context. Ultimately, we illustrate a series of interventions aiming at how housing environmental attributes can trigger PNI profile changes and discuss the potential implications in the non-pharmacological treatment of cancer survivors and patients with mental morbidities.
Collapse
Affiliation(s)
- Eva Hernandez-Garcia
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
| | - Evangelia Chrysikou
- The Bartlett Real Estate Institute, The Bartlett School of Sustainable Construction, University College London, London WC1E 6BT, UK;
- Clinic of Social and Family Medicine, Department of Social Medicine, University of Crete, 700 13 Heraklion, Greece
| | - Anastasia Z. Kalea
- Division of Medicine, University College London, London WC1E 6JF, UK;
- Institute of Cardiovascular Science, University College London, London WC1E 6HX, UK
| |
Collapse
|
35
|
Villena-Tejada M, Vera-Ferchau I, Cardona-Rivero A, Zamalloa-Cornejo R, Quispe-Florez M, Frisancho-Triveño Z, Abarca-Meléndez RC, Alvarez-Sucari SG, Mejia CR, Yañez JA. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey. PLoS One 2021; 16:e0257165. [PMID: 34550994 PMCID: PMC8457479 DOI: 10.1371/journal.pone.0257165] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The burden of the COVID-19 pandemic in Peru has led to people seeking alternative treatments as preventives and treatment options such as medicinal plants. This study aimed to assess factors associated with the use of medicinal plants as preventive or treatment of respiratory symptom related to COVID-19 during the pandemic in Cusco, Peru. METHOD A web-based cross-sectional study was conducted on general public (20- to 70-year-old) from August 31 to September 20, 2020. Data were collected using a structured questionnaire via Google Forms, it consisted of an 11-item questionnaire that was developed and validated by expert judgment using Aiken's V (Aiken's V > 0.9). Both descriptive statistics and bivariate followed by multivariable logistic regression analyses were conducted to assess factors associated with the use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic. Prevalence ratios (PR) with 95% Confidence Interval (CI), and a P-value of 0.05 was used to determine statistical significance. RESULTS A total of 1,747 respondents participated in the study, 80.2% reported that they used medicinal plants as preventives, while 71% reported that they used them to treat respiratory symptoms. At least, 24% of respondents used medicinal plants when presenting with two or more respiratory symptoms, while at least 11% used plants for malaise. For treatment or prevention, the multivariate analysis showed that most respondents used eucalyptus (p < 0.001 for both), ginger (p < 0.022 for both), spiked pepper (p < 0.003 for both), garlic (p = 0.023 for prevention), and chamomile (p = 0.011 for treatment). The respondents with COVID-19 (p < 0.001), at older ages (p = 0.046), and with a family member or friend who had COVID-19 (p < 0.001) used more plants for prevention. However, the respondents with technical or higher education used less plants for treatment (p < 0.001). CONCLUSION There was a significant use of medicinal plants for both prevention and treatment, which was associated with several population characteristics and whether respondents had COVID-19.
Collapse
Affiliation(s)
- Magaly Villena-Tejada
- Departamento Académico de Farmacia, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Ingrid Vera-Ferchau
- Departamento Académico de Farmacia, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Anahí Cardona-Rivero
- Departamento Académico de Farmacia, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Rina Zamalloa-Cornejo
- Departamento Académico de Matemáticas y Estadística, Facultad de Ciencias, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Maritza Quispe-Florez
- Departamento Académico de Biología, Facultad de Ciencias, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Zany Frisancho-Triveño
- Departamento Académico de Farmacia, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Rosario C. Abarca-Meléndez
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Susan G. Alvarez-Sucari
- Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | | | - Jaime A. Yañez
- Vicerrectorado de Investigación, Universidad Norbert Wiener, Lima, Peru
- Gerencia Corporativa de Asuntos Científicos y Regulatorios, Teoma Global, Lima, Peru
| |
Collapse
|
36
|
Pizarro AB, Persad E, Durao S, Nussbaumer-Streit B, Garritty C, Engela-Volker JS, McElvenny D, Rhodes S, Stocking K, Fletcher T, Van Tongeren M, Martin C, Noertjojo K, Sampson O, Jørgensen KJ, Bruschettini M. Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings. Hippokratia 2021. [DOI: 10.1002/14651858.cd015112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Emma Persad
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation; Danube University Krems; Krems Austria
| | - Solange Durao
- Cochrane South Africa; South African Medical Research Council; Cape Town South Africa
| | - Barbara Nussbaumer-Streit
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation; Danube University Krems; Krems Austria
| | - Chantelle Garritty
- Global Health and Guidelines Division; Public Health Agency of Canada (PHAC); Ottawa Canada
| | - Jean S Engela-Volker
- Division of Population Medicine; Cardiff University School of Medicine; Cardiff UK
| | - Damien McElvenny
- Centre for Occupational and Environmental Health; University of Manchester; Manchester UK
| | - Sarah Rhodes
- Division of Population Health, Health Services Research and Primary Care; University of Manchester; Manchester UK
| | - Katie Stocking
- Centre for Biostatistics, School of Health Sciences, Faculty of Biology, Medicine and Health; University of Manchester; Manchester UK
| | - Tony Fletcher
- Epidemiology Department; Public Health England Centre for Radiation Chemical and Environmental Hazards (CRCE); London UK
| | - Martie Van Tongeren
- Division of Population Health, Health Services Research and Primary Care; University of Manchester; Manchester UK
| | | | | | | | - Karsten Juhl Jørgensen
- Centre for Evidence-Based Medicine Odense (CEBMO) and Cochrane Denmark; Department of Clinical Research, University of Southern Denmark; Odense Denmark
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics; Lund University, Skåne University Hospital; Lund Sweden
- Cochrane Sweden; Lund University, Skåne University Hospital; Lund Sweden
| |
Collapse
|
37
|
A Direct Observation Video Method for Describing COVID-19 Transmission Factors on a Micro-Geographical Scale: Viral Transmission (VT)-Scan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179329. [PMID: 34501917 PMCID: PMC8431696 DOI: 10.3390/ijerph18179329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic severely affected many aspects of human life. While most health agencies agree mask wearing and physical distancing reduce viral transmission, efforts to improve the assessment of these behaviors are lacking. This study aimed to develop a direct observation video method [Viral Transmission (VT)-Scan] for assessing COVID-19 transmission behaviors and related factors (e.g., environmental setting). A wearable video device (WVD) was used to obtain videos of outdoor, public areas. The videos were examined to extract relevant information. All outcomes displayed good to excellent intra- and inter-reliability with intra-class correlation coefficients ranging from 0.836 to 0.997. The majority of people had a mask (60.8%) but 22.1% of them wore it improperly, 45.4% were not physical distancing, and 27.6% were simultaneously mask and physical distancing non-compliant. Transmission behaviors varied by demographics with white, obese males least likely to be mask-compliant and white, obese females least likely to physical distance. Certain environments (e.g., crosswalks) were identified as "hot spots" where higher rates of adverse transmission behaviors occurred. This study introduces a reliable method for obtaining objective data on COVID-19 transmission behaviors and related factors which may be useful for agent-based modeling and policy formation.
Collapse
|
38
|
Jin T, Xu Y, Dai C, Zhou X, Xu Q, Wu Z. Cold atmospheric plasma: A non-negligible strategy for viral RNA inactivation to prevent SARS-CoV-2 environmental transmission. AIP ADVANCES 2021; 11:085019. [PMID: 34413992 PMCID: PMC8371919 DOI: 10.1063/5.0060530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/02/2021] [Indexed: 05/13/2023]
Abstract
Cold atmospheric plasma (CAP), regarded as a powerful physics technology, displays antimicrobial, antitumor, and even antiviral properties, but the underlying mechanism is rarely studied. In this study, four CAP exposure doses (30, 60, 120, and 240 s) were applied to inactivate a severe acute respiratory syndrome coronavirus 2 like pseudovirus on a stainless steel disk, which comprised spike protein on its membrane and can express a green fluorescent protein. In order to unravel the potential effects of CAP irradiation on pseudovirus, infection assay, optical emission spectra analysis, transmission electron microscopy (TEM), sodium dodecyl sulfate polyacrylamide gel electrophoresis, ELISA, and qPCR experiments were carried out. As a result, our study indicated that CAP irradiation can significantly decrease the infectivity of pseudovirus in a dose dependent manner through destroying the cell membrane and further damaging viral RNA, with the molecular weight and conformation of spike receptor binding domain protein unchanged.
Collapse
Affiliation(s)
- Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yong Xu
- Anhui Academy of Medical Sciences, Hefei, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Hefei, China
| | | | - Qinghua Xu
- Anhui Academy of Medical Sciences, Hefei, China
| | - Zhengwei Wu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
39
|
Grantham JL, Verishagen CL, Whiting SJ, Henry CJ, Lieffers JRL. Evaluation of a Social Media Campaign in Saskatchewan to Promote Healthy Eating During the COVID-19 Pandemic: Social Media Analysis and Qualitative Interview Study. J Med Internet Res 2021; 23:e27448. [PMID: 34133314 PMCID: PMC8297600 DOI: 10.2196/27448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The beginning of the COVID-19 pandemic presented many sudden challenges regarding food, including grocery shopping changes (eg, reduced store hours, capacity restrictions, and empty store shelves due to food hoarding), restaurant closures, the need to cook more at home, and closures of food access programs. Eat Well Saskatchewan (EWS) implemented a 16-week social media campaign, #eatwellcovid19, led by a dietitian and nutrition student that focused on sharing stories submitted by the Saskatchewan public about how they were eating healthy during the COVID-19 pandemic. OBJECTIVE The goal of this study was to describe the implementation of the #eatwellcovid19 social media campaign and the results from the evaluation of the campaign, which included campaign performance using social media metrics and experiences and perspectives of campaign followers. METHODS Residents of Saskatchewan, Canada, were invited to submit personal stories and experiences to EWS about how they were eating healthy during the COVID-19 pandemic from April to August 2020. Each week, one to three stories were featured on EWS social media platforms-Facebook, Instagram, and Twitter-along with evidence-based nutrition information to help residents become more resilient to challenges related to food and nutrition experienced during the COVID-19 pandemic. Individuals who submitted stories were entered into a weekly draw for a Can $100 grocery gift card. Social media metrics and semistructured qualitative interviews of campaign followers were used to evaluate the #eatwellcovid19 campaign. RESULTS In total, 75 stories were submitted by 74 individuals on a variety of topics (eg, grocery shopping, traditional skills, and gardening), and 42 stories were featured on social media. EWS shared 194 #eatwellcovid19 posts across social media platforms (Facebook: n=100; Instagram: n=55; and Twitter: n=39). On Facebook, #eatawellcovid19 reached 100,571 followers and left 128,818 impressions, resulting in 9575 engagements. On Instagram, the campaign reached 11,310 followers, made 14,145 impressions, and received 823 likes and 15 comments. On Twitter, #eatwellcovid19 made 15,199 impressions and received 424 engagements. Featured story submission posts had the best engagement on Facebook and the most likes and comments on Instagram. The EWS social media pages reported increases in their following during the campaign (Instagram: +30%; Facebook: +14%; and Twitter: +12%). Results from the interviews revealed that there were two types of campaign followers: those who appreciated hearing the stories submitted by followers, as it helped them to feel connected to the community during social isolation, and those who appreciated the evidence-based information. CONCLUSIONS Numerous stories were submitted to the #eatwellcovid19 social media campaign on various topics. On Instagram and Facebook, posts that featured these stories had the highest engagement. During this campaign, EWS's social media following increased by more than 10% on each platform. The approach used for the #eatwellcovid19 campaign could be considered by others looking to develop health promotion campaigns.
Collapse
Affiliation(s)
- Jordyn L Grantham
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carrie L Verishagen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susan J Whiting
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carol J Henry
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jessica R L Lieffers
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
40
|
Aref ZF, Bazeed SEES, Hassan MH, Hassan AS, Rashad A, Hassan RG, Abdelmaksoud AA. Clinical, Biochemical and Molecular Evaluations of Ivermectin Mucoadhesive Nanosuspension Nasal Spray in Reducing Upper Respiratory Symptoms of Mild COVID-19. Int J Nanomedicine 2021; 16:4063-4072. [PMID: 34163159 PMCID: PMC8215847 DOI: 10.2147/ijn.s313093] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ivermectin is an FDA-approved broad-spectrum anti-parasitic agent that has been shown to inhibit SARS-CoV-2 replication in vitro. OBJECTIVE We aimed to assess the therapeutic efficacy of ivermectin mucoadhesive nanosuspension intranasal spray in treatment of patients with mild COVID-19. METHODS This clinical trial included 114 patients diagnosed as mild COVID-19. Patients were divided randomly into two age and sex-matched groups; group A comprising 57 patients received ivermectin nanosuspension nasal spray twice daily plus the Egyptian protocol of treatment for mild COVID-19 and group B comprising 57 patients received the Egyptian protocol for mild COVID-19 only. Evaluation of the patients was performed depending on improvement of presenting manifestations, negativity of two consecutive pharyngeal swabs for the COVID-19 nucleic acid via rRT-PCR and assessments of hematological and biochemical parameters in the form of complete blood counts, C-reactive protein, serum ferritin and d-dimer which were performed at presentation and 7 days later. RESULTS Of the included patients confirmed with mild COVID-19, 82 were males (71.9%) and 32 females (28.1%) with mean age 45.1 ± 18.9. In group A, 54 patients (94.7%) achieved 2 consecutive negative PCR nasopharyngeal swabs in comparison to 43 patients (75.4%) in group B with P = 0.004. The durations of fever, cough, dyspnea and anosmia were significantly shorter in group A than group B, without significant difference regarding the duration of gastrointestinal symptoms. Duration taken for nasopharyngeal swab to be negative was significantly shorter in group A than in group B (8.3± 2.8 days versus 12.9 ± 4.3 days; P = 0.0001). CONCLUSION Local use of ivermectin mucoadhesive nanosuspension nasal spray is safe and effective in treatment of patients with mild COVID-19 with rapid viral clearance and shortening the anosmia duration. CLINICALTRIALSGOV IDENTIFIER NCT04716569; https://clinicaltrials.gov/ct2/show/NCT04716569.
Collapse
Affiliation(s)
- Zaki F Aref
- ENT Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Alaa Rashad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, South Vally University, Qena, Egypt
| | - Rehab G Hassan
- Department of Public Health and Community Medicine, Faculty of Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
41
|
Soltane R, Chrouda A, Mostafa A, Al-Karmalawy AA, Chouaïb K, dhahri A, Pashameah RA, Alasiri A, Kutkat O, Shehata M, Jannet HB, Gharbi J, Ali MA. Strong Inhibitory Activity and Action Modes of Synthetic Maslinic Acid Derivative on Highly Pathogenic Coronaviruses: COVID-19 Drug Candidate. Pathogens 2021; 10:623. [PMID: 34069460 PMCID: PMC8159111 DOI: 10.3390/pathogens10050623] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
In late December 2019, a novel coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), escaped the animal-human interface and emerged as an ongoing global pandemic with severe flu-like illness, commonly known as coronavirus disease 2019 (COVID-19). In this study, a molecular docking study was carried out for seventeen (17) structural analogues prepared from natural maslinic and oleanolic acids, screened against SARS-CoV-2 main protease. Furthermore, we experimentally validated the virtual data by measuring the half-maximal cytotoxic and inhibitory concentrations of each compound. Interestingly, the chlorinated isoxazole linked maslinic acid (compound 17) showed promising antiviral activity at micromolar non-toxic concentrations. Thoughtfully, we showed that compound 17 mainly impairs the viral replication of SARS-CoV-2. Furthermore, a very promising SAR study for the examined compounds was concluded, which could be used by medicinal chemists in the near future for the design and synthesis of potential anti-SARS-CoV-2 candidates. Our results could be very promising for performing further additional in vitro and in vivo studies on the tested compound (17) before further licensing for COVID-19 treatment.
Collapse
Affiliation(s)
- Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Adham 21971, Saudi Arabia; (R.S.); (R.A.P.); (A.A.)
- Faculty of Sciences, Tunis El Manar University, Tunis 1068, Tunisia
| | - Amani Chrouda
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, Monastir University, Monastir 5000, Tunisia
- Institute of Analytical Sciences, UMR CNRS-UCBL-ENS 5280, 5 Rue la Doua, CEDEX 09, 69100 Villeurbanne, France
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, 12622 Cairo, Egypt; (O.K.); (M.S.); (M.A.A.)
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, 34518 New Damietta, Egypt;
| | - Karim Chouaïb
- Laboratory of Heterocyclic Chemistry, Faculty of Science of Monastir, University of Monastir, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, Monastir 5019, Tunisia; (K.C.); (H.B.J.)
| | - Abdelwaheb dhahri
- Polymer Materials Engineering, University of Lyon, UMR CNRS 5223, Lyon, 69100 Villeurbanne, France;
| | - Rami Adel Pashameah
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Adham 21971, Saudi Arabia; (R.S.); (R.A.P.); (A.A.)
| | - Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Adham 21971, Saudi Arabia; (R.S.); (R.A.P.); (A.A.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, 12622 Cairo, Egypt; (O.K.); (M.S.); (M.A.A.)
| | - Mahmoud Shehata
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, 12622 Cairo, Egypt; (O.K.); (M.S.); (M.A.A.)
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Faculty of Science of Monastir, University of Monastir, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, Monastir 5019, Tunisia; (K.C.); (H.B.J.)
| | - Jawhar Gharbi
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, 12622 Cairo, Egypt; (O.K.); (M.S.); (M.A.A.)
| |
Collapse
|
42
|
Gorji S, Gorji A. COVID-19 pandemic: the possible influence of the long-term ignorance about climate change. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15575-15579. [PMID: 33403640 PMCID: PMC7785327 DOI: 10.1007/s11356-020-12167-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 04/12/2023]
Abstract
In addressing the current COVID-19 pandemic and evaluating the measures taken by global leaders so far, it is crucial to trace back the circumstances influencing the emergence of the crisis that the world is presently facing. Could it be that the failure to act in a timely manner dates way back to when first concerns about climate change and its inevitable threat to human health came up? Multiple lines of evidence suggest that the large-scale and rapid environmental changes in the last few decades may be implicated in the emergence of COVID-19 pandemic by increasing the potential risk of the occurrence and the spread of zoonotic diseases, worsening food security, and weakening the human immune system. As we are facing progressive climatic change, a failure to act accordingly could inevitably lead to further, more frequent confrontations with newly emerging diseases.
Collapse
Affiliation(s)
- Shaghayegh Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, 48149, Germany.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
43
|
Ursachi CȘ, Munteanu FD, Cioca G. The Safety of Slaughterhouse Workers during the Pandemic Crisis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2633. [PMID: 33807936 PMCID: PMC7967316 DOI: 10.3390/ijerph18052633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
The working conditions in a slaughterhouse are difficult because of the low temperatures, high humidity, and little natural light. Therefore, in these facilities, there is a high demand in the maintenance of strict hygiene rules. Lately, the new SARS-CoV-2 pandemic situation has brought new challenges in the meat industry, as this sector has to maintain its operability to supply the meat and meat products demanded by the consumers. In this challenging period, the safety of the workers is as important as keeping the high demands for the safety of the meat and meat products along with consumer confidence. This paper aims to give an overview of the risks associated with the SARS-CoV-2 virus transmission between the workers in slaughterhouses and to evaluate the stability and infectivity in the working environment of these facilities. Considering the persistence of this virus on different surfaces and the environmental conditions affecting its stability (temperature, relative humidity, and natural light), in the study we proposed several short-, medium-, and long-term preventive measures for minimizing the potential threats of the actual pandemic.
Collapse
Affiliation(s)
- Claudiu Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania;
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania;
| | - Gabriela Cioca
- Preclinical Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| |
Collapse
|