1
|
Liu F, Zhu H, Lu Q, Zheng Y, Ding Z, Wang H, Chang Y. The pollutants distribution profiles and health risks of groundwater and soil around the waste landfills: A study of 12 waste landfills in Guangxi province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118135. [PMID: 40305962 DOI: 10.1016/j.ecoenv.2025.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/18/2025] [Accepted: 03/30/2025] [Indexed: 05/02/2025]
Abstract
The waste landfill disposes of a large amount of urban garbage, and the harmful substances in the waste have serious impacts on the ecological environment of the landfill and its surroundings. To systematically investigate the pollution mechanisms and associated health risks posed by landfills, we conducted a comprehensive study in Guangxi Province, China by collecting water, soil, and leachate samples from 12 operational landfill sites. These samples were analyzed using inductively coupled plasma mass spectrometry and ultraviolet-visible spectroscopy to quantify concentrations of 18 priority pollutants, including heavy metals and nutrients. Geostatistical analysis revealed moderate spatial clustering of pollutants in soils and groundwater, with significant positive correlations observed between Mn, Cd, and Pb concentrations across leachate-soil-groundwater systems. Notably, as exhibited 2.3-fold higher carcinogenic risk values compared to Cd, while Zn demonstrated the highest non-carcinogenic hazard quotient among all studied pollutants. Contaminant transport pathways were evaluated through correlation models, revealing that Cu and Hg in leachate significantly influenced groundwater quality around landfills. These findings provide critical insights for implementing site-specific pollution control strategies and optimizing health risk management protocols in landfill-impacted regions.
Collapse
Affiliation(s)
- Fengping Liu
- Chinese Academy of Environmental Planning, Beijing 100041, China; State Key Laboratory of Soil Pollution Control and Safety, Beijing 100041, China
| | - Hailin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiongqiong Lu
- Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Yinan Zheng
- Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Zhenyu Ding
- Chinese Academy of Environmental Planning, Beijing 100041, China; State Key Laboratory of Soil Pollution Control and Safety, Beijing 100041, China
| | - Han Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yuhu Chang
- Chinese Academy of Environmental Planning, Beijing 100041, China.
| |
Collapse
|
2
|
Tariq M, Rashid A, Khattak SA, Ali L, Shah MT. Hydrogeochemical characteristics, source distribution, and health risk of high-fluoride groundwater in Swabi, Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:35. [PMID: 39641805 DOI: 10.1007/s10661-024-13458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
This paper evaluated fluoride (F-) pollution in drinking groundwater sources, which causes severe fluorosis and other human health concerns in Swabi, Pakistan. We determined F- concentration, prevalence, enrichment, distribution, and health hazards from water ingestion in Swabi, Pakistan. Therefore, 126 groundwater and 18 surface water samples were collected to analyze F- and other geochemical tracers to understand groundwater enrichment and F- mobilization in aquatic systems. The range and mean values of F- in groundwater were 0.02 to 14.2 and 4.0 mg/L, and those in surface water were 1.12-0.8 and 1.4 mg/L. Most residents used groundwater for drinking purposes. Thus, groundwater results showed that 72.2% of samples had surpassed the WHO guidelines of F- 1.5 mg/L. The fluoride pollution index (FPI) declared that 48.73% of samples showed a higher risk, 41.95% medium risk, and 9.32% lower risk. Mineral phases using PHREEQC interactive software determined mineral saturation revealing the dissolution of host rock minerals and unsaturation showed precipitation of minerals within the aquifer. The principal component analysis multilinear regression (PCA-MLR) model showed a five-factor solution: (a) geogenic processes, (b) mixed geogenic and anthropogenic inputs, (c) geochemical processes, (d) agriculture pollution, and (e) industrial effluents which would release F- in the aquifer. The health hazard due to higher F- revealed that children showed high-risk levels compared to adults in endemic areas. The spatial distribution of F- in drinking groundwater increases towards the northern side and decreases in the south to the southeastern side. Therefore, effective water management techniques would be required to safeguard groundwater resources and secure human health from dental and skeletal fluorosis and other associated problems caused by high F- groundwater with varying fluoride concentrations. This study will help the water management authority to safeguard depleted groundwater for drinking demands.
Collapse
Affiliation(s)
- Muhammad Tariq
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| | - Abdur Rashid
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan.
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Seema Anjum Khattak
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| | - Liaqat Ali
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan.
| | - Mohammad Tahir Shah
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| |
Collapse
|
3
|
Rashid A, Ayub M, Gao X, Xu Y, Ullah Z, Zhu YG, Ali L, Li C, Ahmad A, Rinklebe J, Khan S, Ahmad P. Unraveling the impact of high arsenic, fluoride and microbial population in community tubewell water around coal mines in a semiarid region: Insight from health hazards, and geographic information systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136064. [PMID: 39369674 DOI: 10.1016/j.jhazmat.2024.136064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
High arsenic (As), fluoride (F-), and microbial pathogens coexist in semiarid conditions afflicting > 240 million people worldwide including Pakistan. Groundwater quality has declined due to geogenic and manmade activities providing suitable ground for ubiquity, bioavailability, and toxicity of contaminants. We tested the health hazard, distribution, and apportionment of As, F-, and microbes in groundwater around coal mines in Quetta, Pakistan. The range of As, and F- concentrations in groundwater were 0.2-16.6 µg/L, 0.4-18.5 mg/L. Both, As and F- correlate with high HCO3-, pH, Na+, SO42-, Fe, and Mn, and negatively with Ca2+ water. The coalfield showed many folds higher As 15.8-28.5 µg/L, and F- 10.8-34.5 mg/L compared to groundwater-wells. Geochemical phases revealed saturation of groundwater with calcite, dolomite, fluorite, gypsum, and undersaturation with halite-mirabilite, and arsenopyrite minerals. The positive matrix factorization (PMF) model assessed five-factor solutions: geogenic, industrial, coal mining, sulfide & fluoride-bearing mineral-dissolution, and agriculture pollution delivered As, F-, and microbial contamination. About 24.6 % and 64.4 % of groundwater samples exceeded the WHO guidelines of As 10 µg/L, F- 1.5 mg/L. The carcinogenicity, and non-carcinogenicity of As, and F- were higher in children than adults. Therefore, health hazards in children are of great concern in achieving sustainable management goals.
Collapse
Affiliation(s)
- Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan.
| | - Muhammad Ayub
- Department of Botany, Hazara University, 21300, Pakistan
| | - Xubo Gao
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yong Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Liaqat Ali
- National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan
| | - Chengcheng Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, 25120, Pakistan
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India
| |
Collapse
|
4
|
Ayub M, Javed H, Rashid A, Khan WH, Javed A, Sardar T, Shah GM, Ahmad A, Rinklebe J, Ahmad P. Hydrogeochemical properties, source provenance, distribution, and health risk of high fluoride groundwater: Geochemical control, and source apportionment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125000. [PMID: 39313127 DOI: 10.1016/j.envpol.2024.125000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
This study evaluated high fluoride (F-) levels, source distribution, provenance, health risk, and source apportionment in the groundwater of Sargodha, Pakistan. Therefore, 48 groundwater samples were collected and analyzed by ion-chromatography (DX-120, Dionex). The lowest concentration of F- was 0.1, and the highest was 5.8 mg/L in the aquifers. In this study, 43.76% of the samples had exceeded the World Health Organization's allowable limit of 1.5 mg/L. The hydrogeochemical facies in Na-rich and Ca-poor aquifers showed NaCl (66.6%), NaHCO3 (14.5%), mixed CaNaHCO3 (8.3%), CaCl2 (8.3%), mixed CaMgCl2 (2%), and CaHCO3 (2%) type water. Alkaline pH, high Na+, HCO3- concentrations, and poor Ca-aquifers promoted F- dissolution in aquifer. The significant positive correlations between Na⁺ and F- suggested cation exchange, where elevated Na⁺ occurs in Ca-poor aquifers. The cation exchange reduces the availability of Ca2+ would lead to higher F- concentrations. Meanwhile, the correlation between HCO₃- and F- indicates that carbonate minerals dissolution helps in increasing pH and HCO₃- as a result F- triggers in aquifers. Groundwater chemistry is primarily governed by the weathering of rock, water-rock interaction, ion-exchange, and mineral dissolution significantly control groundwater compositions. Cluster analysis (CA) determined three potential clusters: less polluted (10.4%), moderately polluted (39.5%), and severely polluted (50%) revealing fluoride toxicity and vulnerability in groundwater wells. Mineral phases showed undersaturation and saturation determining dissolution of minerals and precipitation of minerals in the aquifer. PCAMLR model determined that high fluoride groundwater takes its genesis from F-bearing minerals, ion exchange, rock-water interaction, and industrial, and agricultural practices. The health risk assessment model revealed that children are at higher risk to F- toxicity than adults. Thus, groundwater of the area is unsuitable for drinking, domestic, and agricultural needs.
Collapse
Affiliation(s)
- Muhammad Ayub
- Department of Botany, Hazara University, Mansehra, PO 21300, Pakistan
| | - Hira Javed
- Department of Botany, Hazara University, Mansehra, PO 21300, Pakistan
| | - Abdur Rashid
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan.
| | - Wardah Hayat Khan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Asif Javed
- Earth and Environmental Sciences, Hazara University, Mansehra, PO 21300, Pakistan
| | - Tariq Sardar
- Department of Environmental Sciences Kohat University of Science and Technology, Pakistan
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India
| |
Collapse
|
5
|
Agbasi JC, Egbueri JC. Prediction of potentially toxic elements in water resources using MLP-NN, RBF-NN, and ANFIS: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30370-30398. [PMID: 38641692 DOI: 10.1007/s11356-024-33350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Water resources are constantly threatened by pollution of potentially toxic elements (PTEs). In efforts to monitor and mitigate PTEs pollution in water resources, machine learning (ML) algorithms have been utilized to predict them. However, review studies have not paid attention to the suitability of input variables utilized for PTE prediction. Therefore, the present review analyzed studies that employed three ML algorithms: MLP-NN (multilayer perceptron neural network), RBF-NN (radial basis function neural network), and ANFIS (adaptive neuro-fuzzy inference system) to predict PTEs in water. A total of 139 models were analyzed to ascertain the input variables utilized, the suitability of the input variables, the trends of the ML model applications, and the comparison of their performances. The present study identified seven groups of input variables commonly used to predict PTEs in water. Group 1 comprised of physical parameters (P), chemical parameters (C), and metals (M). Group 2 contains only P and C; Group 3 contains only P and M; Group 4 contains only C and M; Group 5 contains only P; Group 6 contains only C; and Group 7 contains only M. Studies that employed the three algorithms proved that Groups 1, 2, 3, 5, and 7 parameters are suitable input variables for forecasting PTEs in water. The parameters of Groups 4 and 6 also proved to be suitable for the MLP-NN algorithm. However, their suitability with respect to the RBF-NN and ANFIS algorithms could not be ascertained. The most commonly predicted PTEs using the MLP-NN algorithm were Fe, Zn, and As. For the RBF-NN algorithm, they were NO3, Zn, and Pb, and for the ANFIS, they were NO3, Fe, and Mn. Based on correlation and determination coefficients (R, R2), the overall order of performance of the three ML algorithms was ANFIS > RBF-NN > MLP-NN, even though MLP-NN was the most commonly used algorithm.
Collapse
Affiliation(s)
- Johnson C Agbasi
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
| | - Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria.
- Research Management Office (RMO), Chukwuemeka Odumegwu Ojukwu University, Anambra State, Nigeria.
| |
Collapse
|
6
|
Singh S, Shukla A, Srivastava S, Kamble GS, Patra PK, Venugopalan VP. An evaluation of arsenic contamination status and its potential health risk assessment in villages of Nadia and North 24 Parganas, West Bengal, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36264-36274. [PMID: 37442929 DOI: 10.1007/s11356-023-28542-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The present study was conducted to evaluate the arsenic (As) contamination and possible associated health hazards to exposed population in four villages of two districts (Nadia and North 24 Parganas) of West Bengal, India. The study included two villages each from Nadia (Jaguli and Kugacchi) and North 24 Parganas (Chamta and Byaspur) districts. Groundwater, surface water, soil, rice grains and rice-based food samples were collected from these villages. The results revealed the presence of As in high concentrations in groundwater (35.00 to 186.00 µg L-1), surface water (30.00 to 61.00 µg L-1), soil (46.17 to 66.00 mg kg-1), rice grains (0.017 to 1.27 µg g-1) and rice-based food products (0.012 to 0.40 µg g-1). The maximum As levels were recorded in all types of samples collected from Kugacchi village. The rice grain samples included high-yielding and local varieties, and the level of As in high-yielding varieties was found to be higher (0.72 to 1.27 µg g-1) than in local varieties (0.25 to 1.06 µg g-1). The data of As concentrations was used for understanding the hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) to the As-exposed population, and significant non-carcinogenic and carcinogenic risks were revealed considering consumption of rice grains at 400 g per day. The study demonstrates the severity of As contamination in the surveyed villages, which may pose a hindrance to attainment of sustainable development goals (SDGs) by 2030 and proposes the implementation of requisite safety measures.
Collapse
Affiliation(s)
- Shraddha Singh
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, MH, India.
- Homi Bhabha National Institute, Mumbai, MH, India.
| | - Anurakti Shukla
- Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, UP, India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, UP, India
| | - Granthali S Kamble
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, MH, India
| | - Prasanta Kumar Patra
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Mohanpur, WB, India
| | - Vayalam P Venugopalan
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, MH, India
- Raja Ramanna Fellow, Bhabha Atomic Research Centre, Mumbai, MH, India
| |
Collapse
|
7
|
Ullah Z, Younas F, Bacha AUR, Rashid A, Al-Onazi WA, Sardar MF. Occurrence of toxic elements in river areas along drains and groundwater resources: source of contamination and associated health risk. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:480. [PMID: 38676764 DOI: 10.1007/s10661-024-12648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The objective of the current research was to examine the water quality of the River Ravi and the River Sutlej, with a specific focus on potentially toxic elements (PTEs). Additionally, we sought to monitor the sources of pollution in these rivers by gathering samples from the primary drains that carry industrial and municipal waste into these water bodies. Furthermore, we aimed to evaluate the impact of PTEs in surface water on groundwater quality by collecting groundwater samples from nearby populated areas. A total of 30 samples were collected from these three sources: rivers (6 samples), drains (9 samples), and groundwater (15 samples). The analysis revealed that the levels of PTEs in the samples from these three resources having a mean value: arsenic (As) 23.5 µg/L, zinc (Zn) 2.35 mg/L, manganese (Mn) 0.51 mg/L, lead (Pb) 6.63 µg/L, and chromium (Cr) 10.9 µg/L, exceeded the recommended values set by the World Health Organization (WHO). Furthermore, PTEs including (As 84%), (Zn 65%), (Mn 69%), (Pb 53%), (Cr 53%), and (Ni 27%), samples were beyond the recommended values of WHO. The results of the Principal Component Analysis indicated that surface water and groundwater exhibited total variability of 83.87% and 85.97%, respectively. This indicates that the aquifers in the study area have been contaminated due to both natural geogenic factors and anthropogenic sources. These sources include the discharge of industrial effluents, wastewater from municipal sources, mining activities, agricultural practices, weathering of rocks, and interactions between rocks and water. Spatial distribution maps clearly illustrated the widespread mobilization of PTEs throughout the study area. Furthermore, a health risk assessment was conducted to evaluate the potential adverse health effects of PTEs through the ingestion of drinking groundwater by both children and adults. Health risk assessment result show the mean carcinogenic values for As, Cr, Pb and Ni in children are calculated to be (1.88E-04), (2.61E-04), (2.16E-02), and (5.74E-05), respectively. Similarly, the mean carcinogenic values for the above mentioned PTEs in adults were recorded to be (2.39E-05), (3.32E-05), (1.19E-03), and (7.29E-06) respectively. The total hazard index values for As, Zn, Cr, Pb, Mn, Cu, and Ni in children were observed to be (9.07E + 00), (9.95E-07), (4.59E-04), (5.75E-04), (4.72E-05), (2.78E-03), and (5.27E-05) respectively. The analysis revealed that As has an adverse effect on the population of the study area as compared to other PTEs investigated in this study.
Collapse
Affiliation(s)
- Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Aziz Ur Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pol- Lution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
| | - Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
8
|
Ratandeep, Dharmani AB, Verma M, Rani S, Narang A, Singh MR, Saya L, Hooda S. Unravelling groundwater contamination and health-related implications in semi-arid and cold regions of India. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104303. [PMID: 38244426 DOI: 10.1016/j.jconhyd.2024.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Groundwater, a vital global resource, is essential for sustaining life and various human activities. However, its quality and availability face increasing threats from both natural and human-induced factors. Widespread contamination, arising from both natural origins and human activities such as agriculture, industry, mining, improper waste disposal, and wastewater release, poses significant risks to human health and water security. India, known for its dense population and pronounced groundwater challenges, serves as a prominent case study. Notably, in most of its regions, groundwater resources have been found to be severely contaminated by various chemical, biological, and radioactive contaminants. This review presents an examination of contamination disparities across various states of semi-arid and cold regions, encompassing diverse assessment methods. The studies conducted in semi-arid regions of North, South, West, and East India highlight the consistent presence of fluorides and nitrates majorly, as well as heavy metals in some areas, with values exceeding the permissible limits recommended by both the Bureau of Indian Standards (BIS) and the World Health Organization (WHO). These contaminants pose skeletal and dental threats, methemoglobinemia, and even cancer. Similarly, in cold regions, nitrate exposure and pesticide residues, reportedly exceeding BIS and WHO parameters, pose gastrointestinal and other waterborne health concerns. The findings also indicated that the recommended limits of several quality parameters, including pH, electrical conductivity, total dissolved solids (TDS), total hardness, and total alkalinity majorly surpassed. Emphasising the reported values of the various contaminant levels simultaneously with addressing the challenges and future perspectives, the review unravels the complex landscape of groundwater contamination and its health-related implications in semi-arid and cold regions of India.
Collapse
Affiliation(s)
- Ratandeep
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akshat Bhanu Dharmani
- School Of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India
| | - Manisha Verma
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India
| | - Sanjeeta Rani
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India
| | - Anita Narang
- Department of Botany, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi 110019, India
| | - M Ramananda Singh
- Department of Chemistry, Kirorimal College, (University of Delhi), Delhi 110009, India
| | - Laishram Saya
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi 110021, India; Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi - 110019, India.
| | - Sunita Hooda
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi - 110019, India.
| |
Collapse
|
9
|
Iqbal J, Su C, Ahmad M, Baloch MYJ, Rashid A, Ullah Z, Abbas H, Nigar A, Ali A, Ullah A. Hydrogeochemistry and prediction of arsenic contamination in groundwater of Vehari, Pakistan: comparison of artificial neural network, random forest and logistic regression models. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:14. [PMID: 38147177 DOI: 10.1007/s10653-023-01782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/10/2023] [Indexed: 12/27/2023]
Abstract
Arsenic contamination in the groundwater occurs in various parts of the world due to anthropogenic and natural sources, adversely affecting human health and ecosystems. The current study intends to examine the groundwater hydrogeochemistry containing elevated arsenic (As), predict As levels in groundwater, and determine the aptness of groundwater for drinking in the Vehari district, Pakistan. Four hundred groundwater samples from the study region were collected for physiochemical analysis. As levels in groundwater samples ranged from 0.1 to 52 μg/L, with an average of 11.64 μg/L, (43.5%), groundwater samples exceeded the WHO 2022 recommended limit of 10 μg/L for drinking purposes. Ion-exchange processes and the adsorption of ions significantly impacted the concentration of As. The HCO3- and Na+ are the dominant ions in the study area, and the water types of samples were CaHCO3, mixed CaMgCl, and CaCl, demonstrating that rock-water contact significantly impacts hydrochemical behavior. The geochemical modeling indicated negative saturation indices with calcium carbonate and other salt minerals, encompassing aragonite, calcite, dolomite, and halite. The dissolution mechanism suggested that these minerals might have implications for the mobilization of As in groundwater. A combination of human-induced and natural sources of contamination was unveiled through principal component analysis (PCA). Artificial neural networks (ANN), random forest (RF), and logistic regression (LR) were used to predict As in the groundwater. The data have been divided into two parts for statistical analysis: 20% for testing and 80% for training. The most significant input variables for As prediction was determined using Chi-squared analysis. The receiver operating characteristic area under the curve and confusion matrix were used to evaluate the models; the RF, ANN, and LR accuracies were 0.89, 0.85, and 0.76. The permutation feature and mean decrease in impurity determine ten parameters that influence groundwater arsenic in the study region, including F-, Fe2+, K+, Mg2+, Ca2+, Cl-, SO42-, NO3-, HCO3-, and Na+. The present study shows RF is the best model for predicting groundwater As contamination in the research area. The water quality index showed that 161 samples represent poor water, and 121 samples are unsuitable for drinking. Establishing effective strategies and regulatory measures is imperative in Vehari to ensure the sustainability of groundwater resources.
Collapse
Affiliation(s)
- Javed Iqbal
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Chunli Su
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China.
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China.
| | - Maqsood Ahmad
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | | | - Abdur Rashid
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Hasnain Abbas
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Anam Nigar
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Asmat Ali
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Arif Ullah
- Institute of Geological Survey, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| |
Collapse
|
10
|
Ullah Z, Zeng XC, Rashid A, Ghani J, Ali A, Shah M, Zainab R, Almutairi MH, Sayed AA, Aleya L. Integrated approach to hydrogeochemical appraisal of groundwater quality concerning arsenic contamination and its suitability analysis for drinking purposes using water quality index. Sci Rep 2023; 13:20455. [PMID: 37993472 PMCID: PMC10665467 DOI: 10.1038/s41598-023-40105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 08/04/2023] [Indexed: 11/24/2023] Open
Abstract
Arsenic (As), contamination in drinking groundwater resources is commonly environmental problem in many developing countries including Pakistan, with significant human health risk reports. In order to examine the groundwater quality concerning As contamination, its geochemical behavior along with physicochemical parameters, 42 samples were collected from community tube wells from District Bahawalpur, Punjab, Pakistan. The results showed the concentration of elevated As, its source of mobilization, and associated public health risk. The As concentration detected in groundwater samples varied from 0.12 to 104 µg/L with an average value of 34.7 µg/L. Among 42 groundwater samples, 27 samples were beyond the permitted limit of 10 µg/L recommended by World Health Organization (WHO), for drinking purposes. Statistical analysis result show that the groundwater cations values are in decreasing order such as: Na+ > Mg2+ > Ca2+ > K+, while anions were HCO3- > SO42- > Cl- > NO3-. Hydrochemical facies result depict that the groundwater samples of the study area, 14 samples belong to CaHCO3 type, 5 samples belong to NaCl type, 20 samples belong to Mixed CaMgCl type, and 3 samples belong to CaCl2 type. It can be accredited due to weathering and recharge mechanism, evaporation processes, and reverse ion exchange. Gibbs diagram shows that rock water interaction controls the hydrochemistry of groundwater resources of the study area. Saturation Index (SI) result indicated the saturation of calcite, dolomite, gypsum, geothite, and hematite mineral due their positive SI values. The principal component analysis (PCA) results possess a total variability of 80.69% signifying the anthropogenic and geogenic source of contamination. The results of the exposure-health-risk-assessment method for measuring As reveal significant potential non-carcinogenic risk (HQ), exceeding the threshold level of (> 1) for children in the study area. Water quality assessment results shows that 24 samples were not suitable for drinking purposes.
Collapse
Affiliation(s)
- Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Junaid Ghani
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Asmat Ali
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University, Mardan, 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, 616, Nizwa, Oman
| | - Rimsha Zainab
- Department of Botany, Women University Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, CEDEX, 25030, Besancon, France
| |
Collapse
|
11
|
Rashid A, Ayub M, Bundschuh J, Gao X, Ullah Z, Ali L, Li C, Ahmad A, Khan S, Rinklebe J, Ahmad P. Geochemical control, water quality indexing, source distribution, and potential health risk of fluoride and arsenic in groundwater: Occurrence, sources apportionment, and positive matrix factorization model. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132443. [PMID: 37666175 DOI: 10.1016/j.jhazmat.2023.132443] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/29/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Fluoride (F-), and arsenic (As) in the groundwater cause health problems in developing countries, including Pakistan. We evaluated the occurrence, distribution, sources apportionment, and health hazards of F-, and As in the groundwater of Mardan, Pakistan. Therefore, groundwater samples (n = 130) were collected and then analyzed for F-, and As by ion-chromatography (IC) and Inductively-coupled plasma mass-spectrometry (ICP-MS). The F-, and As concentrations in groundwater were 0.7-14.4 mg/L and 0.5-11.2 µg/L. Relatively elevated F-, and As coexists with higher pH, Na+, HCO3-, SO4-2, and depleted Ca+2 due to fluoride, sulfide-bearing minerals, and anthropogenic inputs. Both F-, and/or As are transported in subsurface water through adsorption and desorption processes. Groundwater samples 45%, and 14.2% exceeded the WHO guidelines of 1.5 mg/L and 10 µg/L. Water quality indexing (WQI-model) declared that 35.7% samples are unfit for household purposes. Saturation and undersaturation of minerals showed precipitation and mineral dissolution. Groundwater contamination by PCA-MLR and PMF-model interpreted five factors. The fitting results and R2 values of PMF (0.52-0.99)>PCA-MLR (0.50-0.95) showed high accuracy of PMF-model. Human health risk assessment (HHRA-model) revealed high non-carcinogenic and carcinogenic risk for children than adults. The percentile recovery of F- and As was recorded 98%, and 95% with reproducibility ± 5% error.
Collapse
Affiliation(s)
- Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan.
| | - Muhammad Ayub
- Department of Botany, Hazara University, 21300, Pakistan
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba 4350, Queensland, Australia
| | - Xubo Gao
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Liaqat Ali
- National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan
| | - Chengcheng Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, 25120, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India
| |
Collapse
|
12
|
Saraswat A, Ram S, Raza MB, Islam S, Sharma S, Omeka ME, Behera B, Jena RK, Rashid A, Golui D. Potentially toxic metals contamination, health risk, and source apportionment in the agricultural soils around industrial areas, Firozabad, Uttar Pradesh, India: a multivariate statistical approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:863. [PMID: 37336819 DOI: 10.1007/s10661-023-11476-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Potentially toxic metals (PTMs) contamination in the soil poses a serious danger to people's health by direct or indirect exposure, and generally it occurs by consuming food grown in these soils. The present study assessed the pollution levels and risk to human health upon sustained exposure to PTM concentrations in the area's centuries-old glass industry clusters of the city of Firozabad, Uttar Pradesh, India. Soil sampling (0-15 cm) was done in farmers' fields within a 1 km radius of six industrial clusters. Various environmental (geo-accumulation index, contamination factor, pollution load index, enrichment factor, and ecological risk index) and health risk indices (hazard quotient, carcinogenic risk) were computed to assess the extent of damage caused to the environment and the threat to human health. Results show that the mean concentrations of Cu (33 mg kg-1), Zn (82.5 mg kg-1), and Cr (15.3 mg kg-1) were at safe levels, whereas the levels of Pb, Ni, and Cd exceeded their respective threshold limits. A majority of samples (88%) showed considerable ecological risk due to the co-contamination of these six PTMs. Health risk assessment indicated tolerable cancer and non-cancer risk in both adults and children for all PTMs, except Ni, where adults were exposed to potential threat of cancer. Pearson's correlation study revealed a significant positive correlation between all six metal pairs and conducting principal component analysis (PCA) confirmed the common source of metal pollution. The PC score ranked different sites from highest to lowest according to PTM loads that help to establish the location of the source. Hierarchical cluster analysis grouped different sites into the same cluster based on similarity in PTMs load, i.e., low, medium, and high.
Collapse
Affiliation(s)
- Anuj Saraswat
- Department of Soil Science, G.B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand, 263 145, India
| | - Shri Ram
- Department of Soil Science, G.B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand, 263 145, India
| | - Md Basit Raza
- ICAR-Indian Institute of Soil and Water Conservation, Research Center, Koraput, Odisha, 763 002, India.
- ICAR-National Academy of Agricultural Research and Management, Hyderabad, Telangana, 500 030, India.
| | - Sadikul Islam
- ICAR-Indian Institute of Soil and Water Conservation, Dehradun, Uttarakhand, 248 195, India
| | - Sonal Sharma
- Department of Soil Science & Agricultural Chemistry, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, 313 001, India
| | - Michael E Omeka
- Department of Geology, University of Calabar, Cross River State, P.M.B. 1115, Calabar, Nigeria
| | | | - Roomesh K Jena
- ICAR-Indian Institute of Water Management, Bhubaneswar, 751 023, India
| | - Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012, India
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
13
|
Iqbal J, Su C, Wang M, Abbas H, Baloch MYJ, Ghani J, Ullah Z, Huq ME. Groundwater fluoride and nitrate contamination and associated human health risk assessment in South Punjab, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61606-61625. [PMID: 36811779 DOI: 10.1007/s11356-023-25958-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/11/2023] [Indexed: 05/10/2023]
Abstract
Consumption of high fluoride (F-) and nitrate (NO3-) containing water may pose serious health hazards. One hundred sixty-one groundwater samples were collected from drinking wells in Khushab district, Punjab Province, Pakistan, to determine the causes of elevated F- and NO3- concentrations, and to estimate the human health risks posed by groundwater contamination. The results showed pH of the groundwater samples ranged from slightly neutral to alkaline, and Na+ and HCO3- ions dominated the groundwater. Piper diagram and bivariate plots indicated that the key factors regulating groundwater hydrochemistry were weathering of silicates, dissolution of evaporates, evaporation, cation exchange, and anthropogenic activities. The F- content of groundwater ranged from 0.06 to 7.9 mg/L, and 25.46% of groundwater samples contained high-level fluoride concentration (F- > 1.5 mg/L), which exceeds the (WHO Guidelines for drinking-water quality: incorporating the first and second addenda, WHO, Geneva, 2022) guidelines of drinking-water quality. Inverse geochemical modeling indicates that weathering and dissolution of fluoride-rich minerals were the primary causes of F- in groundwater. High F- can be attributed to low concentration of calcium-containing minerals along the flow path. The concentrations of NO3- in groundwater varied from 0.1 to 70 mg/L; some samples are slightly exceeding the (WHO Guidelines for drinking-water quality: incorporating the first and second addenda, WHO, Geneva, 2022) guidelines for drinking-water quality. Elevated NO3- content was attributed to the anthropogenic activities revealed by PCA analysis. The high levels of nitrates found in the study region are a result of various human-caused factors, including leaks from septic systems, the use of nitrogen-rich fertilizers, and waste from households, farming operations, and livestock. The hazard quotient (HQ) and total hazard index (THI) of F- and NO3- showed high non-carcinogenic risk (> 1) via groundwater consumption, demonstrating a high potential risk to the local population. This study is significant because it is the most comprehensive examination of water quality, groundwater hydrogeochemistry, and health risk assessment in the Khushab district to date, and it will serve as a baseline for future studies. Some sustainable measures are urgent to reduce the F- and NO3- content in the groundwater.
Collapse
Affiliation(s)
- Javed Iqbal
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Chunli Su
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China.
| | - Mengzhu Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430074, China
| | - Hasnain Abbas
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | | | - Junaid Ghani
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Md Enamul Huq
- College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
14
|
Wang Z, Xiong H, Ma C, Zhang F, Li X. Assessment of groundwater vulnerability by applying the improved DRASTIC model: a case in Guyuan City, Ningxia, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59062-59075. [PMID: 37002526 DOI: 10.1007/s11356-023-26763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
Groundwater is the main source of production and living in most arid and semi-arid areas, and it plays an increasingly critical role in achieving local urban development. There is a serious issue regarding the contradiction between urban development and groundwater protection. In this study, we used three different models to assess the groundwater vulnerability of Guyuan City, including DRASTIC model, analytical hierarchy process-DRASTIC model (AHP-DRASTIC) and variable weight theory-DRASTIC model (VW-DRASTIC). The groundwater vulnerability index (GVI) of the study area was calculated in ArcGIS. Based on the magnitude of GVI, the groundwater vulnerability was classified into five classes: very high, high, medium, low, and very low using the natural breakpoint method, and the groundwater vulnerability map (GVM) of the study area was drawn. In order to validate the accuracy of groundwater vulnerability, the Spearman correlation coefficient was used, and the results showed that the VW-DRASTIC model performed best among the three models (ρ=0.83). The improved VW-DRASTIC model shows that the variable weight model effectively improves the accuracy of the DRASTIC model, which is more suitable for the study area. Finally, based on the results of GVM combined with the distribution of F- and urban development planning, suggestions were proposed for further sustainable groundwater management. This study provides a scientific basis for groundwater management in Guyuan City, which can be an example for similar areas, particularly in arid and semi-arid areas.
Collapse
Affiliation(s)
- Zhiye Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hanxiang Xiong
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Chuanming Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Fawang Zhang
- Center for Hydrogeology and Environmental Geological Survey, China Geological Survey, Baoding, 071051, China
| | - Xuan Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
15
|
Sarma R, Singh SK. Assessment of groundwater quality and human health risks of nitrate and fluoride contamination in a rapidly urbanizing region of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55437-55454. [PMID: 36892698 DOI: 10.1007/s11356-023-26204-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Groundwater contamination studies are important to understand the risks to public health. In this study, groundwater quality, major ion chemistry, sources of contaminants, and related health risks were evaluated for North-West Delhi, India, a region with a rapidly growing urban population. Groundwater samples collected from the study area were analysed for physicochemical parameters - pH, electrical conductivity, total dissolved solids, total hardness, total alkalinity, carbonate, bicarbonate, chloride, nitrate, sulphate, fluoride, phosphate, calcium, magnesium, sodium and potassium. Investigation of hydrochemical facies revealed that bicarbonate was the dominant anion while magnesium was the dominant cation. Multivariate analysis using principal component analysis and Pearson correlation matrix indicated that major ion chemistry in the aquifer under study is primarily due to mineral dissolution, rock-water interactions and anthropogenic factors. Water quality index values showed that only 20% of the samples were acceptable for drinking. Due to high salinity, 54% of the samples were unfit for irrigation purposes. Nitrate and fluoride concentrations ranged from 0.24 to 380.19 mg/l and 0.05 to 7.90 mg/l, respectively due to fertilizer use, wastewater infiltration and geogenic processes. The health risks from high levels of nitrate and fluoride were calculated for males, females, and children. It was found that health risk from nitrate is more than fluoride in the study region. However, the spatial extent of risk from fluoride is more indicating that more people suffer from fluoride pollution in the study area. The total hazard index for children was found to be more than adults. Continuous monitoring of groundwater and application of remedial measures are recommended to improve the water quality and public health in the region.
Collapse
Affiliation(s)
- Riki Sarma
- Department of Environmental Engineering, Delhi Technological University, Delhi, India
| | - Santosh Kumar Singh
- Department of Environmental Engineering, Delhi Technological University, Delhi, India.
| |
Collapse
|
16
|
Rashid A, Ayub M, Ullah Z, Ali A, Sardar T, Iqbal J, Gao X, Bundschuh J, Li C, Khattak SA, Ali L, El-Serehy HA, Kaushik P, Khan S. Groundwater Quality, Health Risk Assessment, and Source Distribution of Heavy Metals Contamination around Chromite Mines: Application of GIS, Sustainable Groundwater Management, Geostatistics, PCAMLR, and PMF Receptor Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032113. [PMID: 36767482 PMCID: PMC9916341 DOI: 10.3390/ijerph20032113] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 05/25/2023]
Abstract
Groundwater contamination by heavy metals (HMs) released by weathering and mineral dissolution of granite, gneisses, ultramafic, and basaltic rock composition causes human health concerns worldwide. This paper evaluated the heavy metals (HMs) concentrations and physicochemical variables of groundwater around enriched chromite mines of Malakand, Pakistan, with particular emphasis on water quality, hydro-geochemistry, spatial distribution, geochemical speciation, and human health impacts. To better understand the groundwater hydrogeochemical profile and HMs enrichment, groundwater samples were collected from the mining region (n = 35), non-mining region (n = 20), and chromite mines water (n = 5) and then analyzed using ICPMS (Agilent 7500 ICPMS). The ranges of concentrations in the mining, non-mining, and chromite mines water were 0.02-4.5, 0.02-2.3, and 5.8-6.0 mg/L for CR, 0.4-3.8, 0.05-3.6, and 3.2-5.8 mg/L for Ni, and 0.05-0.8, 0.05-0.8, and 0.6-1.2 mg/L for Mn. Geochemical speciation of groundwater variables such as OH-, H+, Cr+2, Cr+3, Cr+6, Ni+2, Mn+2, and Mn+3 was assessed by atomic fluorescence spectrometry (AFS). Geochemical speciation determined the mobilization, reactivity, and toxicity of HMs in complex groundwater systems. Groundwater facies showed 45% CaHCO3, 30% NaHCO3, 23.4% NaCl, and 1.6% Ca-Mg-Cl water types. The noncarcinogenic and carcinogenic risk of HMs outlined via hazard quotient (HQ) and total hazard indices (THI) showed the following order: Ni > Cr > Mn. Thus, the HHRA model suggested that children are more vulnerable to HMs toxicity than adults. Hierarchical agglomerative cluster analysis (HACA) showed three distinct clusters, namely the least, moderately, and severely polluted clusters, which determined the severity of HMs contamination to be 66.67% overall. The PCAMLR and PMF receptor model suggested geogenic (minerals prospects), anthropogenic (industrial waste and chromite mining practices), and mixed (geogenic and anthropogenic) sources for groundwater contamination. The mineral phases of groundwater suggested saturation and undersaturation. Nemerow's pollution index (NPI) values determined the unsuitability of groundwater for domestic purposes. The EC, turbidity, PO4-3, Na+, Mg+2, Ca+2, Cr, Ni, and Mn exceeded the guidelines suggested by the World Health Organization (WHO). The HMs contamination and carcinogenic and non-carcinogenic health impacts of HMs showed that the groundwater is extremely unfit for drinking, agriculture, and domestic demands. Therefore, groundwater wells around the mining region need remedial measures. Thus, to overcome the enrichment of HMs in groundwater sources, sustainable management plans are needed to reduce health risks and ensure health safety.
Collapse
Affiliation(s)
- Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- National Centre of Excellence in Geology, University of Peshawar, Peshawar 25130, Pakistan
| | - Muhammad Ayub
- Department of Botany, Hazara University, Dhodial P.O. Box 21120, Pakistan
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Asmat Ali
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tariq Sardar
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Javed Iqbal
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xubo Gao
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD 4350, Australia
| | - Chengcheng Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Seema Anjum Khattak
- National Centre of Excellence in Geology, University of Peshawar, Peshawar 25130, Pakistan
| | - Liaqat Ali
- National Centre of Excellence in Geology, University of Peshawar, Peshawar 25130, Pakistan
| | - Hamed A. El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar P.O. Box 25120, Pakistan
| |
Collapse
|
17
|
Tanwer N, Deswal M, Khyalia P, Laura JS, Khosla B. Assessment of groundwater potability and health risk due to fluoride and nitrate in groundwater of Churu District of Rajasthan, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01485-z. [PMID: 36656463 DOI: 10.1007/s10653-023-01485-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The availability of potable drinking water is a tough challenge particularly in arid and semiarid regions as it is closely linked to human health. Fluoride and nitrate are widely reported concern in different districts of Rajasthan. Therefore, this study was engaged in the Churu District of Rajasthan to appraise the water quality especially in reference to fluoride and nitrate and health risk associated with its consumption. The overall potability of water was evaluated using water quality index and PCA indicated major sources responsible for water contamination. A total of 515 groundwater samples were collected from different locations of Churu District and16 water quality parameters were analyzed as per the standard protocol of APHA. The results showed that the values for all analyzed water quality parameters were greater than the prescribed limit of WHO and BIS. F- levels in 191 samples and nitrate levels in 147 samples were found to be over than BIS-acceptable limit. The results of the fluoride and nitrate risk assessment revealed that the Hazard Index value was greater than one of 393 groundwater samples for males, 403 groundwater samples for females, and 397 groundwater samples for children, indicating that drinking groundwater poses a significant health risk in the study area. Only 46.02 percent of groundwater samples may be utilized for drinking, according to the water quality index (WQI), while the remaining are unfit for drinking purpose without treatment. The huge number of variables impacting the overall quality and chemistry of groundwater were reduced using principal component analysis (PCA), which identified four key components that account for 69.11 percent of variance in the dataset. The PCA indicated that both geogenic and anthropogenic factors significantly influenced the water quality of the study region.
Collapse
Affiliation(s)
- Naresh Tanwer
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Meena Deswal
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pradeep Khyalia
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Jitender Singh Laura
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Babita Khosla
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
18
|
Tanwer N, Deswal M, Khyalia P, Laura JS, Khosla B. Fluoride and nitrate in groundwater: a comprehensive analysis of health risk and potability of groundwater of Jhunjhunu district of Rajasthan, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:267. [PMID: 36602646 DOI: 10.1007/s10661-022-10886-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Groundwater contamination is a major concern in front of the scientific community because it is directly related to human health, especially in arid and semi-arid regions. Therefore, a comprehensive study was engaged to evaluate the water quality, potability, and human health risk assessment due to the consumption of fluoride- and nitrate-contaminated water in Jhunjhunu district of Rajasthan. In order to assess the water quality, samples were collected from 87 locations in the study region, and a total of 16 parameters were analyzed as per the standard methods. The results showed that the value of the number of quality parameters consisting of pH, EC, TDS, fluoride, chloride, nitrate, sulfate, total hardness, calcium, magnesium, and total alkalinity was higher than the recommended limit of BIS and WHO. The fluoride in 11% and nitrate in 6% of samples were observed to exceed the permissible limit of WHO. The results of risk assessment due to fluoride and nitrate revealed that hazard index values of 71% of groundwater samples for males, 78% of groundwater samples for females, and 75% of groundwater samples for children were greater than 1, indicating the significant health hazard due to consumption of groundwater. The water quality index (WQI) found that 39% of groundwater samples belong to categories that cannot be used for drinking purposes. Principal component analysis (PCA) reduced the large number of variables affecting the overall quality and chemistry of groundwater and determined four major components which account for 69.50% variance in the data. PCA concluded that both geogenic and anthropogenic sources of contamination influenced the groundwater of the study area.
Collapse
Affiliation(s)
- Naresh Tanwer
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Meena Deswal
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pradeep Khyalia
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Jitender Singh Laura
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Babita Khosla
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
19
|
Non-Carcinogenic Health Risk Evaluation of Elevated Fluoride in Groundwater and Its Suitability Assessment for Drinking Purposes Based on Water Quality Index. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159071. [PMID: 35897434 PMCID: PMC9331254 DOI: 10.3390/ijerph19159071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Fluoride (F-) contamination in drinking groundwater is a significant human health risk in Pakistan. Moreover, high fluoride pollution in drinking water causes a variety of disorders, including dental, neurological, and skeletal fluorosis. The aim of this research was to evaluate the health risk of elevated fluoride in groundwater and its suitability assessment for drinking purposes. The total of (n = 37) samples were collected from community tube wells of Quetta Valley, Balochistan, Pakistan. The results show a mean pH value of 7.7, TDS of 404.6 mg/L, EC of 500 µs/cm, depth of 96.8 feet, and turbidity of 1.7 nephelometric turbidity units. The mean values of HCO3-, Ca2+, Mg2+, and Na+, were 289.5, 47.5, 30.6, and 283.3 mg/L, respectively. The mean values of SO42-, NO3-, K+, Cl-, and Fe2+, were 34.9, 1.0, 1.6, 25.6, and 0.01 mg/L, respectively. The F- concentration in the groundwater varied between 0.19 and 6.21, with a mean value of 1.8 mg/L, and 18 samples out of 37 were beyond the WHO recommended limit of 1.5 mg/L. The hydrochemical analysis results indicated that among the groundwater samples of the study area, 54% samples were Na-HCO3 type and 46% were mixed CaNaHCO3 type. The saturation indices of the mineral phases reveal that the groundwater sources of the study area were saturated with CaCO3 and halide minerals due to their positive (SI) values. Such minerals include calcite, dolomite, gypsum, and fluorite. The principal component analysis results reveal that the groundwater sources of the study area are contaminated due to geological and anthropogenic actions. The health risk assessment results of the F- concentrations show the ranges of ADDingestion for children, females, and males in the Quetta Valley, and their mean values were observed to be 0.093052, 0.068825, and 0.065071, respectively. The HQingestion mean values were 1.55086, 1.147089, and 1.084521 for children, females, and males, respectively. It was noticed that children had the highest maximum and average values of ADDingestion and HQingestion in the research area, indicating that groundwater fluoride intake poses the greatest health risk to children. The water quality index (WQI) analyses show that 44% of the samples belong to the poor-quality category, 49% were of good quality, and 8% of the samples of the study area belong to the excellent category.
Collapse
|