1
|
Men Y, Wang Y, Wu W, Chu M. Association between organophosphate pesticide exposure and atopic dermatitis: a cross-sectional study based on NHANES 1999-2007. Front Public Health 2025; 13:1555731. [PMID: 40115349 PMCID: PMC11922850 DOI: 10.3389/fpubh.2025.1555731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025] Open
Abstract
Background Organophosphate pesticides (OPPs) are widely used environmental chemicals with potential health impacts, but their relationship with atopic dermatitis (AD) remains unclear. Methods Using data from the National Health and Nutrition Examination Survey (NHANES) 1999-2007, we investigated associations between urinary OPP metabolites and AD in 4,258 adults. Six dialkyl phosphate (DAP) metabolites were measured, and weighted quantile sum (WQS) regression was used to assess mixture effects. Results Both DMP (odds ratio [OR] = 1.17, 95% confidence interval [CI]: 1.05-1.31) and DMDTP (OR = 2.23, 95%CI: 1.08-4.60) showed significant positive associations with AD in fully adjusted models. WQS regression revealed significant associations between mixed OPP exposure and AD (OR = 1.25, 95%CI: 1.04-1.50), with DMP contributing most (45.8%) to the mixture effect. Stratified analyses indicated stronger associations in males, younger adults (<60 years), and smokers. Conclusion Our findings suggest that OPP exposure, particularly DMP, may be associated with increased AD risk in adults. These results provide new insights into environmental risk factors for AD.
Collapse
Affiliation(s)
- YueHua Men
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - YiMeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - WenTing Wu
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
2
|
Zhao H, Kang X. Associations of Depression Score with Dialkyl Phosphate Metabolites in Urine: A Cross-Sectional Study. Brain Sci 2024; 14:1290. [PMID: 39766489 PMCID: PMC11674160 DOI: 10.3390/brainsci14121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES Growing evidence suggests a link between organophosphate insecticides and depression disorder. These chemicals are metabolized and subsequently expelled through the urinary tract. The present study aims to investigate whether dialkyl phosphate metabolites associate with depression score and severity among the general population. METHODS This cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES). Depression was evaluated by the Patient Health Questionnaire-9 (PHQ-9). All urinary dialkyl phosphate metabolites were quantitatively analyzed. The survey's complex design parameters and sampling weights were considered. RESULTS 3035 eligible individuals were included. The estimated prevalence of mild and major depression was 18.3% (95% confidence interval [CI]: 16.9-19.7%) and 9.9% (95% CI: 8.7-11.0%). For each incremental unit in the level of urinary dimethyl phosphate (DMP), individuals were found to have a higher depression score of 0.77 and a significantly increased odds ratio (OR) of 1.13 (95% CI: 1.12-1.13) for mild depression and 2.75 (95% CI: 2.74-2.76) for major depression. CONCLUSIONS Our findings indicate positive and independent associations between urinary dialkyl phosphate metabolites and an elevated risk of depression among the general population.
Collapse
Affiliation(s)
| | - Xuejun Kang
- Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
3
|
Fandiño-Del-Rio M, Tore G, Peng RD, Meeker JD, Matsui EC, Quirós-Alcalá L. Characterization of pesticide exposures and their associations with asthma morbidity in a predominantly low-income urban pediatric cohort in Baltimore City. ENVIRONMENTAL RESEARCH 2024; 263:120096. [PMID: 39362457 DOI: 10.1016/j.envres.2024.120096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Pesticides may impact respiratory health, yet evidence of their impact on pediatric asthma morbidity is limited, particularly among urban children. OBJECTIVE To characterize pesticide biomarker concentrations and evaluate their associations with pediatric asthma morbidity among predominantly low-income, Black children in Baltimore City, USA. METHODS We measured urinary concentrations of 10 biomarkers for pyrethroid insecticides (cyfluthrin:4F-3PBA, permethrin:3PBA), organophosphate insecticides (chlorpyrifos:TCPY, malathion:MDA, parathion:PNP, diazinon:IMPY), and herbicides (glyphosate:AMPA, GPS; 2,4-dicholorphenoxyacetic acid:2,4-D; 2,4,5-tricholorphenoxyacetic acid:2,4,5-T) among 148 children (5-17 years) with established asthma. Urine samples and asthma morbidity measures (asthma symptoms, healthcare utilization, lung function and inflammation) were collected every three months for a year. Generalized estimating equations were used to examine associations between pesticide biomarker concentrations and asthma morbidity measures, controlling for age, sex, race, caregiver education, season, and environmental tobacco smoke. In sensitivity analyses, we assessed the robustness of our results after accounting for environmental co-exposures. RESULTS Frequently detected (≥90% detection) pesticide biomarker concentrations (IMPY, 3PBA, PNP, TCPY, AMPA, GPS) varied considerably within children over the follow-up period (intraclass correlation coefficients: 0.1-0.2). Consistent positive significant associations were observed between the chlorpyrifos biomarker, TCPY, and asthma symptoms. Urinary concentrations of TCPY were associated with increased odds of coughing, wheezing, or chest tightness (adjusted Odds Ratio, aOR, TCPY:1.60, 95% Confidence Interval, CI:1.17-2.18). Urinary concentrations of TCPY were also associated with maximal symptom days (aOR:1.38, CI:1.02-1.86), exercise-related symptoms (aOR:1.63, CI:1.09-2.44), and hospitalizations for asthma (aOR:2.84, CI:1.08-7.43). We did not observe consistent evidence of associations between the pesticide exposures assessed and lung function or inflammation measures. CONCLUSION Among predominantly Black children with asthma, we found evidence that chlorpyrifos is associated with asthma morbidity. Further research is needed to assess the contribution of pesticide exposures to pediatric respiratory health and characterize exposure sources among vulnerable populations to inform targeted interventions against potentially harmful pesticide exposures.
Collapse
Affiliation(s)
- Magdalena Fandiño-Del-Rio
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Grant Tore
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Roger D Peng
- Department of Statistics and Data Sciences, University of Texas, Austin, TX, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | | | - Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Melén E, Zar HJ, Siroux V, Shaw D, Saglani S, Koppelman GH, Hartert T, Gern JE, Gaston B, Bush A, Zein J. Asthma Inception: Epidemiologic Risk Factors and Natural History Across the Life Course. Am J Respir Crit Care Med 2024; 210:737-754. [PMID: 38981012 PMCID: PMC11418887 DOI: 10.1164/rccm.202312-2249so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/09/2024] [Indexed: 07/11/2024] Open
Abstract
Asthma is a descriptive label for an obstructive inflammatory disease in the lower airways manifesting with symptoms including breathlessness, cough, difficulty in breathing, and wheezing. From a clinician's point of view, asthma symptoms can commence at any age, although most patients with asthma-regardless of their age of onset-seem to have had some form of airway problems during childhood. Asthma inception and related pathophysiologic processes are therefore very likely to occur early in life, further evidenced by recent lung physiologic and mechanistic research. Herein, we present state-of-the-art updates on the role of genetics and epigenetics, early viral and bacterial infections, immune response, and pathophysiology, as well as lifestyle and environmental exposures, in asthma across the life course. We conclude that early environmental insults in genetically vulnerable individuals inducing abnormal, pre-asthmatic airway responses are key events in asthma inception, and we highlight disease heterogeneity across ages and the potential shortsightedness of treating all patients with asthma using the same treatments. Although there are no interventions that, at present, can modify long-term outcomes, a precision-medicine approach should be implemented to optimize treatment and tailor follow-up for all patients with asthma.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Heather J. Zar
- Department of Paediatrics and Child Health and South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Valerie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Dominic Shaw
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Sejal Saglani
- National Heart and Lung Institute, Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Groningen, the Netherlands
| | - Tina Hartert
- Department of Medicine and Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | | | - Andrew Bush
- National Heart and Lung Institute, Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | | |
Collapse
|
5
|
Zuo S, Sasitharan V, Di Tanna GL, Vonk JM, De Vries M, Sherif M, Ádám B, Rivillas JC, Gallo V. Is exposure to pesticides associated with biological aging? A systematic review and meta-analysis. Ageing Res Rev 2024; 99:102390. [PMID: 38925480 DOI: 10.1016/j.arr.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Exposure to pesticides is a risk factor for various diseases, yet its association with biological aging remains unclear. We aimed to systematically investigate the relationship between pesticide exposure and biological aging. METHODS PubMed, Embase and Web of Science were searched from inception to August 2023. Observational studies investigating the association between pesticide exposure and biomarkers of biological aging were included. Three-level random-effect meta-analysis was used to synthesize the data. Risk of bias was assessed by the Newcastle-Ottawa Scale. RESULTS Twenty studies evaluating the associations between pesticide exposure and biomarkers of biological aging in 10,368 individuals were included. Sixteen reported telomere length and four reported epigenetic clocks. Meta-analysis showed no statistically significant associations between pesticide exposure and the Hannum clock (pooled β = 0.27; 95 %CI: -0.25, 0.79), or telomere length (pooled Hedges'g = -0.46; 95 %CI: -1.10, 0.19). However, the opposite direction of effects for the two outcomes showed an indication of possible accelerated biological aging. After removal of influential effect sizes or low-quality studies, shorter telomere length was found in higher-exposed populations. CONCLUSION The existing evidence for associations between pesticide exposure and biological aging is limited due to the scarcity of studies on epigenetic clocks and the substantial heterogeneity across studies on telomere length. High-quality studies incorporating more biomarkers of biological aging, focusing more on active chemical ingredients of pesticides and accounting for potential confounders are needed to enhance our understanding of the impact of pesticides on biological aging.
Collapse
Affiliation(s)
- Shanshan Zuo
- University of Groningen, Campus Fryslân, Department of Sustainable Health, Leeuwarden, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| | | | - Gian Luca Di Tanna
- University of Applied Sciences and Arts of Southern Switzerland, Department of Business Economics, Health and Social Care, Lugano, Switzerland
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Maaike De Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Moustafa Sherif
- United Arab Emirates University, College of Medicine and Health Sciences, Institute of Public Health, Al Ain, United Arab Emirates
| | - Balázs Ádám
- United Arab Emirates University, College of Medicine and Health Sciences, Institute of Public Health, Al Ain, United Arab Emirates
| | - Juan Carlos Rivillas
- Imperial College London, MRC Centre Environment and Health, School of Public Health, Department of Epidemiology and Biostatistics, London, United Kingdom
| | - Valentina Gallo
- University of Groningen, Campus Fryslân, Department of Sustainable Health, Leeuwarden, the Netherlands
| |
Collapse
|
6
|
Jia C, Huang Y, Cheng Z, Zhang N, Shi T, Ma X, Zhang G, Zhang C, Hua R. Combined Transcriptomics and Metabolomics Analysis Reveals Profenofos-Induced Invisible Injury in Pakchoi ( Brassica rapa L.) through Inhibition of Carotenoid Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15321-15333. [PMID: 38917998 DOI: 10.1021/acs.jafc.4c03262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Profenofos insecticide poses risks to nontarget organisms including mammals and hydrobionts, and its effects on crops are not known. This study examined the invisible toxicity of profenofos on pakchoi (Brassica rapa L.), using transcriptome and metabolome analyses. Profenofos inhibited the photosynthetic efficiency and light energy absorption by leaves and severely damaged the chloroplasts, causing the accumulation of reactive oxygen species (ROS). Metabolomic analysis confirmed that profenofos promoted the conversion of β-carotene into abscisic acid (ABA), as evidenced by the upregulation of the carotenoid biosynthesis pathway genes: zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED3), and xanthoxin dehydrogenase (XanDH). The inhibitory effects on carotenoid accumulation, photosynthesis, and increased ABA and ROS contents of the leaves led to invisible injury and stunted growth of the pakchoi plants. The findings of this study revealed the toxicological risk of profenofos to nontarget crops and provide guidance for the safe use of insecticides.
Collapse
Affiliation(s)
- Caiyi Jia
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Youkun Huang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Zechao Cheng
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Nan Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Xin Ma
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Genrong Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| | - Chao Zhang
- College of Agronomy, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, P. R. China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
- College of Resources and Environment, Anhui Agricultural University, No. 130 Changjiangxilu, Hefei 230036, China
| |
Collapse
|
7
|
Agache I, Annesi-Maesano I, Cecchi L, Biagioni B, Chung KF, Clot B, D'Amato G, Damialis A, Del Giacco S, Dominguez-Ortega J, Galàn C, Gilles S, Holgate S, Jeebhay M, Kazadzis S, Nadeau K, Papadopoulos N, Quirce S, Sastre J, Tummon F, Traidl-Hoffmann C, Walusiak-Skorupa J, Jutel M, Akdis CA. EAACI guidelines on environmental science for allergy and asthma: The impact of short-term exposure to outdoor air pollutants on asthma-related outcomes and recommendations for mitigation measures. Allergy 2024; 79:1656-1686. [PMID: 38563695 DOI: 10.1111/all.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
The EAACI Guidelines on the impact of short-term exposure to outdoor pollutants on asthma-related outcomes provide recommendations for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management and for policymakers and regulators as an evidence-informed reference to help setting legally binding standards and goals for outdoor air quality at international, national and local levels. The Guideline was developed using the GRADE approach and evaluated outdoor pollutants referenced in the current Air Quality Guideline of the World Health Organization as single or mixed pollutants and outdoor pesticides. Short-term exposure to all pollutants evaluated increases the risk of asthma-related adverse outcomes, especially hospital admissions and emergency department visits (moderate certainty of evidence at specific lag days). There is limited evidence for the impact of traffic-related air pollution and outdoor pesticides exposure as well as for the interventions to reduce emissions. Due to the quality of evidence, conditional recommendations were formulated for all pollutants and for the interventions reducing outdoor air pollution. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but global measures for clean air are needed to achieve significant impact.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit San Giovanni di Dio Hospital, Florence, Italy
| | - Kian Fan Chung
- National Hearth & Lung Institute, Imperial College London, London, UK
| | - Bernard Clot
- Federal office of meteorology and climatology MeteoSwiss, Payerne, Switzerland
| | - Gennaro D'Amato
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- University of Naples Federico II Medical School of Respiratory Diseases, Naples, Italy
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Javier Dominguez-Ortega
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Carmen Galàn
- Inter-University Institute for Earth System Research (IISTA), International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Stelios Kazadzis
- Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
| | - Kari Nadeau
- John Rock Professor of Climate and Population Studies, Department of Environmental Health, Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nikolaos Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Fiona Tummon
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- University of Naples Federico II Medical School of Respiratory Diseases, Naples, Italy
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
- Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, and ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|