1
|
Wuyts FL, Deblieck C, Vandevoorde C, Durante M. Brains in space: impact of microgravity and cosmic radiation on the CNS during space exploration. Nat Rev Neurosci 2025:10.1038/s41583-025-00923-4. [PMID: 40247135 DOI: 10.1038/s41583-025-00923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/19/2025]
Abstract
Solar system exploration is a grand endeavour of humankind. Space agencies have been planning crewed missions to the Moon and Mars for several decades. However, several environmental stress factors in space, such as microgravity and cosmic radiation, confer health risks for human explorers. This Review examines the effects of microgravity and exposure to cosmic radiation on the CNS. Microgravity presents challenges for the brain, necessitating the development of adaptive movement and orientation strategies to cope with alterations in sensory information. Exposure to microgravity also affects cognitive function to a certain extent. Recent MRI results show that microgravity affects brain structure and function. Post-flight recovery from these changes is gradual, with some lasting up to a year. Regarding cosmic radiation, animal experiments suggest that the brain could be much more sensitive to this stressor than may be expected from experiences on Earth. This may be due to the presence of energetic heavy ions in space that have an impact on cognitive function, even at low doses. However, all data about space radiation risk stem from rodent experiments, and extrapolation of these data to humans carries a high degree of uncertainty. Here, after presenting an overview of current knowledge in the above areas, we provide a concise description of possible counter-measures to protect the brain against microgravity and cosmic radiation during future space missions.
Collapse
Affiliation(s)
- Floris L Wuyts
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Choi Deblieck
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
- Institute for Condensed Matter of Physics, Technische Universität Darmstadt, Darmstadt, Germany.
- Department of Physics 'Ettore Pancini', University Federico II, Naples, Italy.
| |
Collapse
|
2
|
Kolesnikova IA, Lalkovičova M, Severyukhin YS, Golikova KN, Utina DM, Pronskikh EV, Despotović SZ, Gaevsky VN, Pirić D, Masnikosa R, Budennaya NN. The Effects of Whole Body Gamma Irradiation on Mice, Age-Related Behavioral, and Pathophysiological Changes. Cell Mol Neurobiol 2023; 43:3723-3741. [PMID: 37402948 PMCID: PMC11410007 DOI: 10.1007/s10571-023-01381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
We designed a study with the objective to determine the long-term radiation effects of gamma rays, originating from a single shot of Co60 at a dose of 2 Gy on the 7-month-old male mice of the ICR line in 30 days after the irradiation. The aim of this study was to characterize the behavior of animals using the Open Field test, immuno-hematological status, and morpho-functional changes in the central nervous system of mice. Irradiated animals displayed significantly different behavior in the OF in comparison with the control group. The radiation damage was confirmed by assessing the ratio of leukocytes in the peripheral blood of mice at a later date after exposure to Co60. After irradiation, a decrease in the glioneuronal complex was observed in the irritated group as well as histological changes of brain cells. To sum up, not only was the hematological status of mice altered upon the total gamma irradiation, but also their behavior, which was most probably due to significant alterations in the CNS. Study of influence of ionizing radiation on female mice, comparison between different age groups. Open Field test on the 30 days after 2 Gy of γ-rays and histological analysis indicated changes in behavioral patterns, leucocytes, and brain tissue.
Collapse
Affiliation(s)
- I A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - M Lalkovičova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198.
- Department of Physical Chemistry, Pavol Jozef Safarik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| | - Yu S Severyukhin
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - K N Golikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - E V Pronskikh
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - Sanja Z Despotović
- Institute of Histology and Embryology, University of Belgrade, Belgrade, Serbia
| | - V N Gaevsky
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D Pirić
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - R Masnikosa
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - N N Budennaya
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| |
Collapse
|
3
|
Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021; 132:908-935. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA; Flinders University, Adelaide, Australia
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Wake Forest Medical School, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
4
|
Soler I, Yun S, Reynolds RP, Whoolery CW, Tran FH, Kumar PL, Rong Y, DeSalle MJ, Gibson AD, Stowe AM, Kiffer FC, Eisch AJ. Multi-Domain Touchscreen-Based Cognitive Assessment of C57BL/6J Female Mice Shows Whole-Body Exposure to 56Fe Particle Space Radiation in Maturity Improves Discrimination Learning Yet Impairs Stimulus-Response Rule-Based Habit Learning. Front Behav Neurosci 2021; 15:722780. [PMID: 34707486 PMCID: PMC8543003 DOI: 10.3389/fnbeh.2021.722780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Astronauts during interplanetary missions will be exposed to galactic cosmic radiation, including charged particles like 56Fe. Most preclinical studies with mature, "astronaut-aged" rodents suggest space radiation diminishes performance in classical hippocampal- and prefrontal cortex-dependent tasks. However, a rodent cognitive touchscreen battery unexpectedly revealed 56Fe radiation improves the performance of C57BL/6J male mice in a hippocampal-dependent task (discrimination learning) without changing performance in a striatal-dependent task (rule-based learning). As there are conflicting results on whether the female rodent brain is preferentially injured by or resistant to charged particle exposure, and as the proportion of female vs. male astronauts is increasing, further study on how charged particles influence the touchscreen cognitive performance of female mice is warranted. We hypothesized that, similar to mature male mice, mature female C57BL/6J mice exposed to fractionated whole-body 56Fe irradiation (3 × 6.7cGy 56Fe over 5 days, 600 MeV/n) would improve performance vs. Sham conditions in touchscreen tasks relevant to hippocampal and prefrontal cortical function [e.g., location discrimination reversal (LDR) and extinction, respectively]. In LDR, 56Fe female mice more accurately discriminated two discrete conditioned stimuli relative to Sham mice, suggesting improved hippocampal function. However, 56Fe and Sham female mice acquired a new simple stimulus-response behavior and extinguished this acquired behavior at similar rates, suggesting similar prefrontal cortical function. Based on prior work on multiple memory systems, we next tested whether improved hippocampal-dependent function (discrimination learning) came at the expense of striatal stimulus-response rule-based habit learning (visuomotor conditional learning). Interestingly, 56Fe female mice took more days to reach criteria in this striatal-dependent rule-based test relative to Sham mice. Together, our data support the idea of competition between memory systems, as an 56Fe-induced decrease in striatal-based learning is associated with enhanced hippocampal-based learning. These data emphasize the power of using a touchscreen-based battery to advance our understanding of the effects of space radiation on mission critical cognitive function in females, and underscore the importance of preclinical space radiation risk studies measuring multiple cognitive processes, thereby preventing NASA's risk assessments from being based on a single cognitive domain.
Collapse
Affiliation(s)
- Ivan Soler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sanghee Yun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Cody W. Whoolery
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Priya L. Kumar
- University of Pennsylvania, Philadelphia, PA, United States
| | - Yuying Rong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew J. DeSalle
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Adam D. Gibson
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ann M. Stowe
- Department of Neurology and Neurological Therapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Frederico C. Kiffer
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Matar M, Gokoglu SA, Prelich MT, Gallo CA, Iqbal AK, Britten RA, Prabhu RK, Myers JG. Machine Learning Models to Predict Cognitive Impairment of Rodents Subjected to Space Radiation. Front Syst Neurosci 2021; 15:713131. [PMID: 34588962 PMCID: PMC8473791 DOI: 10.3389/fnsys.2021.713131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
This research uses machine-learned computational analyses to predict the cognitive performance impairment of rats induced by irradiation. The experimental data in the analyses is from a rodent model exposed to ≤15 cGy of individual galactic cosmic radiation (GCR) ions: 4He, 16O, 28Si, 48Ti, or 56Fe, expected for a Lunar or Mars mission. This work investigates rats at a subject-based level and uses performance scores taken before irradiation to predict impairment in attentional set-shifting (ATSET) data post-irradiation. Here, the worst performing rats of the control group define the impairment thresholds based on population analyses via cumulative distribution functions, leading to the labeling of impairment for each subject. A significant finding is the exhibition of a dose-dependent increasing probability of impairment for 1 to 10 cGy of 28Si or 56Fe in the simple discrimination (SD) stage of the ATSET, and for 1 to 10 cGy of 56Fe in the compound discrimination (CD) stage. On a subject-based level, implementing machine learning (ML) classifiers such as the Gaussian naïve Bayes, support vector machine, and artificial neural networks identifies rats that have a higher tendency for impairment after GCR exposure. The algorithms employ the experimental prescreen performance scores as multidimensional input features to predict each rodent's susceptibility to cognitive impairment due to space radiation exposure. The receiver operating characteristic and the precision-recall curves of the ML models show a better prediction of impairment when 56Fe is the ion in question in both SD and CD stages. They, however, do not depict impairment due to 4He in SD and 28Si in CD, suggesting no dose-dependent impairment response in these cases. One key finding of our study is that prescreen performance scores can be used to predict the ATSET performance impairments. This result is significant to crewed space missions as it supports the potential of predicting an astronaut's impairment in a specific task before spaceflight through the implementation of appropriately trained ML tools. Future research can focus on constructing ML ensemble methods to integrate the findings from the methodologies implemented in this study for more robust predictions of cognitive decrements due to space radiation exposure.
Collapse
Affiliation(s)
- Mona Matar
- NASA Glenn Research Center, Cleveland, OH, United States
| | | | | | | | - Asad K. Iqbal
- ZIN Technologies, Inc., Cleveland, OH, United States
| | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - R. K. Prabhu
- Universities Space Research Association, Cleveland, OH, United States
| | - Jerry G. Myers
- NASA Glenn Research Center, Cleveland, OH, United States
| |
Collapse
|
6
|
Clément GR, Boyle RD, George KA, Nelson GA, Reschke MF, Williams TJ, Paloski WH. Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 2020; 123:2037-2063. [DOI: 10.1152/jn.00476.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Space travel presents a number of environmental challenges to the central nervous system, including changes in gravitational acceleration that alter the terrestrial synergies between perception and action, galactic cosmic radiation that can damage sensitive neurons and structures, and multiple factors (isolation, confinement, altered atmosphere, and mission parameters, including distance from Earth) that can affect cognition and behavior. Travelers to Mars will be exposed to these environmental challenges for up to 3 years, and space-faring nations continue to direct vigorous research investments to help elucidate and mitigate the consequences of these long-duration exposures. This article reviews the findings of more than 50 years of space-related neuroscience research on humans and animals exposed to spaceflight or analogs of spaceflight environments, and projects the implications and the forward work necessary to ensure successful Mars missions. It also reviews fundamental neurophysiology responses that will help us understand and maintain human health and performance on Earth.
Collapse
Affiliation(s)
| | - Richard D. Boyle
- National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California
| | | | - Gregory A. Nelson
- Division of Biomedical Engineering Sciences, School of Medicine Loma Linda University, Loma Linda, California
| | - Millard F. Reschke
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - Thomas J. Williams
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - William H. Paloski
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| |
Collapse
|
7
|
Shaler T, Lin H, Bakke J, Chen S, Grover A, Chang P. Particle radiation-induced dysregulation of protein homeostasis in primary human and mouse neuronal cells. LIFE SCIENCES IN SPACE RESEARCH 2020; 25:9-17. [PMID: 32414496 DOI: 10.1016/j.lssr.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
Space particle radiations may cause significant damage to proteins and oxidative stress in the cells within the central nervous system and pose a potential health hazard to humans in long-term manned space explorations. Dysregulation of the ubiquitin-proteasome system as evidenced by abnormal accumulation of polyubiquitin (pUb) chain linkages has been implicated in several age-related neurodegenerative disorders by mechanisms that may involve the inter-neuronal spread of toxic misfolded proteins, the induction of chronic neuroinflammation, or the inappropriate inhibition or activation of key enzymes, which could lead to dysfunction in, for example, proteolysis, or the accumulation of post-translationally-modified substrates.In this study, we employed a quantitative proteomics method to evaluate the impact of particle-radiation induced alterations in three major pUb-linked chains at lysine residues Lys-48 (K-48), Lys-63 (K-63), and Lys-11 (K-11), and probed for global proteomic changes in mouse and human neural cells that were irradiated with low doses of 250 MeV proton, 260 MeV/u silicon or 1 GeV/u iron ions. We found significant accumulation in K-48 linkage after 1 Gy protons and K-63 linkage after 0.5 Gy iron ions in human neural cells. Cells derived from different regions of the mouse brain (cortex, striatum and mesencephalon) showed differential sensitivity to particle radiation exposure. Although none of the linkages were altered after proton exposure, both K-48 and K-63 linkages in mouse striatal neuronal cells were elevated after 0.5 Gy of silicon or iron ions. Changes were also seen in proteins commonly used as markers of neural progenitor and stem cells, in DNA binding/damage repair and cellular redox pathways. In contrast, no significant changes were observed at the same time point after proton irradiation. These results suggest that the quality of the particle radiation plays a key role in the level, linkage and cell type specificity of protein homeostasis in key populations of neuronal cells.
Collapse
Affiliation(s)
- Tom Shaler
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States
| | - Hua Lin
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States
| | - James Bakke
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States
| | - Sophia Chen
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States
| | - Amber Grover
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States
| | - Polly Chang
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States.
| |
Collapse
|
8
|
Whoolery CW, Yun S, Reynolds RP, Lucero MJ, Soler I, Tran FH, Ito N, Redfield RL, Richardson DR, Shih HY, Rivera PD, Chen BPC, Birnbaum SG, Stowe AM, Eisch AJ. Multi-domain cognitive assessment of male mice shows space radiation is not harmful to high-level cognition and actually improves pattern separation. Sci Rep 2020; 10:2737. [PMID: 32066765 PMCID: PMC7026431 DOI: 10.1038/s41598-020-59419-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Astronauts on interplanetary missions - such as to Mars - will be exposed to space radiation, a spectrum of highly-charged, fast-moving particles that includes 56Fe and 28Si. Earth-based preclinical studies show space radiation decreases rodent performance in low- and some high-level cognitive tasks. Given astronaut use of touchscreen platforms during training and space flight and given the ability of rodent touchscreen tasks to assess functional integrity of brain circuits and multiple cognitive domains in a non-aversive way, here we exposed 6-month-old C57BL/6J male mice to whole-body space radiation and subsequently assessed them on a touchscreen battery. Relative to Sham treatment, 56Fe irradiation did not overtly change performance on tasks of visual discrimination, reversal learning, rule-based, or object-spatial paired associates learning, suggesting preserved functional integrity of supporting brain circuits. Surprisingly, 56Fe irradiation improved performance on a dentate gyrus-reliant pattern separation task; irradiated mice learned faster and were more accurate than controls. Improved pattern separation performance did not appear to be touchscreen-, radiation particle-, or neurogenesis-dependent, as 56Fe and 28Si irradiation led to faster context discrimination in a non-touchscreen task and 56Fe decreased new dentate gyrus neurons relative to Sham. These data urge revisitation of the broadly-held view that space radiation is detrimental to cognition.
Collapse
Affiliation(s)
- Cody W Whoolery
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P Reynolds
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Melanie J Lucero
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Soler
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naoki Ito
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Oriental Medicine Research Center, Kitasato University, Tokyo, Japan
| | - Rachel L Redfield
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon R Richardson
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hung-Ying Shih
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phillip D Rivera
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biology, Hope College, Holland, MI, USA
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Kiffer F, Boerma M, Allen A. Behavioral effects of space radiation: A comprehensive review of animal studies. LIFE SCIENCES IN SPACE RESEARCH 2019; 21:1-21. [PMID: 31101151 PMCID: PMC7150604 DOI: 10.1016/j.lssr.2019.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 05/04/2023]
Abstract
As NASA prepares for the first manned mission to Mars in the next 20 years, close attention has been placed on the cognitive welfare of astronauts, who will likely endure extended durations in confinement and microgravity and be subjected to the radioactive charged particles travelling at relativistic speeds in interplanetary space. The future of long-duration manned spaceflight, thus, depends on understanding the individual hazards associated with the environment beyond Earth's protective magnetosphere. Ground-based single-particle studies of exposed mice and rats have, in the last 30 years, overwhelmingly reported deficits in their cognitive behaviors. However, as particle-accelerator technologies at NASA's Space Radiation Laboratory continue to progress, more realistic representations of space radiation are materializing, including multiple-particle exposures and, eventually, at multiple energy distributions. These advancements help determine how to best mitigate possible hazards due to space radiation. However, risk models will depend on delineating which particles are most responsible for specific behavioral outcomes and whether multiple-particle exposures produce synergistic effects. Here, we review the literature on animal exposures by particle, energy, and behavioral assay to inform future mixed-field radiation studies of possible behavioral outcomes.
Collapse
Affiliation(s)
- Frederico Kiffer
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Marjan Boerma
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Antiño Allen
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
10
|
Whole-Body 12C Irradiation Transiently Decreases Mouse Hippocampal Dentate Gyrus Proliferation and Immature Neuron Number, but Does Not Change New Neuron Survival Rate. Int J Mol Sci 2018; 19:ijms19103078. [PMID: 30304778 PMCID: PMC6213859 DOI: 10.3390/ijms19103078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus—a brain structure important in memory—prior work suggests that 12C does not. However, much about 12C’s influence on neurogenesis remains unknown, including the time course of its impact on neurogenesis. To address this knowledge gap, male mice (9–11 weeks of age) were exposed to whole-body 12C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment. To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested 2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX) immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-12C irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell survival, but there was no difference in BrdU+ cell survival rate when compared within treatment and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover from the detrimental effect of 12C exposure.
Collapse
|
11
|
Rabin BM, Carrihill-Knoll KL, Miller MG, Shukitt-Hale B. Age as a factor in the responsiveness of the organism to the disruption of cognitive performance by exposure to HZE particles differing in linear energy transfer. LIFE SCIENCES IN SPACE RESEARCH 2018; 16:84-92. [PMID: 29475524 DOI: 10.1016/j.lssr.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 06/08/2023]
Abstract
Exposure to particles of high energy and charge (HZE particles) can produce decrements in cognitive performance. A series of experiments exposing rats to different HZE particles was run to evaluate whether the performance decrement was dependent on the age of the subject at the time of irradiation. Fischer 344 rats that were 2-, 11- and 15/16-months of age were exposed to 16O, 48Ti, or 4He particles at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. As previously observed following exposure to 56Fe particles, exposure to the higher LET 48Ti particles produced a disruption of cognitive performance at a lower dose in the older subjects compared to the dose needed to disrupt performance in the younger subjects. There were no age related changes in the dose needed to produce a disruption of cognitive performance following exposure to lower LET 16O or 4He particles. The threshold for the rats exposed to either 16O or 4He particles was similar at all ages. Because the 11- and 15-month old rats are more representative of the age of astronauts (45-55 years old) the present results indicate that particle LET may be a critical factor in estimating the risk of developing a cognitive deficit following exposure to space radiation on exploratory class missions.
Collapse
Affiliation(s)
- Bernard M Rabin
- Department of Psychology, UMBC, Baltimore, MD 21250, United States.
| | | | - Marshall G Miller
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States
| |
Collapse
|
12
|
Whoolery CW, Walker AK, Richardson DR, Lucero MJ, Reynolds RP, Beddow DH, Clark KL, Shih HY, LeBlanc JA, Cole MG, Amaral WZ, Mukherjee S, Zhang S, Ahn F, Bulin SE, DeCarolis NA, Rivera PD, Chen BPC, Yun S, Eisch AJ. Whole-Body Exposure to 28Si-Radiation Dose-Dependently Disrupts Dentate Gyrus Neurogenesis and Proliferation in the Short Term and New Neuron Survival and Contextual Fear Conditioning in the Long Term. Radiat Res 2017; 188:532-551. [PMID: 28945526 PMCID: PMC5901735 DOI: 10.1667/rr14797.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Astronauts traveling to Mars will be exposed to chronic low doses of galactic cosmic space radiation, which contains highly charged, high-energy (HZE) particles. 56Fe-HZE-particle exposure decreases hippocampal dentate gyrus (DG) neurogenesis and disrupts hippocampal function in young adult rodents, raising the possibility of impaired astronaut cognition and risk of mission failure. However, far less is known about how exposure to other HZE particles, such as 28Si, influences hippocampal neurogenesis and function. To compare the influence of 28Si exposure on indices of neurogenesis and hippocampal function with previous studies on 56Fe exposure, 9-week-old C57BL/6J and Nestin-GFP mice (NGFP; made and maintained for 10 or more generations on a C57BL/6J background) received whole-body 28Si-particle-radiation exposure (0, 0.2 and 1 Gy, 300 MeV/n, LET 67 KeV/μ, dose rate 1 Gy/min). For neurogenesis assessment, the NGFP mice were injected with the mitotic marker BrdU at 22 h postirradiation and brains were examined for indices of hippocampal proliferation and neurogenesis, including Ki67+, BrdU+, BrdU+NeuN+ and DCX+ cell numbers at short- and long-term time points (24 h and 3 months postirradiation, respectively). In the short-term group, stereology revealed fewer Ki67+, BrdU+ and DCX+ cells in 1-Gy-irradiated group relative to nonirradiated control mice, fewer Ki67+ and DCX+ cells in 0.2 Gy group relative to control group and fewer BrdU+ and DCX+ cells in 1 Gy group relative to 0.2 Gy group. In contrast to the clearly observed radiation-induced, dose-dependent reductions in the short-term group across all markers, only a few neurogenesis indices were changed in the long-term irradiated groups. Notably, there were fewer surviving BrdU+ cells in the 1 Gy group relative to 0- and 0.2-Gy-irradiated mice in the long-term group. When the short- and long-term groups were analyzed by sex, exposure to radiation had a similar effect on neurogenesis indices in male and female mice, although only male mice showed fewer surviving BrdU+ cells in the long-term group. Fluorescent immunolabeling and confocal phenotypic analysis revealed that most surviving BrdU+ cells in the long-term group expressed the neuronal marker NeuN, definitively confirming that exposure to 1 Gy 28Si radiation decreased the number of surviving adult-generated neurons in male mice relative to both 0- and 0.2-Gy-irradiated mice. For hippocampal function assessment, 9-week-old male C57BL/6J mice received whole-body 28Si-particle exposure and were then assessed long-term for performance on contextual and cued fear conditioning. In the context test the animals that received 0.2 Gy froze less relative to control animals, suggesting decreased hippocampal-dependent function. However, in the cued fear conditioning test, animals that received 1 Gy froze more during the pretone portion of the test, relative to controls and 0.2-Gy-irradiated mice, suggesting enhanced anxiety. Compared to previously reported studies, these data suggest that 28Si-radiation exposure damages neurogenesis, but to a lesser extent than 56Fe radiation and that low-dose 28Si exposure induces abnormalities in hippocampal function, disrupting fear memory but also inducing anxiety-like behavior. Furthermore, exposure to 28Si radiation decreased new neuron survival in long-term male groups but not females suggests that sex may be an important factor when performing brain health risk assessment for astronauts traveling in space.
Collapse
Affiliation(s)
- Cody W. Whoolery
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Angela K. Walker
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | | | - Melanie J. Lucero
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Ryan P. Reynolds
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David H. Beddow
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - K. Lyles Clark
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hung-Ying Shih
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Junie A. LeBlanc
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Mara G. Cole
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | | | - Shibani Mukherjee
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Shichuan Zhang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Francisca Ahn
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Sarah E. Bulin
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | | | - Phillip D. Rivera
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Benjamin P. C. Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Sanghee Yun
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Amelia J. Eisch
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Wyrobek AJ, Britten RA. Individual variations in dose response for spatial memory learning among outbred wistar rats exposed from 5 to 20 cGy of (56) Fe particles. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:331-340. [PMID: 27237589 DOI: 10.1002/em.22018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Exposures of brain tissue to ionizing radiation can lead to persistent deficits in cognitive functions and behaviors. However, little is known about the quantitative relationships between exposure dose and neurological risks, especially for lower doses and among genetically diverse individuals. We investigated the dose relationship for spatial memory learning among genetically outbred male Wistar rats exposed to graded doses of (56) Fe particles (sham, 5, 10, 15, and 20 cGy; 1 GeV/n). Spatial memory learning was assessed on a Barnes maze using REL3 ratios measured at three months after exposure. Irradiated animals showed dose-dependent declines in spatial memory learning that were fit by a linear regression (P for slope <0.0002). The irradiated animals showed significantly impaired learning at 10 cGy exposures, no detectable learning between 10 and 15 cGy, and worsened performances between 15 and 20 cGy. The proportions of poor learners and the magnitude of their impairment were fit by linear regressions with doubling doses of ∼10 cGy. In contrast, there were no detectable deficits in learning among the good learners in this dose range. Our findings suggest that genetically diverse individuals can vary substantially in their spatial memory learning, and that exposures at low doses appear to preferentially impact poor learners. This hypothesis invites future investigations of the genetic and physiological mechanisms of inter-individual variations in brain function related to spatial memory learning after low-dose HZE radiation exposures and to determine whether it also applies to physical trauma to brain tissue and exposures to chemical neurotoxicants. Environ. Mol. Mutagen. 57:331-340, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew J Wyrobek
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Richard A Britten
- Department of Radiation Oncology, and the Leroy T. Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
14
|
Rabin BM, Carrihill-Knoll KL, Shukitt-Hale B. Comparison of the Effectiveness of Exposure to Low-LET Helium Particles (4He) and Gamma Rays (137Cs) on the Disruption of Cognitive Performance. Radiat Res 2015; 184:266-72. [DOI: 10.1667/rr14001.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Rabin BM, Poulose SM, Carrihill-Knoll KL, Ramirez F, Bielinski DF, Heroux N, Shukitt-Hale B. Acute Effects of Exposure to56Fe and16O Particles on Learning and Memory. Radiat Res 2015. [DOI: 10.1667/rr13935.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Rabin BM, Shukitt-Hale B, Carrihill-Knoll KL. Effects of Age on the Disruption of Cognitive Performance by Exposure to Space Radiation. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbbs.2014.47031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Dynlacht JR. The role of age, sex and steroid sex hormones in radiation cataractogenesis. Radiat Res 2013; 180:559-66. [PMID: 24261552 DOI: 10.1667/rr13549.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is critical to identify and gain a better understanding of the factors that enhance or reduce the risk of cataractogenesis, to minimize the possibility of occurrence after deliberate (e.g., radiation therapy, interplanetary travel) or unintentional exposure to ionizing radiation. Both gender and age at the time of exposure have been established as key determinants of cataractogenesis induced by sparsely ionizing (low-LET) and densely ionizing (high-LET) radiation. However, animal data from several older studies are often conflicting and somewhat difficult to interpret, in that the experiments suffered from small group sizes, limited dose ranges or short periods of observation, and human data are sparse or statistical significance is sometimes limited. Steroid sex hormones (SSH) may underlie age and gender-based differences in the progression and prevalence of cataracts that otherwise occur spontaneously in humans and animal models, and may also underlie age and sex-related differences in radiation cataractogenesis. Here, we review data that have aided in our understanding of the role of age, sex and steroid sex hormones in radiation cataractogenesis.
Collapse
Affiliation(s)
- Joseph R Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|