1
|
Hamilton OS, Iob E, Ajnakina O, Kirkbride JB, Steptoe A. Immune-neuroendocrine patterning and response to stress. A latent profile analysis in the English longitudinal study of ageing. Brain Behav Immun 2024; 115:600-608. [PMID: 37967661 DOI: 10.1016/j.bbi.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
Psychosocial stress exposure can disturb communication signals between the immune, nervous, and endocrine systems that are intended to maintain homeostasis. This dysregulation can provoke a negative feedback loop between each system that has high pathological risk. Here, we explore patterns of immune-neuroendocrine activity and the role of stress. Using data from the English Longitudinal Study of Ageing (ELSA), we first identified the latent structure of immune-neuroendocrine activity (indexed by high sensitivity C-reactive protein [CRP], fibrinogen [Fb], hair cortisol [cortisol], and insulin growth-factor-1 [IGF-1]), within a population-based cohort using latent profile analysis (LPA). Then, we determined whether life stress was associated with membership of different immune-neuroendocrine profiles. We followed 4,934 male and female participants, with a median age of 65 years, over a four-year period (2008-2012). A three-class LPA solution offered the most parsimonious fit to the underlying immune-neuroendocrine structure in the data, with 36 %, 40 %, and 24 % of the population belonging to profiles 1 (low-risk), 2 (moderate-risk), and 3 (high-risk), respectively. After adjustment for genetic predisposition, sociodemographics, lifestyle, and health, higher exposure to stress was associated with a 61 % greater risk of belonging to the high-risk profile (RRR: 1.61; 95 %CI = 1.23-2.12, p = 0.001), but not the moderate-risk profile (RRR = 1.10, 95 %CI = 0.89-1.35, p = 0.401), as compared with the low-risk profile four years later. Our findings extend existing knowledge on psychoneuroimmunological processes, by revealing how inflammation and neuroendocrine activity cluster in a representative sample of older adults, and how stress exposure was associated with immune-neuroendocrine responses over time.
Collapse
Affiliation(s)
- Odessa S Hamilton
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK; Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK; Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Eleonora Iob
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK; Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Memory Lane, London SE5 8AF, UK
| | - Olesya Ajnakina
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - James B Kirkbride
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
| |
Collapse
|
2
|
Cao JJ, Gregoire BR. Time of day of exercise does not affect the beneficial effect of exercise on bone structure in older female rats. Front Physiol 2023; 14:1142057. [PMID: 37965104 PMCID: PMC10641222 DOI: 10.3389/fphys.2023.1142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Background: Circadian clock genes are expressed in bone and biomarkers of bone resorption and formation exhibit diurnal patterns in animals and humans. Disruption of the diurnal rhythms may affect the balance of bone turnover and compromise the beneficial effects of exercise on bone. Objective: This study investigated whether the time of day of exercise alters bone metabolism in a rodent model. We hypothesized that exercise during the active phase results in greater bone mass than exercise during the rest phase in older female rats. Methods: Fifty-five, female 12-month-old Sprague Dawley rats were randomly assigned to four treatment groups (n = 13-14/group). Rats were subjected to no exercise or 2 h of involuntary exercise at 9 m/min and 5 days/wk for 15 weeks using motor-driven running wheels at Zeitgeber time (ZT) 4-6 (rest phase), 12-14 (early active phase), or 22-24 (late active phase). ZT 0 is defined as light on, the start of the rest phase. A red lamp was used at minimal intensity during the active, dark phase exercise period, i.e., ZT 12-14 and 22-24. Bone structure, body composition, and bone-related cytokines in serum and gene expression in bone were measured. Data were analyzed using one-way ANOVA followed by Tukey-Kramer post hoc contrasts. Results: Exercise at different ZT did not affect body weight, fat mass, lean mass, the serum bone biomarkers, bone structural or mechanical parameters, or expression of circadian genes. Exercise pooled exercise data from different ZT were compared to the No-Exercise data (a priori contrast) increased serum IGF-1 and irisin concentrations, compared to No-Exercise. Exercise increased tibial bone volume/total volume (p = 0.01), connectivity density (p = 0.04), and decreased structural model index (p = 0.02). Exercise did not affect expression of circadian genes. Conclusion: These data indicate that exercise is beneficial to bone structure and that the time of day of exercise does not alter the beneficial effect of exercise on bone in older female rats.
Collapse
Affiliation(s)
- Jay J. Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | | |
Collapse
|
3
|
Hamilton OS, Iob E, Ajnakina O, Kirkbride JB, Steptoe A. Immune-Neuroendocrine Patterning and Response to Stress. A latent profile analysis in the English Longitudinal Study of Ageing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.07.23292378. [PMID: 37461452 PMCID: PMC10350138 DOI: 10.1101/2023.07.07.23292378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Psychosocial stress exposure can disturb communication signals between the immune, nervous, and endocrine systems that are intended to maintain homeostasis. This dysregulation can provoke a negative feedback loop between each system that has high pathological risk. Here, we explore patterns of immune-neuroendocrine activity and the role of stress. Using data from the English Longitudinal Study of Ageing (ELSA), we first identified the latent structure of immune-neuroendocrine activity (indexed by high sensitivity C-reactive protein [CRP], fibrinogen [Fb], hair cortisol [cortisol], and insulin growth-factor-1 [IGF-1]), within a population-based cohort using latent profile analysis (LPA). Then, we determined whether life stress was associated with membership of different immune-neuroendocrine profiles. We followed 4,934 male and female participants with a median age of 65 years over a four-year period (2008-2012). A three-class LPA solution offered the most parsimonious fit to the underlying immune-neuroendocrine structure in the data, with 36%, 40%, and 24% of the population belonging to profiles 1 (low-risk), 2 (moderate-risk), and 3 (high-risk), respectively. After adjustment for genetic predisposition, sociodemographics, lifestyle, and health, higher exposure to stress was associated with a 61% greater risk of belonging to the high-risk profile (RRR: 1.61; 95%CI=1.23-2.12, p=0.001), but not the moderate-risk profile (RRR=1.10, 95%CI=0.89-1.35, p=0.401), as compared with the low-risk profile four years later. Our findings extend existing knowledge on psychoneuroimmunological processes, by revealing how inflammation and neuroendocrine activity cluster in a representative sample of older adults, and how stress exposure was associated with immune-neuroendocrine responses over time.
Collapse
Affiliation(s)
- Odessa S. Hamilton
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Eleonora Iob
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
- Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Memory Lane, London SE5 8AF, UK
| | - Olesya Ajnakina
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - James B. Kirkbride
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
| |
Collapse
|
4
|
Hjortebjerg R, Pedersen DA, Mengel-From J, Jørgensen LH, Christensen K, Frystyk J. Heritability and circulating concentrations of pregnancy-associated plasma protein-A and stanniocalcin-2 in elderly monozygotic and dizygotic twins. Front Endocrinol (Lausanne) 2023; 14:1193742. [PMID: 37334305 PMCID: PMC10272750 DOI: 10.3389/fendo.2023.1193742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Pregnancy-associated plasma protein-A (PAPP-A) is an IGF-activating enzyme suggested to influence aging-related diseases. However, knowledge on serum PAPP-A concentration and regulation in elderly subjects is limited. Therefore, we measured serum PAPP-A in elderly same-sex monozygotic (MZ) and dizygotic (DZ) twins, as this allowed us to describe the age-relationship of PAPP-A, and to test the hypothesis that serum PAPP-A concentrations are genetically determined. As PAPP-A is functionally related to stanniocalcin-2 (STC2), an endogenous PAPP-A inhibitor, we included measurements on STC2 as well as IGF-I and IGF-II. Methods The twin cohort contained 596 subjects (250 MZ twins, 346 DZ twins), whereof 33% were males. The age ranged from 73.2 to 94.3 (mean 78.8) years. Serum was analyzed for PAPP-A, STC2, IGF-I, and IGF-II by commercial immunoassays. Results In the twin cohort, PAPP-A increased with age (r=0.19; P<0.05), whereas IGF-I decreased (r=-0.12; P<0.05). Neither STC2 nor IGF-II showed any age relationship. When analyzed according to sex, PAPP-A correlated positively with age in males (r=0.18; P<0.05) and females (r=0.25; P<0.01), whereas IGF-I correlated inversely in females only (r=-0.15; P<0.01). Males had higher levels of PAPP-A (29%), STC2 (18%) and IGF-I (19%), whereas serum IGF-II was 28% higher in females (all P<0.001). For all four proteins, within-pair correlations were significantly higher for MZ twins than for DZ twins, and they demonstrated substantial and significant heritability, which after adjustment for age and sex averaged 59% for PAPP-A, 66% for STC2, 58% for IGF-I, and 52% for IGF-II. Discussion This twin study confirms our hypothesis that the heritability of PAPP-A serum concentrations is substantial, and the same is true for STC2. As regards the age relationship, PAPP-A increases with age, whereas STC2 remains unchanged, thereby supporting the idea that the ability of STC2 to inhibit PAPP-A enzymatic activity decreases with increasing age.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Dorthe Almind Pedersen
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - Jonas Mengel-From
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Kaare Christensen
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jan Frystyk
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Influence of single nucleotide polymorphism in the IGF-1 gene on performance and conformation traits in Munjal sheep. ZYGOTE 2023; 31:70-77. [PMID: 36384917 DOI: 10.1017/s0967199422000545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic polymorphism research in livestock species aims to assess genetic differences within and among breeds, primarily for conservation and development objectives. The aim of the present study was to determine the point mutation in the IGF-1 gene (g.855G>C and g.857G>A) and its association with performance traits in Munjal sheep. In total, 50 Munjal sheep were selected and the genomic DNA was isolated using the Automated Maxell RSC DNA/RNA purification system and the Maxwell RSC whole blood DNA kit. A reported set of primers was used to amplify the 294-bp fragment encompassing the targeted region, i.e. the 5' flanking region of the IGF-1 gene. The polymerase chain reaction product of 294-bp size harbouring the g.857G>A mutation in the 5' flanking region of the IGF-1 gene was digested with HaeII enzyme. Three possible genotypes were defined by distinct banding patterns, i.e. GG (194, 100 bp), GA (294, 194, 100 bp) and AA (294 bp) in the studied population of Munjal sheep. The genotypic and allelic frequencies of g.857G>A single nucleotide polymorphism of the IGF-1 gene indicated that the frequency of the A allele was higher in the studied population, i.e. 0.59 and the GA genotype was found to be the predominant genotype (0.66). Allele A of the IGF-1 gene was found to be associated with higher body weights and can be used in selection criteria for improving the performance of Munjal sheep. The positive effect of the IGF-1 gene on several conformational traits as observed in this study suggests that this area of the ovine IGF-I gene is particularly important and warrants further investigation on a larger population size.
Collapse
|
6
|
Hellwig-Walter C, Brune M, Schellberg D, Buckert M, Wesche D, Cuntz U, Friederich HC, Wild B. Time course and reaction types of serum IGF-1 and its relationship to BMI and leptin regarding inpatients with anorexia nervosa. Growth Horm IGF Res 2022; 64:101470. [PMID: 35688068 DOI: 10.1016/j.ghir.2022.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Anorexia nervosa (AN) is a severe mental disorder that is characterized by restriction of energy intake, low weight, and endocrine abnormalities. One of the known endocrine changes in relation to underweight is in the GH/IGF-I axis. The aim of the study was (a) to investigate longitudinal characteristics of the IGF-I-change during therapy and weight gain in adult AN, (b) to determine relationships between IGF-I and leptin, (c) to characterize patients with weak and pronounced hormonal reactions to underweight. DESIGN Data was assessed from 19 AN patients. Over the first two months, serum IGF-I concentrations were assessed on a weekly basis; thereafter on a monthly basis. The trend of IGF-I values over time was analyzed using individual growth models. RESULTS In total, n = 177 IGF-I measurements were analyzed. IGF-I increased significantly dependent on BMI (slope = 20.81, p < 0.001), not modulated by duration of disease. The increase in IGF-I was significantly related to the increase in leptin concentrations over time (slope = 15.57, p < 0.001). Patients with a weaker hormonal reaction to underweight were significantly older compared to patients with a pronounced hormonal reaction (t(17) = 3.07, p = 0.007). CONCLUSIONS During treatment, IGF-I change is clearly related to BMI as well as to leptin. Age appears to be associated with the IGF-I response to underweight.
Collapse
Affiliation(s)
- Christiane Hellwig-Walter
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany
| | - Maik Brune
- Department of Endocrinology and Clinical Chemistry, Medical University Hospital, Heidelberg, Germany
| | - Dieter Schellberg
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany
| | - Magdalena Buckert
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany
| | - Daniela Wesche
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany
| | - Ulrich Cuntz
- Schön Klinik Roseneck, Prien am Chiemsee, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany
| | - Beate Wild
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany.
| |
Collapse
|
7
|
Wang T, Maimaitituersun G, Shi H, Chen C, Ma Q, Su Y, Yao H, Zhu J. The relationship between polymorphism of insulin-like growth factor I gene and susceptibility to type 2 diabetes in Uygur population, Xinjiang, China. Genes Genomics 2022; 44:499-508. [PMID: 35094288 PMCID: PMC8921155 DOI: 10.1007/s13258-021-01209-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022]
Abstract
Background Type 2 diabetes (T2DM) susceptibility varies among different populations and is affected by gene single nucleotide polymorphism (SNP). Insulin-like growth factor (IGF)-1 gene, which has many SNP loci, is involved in T2DM pathogenesis. However, the relationship of IGF-1 gene polymorphism with T2DM in Uyghur population is less studied. Objective To investigate the relationship between T2DM susceptibility and polymorphism of IGF-1 gene in Uyghur population of Xinjiang, China. Methods This study enrolled 220 cases (122 males (55.46%) and 98 females (44.54%); mean age of 53.40 ± 10.94 years) of T2DM patients (T2DM group) and 229 (124 males (54.15%) and 105 females (45.85%); mean age of 51.64 ± 10.48 years) healthy controls (control group). Biochemical indexes were determined. IGF-1 gene polymorphism was analyzed by SNP genotyping. Results The levels of TG, HDL, LDL, BUN, and Cr were statistically significant between the T2DM group and the control group. In terms of IGF-1 polymorphism, T2DM group had higher frequency of AA genotype (OR = 2.40, 95% CI = 1.19–4.84) and allele A (OR = 1.55, 95% CI = 1.17–2.06) of rs35767 loci, suggesting that rs35767 is related to the occurrence of T2DM. A total of 5 gene interaction models was obtained through analyzing the interaction of 5 SNP loci with the GMDR method. Among them, the two-factor model that included rs35767 locus and rs5742694 locus had statistical difference with a large cross-validation consistency (10/10). The combination of GG/CC, GA/AA, AA/AA, and AA/AC genotype was in high-risk group, whereas the combination of GG/AA, GG/AC, GA/AC and GA/CC genotype was in the low-risk group. The risk of T2DM in the high-risk group was 2.165 times than that of the low-risk group (OR = 2.165, 95% CI = 1.478–3.171). Conclusion TG, HDL, LDL, BUN, and Cr are influencing factors of T2DM in Uyghur population. The rs35767 locus of IGF-1 gene may be associated with T2DM in Uyghur population. The high-risk group composing of rs35767 locus and rs5742694 locus has a higher risk of T2DM.
Collapse
Affiliation(s)
- Tingting Wang
- School of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | | | - Haonan Shi
- School of Public Health, Xinjiang Medical University, Urumqi, 830054, China
| | - Cheng Chen
- Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Qi Ma
- Xinjiang Key Laboratory of Metabolic Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, No.137. Liyushan road, Xinshi District, Urumqi, 830001, China.
| | - Yinxia Su
- School of Public Health, Xinjiang Medical University, Urumqi, 830054, China
- Health Management Institute, Xinjiang Medical University, Urumqi, 830054, China
| | - Hua Yao
- School of Public Health, Xinjiang Medical University, Urumqi, 830054, China
- Health Management Institute, Xinjiang Medical University, Urumqi, 830054, China
| | - Jia Zhu
- Cadre Health Center, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, China.
| |
Collapse
|
8
|
Raymond P, Klein M, Cuny T, Klein O, Salleron J, Bernier-Chastagner V. High prevalence of anterior pituitary deficiencies after cranial radiation therapy for skull base meningiomas. BMC Cancer 2021; 21:1346. [PMID: 34922472 PMCID: PMC8684631 DOI: 10.1186/s12885-021-09045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
Background Cranial irradiation represents one of the first line treatment proposed in skull base meningiomas. While cranial irradiation is associated with a high risk of secondary hypopituitarism, few studies focused on the specific location of skull base meningiomas. Methods Fifty-two adults receiving photon-beam therapy for skull base meningiomas between 2003 and 2014 in our Institution were included. Anterior pituitary (ACTH, FSH, GH, LH, TSH and prolactin) as well as corresponding peripheral hormones (8 am-Cortisol, IGF-1, fT3, fT4, 17βestradiol or testosterone) were biologically screened before radiotherapy (baseline), then yearly until March 2019. The pituitary gland (PG) was delineated on CT and the mean dose delivered to it was calculated. Results Mean age at diagnosis was 56 +/− 14 years. Median follow-up was 7 years. Up to 60% of patients developed at least ≥2 pituitary deficiencies, 10 years after radiotherapy. Gonadotroph, thyrotroph, corticotroph and somatotroph deficiencies occurred in 37, 28, 18 and 15% of patients, respectively. Hyperprolactinemia was found in 13% of patients. None patient had only one pituitary deficiency. In the multivariate analysis, a delivered dose to the PG ≥ 50 Gy or a meningioma size ≥40 mm significantly increased the risk of developing hypopituitarism. Conclusions Over a long-term follow-up, cranial radiation therapy used in skull base meningiomas led to a high prevalence of hypopituitarism, further pronounced in case of tumor ≥4 cm. These results advocate for an annual and prolonged follow-up of the pituitary functions in patients with irradiated skull base meningiomas.
Collapse
Affiliation(s)
- Perrine Raymond
- Department of radiation therapy, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519, Vandoeuvre Les Nancy, France.
| | - Marc Klein
- Department of Endocrinology, University hospital CHU de Nancy, Rue du Morvan, 54500, Vandoeuvre Les Nancy, France
| | - Thomas Cuny
- Department of Endocrinology, Hôpital de la Conception, Aix Marseille Univ, APHM, Inserm, MMG, Marseille, France
| | - Olivier Klein
- Department of Neurosurgery, University hospital CHU de Nancy, Nancy, France
| | - Julia Salleron
- Department of biostatistics, Institut de Cancérologie de Lorraine, Université de Lorraine F-54519, 6 avenue de Bourgogne, 54519, Vandoeuvre Les Nancy, France
| | - Valérie Bernier-Chastagner
- Department of radiation therapy, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519, Vandoeuvre Les Nancy, France
| |
Collapse
|
9
|
Granada ML. Biochemical following-up of treated acromegaly. Limitations of the current determinations of IGF-I and perspective. MINERVA ENDOCRINOL 2019; 44:143-158. [DOI: 10.23736/s0391-1977.18.02922-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
11
|
Boyd N, Berman H, Zhu J, Martin LJ, Yaffe MJ, Chavez S, Stanisz G, Hislop G, Chiarelli AM, Minkin S, Paterson AD. The origins of breast cancer associated with mammographic density: a testable biological hypothesis. Breast Cancer Res 2018. [PMID: 29514672 PMCID: PMC5842598 DOI: 10.1186/s13058-018-0941-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Our purpose is to develop a testable biological hypothesis to explain the known increased risk of breast cancer associated with extensive percent mammographic density (PMD), and to reconcile the apparent paradox that although PMD decreases with increasing age, breast cancer incidence increases. Methods We used the Moolgavkar model of carcinogenesis as a framework to examine the known biological properties of the breast tissue components associated with PMD that includes epithelium and stroma, in relation to the development of breast cancer. In this model, normal epithelial cells undergo a mutation to become intermediate cells, which, after further mutation, become malignant cells. A clone of such cells grows to become a tumor. The model also incorporates changes with age in the number of susceptible epithelial cells associated with menarche, parity, and menopause. We used measurements of the radiological properties of breast tissue in 4454 healthy subjects aged from 15 to 80+ years to estimate cumulative exposure to PMD (CBD) in the population, and we examined the association of CBD with the age-incidence curve of breast cancer in the population. Results Extensive PMD is associated with a greater number of breast epithelial cells, lobules, and fibroblasts, and greater amounts of collagen and extracellular matrix. The known biological properties of these tissue components may, singly or in combination, promote the acquisition of mutations by breast epithelial cells specified by the Moolgavkar model, and the subsequent growth of a clone of malignant cells to form a tumor. We also show that estimated CBD in the population from ages 15 to 80+ years is closely associated with the age-incidence curve of breast cancer in the population. Conclusions These findings are consistent with the hypothesis that the biological properties of the breast tissue components associated with PMD increase the probability of the transition of normal epithelium to malignant cells, and that the accumulation of mutations with CBD may influence the age-incidence curve of breast cancer. This hypothesis gives rise to several testable predictions. Electronic supplementary material The online version of this article (10.1186/s13058-018-0941-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norman Boyd
- Princess Margaret Cancer Centre, 610 University Avenue, Room 9-502, Toronto, ON, M5G 2M9, Canada.
| | - Hal Berman
- Princess Margaret Cancer Centre, 610 University Avenue, Room 9-502, Toronto, ON, M5G 2M9, Canada
| | - Jie Zhu
- Princess Margaret Cancer Centre, 610 University Avenue, Room 9-502, Toronto, ON, M5G 2M9, Canada
| | - Lisa J Martin
- Princess Margaret Cancer Centre, 610 University Avenue, Room 9-502, Toronto, ON, M5G 2M9, Canada
| | - Martin J Yaffe
- Imaging Research, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sofia Chavez
- Imaging Research, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Greg Stanisz
- Imaging Research, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | | | - Salomon Minkin
- Princess Margaret Cancer Centre, 610 University Avenue, Room 9-502, Toronto, ON, M5G 2M9, Canada
| | - Andrew D Paterson
- Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Prakash J, Gabdulina G, Trofimov S, Livshits G. Quantitative genetics of circulating Hyaluronic Acid (HA) and its correlation with hand osteoarthritis and obesity-related phenotypes in a community-based sample. Ann Hum Biol 2017; 44:522-530. [PMID: 28535729 DOI: 10.1080/03014460.2017.1334822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND One of the potential molecular biomarkers of osteoarthritis (OA) is hyaluronic acid (HA). HA levels may be related to the severity and progression of OA. However, little is known about the contribution of major risk factors for osteoarthritis, e.g. obesity-related phenotypes and genetics to HA variation. AIM To clarify the quantitative effect of these factors on HA. SUBJECTS AND METHODS An ethnically homogeneous sample of 911 apparently healthy European-derived individuals, assessed for radiographic hand osteoarthritis (RHOA), HA, leptin, adiponectin, and several anthropometrical measures of obesity-related phenotypes was studied. Model-based quantitative genetic analysis was used to reveal genetic and shared environmental factors affecting the variation of the study's phenotypes. RESULTS The HA levels significantly correlated with the age, RHOA, adiponectin, obesity-related phenotypes, and the waist-to-hip ratio. The putative genetic effects contributed significantly to the variation of HA (66.2 ± 9.3%) and they were also significant factors in the variations of all the other studied phenotypes, with the heritability estimate ranging between 0.122 ± 4.4% (WHR) and 45.7 ± 2.2% (joint space narrowing). CONCLUSIONS This is the first study to report heritability estimates of HA variation and its correlation with obesity-related phenotypes, ADP and RHOA. However, the nature of genetic effects on HA and its correlation with other study phenotypes require further clarification.
Collapse
Affiliation(s)
- Jai Prakash
- a Human Population Biology Research Unit, Department of Anatomy and Anthropology , Tel Aviv University , Tel Aviv , Israel
| | - Gulzhan Gabdulina
- b Department of Internal Medicine , Asfendiyarov Kazakh National Medical University , Almigty , Kazakhstan
| | - Svetlana Trofimov
- a Human Population Biology Research Unit, Department of Anatomy and Anthropology , Tel Aviv University , Tel Aviv , Israel
| | - Gregory Livshits
- a Human Population Biology Research Unit, Department of Anatomy and Anthropology , Tel Aviv University , Tel Aviv , Israel.,c Lilian and Marcel Pollak Chair of Biological Anthropology, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
13
|
Athanasiadis G, Arranz L, Ziyatdinov A, Brunel H, Camacho M, Malouf J, Sosa NHD, Vila L, Casademont J, Soria JM. Exploring correlation between bone metabolism markers and densitometric traits in extended families from Spain. Bone 2016; 90:1-6. [PMID: 27241279 DOI: 10.1016/j.bone.2016.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
Osteoporosis is a common multifactorial disorder characterized by low bone mass and reduced bone strength that may cause fragility fractures. In recent years, there have been substantial advancements in the biochemical monitoring of bone metabolism through the measurement of bone turnover markers. Currently, good knowledge of the genetics of such markers has become an indispensable part of osteoporosis research. In this study, we used the Genetic Analysis of Osteoporosis Project to study the genetics of the plasma levels of 12 markers related to bone metabolism and osteoporosis. Plasma phenotypes were determined through biochemical assays and log-transformed values were used together with a set of covariates to model genetic and environmental contributions to phenotypic variation, thus estimating the heritability of each trait. In addition, we studied correlations between the 12 markers and a wide variety of previously described densitometric traits. All of the 12 bone metabolism markers showed significant heritability, ranging from 0.194 for osteocalcin to 0.516 for sclerostin after correcting for covariate effects. Strong genetic correlations were observed between osteocalcin and several bone mineral densitometric traits, a finding with potentially useful diagnostic applications. In addition, suggestive genetic correlations with densitometric traits were observed for leptin and sclerostin. Overall, the few strong and several suggestive genetic correlations point out the existence of a complex underlying genetic architecture for bone metabolism plasma phenotypes and provide a strong motivation for pursuing novel whole-genome gene-mapping strategies.
Collapse
Affiliation(s)
- Georgios Athanasiadis
- Unit of Genomics of Complex Diseases, Institute of Biomedical Research, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Laura Arranz
- Unit of Genomics of Complex Diseases, Institute of Biomedical Research, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andrey Ziyatdinov
- Unit of Genomics of Complex Diseases, Institute of Biomedical Research, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Helena Brunel
- Unit of Genomics of Complex Diseases, Institute of Biomedical Research, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Mercedes Camacho
- Laboratory of Angiology, Vascular Biology and Inflammation, Institute of Biomedical Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jorge Malouf
- Departament of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Luis Vila
- Laboratory of Angiology, Vascular Biology and Inflammation, Institute of Biomedical Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Casademont
- Departament of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jose Manuel Soria
- Unit of Genomics of Complex Diseases, Institute of Biomedical Research, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
14
|
Postnatal high-fat diet leads to spatial deficit, obesity, and central and peripheral inflammation in prenatal dexamethasone adult offspring rats. Neuroreport 2016; 27:818-25. [DOI: 10.1097/wnr.0000000000000620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Tarantini S, Tucsek Z, Valcarcel-Ares MN, Toth P, Gautam T, Giles CB, Ballabh P, Wei JY, Wren JD, Ashpole NM, Sonntag WE, Ungvari Z, Csiszar A. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. AGE (DORDRECHT, NETHERLANDS) 2016; 38:273-289. [PMID: 27613724 PMCID: PMC5061685 DOI: 10.1007/s11357-016-9931-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased blood-brain barrier disruption and neuroinflammation reported in previous studies likely contribute to the pathogenesis of vascular cognitive impairment in elderly hypertensive humans.
Collapse
Affiliation(s)
- Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Pecs, Pecs, Hungary
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cory B Giles
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Praveen Ballabh
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center- New York Medical College, Valhalla, NY, USA
| | - Jeanne Y Wei
- Reynolds Institute on Aging and Department of Geriatrics, University of Arkansas for Medical Science, 4301 West Markham Street, No. 748, Little Rock, AR, 72205, USA
- Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jonathan D Wren
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Pecs, Pecs, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Pecs, Pecs, Hungary.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
16
|
Tarantini S, Giles CB, Wren JD, Ashpole NM, Valcarcel-Ares MN, Wei JY, Sonntag WE, Ungvari Z, Csiszar A. IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis. AGE (DORDRECHT, NETHERLANDS) 2016; 38:239-258. [PMID: 27566308 PMCID: PMC5061677 DOI: 10.1007/s11357-016-9943-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Epidemiological findings support the concept of Developmental Origins of Health and Disease, suggesting that early-life hormonal influences during a sensitive period of development have a fundamental impact on vascular health later in life. The endocrine changes that occur during development are highly conserved across mammalian species and include dramatic increases in circulating IGF-1 levels during adolescence. The present study was designed to characterize the effect of developmental IGF-1 deficiency on the vascular aging phenotype. To achieve that goal, early-onset endocrine IGF-1 deficiency was induced in mice by knockdown of IGF-1 in the liver using Cre-lox technology (Igf1 f/f mice crossed with mice expressing albumin-driven Cre recombinase). This model exhibits low-circulating IGF-1 levels during the peripubertal phase of development, which is critical for the biology of aging. Due to the emergence of miRNAs as important regulators of the vascular aging phenotype, the effect of early-life IGF-1 deficiency on miRNA expression profile in the aorta was examined in animals at 27 months of age. We found that developmental IGF-1 deficiency elicits persisting late-life changes in miRNA expression in the vasculature, which significantly differed from those in mice with adult-onset IGF-1 deficiency (TBG-Cre-AAV8-mediated knockdown of IGF-1 at 5 month of age in Igf1 f/f mice). Using a novel computational approach, we identified miRNA target genes that are co-expressed with IGF-1 and associate with aging and vascular pathophysiology. We found that among the predicted targets, the expression of multiple extracellular matrix-related genes, including collagen-encoding genes, were downregulated in mice with developmental IGF-1 deficiency. Collectively, IGF-1 deficiency during a critical period during early in life results in persistent changes in post-transcriptional miRNA-mediated control of genes critical targets for vascular health, which likely contribute to the deleterious late-life cardiovascular effects known to occur with developmental IGF-1 deficiency.
Collapse
Affiliation(s)
- Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cory B Giles
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jonathan D Wren
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jeanne Y Wei
- Reynolds Institute on Aging and Department of Geriatrics, University of Arkansas for Medical Science, 4301 West Markham Street, No. 748, Little Rock, AR, 72205, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|