1
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2025; 68:328-353. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
2
|
Shi F, Peng J, Li H, Liu D, Han L, Wang Y, Liu Q, Liu Q. Probiotics as a targeted intervention in anti-ageing: a review. Biomarkers 2024; 29:577-585. [PMID: 39484861 DOI: 10.1080/1354750x.2024.2424388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT The age-induced disruption of gut flora, termed gut dysbiosis, is intimately tied to compromised immune function, augmented oxidative stress and a spectrum of age-linked disorders. OBJECTIVE This review examines the fundamental mechanisms employed by probiotic strains to modulate gut microbiota composition and metabolic profiles, mitigate cognitive decline via the gut-brain axis (GBA), modulate gene transcription and alleviate inflammatory responses and oxidative stress. CONCLUSION We elucidate the capacity of probiotics as a precision intervention to restore gut microbiome homeostasis and alleviate age-related conditions, thereby offering a theoretical framework for probiotics to decelerate ageing, manage age-related diseases, and elevate quality of life.
Collapse
Affiliation(s)
- Fengcui Shi
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Jingwen Peng
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Haojin Li
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Denghai Liu
- Yuncheng County People's Hospital, Heze City, Shandong, China
| | - Li Han
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Ying Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qingli Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qian Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| |
Collapse
|
3
|
Dias TG, Rodrigues LDS, Farias JR, Pereira ALF, Ferreira AGN, Neto MS, Dutra RP, Reis AS, Guerra RNM, Monteiro-Neto V, Maciel MCG. Immunomodulatory Activity of Probiotics in Models of Bacterial Infections. Probiotics Antimicrob Proteins 2024; 16:862-874. [PMID: 37191780 DOI: 10.1007/s12602-023-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
As resistance to conventional antibiotics among bacteria continues to increase, researchers are increasingly focusing on alternative strategies for preventing and treating bacterial infections, one of which is microbiota modulation. The objective of this review is to analyze the scientific literature on the immunomodulatory effects of probiotics in bacterial infections. This is an integrative review of the literature based on systematic steps, with searches performed in the databases Medline, PubMed, Scopus, Embase, and ScienceDirect. The most prevalent bacterial genera used to evaluate infectious processes were Salmonella, Escherichia, Klebsiella, and Streptococcus. Lactobacillus was the most commonly used probiotic genus, with Lactobacillus delbrueckii subsp. bulgaricus is the most frequently used species. In most studies, prophylactic treatment with concentrations of probiotics equal to or greater than 8 log CFU/mL was chosen. However, there was considerable heterogeneity in terms of effective treatment duration, indicating that the results cannot be generalized across all studies. This review found that probiotics interact with the immune system through different mechanisms and have a positive effect on preventing different types of bacterial infections.
Collapse
Affiliation(s)
- Tatielle Gomes Dias
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | | | - Josivan Regis Farias
- Graduate Program in Health Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Ana Lúcia Fernandes Pereira
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | - Adriana Gomes Nogueira Ferreira
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | - Marcelino Santos Neto
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | - Richard Pereira Dutra
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | - Aramys Silva Reis
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil
| | - Rosane Nassar Meireles Guerra
- Graduate Program in Health Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
- Department of Pathology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | - Márcia Cristina Gonçalves Maciel
- Graduate Program in Health and Technology, Center for Sciences of Imperatriz, Federal University of Maranhão, Maranhão, Brazil.
- Department of Cell Biology, University of Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
4
|
Ostadrahimi A, Ahmadikhatir S, Amirazad H, EivaziZiaei J, AsghariJafarabadi M, Barzeghari A, Esfahani A, Farrin N. Effect of combination of Beta Glucan and Lactobacillus rhamnosus HerizI on white blood cell counts and serum levels of IL-4 and IL-12 in women with breast cancer undergoing chemotherapy: A randomized double-blind placebo-controlled clinical trial. Clin Nutr ESPEN 2024; 61:281-287. [PMID: 38777445 DOI: 10.1016/j.clnesp.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Aim of this study was the isolation of native probiotic and determine the effect of combination of Beta Glucan and Lactobacillus rhamnosus Heriz I on White Blood Cell Counts and serum levels of IL-4and IL-12 in breast cancer women receiving Chemotherapy. METHODS This study was randomized double-blind placebo-controlled clinical trial in 30 women with breast cancer. Women in the intervention group received two 10-mg capsules of soluble 1-3,1-6, D-beta glucan and one capsule of Lactobacillus rhamnosus strain Heriz I (2 × 107 CFU) daily and placebo group received placebo during 21days, interval between two courses of chemotherapy. White blood cells, neuthrophil, lymphocyte and monocyte counts, serum levels of IL-4 and IL-12 were measured before and after the study. RESULTS We isolated Lactobacillus rhamnosus Heriz I from conventional yogurt of Heriz region and registered in NCBI GeneBank. After administration, in both groups white blood cells counts decreased. At the end of study, serum level of IL-4 was decreased in combination group compared to placebo (P = 0.005). Also, serum level of IL-12 in combination group increased non-significantly (P = 0.066). CONCLUSION The findings suggest that combination of Beta Glucan and Lactobacillus rhamnosus Heriz I may be useful as immunomodulary supplements in chemotherapy patients however further studies were needed.
Collapse
Affiliation(s)
- Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Shonaz Ahmadikhatir
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Halimeh Amirazad
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jamal EivaziZiaei
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | | | - Abolfazl Barzeghari
- Pharmaceutical Nanotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ali Esfahani
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Nazila Farrin
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
5
|
Gu S, Yang D, Liu C, Xue W. The role of probiotics in prevention and treatment of food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Chaudhary P, Kathuria D, Suri S, Bahndral A, Kanthi Naveen A. Probiotics- its functions and influence on the ageing process: A comprehensive review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Yu DY, Oh SH, Kim IS, Kim GI, Kim JA, Moon YS, Jang JC, Lee SS, Jung JH, Park HC, Cho KK. Effects of lactic acid bacteria fermented feed and three types of lactic acid bacteria (L. plantarum, L. acidophilus, B. animalis) on intestinal microbiota and T cell polarization (Th1, Th2, Th17, Treg) in the intestinal lymph nodes and spleens of rats. Anim Biosci 2023; 36:156-166. [PMID: 36397706 PMCID: PMC9834648 DOI: 10.5713/ab.22.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE In this study, we investigated the effects of Rubus coreanus-derived lactic acid bacteria (LAB) fermented feed (RC-LAB fermented feed) and three types of LAB (Lactobacillus plantarum, Lactobacillus acidophilus, Bifidobacterium animalis) on the expression of transcription factors and cytokines in Th1, Th2, Th17, and Treg cells in the intestinal lymph nodes and spleens of rats. In addition, the effect on intestinal microbiota composition and body weight was investigated. METHODS Five-week-old male rats were assigned to five treatments and eight replicates. The expression of transcription factors and cytokines of Th1, Th2, Th17, and Treg cells in the intestinal lymph nodes and spleens was analyzed using real-time reverse transcriptase polymerase chain reaction assays. Intestinal tract microbiota compositions were analyzed by next-generation sequencing and quantitative polymerase chain reaction assays. RESULTS RC-LAB fermented feed and three types of LAB increased the expression of transcription factors and cytokines in Th1, Treg cells and Galectin-9, but decreased in Th2 and Th17 cells. In addition, the intestinal microbiota composition changed, the body weight and Firmicutes to Bacteroidetes (F/B) ratio decreased, and the relative abundance of LAB increased. CONCLUSION LAB fermented feed and three types of LAB showed an immune modulation effect by inducing T cell polarization and increased LAB in the intestinal microbiota.
Collapse
Affiliation(s)
- Da Yoon Yu
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - In Sung Kim
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - Gwang Il Kim
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - Jeong A Kim
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - Yang Soo Moon
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52725,
Korea
| | - Jae Cheol Jang
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - Sang Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Sunchon 57922,
Korea
| | | | | | - Kwang Keun Cho
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea,Corresponding Author: Kwang Keun Cho, Tel: +82-55-772-3286, Fax: +82-55-772-3689, E-mail:
| |
Collapse
|
8
|
Diwan B, Sharma R. Green tea EGCG effectively alleviates experimental colitis in middle-aged male mice by attenuating multiple aspects of oxi-inflammatory stress and cell cycle deregulation. Biogerontology 2022; 23:789-807. [PMID: 35779147 DOI: 10.1007/s10522-022-09976-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Age-dependent increased risk of inflammatory bowel diseases such as ulcerative colitis is being increasingly realized, and yet therapies targeting this disorder within the purview of aging are limited. The present study attempted to assess the efficacy of green tea epigallocatechin gallate (EGCG) consumption in preventing the severity and progression of dextran sulphate sodium (DSS)-induced ulcerative colitis in 18 months old middle-aged male mice. Acute colitis was induced in animals using DSS and protective effects of EGCG consumption were examined. Different parameters related to disease progression and molecular markers related to oxi-inflammatory stress, localized and systemic cytokine response, epithelial barrier integrity, and cell cycle progression profile were evaluated. DSS treatment induced rapid and severe symptoms of colitis such as consistently increased DAI score, shortened and inflamed colon accompanied by increased levels of inflammatory proteins (TNFα/IL-6/IL-1β) in both the colon tissue and cultured splenocytes indicating exaggerated Th1 immune response. Markers of oxidative stress increased while antioxidant defences and the expression of tight junction genes in the colonic cells were attenuated. Dysregulation in the expression of cell cycle inhibitory genes (p53/p21WAF1/p16Ink4a) indicated possible induction of colitis-induced dysplasia. On the other hand, EGCG consumption strongly attenuated all the measured ostensible as well as molecular markers of the disease progression as evidenced by improved DAI score, cellular antioxidant capacity, attenuated Th1 cytokine response both in the colon and cultured splenocytes, enhanced expression of tight junction genes, and cell cycle inhibitors thereby suggesting systemic effects of EGCG. Together, these observations suggest that drinking EGCG-rich green tea can be a significant way of managing the severity of colitis during aging.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
9
|
Food for the mind: The journey of probiotics from foods to ANTI-Alzheimer’s disease therapeutics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
11
|
Samtiya M, Puniya AK, Puniya M, Shah NP, Dhewa T, Vemuri R. Probiotic Regulation to Modulate Aging Gut and Brain Health: A Concise Review. BACTERIA 2022; 1:250-265. [DOI: 10.3390/bacteria1040019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The human gastrointestinal (GI) tract contains a diverse mixture of commensal and pathogenic microbes, forming the gut microbiome. These gut microbes and their potential to improve human health are a topic of great interest to the scientific community. Many intestinal and age-related complications are linked to dysbiosis of the gut microbiome, often associated with a weakened immune system. A decrease in beneficial microbes, generally, along with decreased microbial diversity in the gut, can, in many cases, result in disease, particularly in older individuals. Probiotics, which are ingestible beneficial microorganisms, have the potential to positively modulate the indigenous gut microbiota. There are two predominant and conventional classes of lactic acid bacterial probiotics, lactobacilli and bifidobacteria, which have been confirmed for their health benefits and role in preventing certain gut-related disorders. The proper use of probiotics and/or supplements, along with a consistently healthy lifestyle, is a promising holistic approach to maintaining or improving gut health and minimizing other age-linked disorders. There are many properties that bacterial probiotics possess, which may allow for these beneficial effects in the gut. For instance, probiotics have adhesion capacities (capability to stay in GI tract) that are effective in excluding pathogens, while other probiotics have the potential to stimulate or modulate the intestinal immune system by regulating genes that reside within and outside of the gut environment. This review discussed the possible underlying mechanics of probiotics, evidence of probiotic-based mitigation of age-related disease, and the role of probiotics in modulating gut health and, in turn, maintaining brain health.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India (FSSAI), FDA Bhawan, Kotla Road, New Delhi 110002, India
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
12
|
Yu DY, Oh SH, Kim IS, Kim GI, Kim JA, Moon YS, Jang JC, Lee SS, Jung JH, Park J, Cho KK. Intestinal microbial composition changes induced by Lactobacillus plantarum GBL 16, 17 fermented feed and intestinal immune homeostasis regulation in pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1184-1198. [PMID: 36812041 PMCID: PMC9890339 DOI: 10.5187/jast.2022.e89] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
In this study, Rubus coreanus (R. coreanus) byproducts with high polyphenol content were fermented with R. coreanus-derived lactic acid bacteria (Lactobacillus plantarum GBL 16 and 17). Then the effect of R. coreanus-derived lactic acid bacteria fermented feed (RC-LAB fermented feed) with probiotics (Bacillus subtills, Aspergillus oryzae, Yeast) as a feed additive for pigs on the composition of intestinal microbes and the regulation of intestinal immune homeostasis was investigated. Seventy-two finishing Berkshire pigs were randomly allotted to four different treatment groups and 18 replicates. RC-LAB fermented feed with probiotics increased the genera Lactobacillus, Streptococcus, Mitsuokella, Prevotella, Bacteroides spp., Roseburia spp., and Faecalibacterium prausnitzii, which are beneficial bacteria of the digestive tract of pigs. Also, RC-LAB fermented feed with probiotics decreased the genera Clostridium, Terrisporobacter, Romboutsia, Kandleria, Megasphaera and Escherichia, which are harmful bacteria. In particular, the relative abundance of the genera Lactobacillus and Streptococcus increased by an average of 8.51% and 4.68% in the treatment groups and the classes Clostridia and genera Escherichia decreased by an average of 27.05% and 2.85% in the treatment groups. In mesenteric lymph nodes (MLN) and spleens, the mRNA expression of transcription factors and cytokines in Th1 and Treg cells increased and the mRNA expression of Th2 and Th17 transcription factors and cytokines decreased, indicating a regulatory effect on intestinal immune homeostasis. RC-LAB fermented feed regulates gut immune homeostasis by influencing the composition of beneficial and detrimental microorganisms in the gut and regulating the balance of Th1/Th2 and Th17/Treg cells.
Collapse
Affiliation(s)
- Da Yoon Yu
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - In Sung Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Gwang Il Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Jeong A Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Yang Soo Moon
- Division of Animal Bioscience &
Integrated Biotechnology, Gyeongsang National University,
Jinju 52725, Korea
| | - Jae Cheol Jang
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Sang Suk Lee
- Department of Animal Science and
Technology, Sunchon National University, Sunchon 57922,
Korea
| | | | - Jun Park
- Department of Animal Biotechnology,
Jeonbok National University, Jeonju 54896, Korea
| | - Kwang Keun Cho
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea,Corresponding author: Kwang Keun Cho
Division of Animal Science, Gyeongsang National University, Jinju 52725, Korea.
Tel: +82-55-772-3286 E-mail:
| |
Collapse
|
13
|
Sharma R, Diwan B, Singh BP, Kulshrestha S. Probiotic fermentation of polyphenols: potential sources of novel functional foods. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractFermented functional food products are among the major segments of food processing industry. Fermentation imparts several characteristic effects on foods including the enhancement of organoleptic characteristics, increased shelf-life, and production of novel health beneficial compounds. However, in addition to macronutrients present in the food, secondary metabolites such as polyphenols are also emerging as suitable fermentable substrates. Despite the traditional antimicrobial view of polyphenols, accumulating research shows that polyphenols exert differential effects on bacterial communities by suppressing the growth of pathogenic microbes while concomitantly promoting the proliferation and survival of probiotic bacteria. Conversely, probiotic bacteria not only survive among polyphenols but also induce their fermentation which often leads to improved bioavailability of polyphenols, production of novel metabolic intermediates, increased polyphenolic content, and thus enhanced functional capacity of the fermented food. In addition, selective fermentation of combinations of polyphenol-rich foods or fortification with polyphenols can result in novel functional foods. The present narrative review specifically explores the potential of polyphenols as fermentable substrates in functional foods. We discuss the emerging bidirectional relationship between polyphenols and probiotic bacteria with an aim at promoting the development of novel functional foods based on the amalgamation of probiotic bacteria and polyphenols.
Graphical abstract
Collapse
|
14
|
Diwan B, Sharma R. Nutritional components as mitigators of cellular senescence in organismal aging: a comprehensive review. Food Sci Biotechnol 2022; 31:1089-1109. [PMID: 35756719 PMCID: PMC9206104 DOI: 10.1007/s10068-022-01114-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
The process of cellular senescence is rapidly emerging as a modulator of organismal aging and disease. Targeting the development and removal of senescent cells is considered a viable approach to achieving improved organismal healthspan and lifespan. Nutrition and health are intimately linked and an appropriate dietary regimen can greatly impact organismal response to stress and diseases including during aging. With a renewed focus on cellular senescence, emerging studies demonstrate that both primary and secondary nutritional elements such as carbohydrates, proteins, fatty acids, vitamins, minerals, polyphenols, and probiotics can influence multiple aspects of cellular senescence. The present review describes the recent molecular aspects of cellular senescence-mediated understanding of aging and then studies available evidence of the cellular senescence modulatory attributes of major and minor dietary elements. Underlying pathways and future research directions are deliberated to promote a nutrition-centric approach for targeting cellular senescence and thus improving human health and longevity.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| |
Collapse
|
15
|
Kumari A, Bhawal S, Kapila S, Kapila R. Strain-specific effects of probiotic Lactobacilli on mRNA expression of epigenetic modifiers in intestinal epithelial cells. Arch Microbiol 2022; 204:411. [PMID: 35729284 DOI: 10.1007/s00203-022-03027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
The epigenome of an organism is as important as the genome for the normal development and functioning of an individual. The human epigenome can be affected by various environmental factors including nutrients, microbiota and probiotics through epigenetic modifiers and mediates various health-promoting effects. The present study was aimed to explore the temporal changes in DNA and histone modifiers (DNMT1, TET2, p300, HDAC1, KMT2A, KDM5B, EzH2 and JMJD3) in intestinal epithelial cells (Caco-2) by probiotic lactobacilli (Limosilactobacillus fermentum MTCC 5898 and Lacticaseibacillus rhamnosus MTCC 5897) in comparison to opportunistic commensal pathogen Escherichia coli (ATCC 14849). Cells were treated separately with probiotic strains and E. coli for different durations and temporal changes in gene expression among DNA and histone modifiers were measured. Time-dependent studies showed that L. fermentum enhanced the transcription of epigenetic modifiers at 12 h of treatment (P < 0.05) contrary to E. coli which reduced the expression of these genes during the same duration of treatment. On the other hand, probiotic L. rhamnosus was not able to induce any significant changes in gene expression of these modifiers. Furthermore, during the exclusion of E. coli by L. fermentum, the probiotic was found to resist the changes made by E. coli in the transcription of some of the epigenetic modifiers. Thus, it is concluded that the probiotics modulated the mRNA expression of DNA and histone modifiers contrarily to E. coli in a strain-specific manner.
Collapse
Affiliation(s)
- Ankita Kumari
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Shalaka Bhawal
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Suman Kapila
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Rajeev Kapila
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India.
| |
Collapse
|
16
|
Sharma R. Emerging Interrelationship Between the Gut Microbiome and Cellular Senescence in the Context of Aging and Disease: Perspectives and Therapeutic Opportunities. Probiotics Antimicrob Proteins 2022; 14:648-663. [PMID: 34985682 PMCID: PMC8728710 DOI: 10.1007/s12602-021-09903-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
The significance of diversity, composition, and functional attributes of the gut microbiota in shaping human health is well recognized. Studies have shown that gut microbiota is closely linked to human aging, and changes in the gut microbiome can predict human survival and longevity. In addition, a causal relationship between gut microbiota dysbiosis and chronic age-related disorders is also becoming apparent. Recent advances in our understanding of the cellular and molecular aspects of biological aging have revealed a cellular senescence-centric view of the aging process. However, the association between the gut microbiome and cellular senescence is only beginning to be understood. The present review provides an integrative view of the evolving relationship between the gut microbiome and cellular senescence in aging and disease. Evidence relating to microbiome-mediated modulation of senescent cells, as well as senescent cells-mediated changes in intestinal homeostasis and diseases, have been discussed. Unanswered questions and future research directions have also been deliberated to truly ascertain the relationship between the gut microbiome and cellular senescence for developing microbiome-based age-delaying and longevity-promoting therapies.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
| |
Collapse
|
17
|
Kaur H, Ali SA. Probiotics and gut microbiota: mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct 2022; 13:7423-7447. [DOI: 10.1039/d2fo00911k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consumption of probiotics as a useful functional food improves the host's wellbeing, and, when paired with prebiotics (indigestible dietary fibre/carbohydrate), often benefits the host through anaerobic fermentation.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-NDRI, 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Sharma R. Bioactive food components for managing cellular senescence in aging and disease: A critical appraisal and perspectives. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Microbiota Targeted Interventions of Probiotic Lactobacillus as an Anti-Ageing Approach: A Review. Antioxidants (Basel) 2021; 10:antiox10121930. [PMID: 34943033 PMCID: PMC8750034 DOI: 10.3390/antiox10121930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
With the implementation of modern scientific protocols, the average human lifespan has significantly improved, but age-related problems remain a challenge. With the advent of ageing, there are alterations in gut microbiota and gut barrier functions, weak immune responses, increased oxidative stress, and other age-related disorders. This review has highlighted and discussed the current understanding on the significance of gut microbiota dysbiosis and ageing and its inherent effects against age-related oxidative stress as well as on the gut health and gut-brain axis. Further, we have discussed the key mechanism of action of Lactobacillus strains in the longevity of life, alleviating gut dysbiosis, and improving oxidative stress and inflammation to provide an outline of the role of Lactobacillus strains in restoration of gut microbiota dysbiosis and alleviating certain conditions during ageing. Microbiota-targeted interventions of some characterized strains of probiotic Lactobacillus for the restoration of gut microbial community are considered as a potential approach to improve several neurological conditions. However, very limited human studies are available on this alarmed issue and recommend further studies to identify the unique Lactobacillus strains with potential anti-ageing properties and to discover its novel core microbiome-association, which will help to increase the therapeutic potential of probiotic Lactobacillus strains to ageing.
Collapse
|
20
|
Gupta T, Kaur H, Kapila S, Kapila R. Potential probiotic Lacticaseibacillus rhamnosus MTCC-5897 attenuates Escherichia coli induced inflammatory response in intestinal cells. Arch Microbiol 2021; 203:5703-5713. [PMID: 34476513 DOI: 10.1007/s00203-021-02541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022]
Abstract
Probiotics are microbes having tremendous potential to prevent gastrointestinal disorders. In current investigation, immunomodulatory action of probiotic Lacticaseibacillus rhamnosus MTCC-5897 was studied during exclusion, competition and displacement of Escherichia coli on intestinal epithelial (Caco-2) cells. The incubation of intestinal cells with Escherichia coli, enhanced downstream signalling and activated nuclear factor kappa B (NF-κB). This significantly increased (p < 0.01) the pro-inflammatory cytokines (IL-8, TNF-α, IFN-ϒ) expression. While, incubation of epithelial cells with Lacticaseibacillus rhamnosus during exclusion and competition with Escherichia coli, counteracted these enhanced expressions. The immunomodulatory feature of Lacticaseibacillus rhamnosus was also highlighted with increased (p < 0.05) transcription of toll-like receptor-2 (TLR-2) and single Ig IL-1-related receptor (SIGIRR) along with diminished expression of TLR-4. Likewise, attenuation (p < 0.05) of E. coli-mediated enhanced nuclear translocation of NF-κB p-65 subunit by Lacticaseibacillus rhamnosus during exclusion was confirmed with western blotting. Thus, present finding establishes the prophylactic potential of Lacticaseibacillus rhamnosus against exclusion of Escherichia coli in intestinal cells.
Collapse
Affiliation(s)
- Taruna Gupta
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Harpreet Kaur
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
21
|
Kaur H, Gupta T, Kapila S, Kapila R. Protective effects of potential probiotic Lactobacillus rhamnosus (MTCC-5897) fermented whey on reinforcement of intestinal epithelial barrier function in a colitis-induced murine model. Food Funct 2021; 12:6102-6116. [PMID: 34047732 DOI: 10.1039/d0fo02641g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fermented foods provide essential nutritional components and bioactive molecules that have beneficial effects on several gastrointestinal disorders. In the present investigation, the potential protective effects of whey fermented with probiotic Lactobacillus rhamnosus MTCC-5897 on gastrointestinal health in a murine ulcerative colitis model induced by dextran sulfate sodium (DSS) were evaluated. Pre-consumption of whey fermented with probiotic L. rhamnosus (PFW) before colitis induction significantly reduced (p < 0.01) the disease activity index and improved (p < 0.05) the hematological parameters and histological scores. The considerably diminished levels (p < 0.01) of pro-inflammatory markers (IL-4, TNF-α, CRP and MPO activity) and the enhanced (p < 0.05) levels of the anti-inflammatory cytokine TGF-β with IgA in the intestine upon feeding PFW appeared to prevent inflammation on colitis induction. Transcriptional modulations in pathogen recognition receptors (TLR-2/4) and tight junctional genes (ZO-1, occludin, claudin-1) along with localized distribution of junctional (claudin-1, occludin and ZO-1) and cytoskeleton (actin) proteins improved immune homeostasis and intestinal barrier integrity. Besides, significantly reduced (p < 0.05) levels of the FITC-dextran marker in serum upon consumption of PFW directly confirmed the healthy status of the host gut.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| | - Taruna Gupta
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
22
|
Bhat MI, Sowmya K, Kapila S, Kapila R. Potential Probiotic Lactobacillus rhamnosus (MTCC-5897) Inhibits Escherichia coli Impaired Intestinal Barrier Function by Modulating the Host Tight Junction Gene Response. Probiotics Antimicrob Proteins 2021; 12:1149-1160. [PMID: 31732863 DOI: 10.1007/s12602-019-09608-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Probiotic as a preventive medicine is emerging as an indispensable tool in addressing the foodborne infections or gastrointestinal disorders. The present study was sought to determine the in vitro prophylactic potential of probiotic Lactobacillus rhamnosus (LR: MTCC-5897) against Escherichia coli (ATCC 14948) induced impairment in intestinal barrier function using Caco-2 cells. Intestinal cells exposed to E. coli demonstrated significantly higher phenol red flux (p < 0.05) and concomitantly decreased TEER (0.69 ± 0.01) in contrast to control or L. rhamnosus (109 cfu/mL)-treated cells. However, E. coli-induced barrier hyperpermeability was restored to significant extents (p < 0.01) when E. coli were excluded, competed or displaced by probiotic LR. Similarly, exposure of Caco-2 cells to E. coli reduced the mRNA expression of key tight junction genes, viz. Zo-1, Claudin-1, Occludin and Cingulin which however were restored significantly (p < 0.05) with L. rhamnosus treatment during exclusion or competition than displacement assays. The protective behaviour of probiotic LR against E. coli can also be observed in immunofluorescent and electron micrograph where intact cellular morphology along with preserved distribution and localisation of key integrity proteins can be found in LR-treated cells in contrast to distorted and disorganised distribution observed with E. coli exposure. In conclusion, L. rhamnosus inhibited and re-established E. coli-impaired intestinal barrier function by improving the expression and distribution of key junction protein and hence could serve an essential food additive to address the various health complications especially those associated with gastrointestinal tract.
Collapse
Affiliation(s)
- Mohd Iqbal Bhat
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Kandukuri Sowmya
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
23
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
24
|
Narasimhan H, Ren CC, Deshpande S, Sylvia KE. Young at Gut-Turning Back the Clock with the Gut Microbiome. Microorganisms 2021; 9:microorganisms9030555. [PMID: 33800340 PMCID: PMC8001982 DOI: 10.3390/microorganisms9030555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Over the past century, we have witnessed an increase in life-expectancy due to public health measures; however, we have also seen an increase in susceptibility to chronic disease and frailty. Microbiome dysfunction may be linked to many of the conditions that increase in prevalence with age, including type 2 diabetes, cardiovascular disease, Alzheimer's disease, and cancer, suggesting the need for further research on these connections. Moreover, because both non-modifiable (e.g., age, sex, genetics) and environmental (e.g., diet, infection) factors can influence the microbiome, there are vast opportunities for the use of interventions related to the microbiome to promote lifespan and healthspan in aging populations. To understand the mechanisms mediating many of the interventions discussed in this review, we also provide an overview of the gut microbiome's relationships with the immune system, aging, and the brain. Importantly, we explore how inflammageing (low-grade chronic inflammation that often develops with age), systemic inflammation, and senescent cells may arise from and relate to the gut microbiome. Furthermore, we explore in detail the complex gut-brain axis and the evidence surrounding how gut dysbiosis may be implicated in several age-associated neurodegenerative diseases. We also examine current research on potential interventions for healthspan and lifespan as they relate to the changes taking place in the microbiome during aging; and we begin to explore how the reduction in senescent cells and senescence-associated secretory phenotype (SASP) interplay with the microbiome during the aging process and highlight avenues for further research in this area.
Collapse
Affiliation(s)
| | - Clarissa C. Ren
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | | - Kristyn E. Sylvia
- The Society for Cardiovascular Angiography and Interventions, Washington, DC 20036, USA
- Correspondence: ; Tel.: +1-774-226-6214
| |
Collapse
|
25
|
Mendes KL, Lelis DDF, de Freitas DF, da Silveira LH, de Paula AMB, Guimarães ALS, Oliveira JR, Andrade MC, Nobre SAM, Santos SHS. Acute oral treatment with resveratrol and Lactococcus Lactis Subsp. Lactis decrease body weight and improve liver proinflammatory markers in C57BL/6 mice. Mol Biol Rep 2021; 48:1725-1734. [PMID: 33586053 DOI: 10.1007/s11033-021-06190-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The present study aimed to evaluate the effects of resveratrol, a nutraceutical polyphenol, and Lactococcus lactis (bacteria probiotic), on metabolic parameters and hepatic proinflammatory markers expression. C57BL/6 mice were divided into 4 groups: Standard (ST), Lactococcus lactis (LL), Resveratrol (RSV), and Lactococcus lactis plus resveratrol (LL + RSV). Lactococcus lactis and resveratrol were administered by orogastric gavage. Blood parameters were assessed (total cholesterol, triglycerides, ALT and AST). IL-6 mRNA expression was evaluated by Real-time PCR and TNF-α protein expression was assessed by immunohistochemistry. The main findings showed that resveratrol and Lactococcus lactis association decreased body weight, aspartate aminotransferase and total cholesterol levels. LL and LL + RSV decreased triglycerides levels and IL-6 and TNF-α expression. These results open a perspective of using resveratrol and Lactococcus lactis to improve metabolic parameters and Lactococcus lactis in preventing inflammation and the hepatic diseases development.
Collapse
Affiliation(s)
- Keila Lopes Mendes
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil.,Instituto Federal de Minas Gerais (IFMG), São João Evangelista, Minas Gerais, Brazil
| | - Deborah de Farias Lelis
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Daniela Fernanda de Freitas
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Luiz Henrique da Silveira
- Hospital Universitário Clemente de Faria, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | | | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Janaína Ribeiro Oliveira
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Mariléia Chaves Andrade
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Sérgio Avelino Mota Nobre
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Department of Health Science, Hospital Universitário Clemente Faria, Universidade Estadual de Montes Claros (Unimontes), Avenida Cula Mangabeira, 562 - Santo Expedito, Montes Claros, Minas Gerais, CEP 39401-001, Brazil. .,Institudo de Ciências Agrárias (ICA), Food Engineering Department, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Cadore PS, Walcher DL, Sousa NFGCD, Martins LHR, Hora VPD, Groll AV, Moura MQD, Berne MEA, Avila LFDCD, Scaini CJ. Protective effect of the probiotic Lactobacillus acidophilus ATCC 4356 in BALB/c mice infected with Toxocara canis. Rev Inst Med Trop Sao Paulo 2021; 63:e9. [PMID: 33533812 PMCID: PMC7845935 DOI: 10.1590/s1678-9946202163009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Human toxocariasis consists of chronic tissue parasitosis that is difficult to treat and control. This study aimed to evaluate the action of the probiotic Lactobacillus acidophilus ATCC 4356 on larvae of Toxocara canis and the effect of IFN-γ cytokine on parasite-host in vivo (1.109 CFU) and in vitro (1.106, 1.107, 1.108, 1.109 CFU) interactions. Four groups of six BALB/c mice were formed: G1 - L. acidophilus supplementation and T. canis infection; G2 - T. canis infection; G3 - L. acidophilus supplementation; and G4 - PBS administration. Mice were intragastrically suplemented with probiotics for 15 days before inoculation and 48 h after inoculation with 100 T. canis eggs. The inoculation of T. canis was also perfomed intragastrically. The recovery of larvae took place through digestion of liver and lung tissues; the evaluation of IFN-γ gene transcription in leukocytes was performed by qPCR. The in vitro test consisted of incubating the probiotic with T. canis larvae. The supplementation of probiotics produced a reduction of 57.7% (p = 0.025) in the intensity of infection of T. canis larvae in mice, whereas in the in vitro test, there was no larvicidal effect. In addition, a decrease in the IFN-γ gene transcription was observed in both, T. canis-infected and uninfected mice, regardless of whether or not they received supplementation. The probiotic L. acidophilus ATCC 4356 reduced T. canis infection intensity in mice, however, the probiotic did not have a direct effect on larvae, demonstrating the need of interaction with the host for the beneficial effect of the probiotic to occur. Yet, the proinflammatory cytokine IFN-γ did not apparently contributed to the observed beneficial effect of probiotics.
Collapse
Affiliation(s)
- Priscila Silva Cadore
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Débora Liliane Walcher
- Universidade Federal de Pelotas, Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Parasitologia, Pelotas, Rio Grande do Sul, Brazil
| | | | - Lourdes Helena Rodrigues Martins
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Vanusa Pousada da Hora
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Andrea Von Groll
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Micaele Quintana de Moura
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Maria Elisabeth Aires Berne
- Universidade Federal de Pelotas, Departamento de Microbiologia e Parasitologia, Programa de Pós-Graduação em Parasitologia, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana Farias da Costa de Avila
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| | - Carlos James Scaini
- Universidade Federal do Rio Grande, Área Acadêmica do Hospital Universitário, Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Parasitologia, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
27
|
Abstract
Aging is characterized by the functional decline of tissues and organs and increased risk of aging-associated disorders, which pose major societal challenges and are a public health priority. Despite extensive human genetics studies, limited progress has been made linking genetics with aging. There is a growing realization that the altered assembly, structure and dynamics of the gut microbiota actively participate in the aging process. Age-related microbial dysbiosis is involved in reshaping immune responses during aging, which manifest as immunosenescence (insufficiency) and inflammaging (over-reaction) that accompany many age-associated enteric and extraenteric diseases. The gut microbiota can be regulated, suggesting a potential target for aging interventions. This review summarizes recent findings on the physiological succession of gut microbiota across the life-cycle, the roles and mechanisms of gut microbiota in healthy aging, alterations of gut microbiota and aging-associated diseases, and the gut microbiota-targeted anti-aging strategies.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People's Hospital, Lishui, Zhejiang, China
| | - Shaochang Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Sharma R, Padwad Y. Nutraceuticals-Based Immunotherapeutic Concepts and Opportunities for the Mitigation of Cellular Senescence and Aging: A Narrative Review. Ageing Res Rev 2020; 63:101141. [PMID: 32810647 DOI: 10.1016/j.arr.2020.101141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The role of increased tissue senescent cell (SC) burden in driving the process of ageing and associated disorders is rapidly gaining attention. Amongst various plausible factors, impairment in immune functions is emerging as a critical regulator of known age-associated accumulation of SC. Immune cells dysfunctions with age are multi-faceted and are uniquely attributed to the independent processes of immunosenescence and cellular senescence which may collectively impair immune system mediated clearance of SC. Moreover, being functionally and phenotypically heterogenic, immune cells are also liable to be affected by senescence microenvironment in other tissues. Therefore, strategies aimed at improving immunosenescence and cellular senescence in immune cells can have pleiotropic effects on ageing physiology including the accumulation of SC. In this regard, nutraceutical's immunomodulatory attributes are well documented which may have implications in developing nutrition-oriented immunotherapeutic approaches against SC. In particular, the three diverse sources of bioactive ingredients, viz., phytochemicals, probiotic bacteria and omega-3-fatty acids have shown promising anti-immunosenescence and anti-cellular senescence potential in immune cells influencing aging and immunity in ways beyond modest stimulation of immune responses. The present narrative review describes the preventive and therapeutic attributes of phytochemicals such as polyphenols, probiotic microbes and omega-3-fatty acids in influencing the emerging nexus of immunosenescence, cellular senescence and SC during aging. Outstanding questions and nutraceuticals-based pro-longevity and niche research areas have been deliberated. Further research using integrative approaches is recommended for developing nutrition-based holistic immunotherapeutic strategies for 'healthy ageing'.
Collapse
|
29
|
Is inflammageing influenced by the microbiota in the aged gut? A systematic review. Exp Gerontol 2020; 141:111079. [DOI: 10.1016/j.exger.2020.111079] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/02/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
|
30
|
Zhao J, Yu L, Zhai Q, Tian F, Zhang H, Chen W. Effects of probiotic administration on hepatic antioxidative parameters depending on oxidative stress models: A meta-analysis of animal experiments. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
31
|
Gui Q, Wang A, Zhao X, Huang S, Tan Z, Xiao C, Yang Y. Effects of probiotic supplementation on natural killer cell function in healthy elderly individuals: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2020; 74:1630-1637. [PMID: 32514029 PMCID: PMC7279433 DOI: 10.1038/s41430-020-0670-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023]
Abstract
To evaluate evidence for the role of probiotic supplementation in enhancing natural killer (NK) cell function in healthy elderly individuals. Five electronic databases were searched, and references of included articles and eligible reviews up to December 2019, with English language and human subject restrictions, were examined. Two independent reviewers identified randomized control trials (RCTs) of probiotic supplementation influencing NK cell function in healthy elderly individuals, assessed the quality of every article, and extracted data for subsequent meta-analysis. We identified six eligible trials including 364 healthy elderly subjects. Trials were heterogeneous in study design and probiotic supplementation (including genus, strain, dose, and duration). Five trials used Lactobacillus interventions alone or in combination with Bifidobacterium. Only one trial focused on Bacillus coagulans. The duration of supplementation ranged from 3 to 12 weeks, and the doses, from 1 × 109 to 4 × 1010 colony-forming units. Pooling data of eligible trials showed that probiotics significantly (P < 0.05) increased NK cell activity in healthy elderly individuals (standardized mean difference = 0.777, 95% confidence interval: 0.187‒1.366, P = 0.01, I2 = 84.6%). Although we obtained a significant outcome, the data do not provide convincing evidence for associations between probiotic supplementation and enhancement of NK cell function, given the small final number and very large heterogeneity. More RCTs with sufficient sample sizes and long-term follow-up are needed to focus on optimal probiotic dose, species, and duration of supplementation for healthy elderly individuals.
Collapse
Affiliation(s)
- Qifeng Gui
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Ange Wang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Xinxiu Zhao
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Shunmei Huang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Zhongju Tan
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, PR China.
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China. .,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.
| |
Collapse
|
32
|
Sharma R, Padwad Y. Probiotic bacteria as modulators of cellular senescence: emerging concepts and opportunities. Gut Microbes 2020; 11:335-349. [PMID: 31818183 PMCID: PMC7524351 DOI: 10.1080/19490976.2019.1697148] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Probiotic bacteria are increasingly gaining importance in human nutrition owing to their multifaceted health beneficial effects. Studies have also shown that probiotic supplementation is useful in mitigating age-associated oxi-inflammatory stress, immunosenescence, and gut dysbiosis thereby promoting health and longevity. However, our current understanding of the process of aging suggests a strong interrelationship between the accumulation of senescent cells and the development of aging phenotype, including the predisposition to age-related disorders. The present review studies the documented pro-longevity effects of probiotics and highlights how these beneficial attributes of probiotics could be related to the mitigation of cellular senescence. We present a perspective that to fully understand and comprehend the anti-aging characteristics of probiotic bacteria; it is imperative that probiotics or their synbiotic amalgamation with plant polyphenols, be studied under the purview of cellular senescence, that may ultimately help devise probiotic-based anti-senescence strategies.
Collapse
Affiliation(s)
- Rohit Sharma
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India,CONTACT Rohit Sharma Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur176061, India
| | - Yogendra Padwad
- Pharmacology and Toxicology Laboratory, Food & Nutraceutical Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
33
|
Sharma R, Padwad Y. In search of nutritional anti-aging targets: TOR inhibitors, SASP modulators, and BCL-2 family suppressors. Nutrition 2019; 65:33-38. [DOI: 10.1016/j.nut.2019.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/26/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
|
34
|
Vemuri R, Gundamaraju R, Shinde T, Perera AP, Basheer W, Southam B, Gondalia SV, Karpe AV, Beale DJ, Tristram S, Ahuja KDK, Ball M, Martoni CJ, Eri R. Lactobacillus acidophilus DDS-1 Modulates Intestinal-Specific Microbiota, Short-Chain Fatty Acid and Immunological Profiles in Aging Mice. Nutrients 2019; 11:E1297. [PMID: 31181695 PMCID: PMC6627711 DOI: 10.3390/nu11061297] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Distribution of the microbiota varies according to the location in the gastrointestinal (GI) tract. Thus, dysbiosis during aging may not be limited to faecal microbiota and extend to the other parts of the GI tract, especially the cecum and colon. Lactobacillus acidophilus DDS-1, a probiotic strain, has been shown to modulate faecal microbiota and its associated metabolic phenotype in aging mice. In the present study, we investigated the effect of L. acidophilus DDS-1 supplementation on caecal- and mucosal-associated microbiota, short-chain fatty acids (SCFAs) and immunological profiles in young and aging C57BL/6J mice. Besides differences in the young and aging control groups, we observed microbial shifts in caecal and mucosal samples, leading to an alteration in SCFA levels and immune response. DDS-1 treatment increased the abundances of beneficial bacteria such as Akkermansia spp. and Lactobacillus spp. more effectively in caecal samples than in mucosal samples. DDS-1 also enhanced the levels of butyrate, while downregulating the production of inflammatory cytokines (IL-6, IL-1β, IL-1α, MCP-1, MIP-1α, MIP-1β, IL-12 and IFN-γ) in serum and colonic explants. Our findings suggest distinct patterns of intestinal microbiota, improvements in SCFA and immunological profiles with DDS-1 supplementation in aging mice.
Collapse
Affiliation(s)
- Ravichandra Vemuri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Rohit Gundamaraju
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Tanvi Shinde
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Agampodi Promoda Perera
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Waheedha Basheer
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Benjamin Southam
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Shakuntla V Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia.
| | - Avinash V Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, Queensland, 4102, Australia.
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, Queensland, 4102, Australia.
| | - Stephen Tristram
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Kiran D K Ahuja
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| | - Madeleine Ball
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3082 Australia.
| | | | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7250 Australia.
| |
Collapse
|
35
|
Intestinal Immunomodulation and Shifts on the Gut Microbiota of BALB/c Mice Promoted by Two Bifidobacterium and Lactobacillus Strains Isolated from Human Samples. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2323540. [PMID: 31119156 PMCID: PMC6500685 DOI: 10.1155/2019/2323540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/07/2019] [Indexed: 01/22/2023]
Abstract
Bifidobacterium animalis subsp. lactis IPLA 20020 and Lactobacillus gasseri IPLA 20212, two strains isolated from human samples, were evaluated for safety and influence over the intestinal microbiota and cytokine production by the intestinal tissue of adult BALB/c mice. Mice were divided into four groups receiving during 8 days PBS or a suspension of each strain, prepared fresh or lyophilized (bifidobacteria), at an amount of 4x108 viable cells/day. This dose could be comparable to the probiotic intake of a human adult who consumed about 100-200 mL of functional fermented milk per day, considering the usual level of probiotics in commercial products. No microbial translocation to liver or alterations in food intake, weight, and behavior were observed in treated mice. Intestinal content of secretory immunoglobulin A (s-IgA) was not affected, discarding any adverse effect on the mucosa-associated immunity. The profile of intestinal proinflammatory/regulatory cytokines after intervention evidenced that the microbial strain administered and its cellular state (fresh or lyophilized) as well as the host tissue analyzed (small or large intestine) influenced the immune response and suggests a moderate shift towards a T helper 1 profile (Th1) in the large intestine after the administration of both strains. Changes on relative levels of some intestinal microbial groups were evidenced after intervention. It is noteworthy that butyrate was positively associated with a balanced pro-Th1 immune response. Therefore, B. animalis subsp. lactis IPLA20020 and L. gasseri IPLA 20212 could be considered potential probiotic candidates to be included in functional foods for balancing the intestinal immune response.
Collapse
|
36
|
Bhat MI, Singh VK, Sharma D, Kapila S, Kapila R. Adherence capability and safety assessment of an indigenous probiotic strain Lactobacillus rhamnosus MTCC-5897. Microb Pathog 2019; 130:120-130. [DOI: 10.1016/j.micpath.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023]
|
37
|
Probiotic lactobacilli mediated changes in global epigenetic signatures of human intestinal epithelial cells during Escherichia coli challenge. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01451-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Yadav R, Vij R, Kapila S, Khan SH, Kumar N, Meena S, Kapila R. Milk fermented with probiotic strains Lactobacillus rhamnosus MTCC: 5957 and Lactobacillus rhamnosus MTCC: 5897 ameliorates the diet-induced hypercholesterolemia in rats. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1433-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
39
|
Sharma R, Kumari M, Kumari A, Sharma A, Gulati A, Gupta M, Padwad Y. Diet supplemented with phytochemical epigallocatechin gallate and probiotic Lactobacillus fermentum confers second generation synbiotic effects by modulating cellular immune responses and antioxidant capacity in aging mice. Eur J Nutr 2019; 58:2943-2957. [DOI: 10.1007/s00394-018-01890-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
|
40
|
Probiotics SOD inhibited food allergy via downregulation of STAT6-TIM4 signaling on DCs. Mol Immunol 2018; 103:71-77. [DOI: 10.1016/j.molimm.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
|
41
|
Yadav R, Dey DK, Vij R, Meena S, Kapila R, Kapila S. Evaluation of anti-diabetic attributes of Lactobacillus rhamnosus MTCC: 5957, Lactobacillus rhamnosus MTCC: 5897 and Lactobacillus fermentum MTCC: 5898 in streptozotocin induced diabetic rats. Microb Pathog 2018; 125:454-462. [PMID: 30316007 DOI: 10.1016/j.micpath.2018.10.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
Interest in probiotics has grown significantly in the last decades due to their reported nutritional and health promoting effects. The aim of this study is to investigate the therapeutic potential of probiotic fermented milk (PFM) prepared using three different probiotic strains i.e. Lactobacillus rhamnosus MTCC: 5957, Lactobacillus rhamnosus MTCC: 5897 and Lactobacillus fermentum MTCC: 5898; independently or in combination, for treating streptozotocin induced type-1 diabetes in male Wistar rats. Diabetic rats were fed with PFM preparations for 6 weeks and then analyzed for the various biochemical parameters associated. The results indicated that feeding of PFM significantly improved glucose metabolism (fasting blood glucose, glycated hemoglobin, serum insulin), serum inflammation status (tumor necrosis factor-α, and serum interleukin-6), oxidative stress (thiobarbituric acid reactive substance, catalase, superoxide dismutase and glutathione peroxidase activities in liver and kidney), serum lipid profile (total cholesterol, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol, triglycerides) in diabetic rats. In addition, feeding of PFM has significantly reduced mRNA expression of pepck and g6pase genes that code the key enzymes of gluconeogenesis pathway. The results of this study showed that daily consumption of PFM can be effective in combating of type -1 diabetes and its complications.
Collapse
Affiliation(s)
- Radha Yadav
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Debpriyo Kumar Dey
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Rishika Vij
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Sunita Meena
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
42
|
Zhang P, Wang Y, Liu XR, Hong SR, Yao J. Downregulated Tim-3 expression is responsible for the incidence and development of colorectal cancer. Oncol Lett 2018; 16:1059-1066. [PMID: 29963183 DOI: 10.3892/ol.2018.8697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2017] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the role of T cell immunoglobulin domain and mucin-3 (Tim-3) in its gene and protein forms in colorectal cancer (CRC), and to verify the significance of Tim-3 expression in patients with CRC. A prospective analysis of 258 patients with CRC and 246 normal controls was conducted between December 2012 and June 2015. Intestinal samples were collected, including of CRC tissues, paracancerous tissues and normal colon mucosa tissues. Peripheral venous blood samples were also collected. Polymerase chain reaction (PCR) amplification, reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis was performed for the detection and evaluation of Tim-3 gene and protein in various tissues. PCR analysis indicated that the T and G alleles of -882C/T and 4259T/G are associated with a significantly increased risk of CRC. Following the confirmation of Tim-3 expression in CRC tissues, RT-qPCR detection and western blot analysis revealed clear downregulation of Tim-3 mRNA and protein expression in the blood and tissue samples obtained from patients with CRC, as compared with in the corresponding control samples. Similar trends of decreased Tim-3 mRNA levels and protein expression were observed in CRC tissues compared with in the paracancerous and the normal colon mucosa tissues. In addition, the mRNA and protein expression levels in the paracancerous tissues were lower than those in the normal colon mucosa tissues. Furthermore, significantly lower Tim-3 mRNA levels were observed in patients with a tumor size >5 cm, a poor differentiation degree, higher tumor-node-metastasis stage (stage III-IV), and lymph node and distant metastasis. Collectively, genetic changes to Tim-3, expressed as polymorphisms in Tim-3, and decreased mRNA/protein expression may be partially responsible for the incidence and development of CRC.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xue-Rong Liu
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shi-Ru Hong
- Department of Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jian Yao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
43
|
Rios AC, Maurya PK, Pedrini M, Zeni-Graiff M, Asevedo E, Mansur RB, Wieck A, Grassi-Oliveira R, McIntyre RS, Hayashi MA, Brietzke E. Microbiota abnormalities and the therapeutic potential of probiotics in the treatment of mood disorders. Rev Neurosci 2017; 28:739-749. [DOI: 10.1515/revneuro-2017-0001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022]
Abstract
AbstractMajor depressive disorder (MDD) and bipolar disorder (BD) are among the leading causes of burden and disability worldwide. Despite intensified research efforts to improve the treatment options and remission rates in mood disorders, no disease modifying treatment exists for these disorders. Accumulating evidence implicates the involvement of the gut microbiota in processes relevant to etiopathology of central nervous system-based disorders. The objective of this article was to critically evaluate the evidence supporting the link between gastrointestinal microbiota and mood disorders and to discuss the potential benefits of using probiotics in the treatment of MDD and BD. The concept of psychobiotics, which is bacterial-based interventions with mental health benefit, is emerging in the field. On the other hand, while probiotics might potentially represent a significant advance, specific roles of microbiota in the pathophysiology of mood disorders still need further investigation along with intervention studies.
Collapse
Affiliation(s)
- Adiel C. Rios
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Pawan Kumar Maurya
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Mariana Pedrini
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Maiara Zeni-Graiff
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Elson Asevedo
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo B. Mansur
- Mood Disorders and Psychopharmacology Unit (MDPU), University Health Network (UHN), University of Toronto, Toronto, Canada
| | - Andrea Wieck
- Laboratory of Immunosenescence, Institute of Biomedical Research, Pontifical Catholic University of the Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Cognitive Neuroscience Research Group (GNCD), Postgraduate Program in Psychology, PUCRS, Porto Alegre, Brazil
| | - Roger S. McIntyre
- Mood Disorders and Psychopharmacology Unit (MDPU), University Health Network (UHN), University of Toronto, Toronto, Canada
| | - Mirian A.F. Hayashi
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Elisa Brietzke
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
44
|
Landete JM, Gaya P, Rodríguez E, Langa S, Peirotén Á, Medina M, Arqués JL. Probiotic Bacteria for Healthier Aging: Immunomodulation and Metabolism of Phytoestrogens. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5939818. [PMID: 29109959 PMCID: PMC5646295 DOI: 10.1155/2017/5939818] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Abstract
Age-related degeneration gives rise to a number of pathologies, many of them associated with imbalances of the microbiota and the gut-associated immune system. Thus, the intestine is considered a key target organ to improve the quality of life in senescence. Gut microbiota can have a powerful impact in the deterioration linked to aging by its nutritional and immunomodulatory activity. Reduced numbers of beneficial species and low microbial biodiversity in the elderly have been linked with pathogenesis of many diseases. A healthy lifestyle with an elderly customized diet including probiotics can contribute to reducing the chronic proinflammatory status and other age-related pathologies. Beneficial effects of probiotic lactic acid bacteria and bifidobacteria to alleviate some of these disorders based on their immunomodulatory properties as well as their capacity to produce bioactive metabolites from dietary phytoestrogens are summarized. On one hand, the preservation of gut barrier integrity and an increased ability to fight infections are the main reported immune benefits of probiotics. On the other hand, the intake of a diet rich in phytoestrogens along with the presence of selected probiotic bacteria may lead to the production of equol, enterolignans, and urolithins, which are considered protective against chronic diseases related to aging.
Collapse
Affiliation(s)
- José María Landete
- Departamento Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Pilar Gaya
- Departamento Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Eva Rodríguez
- Departamento Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Susana Langa
- Departamento Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Ángela Peirotén
- Departamento Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Margarita Medina
- Departamento Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Juan L. Arqués
- Departamento Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7, 28040 Madrid, Spain
| |
Collapse
|
45
|
Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clin Microbiol Rev 2017; 30:191-231. [PMID: 27856521 DOI: 10.1128/cmr.00049-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microorganisms hold promise for the treatment of numerous gastrointestinal diseases. The transfer of whole microbiota via fecal transplantation has already been shown to ameliorate the severity of diseases such as Clostridium difficile infection, inflammatory bowel disease, and others. However, the exact mechanisms of fecal microbiota transplant efficacy and the particular strains conferring this benefit are still unclear. Rationally designed combinations of microbial preparations may enable more efficient and effective treatment approaches tailored to particular diseases. Here we use an infectious disease, C. difficile infection, and an inflammatory disorder, the inflammatory bowel disease ulcerative colitis, as examples to facilitate the discussion of how microbial therapy might be rationally designed for specific gastrointestinal diseases. Fecal microbiota transplantation has already shown some efficacy in the treatment of both these disorders; detailed comparisons of studies evaluating commensal and probiotic organisms in the context of these disparate gastrointestinal diseases may shed light on potential protective mechanisms and elucidate how future microbial therapies can be tailored to particular diseases.
Collapse
|
46
|
Consumption of green tea epigallocatechin-3-gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male swiss albino mice. Biogerontology 2017; 18:367-382. [PMID: 28341876 DOI: 10.1007/s10522-017-9696-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
|
47
|
Ho YH, Huang YT, Lu YC, Lee SY, Tsai MF, Hung SP, Hsu TY. Effects of Gender and Age on Immune Responses of Human Peripheral Blood Mononuclear Cells to Probiotics: A Large Scale Pilot Study. J Nutr Health Aging 2017; 21:521-526. [PMID: 28448082 DOI: 10.1007/s12603-016-0818-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite the widely accepted concept that probiotics confer miscellaneous benefits to hosts, the controversies surrounding these health-promoting claims cannot be ignored. These controversies hinder development and innovation in this field. RESULTS To clarify the effects of age and gender on probiotic-induced immune responses, we recruited 1613 Taiwanese individuals and calculated the ratio of IFN-γ to IL-10 production after each individual's PBMCs were stimulated by six probiotic strains (L. paracasei BRAP01, L. acidophilus AD300, B. longum BA100, E. faecium BR0085, L. rhamnosus AD500 and L. reuteri BR101). Our results indicated that gender and age have only minor effects on the immune modulation of probiotics. Additionally, we showed that L. paracasei BRAP01 and L. acidophilus AD300 are the two dominant strains inducing IFN-γ/IL-10 production in Taiwanese individuals and that L. reuteri BR101 was the most effective stimulator of IL-10/IFN-γ. Additionally, a significant inverse relationship between the ability of L. paracasei BRAP01 and L. rhamnosus AD500 to stimulate IFN-γ/IL-10 or IL-10/IFN-γ production was also observed. CONCLUSIONS Our results indicated that age and gender have only minor effects on the immune modulation abilities of probiotics.
Collapse
Affiliation(s)
- Y-H Ho
- Ting-Yuan Hsu, MD, Ph.D. 5F., No.466, Bo'ai 1st Rd., Gushan Dist., Kaohsiung City 80466, Taiwan (R.O.C.), Phone: +886-7-5579268 ext. 510 , E-mail:
| | | | | | | | | | | | | |
Collapse
|
48
|
Arismendi M, Almeida M, Kayser C. PAPEL DOS PROBIÓTICOS NOS SINTOMAS GASTRINTESTINAIS E NO SISTEMA IMUNOLÓGICO EM PACIENTES COM ESCLEROSE SISTÊMICA. REVISTA BRASILEIRA DE REUMATOLOGIA 2017. [DOI: 10.1016/j.rbr.2017.07.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
49
|
Wouters MM, Van Wanrooy S, Nguyen A, Dooley J, Aguilera-Lizarraga J, Van Brabant W, Garcia-Perez JE, Van Oudenhove L, Van Ranst M, Verhaegen J, Liston A, Boeckxstaens G. Psychological comorbidity increases the risk for postinfectious IBS partly by enhanced susceptibility to develop infectious gastroenteritis. Gut 2016; 65:1279-88. [PMID: 26071133 DOI: 10.1136/gutjnl-2015-309460] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Psychological factors increase the risk to develop postinfectious IBS (PI-IBS), but the mechanisms involved are unclear. As stress affects the immune system, we investigated the potential interaction between psychological factors, the immune response against infectious gastroenteritis (IGE) and the development of IGE and PI-IBS in a large cohort exposed to contaminated drinking water. DESIGN 18 620 people exposed to contaminated drinking water (norovirus, Giardia lamblia, Campylobacter jejuni) were invited to participate in a prospective controlled cohort study. They were asked to complete questionnaires assessing demographic, psychological and clinical data during the outbreak and 1 year later. At both time points, in-depth immune function (peripheral blood and rectal biopsies) was studied in a subgroup of subjects. RESULTS 1379 subjects completed the questionnaires during the outbreak, of which 271 developed IGE. Risk factors for IGE included younger age, pre-existing dyspepsia-like symptoms, anxiety and drinking contaminated tap water. Anxiety scores before the outbreak inversely correlated with interleukin-2-expressing CD4+ T cells (r=0.6, p=0.01, n=23). At follow-up, 34 of 172 (20%) IGE subjects developed IBS compared with 24/366 exposed participants (7%, p<0.0001, χ(2) test). A Th2 cytokine phenotype at time of infection was associated with increased risk for PI-IBS 1 year later. Except for increased B cell numbers, no evidence for systemic or rectal mucosal immune activation in PI-IBS was demonstrated at follow-up. CONCLUSIONS Our study shows that the increased risk of patients with psychological comorbidity to develop PI-IBS may partly result from an increased susceptibility to develop IGE, possibly resulting from a Th2-immune bias. TRIAL REGISTRATION NUMBER (ClinicalTrials.gov NCT01497847).
Collapse
Affiliation(s)
- Mira M Wouters
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Sander Van Wanrooy
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Anh Nguyen
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium Autoimmune Genetics Laboratory, VIB, Leuven, Belgium
| | - James Dooley
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium Autoimmune Genetics Laboratory, VIB, Leuven, Belgium
| | - Javier Aguilera-Lizarraga
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Winde Van Brabant
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Josselyn E Garcia-Perez
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium Autoimmune Genetics Laboratory, VIB, Leuven, Belgium
| | - Lukas Van Oudenhove
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Rega Institute for Medical Research, University Hospital Leuven, Leuven, Belgium
| | - Jan Verhaegen
- Department of Microbiology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium Autoimmune Genetics Laboratory, VIB, Leuven, Belgium
| | - Guy Boeckxstaens
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders, University Hospital Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Saliganti V, Kapila R, Kapila S, Bhat MI. Probiotics in the modulation of maternal–infant immunity: Implications for allergic diseases. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1198913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|