1
|
Cheng J, Zheng J, Ma C, Li Y, Hao H. T-cell senescence: Unlocking the tumor immune "Dark Box" - A multidimensional analysis from mechanism to tumor immunotherapeutic intervention. Semin Cancer Biol 2025; 113:190-209. [PMID: 40381926 DOI: 10.1016/j.semcancer.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Immunosenescence is the dysfunction of the immune system that occurs with age, a process that is complex and characterized by several features, of which T-cell senescence is one of the key manifestations. In the tumor microenvironment, senescent T cells lead to the inability of tumor cells to be effectively eliminated, triggering immunosuppression, which in turn affects the efficacy of immunotherapy. This is a strong indication that T-cell senescence significantly weakens the immune function of the body, making individuals, especially elderly patients with cancer, more vulnerable to cancer attacks. Despite the many challenges, T-cell senescence is important as a potential therapeutic target. This review provides insights into the molecular mechanisms of T-cell senescence and its research advances in patients with cancer, especially in older adults, and systematically analyzes potential intervention strategies, including molecular mechanism-based interventions, the use of immune checkpoint inhibitors, and CAR-T cell therapy. It is hoped that this will establish a theoretical framework for T-cell senescence in the field of tumor immunology and provide a scientific and prospective reference basis for subsequent in-depth research and clinical practice on senescent T cells.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361004, China; Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China.
| | - Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Chen Ma
- Department of Emergency Internal Medicine, Zibo Central Hospital, Zibo 255024, China
| | - Yongzhang Li
- Department of Urology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050017, China.
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.
| |
Collapse
|
2
|
He Y, Feng J, Shi W, Ren Y, Liu Y, Kang H, Tian J, Jie Y. Correlation among ocular surface changes and systemic hematologic indexes and disease activity in primary Sjögren's syndrome: a cross-sectional study. BMC Ophthalmol 2025; 25:270. [PMID: 40329232 PMCID: PMC12054185 DOI: 10.1186/s12886-025-04050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND To explore the relationship among ocular surface changes, systemic hematologic indexes, and disease activity in primary Sjögren's syndrome patients. METHODS Thirty-three primary Sjögren's syndrome patients and 36 healthy controls were recruited in this cross-sectional study. All participants underwent complete ocular surface testing, including dry eye symptoms and signs, tear multi-cytokine analysis, and conjunctival impression cytology (CIC). Multiple systemic hematologic indexes and disease activity were also evaluated, including autoantibodies, immune cells, the EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI), and the EULAR Sjögren's Syndrome Disease Activity Index (ESSDAI). RESULTS Primary Sjögren's syndrome patients exhibited significant dry eye, severe conjunctivochalasis, decreased goblet cell density, and severe squamous epithelial on the ocular surface. Interferon-inducible T cell alpha chemoattractant (I-TAC), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-1β, IL-5, IL-8, IL-10, IL-13, IL-21, C-C motif chemokine ligand (CCL)4, interferon-gamma (IFN-γ), CCL20, and tumor necrosis factor-gamma (TNF-α) in the tear fluid of pSS patients changed significantly. Correlation analysis showed that anti-SSA was relevant to ocular surface disease index (OSDI) score, tear break-up time (TBUT), and meibomian gland secretion (MGS). CD8+ T cell percentages were relevant to TBUT and corneal fluorescein staining score (CFS). IL-8, IL-13, CCL4, and TNF-α were correlated with RF-IgA. IL-1β, CCL4, and TNF-α were correlated with CD8+ T cell counts. IL-5 and CCL20 were correlated with the ratio of helper T cells and suppressor T cells. Tear I-TAC, IL-8, CCL20, and TNF-α were significantly correlated with the ESSDAI of different domains. CONCLUSIONS Our results revealed that the ocular surface changes in pSS patients were significantly correlated with systemic hematologic indexes and disease activity.
Collapse
Affiliation(s)
- Yan He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China
| | - Jianing Feng
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yingyi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China
| | - Huanmin Kang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Tian
- Department of Rheumatism and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Ying Jie
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China.
| |
Collapse
|
3
|
Soto-Heredero G, Gabandé-Rodríguez E, Carrasco E, Escrig-Larena JI, Gómez de Las Heras MM, Delgado-Pulido S, Francos-Quijorna I, Blanco EM, Fernández-Almeida Á, Abia D, Rodríguez MJ, Fernández-Díaz CM, Álvarez-Flores MB, Ramírez de Molina A, Jung S, Del Sol A, Zorita V, Sánchez-Cabo F, Torroja C, Mittelbrunn M. KLRG1 identifies regulatory T cells with mitochondrial alterations that accumulate with aging. NATURE AGING 2025; 5:799-815. [PMID: 40307497 DOI: 10.1038/s43587-025-00855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/27/2025] [Indexed: 05/02/2025]
Abstract
Recent studies using single-cell RNA sequencing technology have uncovered several subpopulations of CD4+ T cells that accumulate with aging. These age-associated T cells are emerging as relevant players in the onset of inflammaging and tissue senescence. Here, based on information provided by single-cell RNA sequencing data, we present a flow cytometry panel that allows the identification of age-associated T cell subsets in systematic larger analysis in mice. We use this panel to evaluate at the single-cell level mitochondrial and senescence marks in the different age-associated CD4+ T cell subpopulations. Our analysis identifies a subpopulation of regulatory T (Treg) cells that is characterized by the extracellular expression of the co-inhibitory molecule killer cell lectin-like receptor subfamily G member 1 (KLRG1) and accumulates with aging in humans and mice. KLRG1-expressing Treg cells display senescence features such as mitochondrial alterations, increased expression of cell-cycle regulators and genomic DNA damage. Functionally, KLRG1+ Treg cells show a reduced suppressive activity in vivo accompanied by a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Gonzalo Soto-Heredero
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Gabandé-Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | - Elisa Carrasco
- Departamento de Biología, Facultad de Ciencias, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | - José Ignacio Escrig-Larena
- Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Delgado-Pulido
- Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | - Isaac Francos-Quijorna
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | - Eva M Blanco
- Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | - Álvaro Fernández-Almeida
- Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | - David Abia
- Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | - María Josefa Rodríguez
- Servicio de Microscopía Electrónica, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Sascha Jung
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch sur-Alzette, Luxembourg
- CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch sur-Alzette, Luxembourg
- CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Scholand KK, Schaefer L, Govindarajan G, Yu Z, Galletti JG, de Paiva CS. Aged regulatory T cells fail to control autoimmune lacrimal gland pathogenic CD4 + T cells. GeroScience 2025:10.1007/s11357-025-01576-y. [PMID: 40053297 DOI: 10.1007/s11357-025-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 03/12/2025] Open
Abstract
CD25KO mice are a model of Sjögren disease. CD25KO mice have severe inflammation and infiltrating lymphocytes to the lacrimal glands (LG). Whether the pathogenicity of CD25KO CD4+ T cells can be controlled in vivo by Tregs is unknown. Eight-week-old B6 and CD25KO mice LGs were submitted for RNA bulk sequencing. A total of 3481 genes were differentially expressed in CD25KO LG compared to B6. Tear washing analysis identified CD25KO mice had elevated protein levels of TNF, IFN-γ, and CCL5 and decreased protein levels of IL-12p40 and VEGF-A. Co-adoptive transfer of CD25KO CD4+ T cells with either young or aged B6 Tregs was performed in RAG1KO mice. Recipients of CD25KO CD4+ T cells alone had higher LG inflammation than naive mice. However, in recipients of young B6 Tregs plus CD25KO CD4+ T cells, LGs had significantly reduced inflammation. Recipients of CD25KO CD4+ T cells with aged B6 Tregs had more inflamed LGs than young Tregs, suggesting aged Tregs have less suppressive capacity in vivo. Altogether, CD25KO mice have phenotypic and genetic changes resulting in increased inflammation and severe lymphocytic infiltration in the LGs. However, this autoimmunity can be controlled by the addition of young, but not aged, Tregs, suggesting that aging Tregs have dysfunctional suppression.
Collapse
Affiliation(s)
- Kaitlin K Scholand
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Laura Schaefer
- Department of Molecular Virology and Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Gowthaman Govindarajan
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Jeremias G Galletti
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
5
|
Choi M, Toscano C, Edman MC, de Paiva CS, Hamm-Alvarez SF. The Aging Lacrimal Gland of Female C57BL/6J Mice Exhibits Multinucleate Macrophage Infiltration Associated With Lipid Dysregulation. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38829671 PMCID: PMC11156205 DOI: 10.1167/iovs.65.6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Loss of function of the lacrimal gland (LG), which produces the aqueous tear film, is implicated in age-related dry eye. To better understand this deterioration, we evaluated changes in lipid metabolism and inflammation in LGs from an aging model. Methods LG sections from female C57BL/6J mice of different ages (young, 2-3 months; intermediate, 10-14 months; old, ≥24 months) were stained with Oil Red-O or Toluidine blue to detect lipids. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blotting of LG lysates determined differences in the expression of genes and proteins related to lipid metabolism. A photobleaching protocol to quench age-related autofluorescence was used in LG sections to evaluate changes in immunofluorescence associated with NPC1, NPC2, CTSL, and macrophages (F4/80, CD11b) with age using confocal fluorescence microscopy. Results Old LGs showed increased lipids prominent in basal aggregates in acinar cells and in extra-acinar sites. LG gene expression of Npc1, Npc2, Lipa, and Mcoln2, encoding proteins involved in lipid metabolism, was increased with age. NPC1 was also significantly increased in old LGs by western blotting. In photobleached LG sections, confocal fluorescence microscopy imaging of NPC1, NPC2, and CTSL immunofluorescence showed age-associated enrichment in macrophages labeled to detect F4/80. Although mononuclear macrophages were detectable in LG at all ages, this novel multinucleate macrophage population containing NPC1, NPC2, and CTSL and enriched in F4/80 and some CD11b was increased with age at extra-acinar sites. Conclusions Lipid-metabolizing proteins enriched in F4/80-positive multinucleated macrophages are increased in old LGs adjacent to sites of lipid deposition in acini.
Collapse
Affiliation(s)
- Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Cindy Toscano
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
6
|
Abu-Romman A, Scholand KK, Govindarajan G, Yu Z, Pal-Ghosh S, Stepp MA, de Paiva CS. Age-Related Differences in the Mouse Corneal Epithelial Transcriptome and Their Impact on Corneal Wound Healing. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38739085 PMCID: PMC11098051 DOI: 10.1167/iovs.65.5.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Aging is a risk factor for dry eye. We sought to identify changes in the aged mouse corneal epithelial transcriptome and determine how age affects corneal sensitivity, re-epithelialization, and barrier reformation after corneal debridement. Methods Corneal epithelium of female C57BL/6J (B6) mice of different ages (2, 12, 18, and 24 months) was collected, RNA extracted, and bulk RNA sequencing performed. Cornea sensitivity was measured with an esthesiometer in 2- to 3-month-old, 12- to 13-month-old, 18- to 19-month-old, and 22- to 25-month-old female and male mice. The 2-month-old and 18-month-old female and male mice underwent unilateral corneal debridement using a blunt blade. Wound size and fluorescein staining were visualized and photographed at different time points, and a re-epithelialization rate curve was calculated. Results There were 157 differentially expressed genes in aged mice compared with young mice. Several pathways downregulated with age control cell migration, proteoglycan synthesis, and collagen trimerization, assembly, biosynthesis, and degradation. Male mice had decreased corneal sensitivity compared with female mice at 12 and 24 months of age. Aged mice, irrespective of sex, had delayed corneal re-epithelialization in the first 48 hours and worse corneal fluorescein staining intensity at day 14 than young mice. Conclusions Aged corneal epithelium has an altered transcriptome. Aged mice regardless of sex heal more slowly and displayed more signs of corneal epithelial defects after wounding than young mice. These results indicate that aging significantly alters the corneal epithelium and its ability to coordinate healing.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Kaitlin K. Scholand
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Gowthaman Govindarajan
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Zhiyuan Yu
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Mary A. Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
7
|
Fan Q, Yan R, Li Y, Lu L, Liu J, Li S, Fu T, Xue Y, Liu J, Li Z. Exploring Immune Cell Diversity in the Lacrimal Glands of Healthy Mice: A Single-Cell RNA-Sequencing Atlas. Int J Mol Sci 2024; 25:1208. [PMID: 38279208 PMCID: PMC10816500 DOI: 10.3390/ijms25021208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The lacrimal gland is responsible for maintaining the health of the ocular surface through the production of tears. However, our understanding of the immune system within the lacrimal gland is currently limited. Therefore, in this study, we utilized single-cell RNA sequencing and bioinformatic analysis to identify and analyze immune cells and molecules present in the lacrimal glands of normal mice. A total of 34,891 cells were obtained from the lacrimal glands of mice and classified into 18 distinct cell clusters using Seurat clustering. Within these cell populations, 26 different immune cell subpopulations were identified, including T cells, innate lymphocytes, macrophages, mast cells, dendritic cells, and B cells. Network analysis revealed complex cell-cell interactions between these immune cells, with particularly significant interactions observed among T cells, macrophages, plasma cells, and dendritic cells. Interestingly, T cells were found to be the main source of ligands for the Thy1 signaling pathway, while M2 macrophages were identified as the primary target of this pathway. Moreover, some of these immune cells were validated using immunohistological techniques. Collectively, these findings highlight the abundance and interactions of immune cells and provide valuable insights into the complexity of the lacrimal gland immune system and its relevance to associated diseases.
Collapse
Affiliation(s)
- Qiwei Fan
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Ruyu Yan
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yan Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jiangman Liu
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Senmao Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Ting Fu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jun Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhijie Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| |
Collapse
|
8
|
Hat K, Kaštelan S, Planinić A, Muller D, Ježek D. Pathohistological features of the aging human lacrimal gland. Croat Med J 2023; 64:307-319. [PMID: 37927184 PMCID: PMC10668042 DOI: 10.3325/cmj.2023.64.307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 06/06/2025] Open
Abstract
AIM To assess sex-related differences in the pathohistological features of the human lacrimal gland and to investigate age-related and sex-related differences in stereologically measured volume density of the secretory tissue, connective tissue, and fat. METHODS We performed an observational analysis of acinar atrophy, periacinar fibrosis, periductal fibrosis, ductal dilation, ductal proliferation, fatty infiltration, and lymphocyte infiltration of hematoxylin and eosin-stained lacrimal gland samples from 81 cornea donors. Stereological analysis of the volume density of the secretory tissue, connective tissue, and fat was performed on samples from 66 donors. RESULTS Up to 69% of all samples showed degenerative changes. Female samples had a higher frequency of all observed degenerative changes, except ductal dilation. While acinar atrophy was significantly more prevalent in women, ductal dilation was significantly more prevalent in men. Stereological analysis indicated lower portions of acini and higher portions of connective tissue and fat, as well as a more pronounced age-related progression of degenerative changes in female samples. CONCLUSION Female lacrimal glands are more susceptible to degeneration, and this susceptibility could play an important role in the higher incidence of dry eye disease in older women. A further stereological analysis using more samples from younger age groups is needed to elucidate age-related and sex-related differences in the structure of the human lacrimal gland and their impact on dry eye disease.
Collapse
Affiliation(s)
- Koraljka Hat
- Koraljka Hat, Department of Maxillofacial and Oral Surgery, University Hospital Dubrava, Avenija Gojka Šuška 6, 10000, Zagreb, Croatia,
| | | | | | | | | |
Collapse
|
9
|
Hat K, Kaštelan S, Planinić A, Muller D, Ježek D. Pathohistological features of the aging human lacrimal gland. Croat Med J 2023; 64:307-319. [PMID: 37927184 PMCID: PMC10668042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
AIM To assess sex-related differences in the pathohistological features of the human lacrimal gland and to investigate age-related and sex-related differences in stereologically measured volume density of the secretory tissue, connective tissue, and fat. METHODS We performed an observational analysis of acinar atrophy, periacinar fibrosis, periductal fibrosis, ductal dilation, ductal proliferation, fatty infiltration, and lymphocyte infiltration of hematoxylin and eosin-stained lacrimal gland samples from 81 cornea donors. Stereological analysis of the volume density of the secretory tissue, connective tissue, and fat was performed on samples from 66 donors. RESULTS Up to 69% of all samples showed degenerative changes. Female samples had a higher frequency of all observed degenerative changes, except ductal dilation. While acinar atrophy was significantly more prevalent in women, ductal dilation was significantly more prevalent in men. Stereological analysis indicated lower portions of acini and higher portions of connective tissue and fat, as well as a more pronounced age-related progression of degenerative changes in female samples. CONCLUSION Female lacrimal glands are more susceptible to degeneration, and this susceptibility could play an important role in the higher incidence of dry eye disease in older women. A further stereological analysis using more samples from younger age groups is needed to elucidate age-related and sex-related differences in the structure of the human lacrimal gland and their impact on dry eye disease.
Collapse
Affiliation(s)
- Koraljka Hat
- Koraljka Hat, Department of Maxillofacial and Oral Surgery, University Hospital Dubrava, Avenija Gojka Šuška 6, 10000, Zagreb, Croatia,
| | | | | | | | | |
Collapse
|
10
|
Abu-Romman A, Scholand KK, Pal-Ghosh S, Yu Z, Kelagere Y, Yazdanpanah G, Kao WWY, Coulson-Thomas VJ, Stepp MA, de Paiva CS. Conditional deletion of CD25 in the corneal epithelium reveals sex differences in barrier disruption. Ocul Surf 2023; 30:57-72. [PMID: 37516317 PMCID: PMC10812880 DOI: 10.1016/j.jtos.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE IL-2 promotes activation, clonal expansion, and deletion of T cells. IL-2 signals through its heterotrimeric receptor (IL-2R) consisting of the CD25, CD122 and CD132 chains. CD25 knockout (KO) mice develop Sjögren Syndrome-like disease. This study investigates whether corneal CD25/IL-2 signaling is critical for ocular health. METHODS Eyes from C57BL/6 mice were collected and prepared for immunostaining or in-situ hybridization. Bulk RNA sequencing was performed on the corneal epithelium from wild-type and CD25KO mice. We generated a conditional corneal-specific deletion of CD25 in the corneal epithelium (CD25Δ/ΔCEpi). Corneal barrier function was evaluated based on the uptake of a fluorescent dye. Mice were subjected to unilateral corneal debridement, followed by epithelial closure over time. RESULTS In C57BL/6 mice, CD25 mRNA was expressed in ocular tissues. Protein expression of CD25, CD122, and CD132 was confirmed in the corneal epithelium. Delayed corneal re-epithelization was seen in female but not male CD25KO mice. There were 771 differentially expressed genes in the corneal epithelium of CD25KO compared to wild-type mice. While barrier function is disrupted in CD25Δ/ΔCEpi mice, re-epithelialization rates are not delayed. CONCLUSIONS All three chains of the IL-2R are expressed in the corneal epithelium. Our results indicate for the first time, deleting CD25 systemically in all tissues in the mouse and deleting CD25 locally in just the corneal epithelium compromises corneal epithelial barrier function, leading to dry eye disease in female mice. Future studies are needed to delineate the pathways used by IL-2 signaling to influence cornea homeostasis.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Ghasem Yazdanpanah
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, United States.
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| |
Collapse
|
11
|
Liu J, Si H, Huang D, Lu D, Zou S, Qi D, Pei X, Huang S, Li Z. Mechanisms of Extraorbital Lacrimal Gland Aging in Mice: An Integrative Analysis of the Temporal Transcriptome. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 37695604 PMCID: PMC10501490 DOI: 10.1167/iovs.64.12.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose This study used high-throughput RNA sequencing (RNA-Seq) and bioinformatics analysis to investigate the altered transcriptome profile of aging lacrimal glands in mice that occurs over the course of a 24-hour cycle. Methods Male C57BL/6J mice aged 12 weeks (young) and 20 months (aging) were housed in a pathogen-free setting with a 12-hour light/12-hour dark cycle. Throughout a 24-hour cycle, mouse extraorbital lacrimal glands (ELGs) were collected at eight time points at three-hour intervals. To prepare for the high-throughput RNA-Seq, whole mRNA was extracted. Differentially expressed genes (DEGs) in the young and aging groups were subjected to bioinformatic analysis based on diurnal patterns. Furthermore, the cell populations in which significant DEGs express and signaling pathways occur were validated at the single-cell RNA sequencing (scRNA-seq) level. Results The total transcriptome composition was significantly altered in aging ELGs compared with that in young mouse ELGs at eight time points during the 24-hour cycle, with 864 upregulated and 228 downregulated DEGs, which were primarily enriched in inflammatory pathways. Further comparative analysis of the point-to-point transcriptome revealed that aging ELGs underwent alterations in the temporal transcriptome profile in several pathways, including the inflammation-related, metabolism-related, mitochondrial bioenergetic function-associated, synaptome neural activity-associated, cell processes-associated, DNA processing-associated and fibrosis-associated pathways. Most of these pathways occurred separately in distinct cell populations. Conclusions Transcriptome profiles of aging lacrimal glands undergo considerable diurnal time-dependent changes; this finding offers a comprehensive source of information to better understand the pathophysiology of lacrimal gland aging and its underlying mechanisms.
Collapse
Affiliation(s)
- Jiangman Liu
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Sen Zou
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
12
|
Trujillo-Vargas CM, de Paiva CS. Our search of immune invaders in the aged lacrimal gland. Aging (Albany NY) 2023; 15:7338-7339. [PMID: 37579224 PMCID: PMC10457069 DOI: 10.18632/aging.204651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 08/16/2023]
Affiliation(s)
- Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Haap W, Santos-Ferreira T, Ullmer C, Yu Z, de Paiva CS. Effects of Cathepsin S Inhibition in the Age-Related Dry Eye Phenotype. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37540176 PMCID: PMC10414132 DOI: 10.1167/iovs.64.11.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Purpose Aged C57BL/6J (B6) mice have increased levels of cathepsin S, and aged cathepsin S (Ctss-/-) knockout mice are resistant to age-related dry eye. This study investigated the effects of cathepsin S inhibition on age-related dry eye disease. Methods Female B6 mice aged 15.5 to 17 months were randomized to receive a medicated diet formulated by mixing the RO5461111 cathepsin S inhibitor or a standard diet for at least 12 weeks. Cornea mechanosensitivity was measured with a Cochet-Bonnet esthesiometer. Ocular draining lymph nodes and lacrimal glands (LGs) were excised and prepared for histology or assayed by flow cytometry to quantify infiltrating immune cells. The inflammatory foci (>50 cells) were counted under a 10× microscope lens and quantified using the focus score. Goblet cell density was investigated in periodic acid-Schiff stained sections. Ctss-/- mice were compared to age-matched wild-type mice. Results Aged mice subjected to cathepsin S inhibition or Ctss-/- mice showed improved conjunctival goblet cell density and cornea mechanosensitivity. There was no change in total LG focus score in the diet or Ctss-/- mice, but there was a lower frequency of CD4+IFN-γ+ cell infiltration in the LGs. Furthermore, aged Ctss-/- LGs had an increase in T central memory, higher numbers of CD19+B220-, and fewer CD19+B220+ cells than wild-type LGs. Conclusions Our results indicate that therapies aimed at decreasing cathepsin S can ameliorate age-related dry eye disease with a highly beneficial impact on the ocular surface. Further studies are needed to investigate the role of cathepsin S during aging.
Collapse
Affiliation(s)
- Jeremias G. Galletti
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Kaitlin K. Scholand
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of Biosciences, Rice University, Houston, Texas, United States
| |
Collapse
|
14
|
Soto-Heredero G, Gómez de Las Heras MM, Escrig-Larena JI, Mittelbrunn M. Extremely Differentiated T Cell Subsets Contribute to Tissue Deterioration During Aging. Annu Rev Immunol 2023; 41:181-205. [PMID: 37126417 DOI: 10.1146/annurev-immunol-101721-064501] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.
Collapse
Affiliation(s)
- Gonzalo Soto-Heredero
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - J Ignacio Escrig-Larena
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
| | - María Mittelbrunn
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
15
|
Scholand KK, Mack AF, Guzman GU, Maniskas ME, Sampige R, Govindarajan G, McCullough LD, de Paiva CS. Heterochronic Parabiosis Causes Dacryoadenitis in Young Lacrimal Glands. Int J Mol Sci 2023; 24:4897. [PMID: 36902330 PMCID: PMC10003158 DOI: 10.3390/ijms24054897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Aging is associated with inflammation and oxidative stress in the lacrimal gland (LG). We investigated if heterochronic parabiosis of mice could modulate age-related LG alterations. In both males and females, there were significant increases in total immune infiltration in isochronic aged LGs compared to that in isochronic young LGs. Male heterochronic young LGs were significantly more infiltrated compared to male isochronic young LGs. While both females and males had significant increases in inflammatory and B-cell-related transcripts in isochronic and heterochronic aged LGs compared to levels isochronic and heterochronic young LGs, females had a greater fold expression of some of these transcripts than males. Through flow cytometry, specific subsets of B cells were increased in the male heterochronic aged LGs compared to those in male isochronic aged LGs. Our results indicate that serum soluble factors from young mice were not enough to reverse inflammation and infiltrating immune cells in aged tissues and that there were specific sex-related differences in parabiosis treatment. This suggests that age-related changes in the LG microenvironment/architecture participate in perpetuating inflammation, which is not reversible by exposure to youthful systemic factors. In contrast, male young heterochronic LGs were significantly worse than their isochronic counterparts, suggesting that aged soluble factors can enhance inflammation in the young host. Therapies that aim at improving cellular health may have a stronger impact on improving inflammation and cellular inflammation in LGs than parabiosis.
Collapse
Affiliation(s)
- Kaitlin K. Scholand
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Alexis F. Mack
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gary U. Guzman
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael E. Maniskas
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ritu Sampige
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gowthaman Govindarajan
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Louise D. McCullough
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
16
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Yu Z, Mauduit O, Delcroix V, Makarenkova HP, de Paiva CS. Ectopic lymphoid structures in the aged lacrimal glands. Clin Immunol 2023; 248:109251. [PMID: 36740002 PMCID: PMC10323865 DOI: 10.1016/j.clim.2023.109251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Aging is a complex biological process in which many organs are pathologically affected. We previously reported that aged C57BL/6J had increased lacrimal gland (LG) lymphoid infiltrates that suggest ectopic lymphoid structures. However, these ectopic lymphoid structures have not been fully investigated. Using C57BL/6J mice of different ages, we analyzed the transcriptome of aged murine LGs and characterized the B and T cell populations. Age-related changes in the LG include increased differentially expressed genes associated with B and T cell activation, germinal center formation, and infiltration by marginal zone-like B cells. We also identified an age-related increase in B1+ cells and CD19+B220+ cells. B220+CD19+ cells were GL7+ (germinal center-like) and marginal zone-like and progressively increased with age. There was an upregulation of transcripts related to T follicular helper cells, and the number of these cells also increased as mice aged. Compared to a mouse model of Sjögren syndrome, aged LGs have similar transcriptome responses but also unique ones. And lastly, the ectopic lymphoid structures in aged LGs are not exclusive to a specific mouse background as aged diverse outbred mice also have immune infiltration. Altogether, this study identifies a profound change in the immune landscape of aged LGs where B cells become predominant. Further studies are necessary to investigate the specific function of these B cells during the aged LGs.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Claudia M Trujillo-Vargas
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Kitazawa K, Inotmata T, Shih K, Hughes JWB, Bozza N, Tomioka Y, Numa K, Yokoi N, Campisi J, Dana R, Sotozono C. Impact of aging on the pathophysiology of dry eye disease: A systematic review and meta-analysis. Ocul Surf 2022; 25:108-118. [PMID: 35753664 DOI: 10.1016/j.jtos.2022.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Dry eye disease (DED) is a common age-related ocular surface disease. However, it is unknown how aging influences the ocular surface microenvironment. This systematic review aims to investigate how the aging process changes the ocular surface microenvironment and impacts the development of DED. METHODS An article search was performed in PubMed, EMBASE, and Web of Science. 44 studies reporting on age-related ocular changes and 14 large epidemiological studies involving the prevalence of DED were identified. 8 out of 14 epidemiological studies were further analyzed with meta-analysis. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines were followed. Study-specific estimates (impact of aging on the prevalence of DED) were combined using one-group meta-analysis in a random-effects model. RESULTS Meta-analysis revealed the prevalence of DED in the elderly aged 60 years old or older was 5519 of 60107 (9.2%) and the odds ratio of aging compared to younger age was 1.313 (95% confidence interval [CI]; 1.107, 1.557). With increasing age, the integrity of the ocular surface and tear film stability decreased. Various inflammatory cells, including senescent-associated T-cells, infiltrated the ocular surface epithelium, lacrimal gland, and meibomian gland, accompanied by senescence-related changes, including accumulation of 8-OHdG and lipofuscin-like inclusions, increased expression of p53 and apoptosis-related genes, and decreased Ki67 positive cells. CONCLUSIONS The aging process greatly impacts the ocular surface microenvironment, consequently leading to DED.
Collapse
Affiliation(s)
- Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA, 94945, USA; Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan.
| | - Takenori Inotmata
- Juntendo University Graduate School of Medicine, Department of Ophthalmology, Tokyo, Japan; Juntendo University Graduate School of Medicine, Department of Hospital Administration, Tokyo, Japan; Juntendo University Graduate School of Medicine, Department of Digital Medicine, Tokyo, Japan
| | - Kendric Shih
- Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKUMed), Department of Ophthalmology, Hong Kong, China
| | | | - Niha Bozza
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Yasufumi Tomioka
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| | - Kohsaku Numa
- Buck Institute for Research on Aging, Novato, CA, 94945, USA; Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| | - Norihiko Yokoi
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Chie Sotozono
- Kyoto Prefectural University of Medicine, Department of Ophthalmology, Kyoto, Japan
| |
Collapse
|
18
|
Mucosal immunology of the ocular surface. Mucosal Immunol 2022; 15:1143-1157. [PMID: 36002743 PMCID: PMC9400566 DOI: 10.1038/s41385-022-00551-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The eye is a sensory organ exposed to the environment and protected by a mucosal tissue barrier. While it shares a number of features with other mucosal tissues, the ocular mucosal system, composed of the conjunctiva, Meibomian glands, and lacrimal glands, is specialized to address the unique needs of (a) lubrication and (b) host defense of the ocular surface. Not surprisingly, most challenges, physical and immunological, to the homeostasis of the eye fall into those two categories. Dry eye, a dysfunction of the lacrimal glands and/or Meibomian glands, which can both cause, or arise from, sensory defects, including those caused by corneal herpes virus infection, serve as examples of these perturbations and will be discussed ahead. To preserve vision, dense neuronal and immune networks sense various stimuli and orchestrate responses, which must be tightly controlled to provide protection, while simultaneously minimizing collateral damage. All this happens against the backdrop of, and can be modified by, the microorganisms that colonize the ocular mucosa long term, or that are simply transient passengers introduced from the environment. This review will attempt to synthesize the existing knowledge and develop trends in the study of the unique mucosal and immune elements of the ocular surface.
Collapse
|