1
|
Jiao Z, Ge S, Liu Y, Wang Y, Wang Y, Wang Y. Phosphate-enhanced Cd stabilization in soil by sulfur-doped biochar: Reducing Cd phytoavailability and accumulation in Brassica chinensis L. and shaping the microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125375. [PMID: 39581365 DOI: 10.1016/j.envpol.2024.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
To explore the potential of livestock manure-derived biochar for the remediation of Cd-contaminated soil, a pot experiment was conducted to explore the stabilization efficiency of cattle manure biochar (T2, BC), sulfur-doped biochar (T3, SBC), and SBC combined with phosphate (T4, SBC-PF) on Cd in contaminated soil and their effects on Cd accumulation in Chinese cabbage (Brassica chinensis L.) and soil microorganisms. The results showed that soil available phosphorus (AP), available potassium (AK), and organic matter (OM) significantly increased in T3 and T4, and the biomass of Chinese cabbage also increased from 0.46 g/pot to 0.57 and 1.05 g/pot, respectively. The DTPA-extractable Cd in T3 and T4 dramatically reduced by 78.6% and 91.4% (p < 0.05); the acid-soluble Cd decreased by 11.3% and 13.2%; and the residual Cd increased by 30.0% and 10.0%. Most importantly, the Cd contents in T2, T3, and T4 decreased by 2.2%, 89.7%, and 93.1% in the shoots of Chinese cabbage and 21.3%, 82.2%, and 86.2% in the roots of Chinese cabbage, respectively. Moreover, SBC-PF obviously changed the bacterial community and enhanced the interactions among microbes in the soil. Structural equation modeling revealed that microbial interspecific mutualistic relationships were the key factor in the pathway for reducing Cd phytoavailability. Mantel tests and random forest analyses further revealed that biochar enhanced the interactions among microorganisms by increasing the AP content in the soil. These findings demonstrated that SBC combined with phosphate is appropriate for stabilizing Cd and improving soil quality.
Collapse
Affiliation(s)
- Zhiqiang Jiao
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Shiji Ge
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yifan Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yangzhou Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yong Wang
- School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Huang L, Chen W, Wei L, Li X, Huang Y, Huang Q, Liu C, Liu Z. Biochar Blended with Alkaline Mineral Can Better Inhibit Lead and Cadmium Uptake and Promote the Growth of Vegetables. PLANTS (BASEL, SWITZERLAND) 2024; 13:1934. [PMID: 39065461 PMCID: PMC11280933 DOI: 10.3390/plants13141934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Three successive vegetable pot experiments were conducted to assess the effects on the long-term immobilization of heavy metals in soil and crop yield improvement after the addition of peanut shell biochar and an alkaline mineral to an acidic soil contaminated with lead and cadmium. Compared with the CK treatment, the change rates of biomass in the edible parts of the three types of vegetables treated with B0.3, B1, B3, B9, R0.2 and B1R0.2 were -15.43%~123.30%, 35.10%~269.09%, 40.77%~929.31%, -26.08%~711.99%, 44.14%~1067.12% and 53.09%~1139.06%, respectively. The cadmium contents in the edible parts of the three vegetables treated with these six additives reduced by 2.08%~13.21%, 9.56%~24.78%, 9.96%~35.61%, 41.96%~78.42%, -4.19%~57.07% and 12.43%~65.92%, respectively, while the lead contents in the edible parts reduced by -15.70%~59.47%, 6.55%~70.75%, 3.40%~80.10%, 55.26%~89.79%, 11.05%~70.15% and 50.35%~79.25%, respectively. Due to the increases in soil pH, soil cation-exchange capacity and soil organic carbon content, the accumulation of Cd and Pb in the vegetables was most notably reduced with a high dosage of 9% peanut shell biochar alone, followed by the addition of a low dosage of 1% peanut shell biochar blended with 0.2% alkaline mineral. Therefore, the addition of a low dosage of 1% peanut shell biochar blended with 0.2% alkaline mineral was the best additive in increasing the vegetable biomass, whereas the addition of 9% peanut shell biochar alone was the worst. Evidently, the addition of 0.2% alkaline mineral can significantly reduce the amount of peanut shell needed for passivating heavy metals in soil, while it also achieves the effect of increasing the vegetable yield.
Collapse
Affiliation(s)
- Lianxi Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Weisheng Chen
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Lan Wei
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Xiang Li
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Yufen Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Qing Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Chuanping Liu
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China;
| | - Zhongzhen Liu
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| |
Collapse
|
3
|
Shah SSH, Nakagawa K, Yokoyama R, Berndtsson R. Heavy metal immobilization and radish growth improvement using Ca(OH) 2-treated cypress biochar in contaminated soil. CHEMOSPHERE 2024; 360:142385. [PMID: 38777201 DOI: 10.1016/j.chemosphere.2024.142385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Heavy metal contamination poses a significant threat to soil quality, plant growth, and food safety, and directly affects multiple UN SDGs. Addressing this issue and offering a remediation solution are vital for human health. One effective approach for immobilizing heavy metals involves impregnating cypress chips with calcium hydroxide (Ca(OH)2) to enhance the chemical adsorption capacity of the resulting woody charcoal. In the present study, un-treated cypress biochar (UCBC) and calcium-treated cypress biochar (TCBC), were introduced into pristine and contaminated soil, at rates of 3, 6, and 9% (w/w). Both BCs were alkaline (UCBC pH: 8.9, TCBC pH: 9.7) with high specific surface area, which improved the soil properties (pH, EC, and OM). Radish (Raphanus sativus) cultivated in pots revealed that both UCBC and TCBC demonstrated significant improvements in growth attributes and heavy metal immobilization compared to the control, with TCBC exhibiting superior effects. The TCBC surface showed highly active nanosized precipitated calcium carbonate particles that were active in immobilizing heavy metals. The application of TCBC at a rate of 9% resulted in a substantial reduction in Zn and Cu uptake by radish roots and shoots. In contaminated soil, Zn uptake by radish roots decreased by 55% (68.3-31.0 mg kg-1), and shoots by 37% (49.3-31.0 mg kg-1); Cu uptake decreased by 40% (38.6-23.2 mg kg-1) in roots and 39% (58.2-35.2 mg kg-1) in shoots. Uptake of Pb was undetectable after TCBC application. Principal component analysis (PCA) highlighted the potential of TCBC over UCBC in reducing heavy metal concentrations and promoting radish growth. Future research should consider the long-term effects and microbial interactions of TCBC application.
Collapse
Affiliation(s)
- Syed Shabbar Hussain Shah
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Kei Nakagawa
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Riei Yokoyama
- Okayama Research Institute, NISSHOKU Group Inc., 573-1 Takao, Tsuyama-shi, Okayama, 708-8652, Japan
| | - Ronny Berndtsson
- Division of Water Resources Engineering & Centre for Advanced Middle Eastern Studies, Lund University, Box 118, SE-221 00, Lund, Sweden
| |
Collapse
|
4
|
Fang Y, Wang P, Zhang L, Zhang H, Xiao R, Luo Y, Tang KHD, Li R, Abdelrahman H, Zhang Z, Rinklebe J, Lee SS, Shaheen SM. A novel Zr-P-modified nanomagnetic herbal biochar immobilized Cd and Pb in water and soil and enhanced the relative abundance of metal-resistant bacteria: Biogeochemical and spectroscopic investigations to identify the governing factors and potential mechanisms. CHEMICAL ENGINEERING JOURNAL 2024; 485:149978. [DOI: 10.1016/j.cej.2024.149978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
5
|
Viana RDSR, Figueiredo CCD, Chagas JKM, Paz-Ferreiro J. Combined use of biochar and phosphate rocks on phosphorus and heavy metal availability: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120204. [PMID: 38278116 DOI: 10.1016/j.jenvman.2024.120204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Biochar (BC) and phosphate rocks (PR) are alternative nutrient sources with multiple benefits for sustainable agriculture. The combination of these soil amendments serves two main purposes: to increase soil phosphorus (P) availability and to remediate heavy metal (HM) contamination. However, a further demonstration of the benefits and risks associated with the combined use of BC and PR (BC + PR) is needed, considering the specific characteristics of raw materials, soil types, experimental conditions, and climatic contexts. This meta-analysis is based on data from 28 selected studies, including 581 paired combinations evaluating effects on extraction and fractionation of cadmium (Cd) and lead (Pb), and 290 paired combinations for soil labile and non-labile P. The results reveal that BC, PR, and BC + PR significantly increase soil labile and non-labile P, with BC + PR showing a 150% greater increase compared to BC alone. In tropical regions, substantial increases in P levels were observed with BC, PR, and BC + PR exhibiting increments of 317, 798, and 288%, respectively. In contrast, temperate climate conditions showed lower increases, with BC, PR, and BC + PR indicating 54, 123, and 88% rises in soil P levels. Moreover, BC, PR, and BC + PR effectively reduce the bioavailability of Cd and Pb in soil, with BC + PR demonstrating the highest efficacy in immobilizing Cd. The synergistic effect of BC + PR highlights their potential for Cd remediation. BC + PR effectively reduces the exchangeable fraction of Cd and Pb in soil, leading to their immobilization in more stable forms, such as the residual fraction. This study provides valuable insights into the remediation potential and P management benefits of BC and PR, highlighting their importance for sustainable agriculture and soil remediation practices.
Collapse
Affiliation(s)
| | | | - Jhon Kenedy Moura Chagas
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, DF, Brazil
| | - Jorge Paz-Ferreiro
- School of Engineering, RMIT University, GPO Box 2476, 3001, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Hu Y, Cao Y, Ma C, Yan W. Nano-biochar as a potential amendment for metal(loid) remediation: Implications for soil quality improvement and stress alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119658. [PMID: 38056332 DOI: 10.1016/j.jenvman.2023.119658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.
Collapse
Affiliation(s)
- Yi Hu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China
| | - Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluste Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| |
Collapse
|
7
|
Wang Q, Duan CJ, Geng ZC, Xu CY. Keystone taxa of phoD-harboring bacteria mediate alkaline phosphatase activity during biochar remediation of Cd-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167726. [PMID: 37832661 DOI: 10.1016/j.scitotenv.2023.167726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Phosphorus (P)-modified biochar can efficiently remediate cadmium (Cd)-contaminated soil. However, the mechanisms of responses of alkaline phosphatase (ALP) and phoD-harboring microorganisms, which are notably sensitive to Cd and P, are not clear during the remediation process. In this study, apple (Malus domestica) tree branches were co-pyrolyzed with tripotassium phosphate (K3PO4) to prepare P-modified biochar, which was used to remediate Cd-soil contaminated soil collected near a mine site. The effect of P-modified biochar on the composition of the phoD-harboring microbial community and its mechanism of interacting with ALP were analyzed. The results showed that the application of P-modified biochar to Cd-contaminated soil promoted the co-precipitation of Cd and phosphate and reduced the content of bioavailable Cd by 69.77 %. P-modified biochar improved the complexity and stability of the soil phoD-harboring microbial community. Furthermore, this study clarified that ALP activity was not completely regulated by the abundance of phoD, but Priestia and Massilia that contain phoD genes dominated the activity of ALP in rhizosphere and bulk soils, respectively. It is notable that bioavailable Cd significantly stimulated Priestia, Massilia, and ALP activity. These findings provide a theoretical basis for the application of P-modified biochar to the remediation of soil contaminated with Cd with respect to P functional microorganisms.
Collapse
Affiliation(s)
- Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cheng-Jiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Zeng-Chao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Agricultural Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chen-Yang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Agricultural Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Jaffar MT, Mushtaq Z, Waheed A, Asghar HN, Zhang J, Han J. Pseudomonas fluorescens and L-tryptophan application triggered the phytoremediation potential of sunflower (Heliantus annuus L.) in lead-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120461-120471. [PMID: 37940829 DOI: 10.1007/s11356-023-30839-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Lead, a toxic heavy metal present in soil, hampers biological activities and affects the metabolism of plants, animals, and human beings. Its higher concentration may disturb the various physio-chemical processes, which result in stunted and poor plant growth. An interactive approach of plant growth promoting rhizobacteria (PGPR) and L-tryptophan can be used to mitigate the lethal effects of lead. A pot experiment was conducted, and two weeks before sowing, the level of lead (300 mg kg-1) was maintained by spiking the PbCl2 salt. Pseudomonas fluorescens and L-tryptophan were applied individually as well as in combination to segregate the effect of both in contaminated soil under a completely Randomized Design (CRD). Statistical analysis revealed that plant growth was significantly reduced up to 22% due to lead contamination. However, the interactive approach of PGPR and L-tryptophan significantly improved the plant growth, physiology, and yield with relative productive index (RPI) under a lead-stressed environment. Moreover, integrated use of PGPR and L-tryptophan demonstrated a considerable increase (22%) in lead removal efficiency (LRE) by improving bioconcentration factor (BCF) and translocation factor (TF) for shoot without increasing the lead concentration in achenes. The reduced lead concentration in achene was due to its immobilization in shoot and root by negatively charged particles and improved the lead sequestration in vegetative parts which abridged the translocation of lead into achenes.
Collapse
Affiliation(s)
- Muhammad Tauseef Jaffar
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zain Mushtaq
- Department of Soil Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Abdul Waheed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Jianguo Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Jiale Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
9
|
Gusiatin MZ, Rouhani A. Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7342. [PMID: 38068085 PMCID: PMC10707613 DOI: 10.3390/ma16237342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2025]
Abstract
Soil contamination through heavy metals (HMs) is a serious environmental problem that needs to be addressed. One of the methods of remediating soils contaminated with HMs and reducing the environmental risks associated with them is to immobilize these HMs in the soil using specific amendment(s). The use of biochar as an organic amendment can be an environmentally friendly and practically feasible option, as (i) different types of biomass can be used for biochar production, which contributes to environmental sustainability, and (ii) the functionality of biochar can be improved, enabling efficient immobilization of HMs. Effective use of biochar to immobilize HMs in soil often requires modification of pristine biochar. There are various physical, chemical, and biological methods for modifying biochar that can be used at different stages of pyrolysis, i.e., before pyrolysis, during pyrolysis, and after pyrolysis. Such methods are still being intensively developed by testing different modification approaches in single or hybrid systems and investigating their effects on the immobilization of HMs in the soil and on the properties of the remediated soil. In general, there is more information on biochar modification and its performance in HM immobilization with physical and chemical methods than with microbial methods. This review provides an overview of the main biochar modification strategies related to the pyrolysis process. In addition, recent advances in biochar modification using physical and chemical methods, biochar-based composites, and biochar modified with HM-tolerant microorganisms are presented, including the effects of these methods on biochar properties and the immobilization of HMs in soil. Since modified biochar can have some negative effects, these issues are also addressed. Finally, future directions for modified biochar research are suggested in terms of scope, scale, timeframe, and risk assessment. This review aims to popularize the in situ immobilization of HMs with modified biochar.
Collapse
Affiliation(s)
- Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Abdulmannan Rouhani
- Department of Environment, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic;
| |
Collapse
|
10
|
Chen M, Zhou Y, Sun Y, Chen X, Yuan L. Coal gangue-based magnetic porous material for simultaneous remediation of arsenic and cadmium in contaminated soils: Performance and mechanisms. CHEMOSPHERE 2023; 338:139380. [PMID: 37394193 DOI: 10.1016/j.chemosphere.2023.139380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Remediation of arsenic (As) and cadmium (Cd) co-contaminated soil is a challenge in environmental remediation. In this study, coal gangue-based magnetic porous material (MPCG) was designed for simultaneous immobilization of As and Cd in contaminated soil. After the incubation experiment, the effects of CG and MPCG on the availability and fractions of As and Cd and the related microbial functional genes were analyzed to explore the potential remediation mechanisms of MPCG for As and Cd in contaminated soil. The results showed that the stabilization effect of MPCG on As and Cd was significantly higher than that of coal gangue. It reduced the available As and Cd by 17.94-29.81% and 14.22-30.41%, respectively, and transformed unstable As/Cd to stable. The remediation mechanisms of MPCG on As included adsorption, oxidation, complexation and precipitation/co-precipitation. Meanwhile, the remediation mechanisms of MPCG for Cd included adsorption, ion exchange, complexation and precipitation. In addition, MPCG increases the abundance of sulfate-reducing bacteria (dsrA) by 43.39-381.28%, which can promote sulfate reduction. The sulfide can precipitate with As and Cd to reduce the availability of As and Cd in soil. Thus, MPCG is a promising amendment for achieving the remediation of As and Cd co-contaminated soil.
Collapse
Affiliation(s)
- Min Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Research Institute of Zhejiang University-Taizhou, Zhejiang University, Taizhou, China
| | - Yuzhi Zhou
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China
| | - Yuan Sun
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Research Institute of Zhejiang University-Taizhou, Zhejiang University, Taizhou, China
| | - Xiaoyang Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China.
| | - Liang Yuan
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.
| |
Collapse
|
11
|
Tian H, Wang J, Lai G, Dou Y, Gao J, Duan Z, Feng X, Wu Q, He X, Yao L, Zeng L, Liu Y, Yang X, Zhao J, Zhuang S, Shi J, Qu G, Yu XF, Chu PK, Jiang G. Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chem Soc Rev 2023; 52:5388-5484. [PMID: 37455613 DOI: 10.1039/d2cs01018f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The polymorphism of phosphorus-based materials has garnered much research interest, and the variable chemical bonding structures give rise to a variety of micro and nanostructures. Among the different types of materials containing phosphorus, elemental phosphorus materials (EPMs) constitute the foundation for the synthesis of related compounds. EPMs are experiencing a renaissance in the post-graphene era, thanks to recent advancements in the scaling-down of black phosphorus, amorphous red phosphorus, violet phosphorus, and fibrous phosphorus and consequently, diverse classes of low-dimensional sheets, ribbons, and dots of EPMs with intriguing properties have been produced. The nanostructured EPMs featuring tunable bandgaps, moderate carrier mobility, and excellent optical absorption have shown great potential in energy conversion, energy storage, and environmental remediation. It is thus important to have a good understanding of the differences and interrelationships among diverse EPMs, their intrinsic physical and chemical properties, the synthesis of specific structures, and the selection of suitable nanostructures of EPMs for particular applications. In this comprehensive review, we aim to provide an in-depth analysis and discussion of the fundamental physicochemical properties, synthesis, and applications of EPMs in the areas of energy conversion, energy storage, and environmental remediation. Our evaluations are based on recent literature on well-established phosphorus allotropes and theoretical predictions of new EPMs. The objective of this review is to enhance our comprehension of the characteristics of EPMs, keep abreast of recent advances, and provide guidance for future research of EPMs in the fields of chemistry and materials science.
Collapse
Affiliation(s)
- Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanpeng Dou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Zunbin Duan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Xiaoxiao Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xingchen He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Mo G, Gao X. Mitigation of Cd(II) contamination in aqueous solution and soil by multifunctional hydroxyapatite/sludge biochar composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87743-87756. [PMID: 37430084 DOI: 10.1007/s11356-023-28667-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Biochar with well-developed pore structure is an ideal carrier for easily agglomerated hydroxyapatite (HAP). Hence, a novel multifunctional hydroxyapatite/sludge biochar composite (HAP@BC) was synthesized by chemical precipitation method and used for mitigating Cd(II) contamination form aqueous solution/soil. Compared to sludge biochar (BC), HAP@BC exhibited rougher and more porous surface. Meanwhile, the HAP was dispersed on the sludge biochar surface, which reduced the agglomeration of HAP. The adsorption performance of HAP@BC on Cd(II) was better than that of BC under the influence of different single-factor batch adsorption experiments. Moreover, the Cd(II) adsorption behavior by BC and HAP@BC was uniform monolayer adsorption, and this reaction process was endothermic and spontaneous. The Cd(II) maximum adsorption capacities of BC and HAP@BC were 79.96 and 190.72 mg/g at 298 K, respectively. Moreover, the Cd(II) adsorption mechanism on BC and HAP@BC included complexation, ion exchange, dissolution-precipitation and Cd(II)-π interaction. According to the semi-quantitative analysis, ion exchange was the main mechanism for Cd(II) removal by HAP@BC. Notably, HAP played a role in the Cd(II) removal by dissolution-precipitation and ion exchange. This result suggested that there was a synergistic effect between HAP and sludge biochar for the Cd(II) removal. HAP@BC reduced the leaching toxicity of Cd(II) in soil better than BC, indicating that the HAP@BC was able to mitigate Cd(II) contamination in soil more effectively. This work demonstrated that sludge biochar was an ideal carrier for dispersed HAP and provided an effective HAP/biochar composite for the mitigation of Cd(II) contamination in aqueous solution/soil.
Collapse
Affiliation(s)
- Guanhai Mo
- Department of Water Engineering and Science, School of Civil Engineering, University of South China, Hengyang, 421001, People's Republic of China.
| | - Xiang Gao
- Powerchina Zhongnan Engineering Corporation Co., Ltd., Changsha, 410000, People's Republic of China
| |
Collapse
|
13
|
Liu Z, Yuan D, Qin X, He P, Fu Y. Effect of Mg-Modified Waste Straw Biochar on the Chemical and Biological Properties of Acidic Soils. Molecules 2023; 28:5225. [PMID: 37446886 DOI: 10.3390/molecules28135225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Biochar is important for soil improvement, fertilizer innovation, and greenhouse gas reduction. In this paper, Mg-modified biochar was prepared from rice and corn straw and mixed with soil at a 1% (w/w) addition in an indoor soil simulation experiment to study the effect of Mg-modified biochar on the chemical properties of acidic soil. The results showed that the addition of Mg-modified biochar reduced soil acidity and improved soil fertility. Compared with the control group, the Mg-modified biochar treatment significantly increased the concentrations of available potassium, available phosphorus, total phosphorus, organic carbon and exchangeable calcium and magnesium in the soil, and effectively increased the concentration of total nitrogen. Rice straw Mg-modified biochar treatment was more effective in increasing the soil-available potassium, available phosphorus, total phosphorus and exchangeable magnesium concentration, while corn straw Mg-modified biochar was more effective in increasing the soil organic carbon and exchangeable calcium concentration. In addition, the high pyrolysis temperature of Mg-modified biochar was more effective in promoting the soil-available potassium, available phosphorus and total nitrogen concentration, while the low pyrolysis temperature of Mg-modified biochar was more effective in promoting soil alkaline nitrogen, exchangeable calcium and magnesium.
Collapse
Affiliation(s)
- Zhigao Liu
- College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Nanning 530004, China
| | - Di Yuan
- College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Nanning 530004, China
| | - Xianxian Qin
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Peng He
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Yunlin Fu
- College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
14
|
Zhang T, Li T, Zhou Z, Li Z, Zhang S, Wang G, Xu X, Pu Y, Jia Y, Liu X, Li Y. Cadmium-resistant phosphate-solubilizing bacteria immobilized on phosphoric acid-ball milling modified biochar enhances soil cadmium passivation and phosphorus bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162812. [PMID: 36924951 DOI: 10.1016/j.scitotenv.2023.162812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) can accumulate in agriculture soil from the regular application of phosphorus (P) fertilizer. Microbiological method is considered as a potentially effective strategy that can not only remediate the Cd-contaminated soil but also provide the phosphorus needed for crop growth. However, the toxicity of Cd may affect the activity of microorganisms. To solve this problem, Klebsiella variicola with excellent phosphate solubilization ability (155.30 mg L-1 at 48 h) and Cd adsorption rate (90.84 % with 10 mg L-1 Cd initial concentration) was firstly isolated and identified in this study. Then, a phosphoric acid and ball milling co-modified biochar (PBC) was selected as the carrier to promote the activities of K. variicola under Cd pollution. Surface characterization revealed that the promotion of K. variicola by PBC was mainly attributed to the large specific surface area and diverse functional groups. Compared to contaminated soil, microbial PBC (MPBC) significantly increased the pakchoi biomass and phosphorus (P) content, while the Cd content in leave and root of pakchoi (Brassica chinensis L.) decreased by 25.90-43.46 % (P < 0.05). The combined application also favored the transformation of the resistant P fractions to bioavailable P, and facilitated the immobilization of 20.12 % exchangeable Cd to reducible, oxidizable, and residual Cd in the treated soil. High-throughput sequencing revealed that the response of the soil microbial community to the MPBC was more beneficial than K. variicola or PBC alone. Therefore, the application of MPBC has the potential to act as an efficient, stable, and environmentally friendly sustainable product for Cd remediation and enhanced P bioavailability in agricultural production.
Collapse
Affiliation(s)
- Tingrui Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zijun Zhou
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zengqiang Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shirong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Guiyin Wang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxun Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaojing Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Li J, Bai R, Chen W, Ren C, Yang F, Tian X, Xiao X, Zhao F. Efficient lead immobilization by bio-beads containing Pseudomonas rhodesiae and bone char. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130772. [PMID: 36680905 DOI: 10.1016/j.jhazmat.2023.130772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 05/16/2023]
Abstract
Mineralization of lead ions (Pb2+) to pyromorphite using phosphorus-containing materials is an effective way to remediate lead (Pb) contamination. Bone char is rich in phosphorus, but its immobilization of Pb2+ is limited by poor phosphate release. To utilize the phosphorus in bone char and provide a suitable growth environment for phosphate-solubilizing bacteria, bone char and Pseudomonas rhodesiae HP-7 were encapsulated into bio-beads, and the immobilization performance and mechanism of Pb in solution and soil by bio-beads were investigated. The results showed that 137 mg/g of phosphorus was released from bone char in the presence of the HP-7 strain. Pb2+ removal efficiency reached 100 % with an initial Pb2+ concentration of 1 mM, bone char content of 6 g/L, and bio-bead dosage of 1 %. Most Pb2+ was immobilized on the surface of the bio-beads as Pb5(PO4)3Cl. The soil remediation experiments showed a 34 % reduction in the acid-soluble fraction of Pb. The bio-beads showed good stability in long-term (30 d) soil remediation. The present study shows that bone char can be turned into an efficient Pb immobilization material in the presence of phosphate-solubilizing bacteria. Thus, bio-beads are expected to be used in the remediation of Pb-contaminated environments.
Collapse
Affiliation(s)
- Junpeng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Bai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chongyuan Ren
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofeng Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
16
|
Yuan Q, Wang P, Wang X, Hu B, Wang C, Xing X. Nano-chlorapatite modification enhancing cadmium(II) adsorption capacity of crop residue biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161097. [PMID: 36587697 DOI: 10.1016/j.scitotenv.2022.161097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) contamination in rivers or lakes has attracted worldwide concerns. Biochar pyrolyzed form crop residues (CR) could adsorb Cd(II) from aquatic environments, while the removal capacity of single CR biochar is relatively low. Nano-chlorapatite (nClAP) modification can enhance metal scavenging ability, but little is known about the behaviors and mechanisms of Cd(II) adsorption by nClAP-modified CR biochars. In this study, the influences of feedstock type, pyrolysis temperature, nClAP modification and aquatic environments on Cd(II) adsorption of biochars derived from rice (RB) and wheat (WB) husks were investigated comprehensively. Results showed that the pristine RB and WB showed low and similar Cd(II) adsorption capacities, while the rise of pyrolysis temperatures from 300 to 600 °C significantly improved the adsorption capacities. The Cd(II) adsorption of both RB and WB was regarded as monolayer chemical processes controlled by chemical precipitation, surface complexation and cation exchange mechanisms. Moreover, the nClAP modification notably enhanced Cd(II) adsorption capacities from 13.2 to 39.9 mg·g-1 of pristine biochars to 25.2-60.7 mg·g-1 of modified biochars attributed to the improved contribution of Cd(II)-phosphate precipitation. Among all biochars, the nClAP-modified RB and WB pyrolyzed at 500 °C had the highest Cd(II) adsorption capacities with 60.7 and 48.3 mg·g-1, respectively. These biochars could maintain good adsorption performances under the neutral-alkaline (pH 6-8), low ionic strength, high dissolved organic matter and all oxidation-reduction potential conditions. In conclusion, this study reveals the importance of nClAP modification to optimize Cd(II) adsorption of CR biochars, which provides a promising future for its practical application in aquatic Cd(II) scavenging.
Collapse
Affiliation(s)
- Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China.
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| |
Collapse
|
17
|
Zhao P, Wang A, Wang P, Huang Z, Fu Z, Huang Z. Two recyclable and complementary adsorbents of coal-based and bio-based humic acids: High efficient adsorption and immobilization remediation for Pb(II) contaminated water and soil. CHEMOSPHERE 2023; 318:137963. [PMID: 36708780 DOI: 10.1016/j.chemosphere.2023.137963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Humic acid can effectively bind heavy metals and is a promising remediation agent for heavy metals-contaminated water and soil. Many successful applications of humic acid have been reported, but rarely studied the specific process and mechanism of heavy metal removal by humic acids from water and soil, especially the simultaneous application of coal-based and bio-based humic acids. In this work, two kinds of coal-based and bio-based humic acid materials (CHA and BHA) from weathered coal and rice husk were industrially produced and studied their Pb(II) adsorption and immobilization characteristics and mechanisms in water and soil. The batch adsorption experiments obtained the Pb(II) adsorption by CHA and BHA both were spontaneous and endothermic monolayer chemisorption and controlled by three rate-limiting steps (bulk, film, and pore) in the adsorption process. CHA and BHA had highly efficient Pb(II) adsorption capacities, obtained their maximum adsorption capacity was 201 and 188 mg g-1, respectively. In addition to the two main adsorption mechanisms of ion exchange and surface complexation, electrostatic interaction, precipitation reaction, and π-π interaction were also involved. Soil culture experiments showed that CHA and BHA both exhibited a highly efficient immobilization effect on Pb(II)-contaminated soil, and CHA and BHA had a better synergistic promotion effect. Compared with the CK soil, the content of DTPA-Pb(II) decreased by 10.2-13.2% and the content of RES-Pb(II) increased by 14-22% in soils treated with different humic acids. Ion exchange, complexation, precipitation, and electrostatic attraction promote the transformation of unstable Pb(II) to stable Pb(II), which was of great significance for the immobilization of Pb(II) in soil. Overall, CHA and BHA have the potential to be used as green, efficient, and promising adsorbents to remove and immobilize Pb(II) from wastewater and soil.
Collapse
Affiliation(s)
- Peng Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - An Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Ping Wang
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Zhen Huang
- China Quality Certification Center, Beijing , 100070, China
| | - Zhanyong Fu
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.
| |
Collapse
|
18
|
Shaheen SM, Mosa A, Natasha, Arockiam Jeyasundar PGS, Hassan NEE, Yang X, Antoniadis V, Li R, Wang J, Zhang T, Niazi NK, Shahid M, Sharma G, Alessi DS, Vithanage M, Hseu ZY, Sarmah AK, Sarkar B, Zhang Z, Hou D, Gao B, Wang H, Bolan N, Rinklebe J. Pros and Cons of Biochar to Soil Potentially Toxic Element Mobilization and Phytoavailability: Environmental Implications. EARTH SYSTEMS AND ENVIRONMENT 2023; 7:321-345. [DOI: 10.1007/s41748-022-00336-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 08/20/2023]
Abstract
AbstractWhile the potential of biochar (BC) to immobilize potentially toxic elements (PTEs) in contaminated soils has been studied and reviewed, no review has focused on the potential use of BC for enhancing the phytoremediation efficacy of PTE-contaminated soils. Consequently, the overarching purpose in this study is to critically review the effects of BC on the mobilization, phytoextraction, phytostabilization, and bioremediation of PTEs in contaminated soils. Potential mechanisms of the interactions between BC and PTEs in soils are also reviewed in detail. We discuss the promises and challenges of various approaches, including potential environmental implications, of BC application to PTE-contaminated soils. The properties of BC (e.g., surface functional groups, mineral content, ionic content, and π-electrons) govern its impact on the (im)mobilization of PTEs, which is complex and highly element-specific. This review demonstrates the contrary effects of BC on PTE mobilization and highlights possible opportunities for using BC as a mobilizing agent for enhancing phytoremediation of PTEs-contaminated soils.
Collapse
|
19
|
Dan Y, Wang X, Sang W, Zhou L, Diao Y, Liu F, Wang H. Development of chitosan-magnetic sawdust hydrochar for Pb and Zn immobilization process on various soil conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84675-84689. [PMID: 35781665 DOI: 10.1007/s11356-022-21745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
A series of 60-day soil immobilized incubations were performed to explore the impacts of various factors (incubation time, chitosan modified magnetic sawdust hydrochar (CMSH) dosages, initial pH values, moisture contents, and humic acid (HA)) on CMSH immobilization of Pb and Zn. DTPA and BCR extraction techniques were undertaken to study the distribution of form transformations of Pb and Zn. CMSH showed significant immobilization ability for both DTPA-Pb and DTPA-Zn, and the highest removal rates were shown to be 57.40% and 90.00% for Pb and Zn respectively. After 60 days of incubation, the residual Pb was enhanced by 34-61% and residual Zn increased by 25-41%, which indicated that CMSH was effective in immobilizing Pb and Zn. Meanwhile, the immobilization efficiency improved with increasing incubation time, CMSH dosage, HA dosage, and initial solution pH. In particular, 5% HA application increased the soil TOC and accelerated the metal stabilization processes, with the residual forms of Pb and Zn eventually reaching a maximum of 73% and 71%, respectively. In addition, the alkaline initial solution promoted the ion exchange, surface complexation reaction, and cationic-π interaction, resulting in a better immobilization of Pb and Zn by CMSH. Finally, according to the orthogonal analysis of BCR results, HA dosage was the major factor affecting Pb and Zn immobilization by CMSH compared to soil pH and moisture content in this study.
Collapse
Affiliation(s)
- Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Lei Zhou
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
20
|
Feng S, Zhang P, Hu Y, Jin F, Liu Y, Cai S, Song Z, Zhang X, Nadezhda T, Guo Z, Lynch I, Dang X. Combined application of biochar and nano-zeolite enhanced cadmium immobilization and promote the growth of Pak Choi in cadmium contaminated soil. NANOIMPACT 2022; 28:100421. [PMID: 36031145 DOI: 10.1016/j.impact.2022.100421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Biochar and zeolite have been demonstrated effective to remove heavy metals in soil; however, the effect of combined application of the both materials on the fraction of Cd and soil-plant system are largely unknown. Cd fractions in soil, growth and Cd uptake of Pak Choi were measured after the combined application of biochar (0, 5, 10 and 20 g·kg-1) and nano-zeolite (0, 5, 10, 20 g·kg-1) by pot experiment. Results showed that both single and combined application reduced the exchangeable Cd in soil and improved the plant growth. However, combined application of 20 g·kg-1 biochar with 10 g·kg-1 nano-zeolite showed the strongest effect, with the residual Cd in soil increased by 214% as compared with control. 20 g·kg-1 biochar with 10 g·kg-1 nano-zeolite Mechanic studies showed that this combination enhanced the antioxidant system, with the SOD, CAT and POD activities enhanced by 56.1%, 133.3% and 235.3%, respectively. The oxidative stress was reduced correspondingly, as shown by the reduced MDA contents (by 46.7%). This combination also showed the best efficiency in regulating soil pH, organic matter and soil enzymes thus improving the plant growth. This study suggests that combined application various materials such as biochar and nano-zeolite may provide new strategies for reducing the bioavailability of Cd in soil and thus the accumulation in edible plants.
Collapse
Affiliation(s)
- Shanshan Feng
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Yanmei Hu
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Feng Jin
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yuqing Liu
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shixin Cai
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Zijie Song
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xing Zhang
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Tcyganova Nadezhda
- Farming and Grassland Science Department, Saint-Petersburg State Agrarian University, Saint-Petersburg 196601, Russia
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Xiuli Dang
- College of Land and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast Key Laboratory of Conservation and Improvement of Cultivated Land, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
21
|
Hussain T, Ahmed SR, Lahori AH, Mierzwa-Hersztek M, Vambol V, Khan AA, Rafique L, Wasia S, Shahid MF, Zengqiang Z. In-situ stabilization of potentially toxic elements in two industrial polluted soils ameliorated with rock phosphate-modified biochars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119733. [PMID: 35820570 DOI: 10.1016/j.envpol.2022.119733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The present study was aimed at determining the efficacy of rock phosphate (RP) 3% loaded in a green coconut shell, chicken manure, and vegetable waste to make green coconut-modified biochar (GMB), chicken manure modified-biochar (CMB), and vegetable waste-modified biochar (VMB) in the fixation of Cr, Pb, Cu, Zn, Ni, and Cd in Sharafi goth and Malir polluted soils. The impact of RP impregnated with organic waste material to produce modified biochars (MBs) on stabilizing PTEs from polluted soils and reducing their uptake by mustard plant has not yet been thoroughly investigated. All modified BCs in 0.5, 1, and 2% doses were used to stabilize Cr, Pb, Cu, Zn, Ni, and Cd in two polluted soils and to reduce their uptake by the mustard plant. The obtained results revealed that the maximum mustard fresh biomass was 17.8% higher with GMB 1% in Sharafi goth polluted soil and 25% higher with VMB 0.5% in Malir polluted soil than in the control treatment. After applying modified BCs, immobilization of Cr, Pb, Cu, Ni, and Cd was observed in both soils and it reduced the uptake of these elements by mustard plants. On the other hand, although Zn mobilization increased by 0.38% for CMB 0.5% and by 5.9% for VMB 0.5% in Sharafi goth polluted soil, as well as by 3.15% for GMB 1%, 6.34% for GMB 2%, and 4.78% for VMB 0.5% in Malir polluted soil, this was due to changes in soil pH and OM. It was found that GMB 1%, CMB 0.5%, and VMB 0.5% have the potential to increase Zn uptake by mustard, while VMB 2% can reduce the element uptake by the plant. Redundancy analysis showed that soil chemical parameters were negatively correlated with PTEs in both soils and reduced their uptake by mustard. The present study revealed that MBs can stabilize PTEs in industrial and wastewater soils polluted with multiple metals and reduce their uptake by plants.
Collapse
Affiliation(s)
- Tanveer Hussain
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Samreen Riaz Ahmed
- Department of English, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan.
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Viola Vambol
- Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Lublin, Poland; Department of Applied Ecology and Environmental Sciences, National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine
| | - Asif Ali Khan
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Lubna Rafique
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Sajid Wasia
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Muhammad Faizan Shahid
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Zhang Zengqiang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
22
|
Wu W, Liu Z, Azeem M, Guo Z, Li R, Li Y, Peng Y, Ali EF, Wang H, Wang S, Rinklebe J, Shaheen SM, Zhang Z. Hydroxyapatite tailored hierarchical porous biochar composite immobilized Cd(II) and Pb(II) and mitigated their hazardous effects in contaminated water and soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129330. [PMID: 35716571 DOI: 10.1016/j.jhazmat.2022.129330] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
A novel composite of hydroxyapatite tailored hierarchical porous biochar (HA-HPB) was synthesized and used for the adsorptive immobilization of Cd(II) and Pb(II) in water and soil. The hierarchical porous biochar (HPB) was prepared from rice husk through a molten-salt-assisted pyrolysis approach; then, a series of HA-HPB (with 0.5, 1, 2, 3, and 4 g of HPB) was prepared with co-precipitation procedure. All HA-HPBs, particularly HA-3HPB, revealed significantly higher removal efficiency of Cd(II) and Pb(II) (≥99.5%) in water than pristine biochar (5.79 - 24.12%). The immobilization efficiency of HA-3HPB for Cd(II) and Pb(II) was slightly inhibited by the ionic strength and co-existing cations. The Langmuir adsorption capacities of Cd(II) and Pb(II) were 88.1 and 110.2 mg/g, respectively. Ion exchange, complexation, cation-π interaction, and precipitation were the key mechanisms involved in the immobilization of Cd(II) and Pb(II) using HA-3HPB. The HA-3HPB reduced the availability of soil Cd (63.5 - 87.8%) and Pb (64.6 - 92.9%) compared to the unamended soil, and thus reduced their content in the Chinese cabbage shoots by 69.3 -95.4% for Cd and 66.5 -97.2% for Pb. These findings demonstrate the effectiveness of HA-HPB for remediation of Cd(II) and Pb(II) contaminated water and soil and mitigating the potential risks.
Collapse
Affiliation(s)
- Weilong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zihan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Azeem
- Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China; Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab 46300, Pakistan
| | - Zhiqiang Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Yage Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yaru Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water, and Waste-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water, and Waste-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212 Himachal Pradesh, India.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
23
|
Aihemaiti A, Chen J, Hua Y, Dong C, Wei X, Yan F, Zhang Z. Effect of ferrous sulfate modified sludge biochar on the mobility, speciation, fractionation and bioaccumulation of vanadium in contaminated soil from a mining area. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129405. [PMID: 35753298 DOI: 10.1016/j.jhazmat.2022.129405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
In contaminated soil, pristine biochar has poor applicability for immobilizing vanadium (V), which mainly exists as oxyanions in soil. To elucidate the immobilization potential and biotic/abiotic stabilizing mechanisms of a ferrous sulfate (FS)-modified sludge biochar in a V-contaminated soil from a mining area, we investigated the effects of biochar addition on the soil characteristics, growth of alfalfa, leachability, bioavailability, speciation, and fractionation of V, and changes in the microbial community structure and metabolic response. The results showed that the water extractable, acid-soluble (F1), and pentavalent fractions of V in soil decreased by up to 99 %, 95 %, and 55 %, respectively, whereas the reducible and (F2) oxidizable (F3) fractions increased by up to 45 % and 76 %, respectively. After the soil was treated with the FS-modified biochar for 90 d, the V concentration in the roots and shoots of alfalfa (Medicago sativa L.) decreased by up to 81.5 % and 96 %, respectively. The changes in the speciation, fractionation, and efficient immobilization of V in the studied soil were due to the combined effects of the biochar-induced decrease in soil pH, adsorption and precipitation by elevated iron concentrations, reduction and complexation due to an increase in the organic matter content, and microbial reduction by Proteobacteria.
Collapse
Affiliation(s)
- Aikelaimu Aihemaiti
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jingjing Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yunhui Hua
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chunling Dong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xuankun Wei
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Feng Yan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; The Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Zuotai Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; The Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
24
|
Li Y, Shaheen SM, Azeem M, Zhang L, Feng C, Peng J, Qi W, Liu J, Luo Y, Peng Y, Ali EF, Smith K, Rinklebe J, Zhang Z, Li R. Removal of lead (Pb +2) from contaminated water using a novel MoO 3-biochar composite: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119693. [PMID: 35777593 DOI: 10.1016/j.envpol.2022.119693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Removal of toxic chemicals from the environment using novel adsorbents is of great concern. In this study, a novel composite of molybdenum trioxide (MoO3)-engineered biochar (MoO3-BC) was derived from corn straw and synthesized for the removal of Pb(II) from water. The pyrolysis temperature of 600 °C was suitable for the thermal self-assembly of MoO3-BC. Although MoO3-BC had lower SBET (59.3 m2/g) than the pristine BC (157.8 m2/g), it had a stronger adsorption affinity to Pb(II). The Pb(II) removal capacity of MoO3-BC was 229.87 mg/g at pH 4.0, and the adsorptive removal of Pb(II) was fit using a pseudo-second-order model and the Langmuir model. High temperature favored the removal of Pb(II) by MoO3-BC; However, the removal of Pb(II) was inhibited with increasing the ion strength. The MoO3-BC revealed an acceptable stability and reusability, since the removal efficiency of Pb(II) remained above 80.7%, even after 8 cycles. The MoO3-BC effectively reduced ≥99.9% of Pb(II) in the polluted irrigation water. The Pb(II) removal mechanisms involved surface electrostatic attraction, ion exchange and surface complexation. These findings conclude that the MoO3-BC is a novel composite that can be used for the removal of Pb from contaminated water. More studies are needed to investigate the potentiality of MoO3-biochar composite for the removal of other metals from water in a mono and competitive sorption system.
Collapse
Affiliation(s)
- Yage Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water- and Waste-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212 Himachal Pradesh, India.
| | - Muhammad Azeem
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Lan Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chuchu Feng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jin Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Weidong Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Junxi Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yuan Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yaru Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ken Smith
- The University of Arizona, The Department of Environmental Science, Shantz Building Rm 4291177 E 4th St.Tucson, AZ 85721, USA
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water- and Waste-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China.
| |
Collapse
|
25
|
Wei T, Li X, Li H, Gao H, Guo J, Li Y, Ren X, Hua L, Jia H. The potential effectiveness of mixed bacteria-loaded biochar/activated carbon to remediate Cd, Pb co-contaminated soil and improve the performance of pakchoi plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129006. [PMID: 35489314 DOI: 10.1016/j.jhazmat.2022.129006] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) and lead (Pb) are toxic heavy metals that cause severe soil pollution and pose health risks to humans. It is urgent to develop feasible strategies for Pb and Cd remediation. In this study, a bacteria consortium (Enterobacter asburiae G3, Enterobacter tabaci I12 and Klebsiella variicola J2 in a 1:3:3 proportion) with optimal Cd, Pb adsorption ability was constructed and immobilized on biochar (BC)/activated carbon (AC) via physisorption and sodium alginate encapsulation. The effects of mixed bacteria-loaded BC/AC on Cd and Pb remediation were investigated. The results indicated that their application reduced the DTPA-extractable Cd, Pb in soil by 22.05%-55.84% and 31.64%-48.13%, respectively. The residual Pb, Cd were increased while the exchangeable fractions were decreased. Soil urease, catalase and phosphatase activities were enhanced and soil bacterial community was improved, indicating a soil quality improvement. Consequently, the biomass of pakchoi plants was significantly increased. Cd and Pb in the shoots of pakchoi plants were decreased by 28.68%-51.01% and 24.18%-52.87%, respectively. Collectively, the bacteria-loaded BC/AC showed superior performance than free bacteria, BC and AC alone. Our study may provide a better understanding of the development of green and sustainable materials for remediation of heavy metal by the combination of BC/AC and functional bacteria.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Xian Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Han Gao
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Li Hua
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
26
|
Qu J, Zhang X, Guan Q, Kong L, Yang R, Ma X. Effects of biochar underwent different aging processes on soil properties and Cd passivation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57885-57895. [PMID: 35359207 DOI: 10.1007/s11356-022-19867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
This study aims to determine the efficacy of biochar underwent different aging process including freeze-thaw cycling aging (FB), acidified aging (AB), and microbial aging (MB) on soil physicochemical properties and Cd passivation. The Cd-contaminated soil (3 mg·kg-1) amended with the three kinds of aging biochar (at 4% w:w) were subjected to 56-day incubation. The application of FB and MB in soil increased the soil pH (0.82-1.04, 0.27-9.36), CEC (1.06-2.53 cmol·kg-1, 1.66-2.59 cmol·kg-1), and organic matter content (2.28-4.67 g·kg-1, 3.70-5.48 g·kg-1). FB performed best in stabilizing Cd (17.06-23.65%). On the contrary, AB decreased the soil pH and CEC by 0.82-1.04 and 1.32-2.40 cmol·kg-1 and activated Cd by 11.6-19.24%. In conclusion, the efficacy of biochar on soil remediation and Cd passivation varied with aging method and cycle, and freeze-thaw treatment is an effective approach to improve the performance of biochar.
Collapse
Affiliation(s)
- Juanjuan Qu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Utilization and Protection of Black Soil in Cold Region, Harbin, 150030, China
| | - Xu Zhang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qingkai Guan
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Linghui Kong
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xianfa Ma
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
27
|
Meng Z, Huang S, Xu T, Lin Z, Wu J. Competitive adsorption, immobilization, and desorption risks of Cd, Ni, and Cu in saturated-unsaturated soils by biochar under combined aging. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128903. [PMID: 35460995 DOI: 10.1016/j.jhazmat.2022.128903] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
This study investigated saturated-unsaturated soils, which were closer to the actual field conditions than traditional batch and column experiments with large water-soil ratios. The competitive adsorption, immobilization, and desorption of Cd, Ni, and Cu in soils treated with original and KMnO4-modified biochars were investigated under combined aging. Moreover, the employment of a three-layer mesh method enabled the independent analysis of heavy metals on biochar and soil during aging. The results showed that the order of biochar adsorption capacities was Cd > Cu > Ni in tested soils, and competing with Ni and Cu enhanced the Cd adsorption on biochars. Cd desorbed most with the CaCl2 solution while Ni and Cu desorbed most with citric acid. Modified biochar had improved immobilization effects compared to original biochar, and maintained the most stable remediation effects. The maximum variations in the stable Cd fraction during aging were 7.21%, 13.26%, and 14.71% for modified biochar, original biochar, and CK, respectively. However, for Ni and Cu, the biochar application reduced the residual fraction and increased desorption by citric acid. However, the stable fractions of Ni and Cu remained dominant, accounting for 83.28-97.85% and 86.31-98.96%, respectively.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Shuang Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Ting Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongbing Lin
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Liu M, Zhu J, Yang X, Fu Q, Hu H, Huang Q. Biochar produced from the straw of common crops simultaneously stabilizes soil organic matter and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154494. [PMID: 35283120 DOI: 10.1016/j.scitotenv.2022.154494] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The simultaneous stabilization of heavy metals and organic matter in polluted soil has received little research attention. In this study, we studied the immobilization of Cu and Cd and the mineralization of organic matter in the acidic soil amended with biochar produced from rice, wheat, corn, and rape straws through incubation experiments. Compared with that in the control treatment, the availability of Cu and Cd in the biochar amended soils decreased by 17-31% and 3-17%, respectively. The cumulative amount of CO2 released from each treatment in 60 days of incubation followed the order: control treatment (399 mg CO2-C kg-1) > rape straw biochar treatment (388 mg CO2-C kg-1) > rice straw biochar treatment (374 mg CO2-C kg-1) > corn straw biochar treatment (355 mg CO2-C kg-1) > wheat straw biochar treatment (288 mg CO2-C kg-1). The information implied that biochar produced from the straw of common crops can simultaneously stabilize both heavy metals and organic matter in the acidic soil. The transformation of Cu and Cd from acid soluble fraction to residual fraction was the potential mechanism of biochar in facilitating soil heavy metal immobilization. The significant decrease in soil β-glucosidase activity, which controlled the degradation of soil organic matter, was an important potential pathway of biochar in decreasing soil organic matter mineralization. A significant decrease in the content and a substantial increase in the structural complexity of soil dissolved organic matter could further the decrease of wheat straw biochar in soil organic matter mineralization. Thus, biochar produced from the straw of common crops is a promising amendment for simultaneously stabilizing both heavy metals and organic matter in the acidic soil.
Collapse
Affiliation(s)
- Mengyuan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xin Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
29
|
Li J, Zhang S, Ding X. Biochar combined with phosphate fertilizer application reduces soil cadmium availability and cadmium uptake of maize in Cd-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25925-25938. [PMID: 34854000 DOI: 10.1007/s11356-021-17833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) has become the primary pollution factor in farmland, which seriously threatens crop growth and food safety. A pot experiment was conducted to investigate the effect of combined application with biochar and P fertilizer on soil Cd availability and translocation, in which biochar was 0 (C0) and 20 g kg-1 (C20), P fertilizer was 0 (P0), 20 (P20), and 40 mg P kg-1 (P40). Results showed that, compared with C0 level, the content of DTPA-Cd in soil was significantly decreased with biochar addition after 60 days of cultivation, under C20 level, soil DTPA-Cd in C20P40 treatment were significantly increased. Under both C levels, the percentage of exchangeable Cd fraction at P40 rate was significantly lower than that at P20 rate, because the excess P in soil could precipitate Cd. The percentage of residual-Cd fraction was significantly increased with the combined addition of biochar and P fertilizer, particularly in C20P40 treatment, which was 75.95%, while it was only 61.65% in C0P0 treatment. The Cd translocation factor (TF) and bioconcentration factor (BCF) were also significantly reduced in C20P20 and C20P40 treatments compared with C0P0 treatment. Therefore, the combined high P and biochar application was a good choice in inhibiting soil Cd availability and plant Cd uptake, which benefited to the safe utility of the Cd contaminated soil.
Collapse
Affiliation(s)
- Jifeng Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Shirong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Xiaodong Ding
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
30
|
Zhang P, Xue B, Jiao L, Meng X, Zhang L, Li B, Sun H. Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152648. [PMID: 34963592 DOI: 10.1016/j.scitotenv.2021.152648] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Pyrolytic biochar is a good material for remediating soils contaminated with heavy metals; however, it exhibits strong alkalinity, which easily causes soil alkalization and fertility reduction. Herein, a series of novel biochar materials (BPBCs) were prepared by combined ball milling and phosphorus (P)-loading. The optimized BPBC were fabricated in the basis of Cd and Pb adsorption capacities of the biochar, with pyrolysis at 700 °C, ball milling for 12 h and the addition of 5% red P (BPBC700). Ball milling could effectively grind pristine biochar into submicron particles and nanoscale P particles could be uniformly loaded on BPBC700. Moreover, the oxidative conversion of red P into phosphorus oxides, phosphoric acid and (hydro)phosphates was promoted due to reactions with the carbonates, alkaline minerals and O-containing functional groups of biochar. These reactions also decreased the biochar and soil pH to nearly neutral by acid-base neutralization. Pot experiments showed that BPBC700 had better effects than the pristine or ball-milled biochar in improving soil properties (e.g., cation exchange capacity and organic carbon), increasing the concentrations of soil nutrients (e.g., N and P), promoting alkaline phosphatase, catalase and urease activities, decreasing soil mobility and plant accumulation of Cd and Pb, and alleviating Cd and Pb stress on maize plants. Thus, BPBC is a promising and ecofriendly amendment to enhance its adsorption ability on Cd and Pb, soil quality and plant productivity in contaminated soil.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Bing Xue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Le Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingying Meng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Lianying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
31
|
Shi Y, Zhao Z, Zhong Y, Hou H, Chen J, Wang L, Wu X, Crittenden JC. Synergistic effect of floatable hydroxyapatite-modified biochar adsorption and low-level CaCl 2 leaching on Cd removal from paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150872. [PMID: 34627887 DOI: 10.1016/j.scitotenv.2021.150872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The utilization of recycled biochar combined with chemical leaching is an appropriate method to remove cadmium (Cd) from paddy soil. Some Cd-rich soil clay particulates (particulate Cd) are reported to be removed via biochar adsorption and the potential impact of biochar on soil properties need further study. The removal efficiencies and mechanisms of Cd from soil by using floatable hydroxyapatite modified biochar (HBC) combined with CaCl2 were studied. Synergetic removal efficiencies of total Cd (46.5%) and bioavailable Cd (37.9%) from the paddy soil were achieved with 2% HBC and 1 mM CaCl2. The increased soluble Cd in soil pore water by CaCl2 leaching could be efficiently adsorbed on HBC, and removed by HBC collection, reducing the risk of the residual soluble Cd in soil pore water to rice plants caused by the inefficient drainage in the field. The suspendability of clay particulates in overlying water was little affected by the low-level CaCl2 based on Derjaguin-Landau-Verwey-Overbeek (DLVO) calculation. Moreover, low-level CaCl2 facilitated the accumulation of particulate Cd on the floating HBC via decreasing the interaction energy (by 25%) between clay particulates and HBC. HBC-mediated Cd migration contributed ~70% of total Cd removal, while soluble and particulate Cd removed through the drainage accounted for ~30%. Soil clay proportion maintained at 25.3% due to the replenishment of HBC residues. In addition, soil nutrient and physicochemical conditions were improved with HBC residues. This work provides a novel soil remediation method by using floatable biochar combined with low-level CaCl2 for Cd-contaminated paddy soil remediation.
Collapse
Affiliation(s)
- Yao Shi
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zezhou Zhao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yi Zhong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
32
|
Wang Z, Shen R, Ji S, Xie L, Zhang H. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126468. [PMID: 34186429 DOI: 10.1016/j.jhazmat.2021.126468] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Co-pyrolysis of sewage sludge and straws has been used to improve the pore structure and reduce the ecological risks of heavy metals in sewage sludge-derived biochars. However, to date, no study has focused on the effects of biochar derived from sewage sludge/straws on the immobilization and phytoavailability of heavy metals in soil. Here, we studied the effects of biochar derived from sewage sludge/cotton stalks (SCB) and that derived from sewage sludge alone (SSB) on the remediation of sandy loam soil contaminated by Pb, Cu, and Zn. SCB amendment decreased the bioavailable forms of Pb, Cu, and Zn in the soil by 19.0%, 34.9%, and 18.2%, respectively, and reduced their accumulation in ryegrass by 28.6%, 50.1%, and 30.0%, respectively, compared with those by SSB amendment. Furthermore, SCB amendment transformed more metals from the acid-soluble fraction to the oxidizable fraction than SSB amendment, indicating that complexation played a more critical role in SCB amendment than in SSB amendment. Both biochar amendments effectively improved soil water holding capacity, increased the supply of available P, N, and K, and promoted ryegrass growth. The findings of this study show the benefits of SCB over SSB for the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Zhipu Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Rong Shen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Shibo Ji
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China.
| | - Like Xie
- Experimental Testing Institute of Petro China Xinjiang Oilfield Company, Karamay 834000, China.
| | - Haibing Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| |
Collapse
|
33
|
Khan ZH, Gao M, Qiu W, Song Z. Mechanism of novel MoS 2-modified biochar composites for removal of cadmium (II) from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34979-34989. [PMID: 33661497 DOI: 10.1007/s11356-021-13199-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to develop a MoS2-impregnated biochar (MoS2@BC) via hydrothermal reaction for adsorption of cadmium (Cd) from an aqueous solution. The prepared adsorbents were characterized, and their abilities to remove Cd(II) were evaluated. The Langmuir and pseudo-second-order models better described the removal of Cd(II) by MoS2@BC. The prepared MoS2@BC exhibited excellent monolayer adsorption capacity. The S-containing functional groups on MoS2@BC enhanced the adsorption of Cd(II). Multiple Cd(II) sorption mechanisms were identified; including Cd(II)-π interactions, ion exchange, electrostatic interaction, and complexation. The dominant mechanism involved Cd-O (38.3%) bonds and Cd-S complexation (61.7%) on MoS2@BC. The as-prepared MoS2@BC is both economical and efficient, making it an excellent material for environmental Cd(II) remediation.
Collapse
Affiliation(s)
- Zulqarnain Haider Khan
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
34
|
Yang F, Chen Y, Huang Y, Cao X, Zhao L, Qiu H, Xu X. New insights into the underlying influence of bentonite on Pb immobilization by undissolvable and dissolvable fractions of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145824. [PMID: 33631570 DOI: 10.1016/j.scitotenv.2021.145824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Biochar as a green amendment has been used to immobilize heavy metals in contaminated soil. Apart from the importance of the amendment itself, the interaction with soil components like clay minerals might also influence the immobilization behavior of biochar. Here, we examined the impact of a typical soil mineral, bentonite, on the immobilization of Pb by barley grass-derived biochar, and elucidated the underlying mechanisms by dividing biochar into dissolvable and undissolvable fractions. Results showed that biochar and bentonite could immobilize Pb through mechanism of electrostatic sorption, complexation, and precipitation. Compared to sole undissolvable biochar, coexistence of bentonite rapidly raised pH of the mixture over 7.0, leading the free Pb2+ transformed into more stable Pb2CO3(OH)2 (Ksp = 1.3 × 10-18) instead of PbCO3 (Ksp = 1.5 × 10-13), finally increased Pb2+ removal rate by 1.47 times. As for the dissolvable biochar, the generation of dissolvable biochar-bentonite-Pb2+ ternary complex raised the Pb2+ removal rate by 59.6% with the presence of bentonite. Small angel XRD analysis showed that the free Pb2+ and dissolvable biochar-associated Pb2+ could enter the interlayer space of bentonite and thus expanded the d-spacing from 1.28 nm to 1.36-1.50 nm, which might favor the formation of ternary complex. Findings of this study not only provided a new insight into the immobilization of heavy metals by biochar in soil, but also emphasized the importance of interaction between biochar and soil minerals.
Collapse
Affiliation(s)
- Fan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuchen Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuandong Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Recycling, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
35
|
Ding Z, Alharbi S, Ali EF, Ghoneim AM, Hadi Al Fahd M, Wang G, Eissa MA. Effect of phosphorus-loaded biochar and nitrogen-fertilization on release kinetic of toxic heavy metals and tomato growth. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:156-165. [PMID: 34081869 DOI: 10.1080/15226514.2021.1929825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we investigate the effect of nitrogen fertilizer application rates with and without phosphorus-loaded biochar (BCP) on the productivity of tomato (Solanum lycopersicum cv GS) planted on a contaminated soil based on pot and incubation experiments. The release kinetic of toxic metals as affected by BCP was also investigated. BCP at rate of 2% (w/w) and nitrogen levels (250 and 500 mg N kg-1) were added to sandy loam soil polluted with Cd, Pb, Zn, and Cu. The experiment consisted of five treatments including: Control (C), nitrogen a rate of 250 (N250), or 500 mg kg (N500), BCP + N250, and BCP + N500. Maximum tomato growth was achieved in the soil that was treated with BCP + N500, followed by BCP + N250, while lowest one was observed in the control. Tomato yield as affected by the BCP and N-fertilization was in the descending order: BCP + N500 > BCP + N250 > N500 = N250 > C. The addition of N250, N500, BCP + N250, and BCP + N500 increased the fruit yield by 24, 31, 35, 58% in comparison with the control. Levels of Zn, Cu, and Pb in tomato fruit was in the descending order: N500> N250 > C > BCP + N500 > BCP + N250. The combined application of BCP and N-fertilization augmented the availability and uptake of essential nutrients and effectively reduced those of toxic ones. The addition of BCP + N250 decreased Zn, Cu, Cd, and Pb content in fruit of tomato by 16, 10, 54, 54, and 58%, respectively, compared to the control soil, while these decreases were 13, 16, 60, 60, and 72% in the case of BCP + N500. BCP succeeded significantly in reducing the release of toxic chemicals, which ultimately may restrict the transfer of toxic chemical to the food chain solution. Novelty statement Tomato grown on metal-contaminated soils contains high levels of toxic metals. Phosphorus-loaded biochar (BCP) reduced the negative effects of high inorganic-N rates by reducing the release of toxic metals to the soil solution. BCP enhanced the soil quality indicators and increased the soil microbe's activity.
Collapse
Affiliation(s)
- Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Saif Alharbi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Adel M Ghoneim
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Marzoq Hadi Al Fahd
- Department of Soil Sciences, Faculty of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| | - Guangshuai Wang
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Mamdouh A Eissa
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
36
|
Liu D, Ding Z, Ali EF, Kheir AMS, Eissa MA, Ibrahim OHM. Biochar and compost enhance soil quality and growth of roselle (Hibiscus sabdariffa L.) under saline conditions. Sci Rep 2021; 11:8739. [PMID: 33888817 PMCID: PMC8062538 DOI: 10.1038/s41598-021-88293-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
Soil amendments may increase the slate tolerance of plants consequently; it may increase the opportunity of using saline water in agricultural production. In the present pot trial, the effects of biochar (BIC) and compost (COM) on roselle (Hibiscus sabdariffa L.) irrigated with saline water (EC = 7.50 dS m-1) was studied. Roselle plants were amended with biochar (BIC1 and BIC2) or compost (COM1 and COM2) at rates of 1 and 2% (w/w), as well as by a mixture of the two amendments (BIC1+). The experiment included a control soil without any amendments. Biochar and compost significantly enhanced the soil quality and nutrients availability under saline irrigation. Compost and biochar improved the degree of soil aggregation, total soil porosity and soil microbial biomass. BIC1 + COM1 increased the soil microbial biomass carbon and nitrogen over the individual application of each amendments and control soil. BIC1 + COM1 increased the activity of dehydrogenase and phosphatase enzymes. Growth of roselle plants including: plant height, shoot fresh and dry weight, and chlorophyll were significantly responded to the added amendments. The maximum sepal's yield was achieved from the combined application of compost and biochar. All the investigated treatments caused remarkable increases in the total flavonol and anthocyanin. BIC1 + COM1 increased the total anthocyanin and flavonol by 29 and 17% above the control. Despite the notable improvement in soil and roselle quality as a result of the single addition of compost or biochar, there is a clear superiority due to mixing the two amendments. It can be concluded that mixing of biochar and compost is recommended for roselle plants irrigated with saline water.
Collapse
Affiliation(s)
- Di Liu
- Jiangxi Yangte River Economic Zone Research Institute, Jiujiang University, Jiujiang, China
| | - Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China.
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed M S Kheir
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12112, Egypt
| | - Mamdouh A Eissa
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China. .,Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| | - Omer H M Ibrahim
- Department of Ornamental Plants and Landscape Gardening, Faculty of Agriculture, Assuit University, Assiut, Egypt
| |
Collapse
|
37
|
Su N, Niu M, Liu Z, Wang L, Zhu Z, Zou J, Chen Y, Cui J. Hemin-decreased cadmium uptake in pak choi (Brassica chinensis L.) seedlings is heme oxygenase-1 dependent and relies on its by-products ferrous iron and carbon monoxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115882. [PMID: 33234366 DOI: 10.1016/j.envpol.2020.115882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a major pollutant in farmland, which not only greatly restricts crop production, but also brings a serious threat to human health through entering the food chain. Our previous study showed that hemin treatment could reduce the accumulation of Cd in pak choi seedlings. However, the underlying mechanism remains unclear. In this study, we used non-invasive micro-test technology (NMT) to detect the real-time Cd2+ flux from pak choi roots and demonstrated that hemin treatment decreased Cd uptake rather than its translocation within plants. Moreover, through comparing the responses of different chemical treatments in pak choi seedlings and Arabidopsis wild-type and heme oxygenase-1 (HO-1) mutant, we provided evidence that hemin-decreased Cd uptake was HO-1 dependent. Furthermore, analyses of hemin degradation products suggested that the hemin-derived suppression of Cd uptake suppression was probably relying on its degradation by-products, ferrous iron (Fe2+) and carbon monoxide (CO), via repressing the expression of a Fe2+/Cd2+ transporter BcIRT1 in pak choi roots.
Collapse
Affiliation(s)
- Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ze Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Wang
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhengbo Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
Ren C, Guo D, Liu X, Li R, Zhang Z. Performance of the emerging biochar on the stabilization of potentially toxic metals in smelter- and mining-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43428-43438. [PMID: 32016875 DOI: 10.1007/s11356-020-07805-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Soil potentially toxic metals (PTMs) pollution caused by anthropogenic activities has become serious concern with respect to the crop safety production. In this study, an emerging biochar derived from kiwi pruning branches waste was employed as amendment aiming to evaluate its remediation potential on smelter- and mining-contaminated soils. The effect of biochar on the soil physicochemical properties, leachability, and chemical fractions acted on stabilization practice of PTMs in soil was investigated. The results showed that the addition of biochar increased the soil pH, cation exchange capacity, organic matter, and enzymatic activities (dehydrogenase, urease, and sucrase) but reduced the extraction toxicity of PTMs in both smelter (Fengxian, FX) and mining (Tongguan, TG) soils. The fraction analysis showed that the maximum reduction of exchangeable fraction of Cd, Zn, and Pb in the 4% biochar amended soils decreased by 11.1, 13.3, and 24.7% in FX soil and 7.67, 22.8, and 7.89% in TG soil, respectively, in comparison with to control (no biochar added). Additionally, the residual fraction of Cd, Zn, and Pb increased by 55.9, 7.14, and 11.0% in FX soil and 23.7, 5.86, and 10.0% in TG soil, respectively. The further greenhouse experiment showed that the Indian mustard (Brassica juncea) production increased with the increasing application dosages of biochar, while the PTMs uptakes in plant notably decreased after amendments. Conversion of kiwi pruning branches waste into emerging biochar benefits the agricultural waste recycling utilization and enhances PTMs-contaminated soil remediation in practice. Graphical abstract.
Collapse
Affiliation(s)
- Chunyan Ren
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Di Guo
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Xiangyu Liu
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Ronghua Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China.
| |
Collapse
|