1
|
de Lena A, Tanjay QL, Bridson JH, Parker K, Pantos O, Masterton H, Ruffell H, Abbel R. Abundances and characteristics of small (< 0.3 mm) and large (0.3-5 mm) microplastics found in Aotearoa New Zealand beach sediments. MARINE POLLUTION BULLETIN 2025; 218:118144. [PMID: 40398018 DOI: 10.1016/j.marpolbul.2025.118144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Microplastic contamination has been widely documented across the globe, however few reports have been published on this topic in Aotearoa New Zealand. In this study, microplastic contamination was assessed in beach sediments from 23 sites across three regions of the country: Northland, Waikato and Canterbury. A protocol was devised and validated to separately isolate, quantify and characterise microplastics in two size ranges: large (300-5000 μm) and small (< 300 μm) particles. The size distributions at all sites were strongly skewed towards small microplastics, which represented >99 % of the total particle count. Overall mean abundances were 3.3 particles kg-1 (range 0-27) and 788 particles kg-1 (range 0-9818) for large and small microplastics, respectively. No significant differences in concentrations of either size category were observed between the three regions or when comparing west coast with east coast sites. The particles were also characterised with respect to morphology, colour and chemical composition. Fibres (42 %) and fragments (39 %) were the most common morphologies. The most abundant polymer types were polyethylene (46 %) and polyamide (33 %), although substantial variations in microplastic composition with both size category and location were found. These findings underline the importance of employing sampling and isolation techniques for microplastics from environmental samples that ensure the collection and quantification of smaller sized particles, which are easily missed. Failure to follow adequate protocols will result in severe risk of underestimating the actual extent of microplastic contamination and its potential environmental impact.
Collapse
Affiliation(s)
- Anna de Lena
- Scion, Tītokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | | | - James H Bridson
- Scion, Tītokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Kate Parker
- Scion, Tītokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research (ESR), 27 Creyke Road, Christchurch 8041, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research (ESR), 27 Creyke Road, Christchurch 8041, New Zealand
| | - Helena Ruffell
- Institute of Environmental Science and Research (ESR), 27 Creyke Road, Christchurch 8041, New Zealand
| | - Robert Abbel
- Scion, Tītokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand.
| |
Collapse
|
2
|
Agustiawan, Paterson H, Speldewinde P. Seasonality, wind and characteristics of plastic polymer accumulation on Western Australia's south coast. MARINE POLLUTION BULLETIN 2025; 214:117775. [PMID: 40058323 DOI: 10.1016/j.marpolbul.2025.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Global studies have investigated plastic polymer distribution, but few have investigated the drivers of polymer deposition. Little work has been done in Australia, particularly on Western Australian beaches. In 2018, Wow Ecotours collected daily plastic samples from Shelley Beach on the south coast of Western Australia. A subset of 873 items was taken from five different density categories, and their polymer types were identified using Raman Spectrometry. The most abundant polymer was high-density polyethylene 45 %, followed by polypropylene and low-density polyethylene, with 33.5 % and 14 %, respectively. Onshore wind was the predominant factor driving plastic accumulation on the beach, but this did not vary significantly between polymers. The spring season has significant fluctuations in the length, mass, and area of the collected samples.
Collapse
Affiliation(s)
- Agustiawan
- University of Western Australia, School of Agriculture and Environment, 35 Stirling Highway, Perth, WA 6009, Australia.
| | - Harriet Paterson
- University of Western Australia, Albany Campus, PO Box 5771, Albany, WA 6332, Australia; The UWA Oceans Institute and School of Agriculture and Environment, The University of Western Australia, Great Southern Marine Research Facility, Albany, WA 6330, Australia.
| | - Peter Speldewinde
- University of Western Australia, School of Agriculture and Environment, 35 Stirling Highway, Perth, WA 6009, Australia; University of Western Australia, Albany Campus, PO Box 5771, Albany, WA 6332, Australia.
| |
Collapse
|
3
|
Mondal P, Hoque MS, Rahman MA, Hasan MM, Chakma S, Islam MS, Shahjahan M. Occurrence, characteristics and distribution of microplastics in commercial marine fishes of the Bay of Bengal. MARINE POLLUTION BULLETIN 2024; 208:117020. [PMID: 39321631 DOI: 10.1016/j.marpolbul.2024.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
The study aimed to assess and characterize microplastics (MPs) in muscles, guts, and gills of six commercially important marine fish from the Bay of Bengal. FTIR was utilized to identify MP's polymer compositions. A total 7085 MPs identified, where tuna exhibited the highest count and Bombay duck had the lowest. MPs abundance (MPs/g) was ranged from 1.56 ± 0.39 to 7.16 ± 1.36 in muscles, 1.91 ± 0.32 to 4.46 ± 0.75 in guts, and 2.36 ± 0.24 to 6.53 ± 1.58 in gills. The predominant MPs were 1-5 mm size (33.33-62.78 %), white/transparent color (18.45-54.63 %), filament shapes (75.00-94.71), and fiber types (73.21-94.71 %). FTIR revealed MPs 58.89 % polyethylene, 21.67 % polypropylene, 17.22 % polyester, and 2.22 % non-plastic compositions. Cluster analysis grouped two species with 50 % similarity, while PCA indicated significant variations among principal components (14-69.4 %) highlighting the dominance of fiber, particles, and 0.5-1.0 mm MPs in the fish tissues. The prevalence of MPs in seafood underscores measures to safeguard both the marine ecosystem and human health.
Collapse
Affiliation(s)
- Pronoy Mondal
- Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Sazedul Hoque
- Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh.
| | - Md Arifur Rahman
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Mahmudul Hasan
- Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Suprakash Chakma
- Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Muhammad Saiful Islam
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Md Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2200, Bangladesh
| |
Collapse
|
4
|
Chanda M, Bathi JR, Khan E, Katyal D, Danquah M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122492. [PMID: 39307085 DOI: 10.1016/j.jenvman.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment. However, there is a need for a comprehensive review of all environmental systems together for enhanced pollution control. This review critically examines the occurrence, distribution, fate, and transport of MPs in the following environments: freshwater, marine, and terrestrial ecosystems. The concentration of MPs is highly variable in the environment, ranging from negligible to significant amounts (0.003-519.223 items/liter in water and 0-18,000 items/kg dry weight sediment, respectively). Predominantly, these MPs manifest as fibers and fragments, with primary polymer types including polypropylene, polystyrene, polyethylene, and polyethylene terephthalate. A complex interplay of natural and anthropogenic actions, including wastewater treatment plant discharges, precipitation, stormwater runoff, inadequate plastic waste management, and biosolid applications, influences MPs' presence and distribution. Our critical synthesis of existing literature underscores the significance of factors such as wind, water flow rates, settling velocities, wave characteristics, plastic morphology, density, and size in determining MPs' transport dynamics in surface and subsurface waters. Furthermore, this review identifies research gaps, both in experimental and simulation, and outlines pivotal avenues for future exploration in the realm of MPs.
Collapse
Affiliation(s)
- Mithu Chanda
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States
| | - Jejal Reddy Bathi
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, United States
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Michael Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
5
|
Bar S, Dhara S, Majhi J, Bisai D, Alam E, Islam MK, Chatterjee U, Ghorai SK. Primary risk assessment of microplastic pollution in spineless cuttlefish ( Sepiella inermis) from the North-East Bay of Bengal: A tissue-based analysis. Heliyon 2024; 10:e37719. [PMID: 39386839 PMCID: PMC11462283 DOI: 10.1016/j.heliyon.2024.e37719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Microplastic pollution has a significant threat to marine ecosystems, yet its impact on spineless cuttlefish (Sepiella inermis) remains under-researched. This study aims to address this gap by analysing microplastic contamination in Sepiella inermis from the North-East Bay of Bengal. This species is widely consumed and transported globally as food, thus holding significant health concerns. A total of 40 adult female cuttlefish were collected from two sampling sites (18°36'31.35″N 87°48'10.63″E and 15°43'35.37″N 88°12'07.01″E) in the Bay of Bengal. Tissue samples from tentacles, gut, and nidamental glands were analysed for microplastic content, alongside sediment and surface water samples. Parameters such as microplastic abundance, size, shape, and colour were recorded. The average abundance of microplastic particles was measured at 2.003 particles per gram in tentacle tissue, 2.31 particles per gram in gut tissue, and 0.99 particles per gram in nidamental gland tissue. The gut tissue exhibited the highest abundance of microplastics per gram. Chemical characterization using FT-IR and confocal Raman spectroscopy identified 11 types of microplastic polymers. Of the 11 types of plastic polymers identified, PVC was the most prevalent, accounting for 17.64 % of the microplastics found across all tissues. PVC microplastics can cause significant harm to marine life and human health by accumulating in the food chain and releasing harmful chemicals like phthalates, which can lead to endocrine disruption. ABS, PET, PP, PE, and PA microplastic polymers are highly persistent in environment, leading to long-term pollution in oceans. When ingested by marine organisms, they can disrupt entire ecosystems. In humans, the accumulation of these microplastics can impair the immune system and contribute to chronic diseases. The Pollution Load Index (PLI) was calculated for each tissue type, revealing that gut tissue is more prone to microplastic pollution compared to the nidamental gland and tentacles. The average PLI per gram of gut tissue was 2.26, which was significantly higher than 1, indicating substantial pollution. This research highlights the urgent need for comprehensive strategies to mitigate microplastic pollution, given the potential health risks associated with the consumption of contaminated marine species.
Collapse
Affiliation(s)
- Sourav Bar
- Coastal Environmental Studies Research Centre of Egra SSB College Under Vidyasagar University, West Bengal, India
| | - Soumik Dhara
- Department of Zoology, Vidyasagar University, West Bengal, India
| | - Jhumpa Majhi
- Coastal Environmental Studies Research Centre of Egra SSB College Under Vidyasagar University, West Bengal, India
| | - Dipak Bisai
- Coastal Environmental Studies Research Centre of Egra SSB College Under Vidyasagar University, West Bengal, India
| | - Edris Alam
- Faculty of Resilience, Rabdan Academy, Abudhabi, United Arab Emirates
| | - Md Kamrul Islam
- Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, 31982, Al Ahsa, Saudi Arabia
| | - Uday Chatterjee
- Department of Geography, Bhattar College, Dantan, Kharagpur, 721426, West Bengal, India
| | - Sudipta Kumar Ghorai
- Coastal Environmental Studies Research Centre of Egra SSB College Under Vidyasagar University, West Bengal, India
| |
Collapse
|
6
|
Martinez M, Minetti R, La Marca EC, Montalto V, Rinaldi A, Costa E, Badalamenti F, Garaventa F, Mirto S, Ape F. The power of Posidonia oceanica meadows to retain microplastics and the consequences on associated macrofaunal benthic communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123814. [PMID: 38499170 DOI: 10.1016/j.envpol.2024.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
In the coastal environment, a large amount of microplastics (MPs) can accumulate in the sediments of seagrass beds. However, the potential impact these pollutants have on seagrasses and associated organisms is currently unknown. In this study, we investigated the differences in MPs abundance and composition (i.e., shape, colour and polymer type) in marine sediments collected at different depths (-5 m, -15 m, -20 m) at two sites characterized by the presence of Posidonia oceanica meadows and at one unvegetated site. In the vegetated sites, sediment samples were collected respectively above and below the upper and lower limits of the meadow (-5 m and -20 m), out of the P. oceanica meadow, and in the central portion of the meadow (-15 m). By focusing on the central part of the meadow, we investigated if the structural features (i.e. shoots density and leaf surface) can affect the amount of MPs retained within the underlying sediment and if these, in turn, can affect the associated benthic communities. Results showed that the number of MPs retained by P. oceanica meadows was higher than that found at the unvegetated site, showing also a different composition. In particular, at vegetated sites, we observed that MPs particles were more abundant within the meadow (at - 15 m), compared to the other depths, on unvegetated sediment, with a dominance of transparent fragments of polypropylene (PP). We observed that MPs entrapment by P. oceanica was accentuated by the higher shoots density, while the seagrass leaf surface did not appear to have any effect. Both the abundance and richness of macrofauna associated with P. oceanica rhizomes appear to be negatively influenced by the MPs abundance in the sediment. Overall, this study increases knowledge of the potential risks of MPs accumulation in important coastal habitats such as the Posidonia oceanica meadows.
Collapse
Affiliation(s)
- Marco Martinez
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy.
| | - Roberta Minetti
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy
| | - Emanuela Claudia La Marca
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Valeria Montalto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Alessandro Rinaldi
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Elisa Costa
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy
| | - Fabio Badalamenti
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Francesca Garaventa
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Simone Mirto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Francesca Ape
- Institute of Marine Sciences, National Research Council (ISMAR-CNR) Via Gobetti, 101, 40129, Bologna, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
7
|
Boateng CM, Addo S, Duodu CP, Danso-Abbeam H, Agyeman PC, Anyan KF, Asamoah EK, Blankson ER, Nyarko E, Matsuoka A. Microplastics in the Volta Lake: Occurrence, distribution, and human health implications. Heliyon 2024; 10:e29041. [PMID: 38596133 PMCID: PMC11002670 DOI: 10.1016/j.heliyon.2024.e29041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Pollution of plastic waste in aquatic ecosystems in Ghana is of significant concern with potential adverse effects on food safety and ecosystem function. This study examined the abundance and distribution of microplastics (MPs) in freshwater biota samples namely: the African river prawn (Macrobrachium vollenhovenii), the Volta clam (Galatea paradoxa), Nile tilapia (Oreochromis niloticus), and sediment from the Volta Lake. Both biota and sediment samples were subjected to microscopic identification and FTIR analysis. In biota samples, the highest mean microplastic abundance of 4.7 ± 2.1 items per individual was found in the prawn, while the Nile tilapia recorded the least (2.8 ± 0.6 items per individual). A total of 398 microplastic particles were observed in sediment samples from the Volta Lake. Microfibers were the major plastic shapes identified in biota and sediment samples. We examined the relationship between microplastic abundance, biota size, and sediment properties. Despite the lack of statistical significance, microplastic shape, size, and polymer composition in assessed organisms mirrored those in the benthic sediment. Polyethylene, polypropylene, polyester, and polystyrene were the four dominant polymer types identified in the organisms and sediments. Although the estimated human exposure was relatively low compared with studies from other regions of the world, the presence of microplastics raises concern for the safety of fisheries products consumed by the general populace in the country. This research is essential for developing effective mitigation measures and tackling the wider effects of microplastic contamination on Ghana's freshwater ecosystems, particularly the Volta Lake.
Collapse
Affiliation(s)
- Charles Mario Boateng
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
- School of Marine Science and Ocean Engineering, University of New Hampshire, USA
| | - Samuel Addo
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
| | - Collins Prah Duodu
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
| | - Harriet Danso-Abbeam
- Environmental Research Resource Centre, Ghana Atomic Energy Commission, P.O Box LG 80, Accra, Ghana
| | | | - Kofi Ferni Anyan
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
| | | | | | - Elvis Nyarko
- Regional Maritime University, Post Office Box GP 1115, Accra, Ghana
| | - Atsushi Matsuoka
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
8
|
Villanova-Solano C, Díaz-Peña FJ, Hernández-Sánchez C, González-Sálamo J, Edo C, Vega-Moreno D, Fernández-Martín S, Fraile-Nuez E, Machín F, Hernández-Borges J. Beneath the water column: Uncovering microplastic pollution in the sublittoral coastal sediments of the Canary Islands, Spain. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133128. [PMID: 38134684 DOI: 10.1016/j.jhazmat.2023.133128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Marine ecosystems pollution by microplastics (MPs) is a global problem of special concern. The present study examines the prevalence and distribution of MPs and cellulosic particles in sublittoral coastal sediments of the Canary Islands archipelago (Spain). At twenty-six different locations alongside seven islands, three samples were taken parallel to the shoreline between 1 and 10 m depth (n = 78). Sediment samples were primarily digested with a H2O2 solution followed by four flotations in a saturated NaCl solution. The mean concentration obtained was 3.9 ± 1.6 items/g of dry weight. A similar distribution pattern was observed across all islands concerning particles morphology, color, size and composition: mainly colorless/translucent and blue fibers (60.0%). Additionally, fragments were also found, and to a much lesser extent microbeads, films and tangled messes. MicroFourier Transform Infrared spectroscopy analysis of 12.5% of the fibers, showed that they were mainly cellulosic (54.5%) -either natural or semisynthetic- followed by polyester (22.7%) and acrylic (4.5%). The potential correlation between particle distribution in nearshore sediments and wave intensity was also explored. This work provides the first comprehensive report on the current MPs content of the seabed of the region.
Collapse
Affiliation(s)
- Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto, 2, 38001 Santa Cruz de Tenerife, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Carlos Edo
- Departamento de Ingeniería Química, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daura Vega-Moreno
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Sonia Fernández-Martín
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Eugenio Fraile-Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Calle Farola del Mar, 22, 38180 Santa Cruz de Tenerife, Spain
| | - Francisco Machín
- Departamento de Física, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
9
|
Lee SE, Yoon HK, Kim DY, Jeong TS, Park YS. An Emerging Role of Micro- and Nanoplastics in Vascular Diseases. Life (Basel) 2024; 14:255. [PMID: 38398764 PMCID: PMC10890539 DOI: 10.3390/life14020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Vascular diseases are the leading causes of death worldwide, and they are attributable to multiple pathologies, such as atherosclerosis, diabetes, and chronic obstructive pulmonary disease. Exposure to various environmental contaminants is associated with the development of various diseases, including vascular diseases. Among environmental contaminants, micro- and nanoplastics have gained attention as global environmental risk factors that threaten human health. Recently, extensive research has been conducted on the effects of micro- and nanoplastics on various human diseases, including vascular diseases. In this review, we highlight the effects of micro- and nanoplastics on vascular diseases.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Kyung Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Do Yun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Taek Seung Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.K.Y.); (D.Y.K.); (T.S.J.)
| | - Yong Seek Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Lim YK, Lee KW, Hong SH, Park JG, Baek SH. Differential impact of planktonic and periphytic diatoms on aggregation and sinking of microplastics in a simulated marine environment. MARINE POLLUTION BULLETIN 2024; 199:115961. [PMID: 38171158 DOI: 10.1016/j.marpolbul.2023.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Aggregation between microalgae and microplastics (MPs) significantly influences the MPs distribution in marine environment. We investigated the effects of two diatoms, the planktonic Pseudo-nitzschia pungens and the periphytic Navicula sp., on the formation and sinking of aggregates when they were cultured with four different types of MPs: small and large polyethylene terephthalate (PET) fibers, and low-density and high-density polyethylene (PE) spheres. Navicula sp. formed aggregates with all MPs within one week, but P. pungens only formed aggregates with PE spheres after 9 weeks. The PE-Navicula sp. aggregates settled about 100 times faster than the PE-P. pungens aggregates (12.2 vs. 0.1 mm s-1), and this difference was most likely due to aggregate shape rather than size. Our findings indicate that the periphytic Navicula sp. had a greater effect on the settling of MPs than the planktonic P. pungens. These findings have implications for understanding the behavior of MPs in marine environments.
Collapse
Affiliation(s)
- Young Kyun Lim
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea
| | - Kyun-Woo Lee
- Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Sang Hee Hong
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jae Gon Park
- Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea
| | - Seung Ho Baek
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
11
|
Bošković N, Jaćimović Ž, Bajt O. Microplastic pollution in rivers of the Adriatic Sea basin in Montenegro: Impact on pollution of the Montenegrin coastline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167206. [PMID: 37730057 DOI: 10.1016/j.scitotenv.2023.167206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Concern regarding microplastic (MP) pollution in aquatic ecosystems has increased in recent years with growing awareness of the environmental harm that it causes. While most studies have focused on seas and oceans, knowledge of MP occurrence in freshwater sediments is limited. This study investigated MP concentrations at shore sediments of the Zeta, Morača, and Bojana rivers in Montenegro. The MP concentration in the studied samples varied depending on the river, location, and sampling season. MP abundance in river shore sediments varied between mean values of 145 ± 110 MPs/kg for the Zeta, 169 ± 113 MPs/kg for the Morača, and 180 ± 53.5 MPs/kg dry sediment for the Bojana. In comparison, the mean MP abundance in the three rivers combined was 163.6 ± 96.1 MPs/kg of dry sediment. The identified MPs were mainly fibres and fragments of blue, red and clear color, 0.5-1 mm in size, and mainly composed of polyethylene, polypropylene, polyamide and polyethylene terephthalate. The main contribution of this study is that it provides new insight into MP abundance in freshwater sediments of rivers, where the studied rivers were identified as a potential important sink and source of MP on the Montenegrin coast.
Collapse
Affiliation(s)
- Neda Bošković
- Centre for Interdisciplinary and Multidisciplinary Studies, University of Montenegro, Cetinjski put b.b. 81000 Podgorica, Montenegro.
| | - Željko Jaćimović
- Faculty of Metallurgy and Technology, University of Montenegro, Cetinjski put b.b. 81000 Podgorica, Montenegro
| | - Oliver Bajt
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia; Faculty of maritime studies and Transport, University of Ljubljana, Pot pomorscakov 4, 6320 Portoroz, Slovenia
| |
Collapse
|
12
|
Astel AM, Piskuła P. Application of Pattern Recognition and Computer Vision Tools to Improve the Morphological Analysis of Microplastic Items in Biological Samples. TOXICS 2023; 11:779. [PMID: 37755788 PMCID: PMC10537546 DOI: 10.3390/toxics11090779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Since, in many routine analytical laboratories, a stereomicroscope coupled with a digital camera is not equipped with advanced software enabling automatic detection of features of observed objects, in the present study, a procedure of feature detection using open-source software was proposed and validated. Within the framework of applying microscopic expertise coupled with image analysis, a set of digital images of microplastic (MP) items identified in organs of fish was used to determine shape descriptors (such as length, width, item area, etc.). The edge points required to compute shape characteristics were set manually in digital images acquired by the camera coupled with a binocular, and respective values were computed via the use of built-in MotiConnect software. As an alternative, a new approach consisting of digital image thresholding, binarization, the use of connected-component labeling, and the computation of shape descriptors on a pixel level via using the functions available in an OpenCV library or self-written in C++ was proposed. Overall, 74.4% of the images were suitable for thresholding without any additional pretreatment. A significant correlation was obtained between the shape descriptors computed by the software and computed using the proposed approach. The range of correlation coefficients at a very high level of significance, according to the pair of correlated measures, was higher than 0.69. The length of fibers can be satisfactorily approximated using a value of half the length of the outer perimeter (r higher than 0.75). Compactness and circularity significantly differ for particles and fibers.
Collapse
Affiliation(s)
- Aleksander Maria Astel
- Environmental Chemistry Research Unit, Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland;
| | | |
Collapse
|
13
|
Bošković N, Joksimović D, Bajt O. Microplastics in mussels from the Boka Kotorska Bay (Adriatic Sea) and impact on human health. Food Chem Toxicol 2023; 173:113641. [PMID: 36724845 DOI: 10.1016/j.fct.2023.113641] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
This study evaluated the microplastic abundance, shape, color, size and chemical composition of microplastic in mussels and estimated human exposure to microplastic through consumption of mussels collected from Boka Kotorska Bay (Adriatic coast of Montenegro). Microplastic was found in 53.3% of the studied mussels, with an average microplastic abundance of 2.53 ± 1.1 items/individual. Most of the ingested microplastic were fibers (63.7%), which were blue in color. FT-IR revealed that 98% of the examined particles were plastic, with seven polymers identified, of which polyethylene, polypropylene, and polyethylene terephthalate were the most abumdant polymers in mussels. Three of the polymers detected in mussels (polyamide, polyvinyl chloride and polystyrene) are classified as hazardous by the European Chemical Agency with warning or danger signals. With one serving of mussels, consumers would ingest 22.7 microplastic particles, while the annual dietary intake of microplastic via consumption of mussels was estimated at 99 MP/year.
Collapse
Affiliation(s)
- Neda Bošković
- Institute of Marine Biology, University of Montenegro, 85330, Put I Bokeljske Brigade 68, Kotor, Montenegro.
| | - Danijela Joksimović
- Institute of Marine Biology, University of Montenegro, 85330, Put I Bokeljske Brigade 68, Kotor, Montenegro
| | - Oliver Bajt
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330, Piran, Slovenia; Faculty of Maritime Studies and Transport, University of Ljubljana, Pot Pomorscakov 4, 6320, Portoroz, Slovenia
| |
Collapse
|
14
|
Hasan J, Dristy EY, Mondal P, Hoque MS, Sumon KA, Hossain MAR, Shahjahan M. Dried fish more prone to microplastics contamination over fresh fish - Higher potential of trophic transfer to human body. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114510. [PMID: 36608564 DOI: 10.1016/j.ecoenv.2023.114510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Globally, microplastics (MPs) contamination in aquatic organisms is emerging as an alarming phenomenon. In the present study, we investigated MPs in three commercially important fishes (Bombay duck Harpadon nehereus, ribbon fish Trichiurus lepturus and hairfin anchovy Setipinna phasa) in fresh and dried conditions collected from two sites (Chattogram and Kuakata) of the Bay of Bengal. It was evident that fresh T. lepturus ingested highest amount of MPs through the gills (6.41 mps/g) from Chattogram followed by in the gastrointestinal tract, GIT (6.20 mps/g) and in the muscle (1.20 mps/g) from Kuakata. Among the fresh fishes, H. nehereus from Kuakata accumulated highest amount of MPs (0.21 mps/g), while S. phasa from Kuakata contained the least amount of MPs (0.06 mps/g). On the other hand, among the dried fishes, T. lepturus from Kuakata contained highest amount of MPs (46.00 mps/g), while S. phasa from Kuakata retained lowest amount of MPs (2.17 mps/g). Strangely, all the dried fishes showed significantly higher amount of MPs compared to fresh fishes from both the locations. Fiber was the most dominant type of shape of MPs which accounted 66 %, followed by fragment (27.38 %), microbeads (3.59 %), film (1.48 %), foam (1.31 %) and pellet (0.25 %). Size-wise, the major portion (39.66 %) of MPs was present to be in size range less than 0.5 mm followed by 37.67 % in the size range of 0.5-1.0 mm group and rest 22.67 % within 1.0-5.0 mm. Red (41.55 %) colored MPs was the most prominent, followed by brown (22.11 %), blue (16.32 %), pink (11.69 %), purple (5.10 %), and green (2.25 %). Among polymer types, low-density polyethylene (LDPE) was the most common (38 %), followed by polystyrene (PS-22 %), polyvinyl chloride (PVC-16 %), polyamide (PA-13 %) and ethylene-vinyl acetate (EVA-9 %). The present study confirms high occurrence of MPs in the dried fishes over the fresh fishes from the Bay of Bengal, with high potential of trophic transfer to the human body.
Collapse
Affiliation(s)
- Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Evana Yesmin Dristy
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Pronoy Mondal
- Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Sazedul Hoque
- Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Kizar Ahmed Sumon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mostafa Ali Reza Hossain
- Department of Fish Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
15
|
Ortega-Borchardt JÁ, Ramírez-Álvarez N, Rios Mendoza LM, Gallo-Reynoso JP, Barba-Acuña ID, García-Hernández J, Égido-Villarreal J, Kubenik T. Detection of microplastic particles in scats from different colonies of California sea lions (Zalophus californianus) in the Gulf of California, Mexico: A preliminary study. MARINE POLLUTION BULLETIN 2023; 186:114433. [PMID: 36495612 DOI: 10.1016/j.marpolbul.2022.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs, < 5 mm in size) are highly bioavailable to many taxa within the marine ecosystem, either ingested directly or indirectly through trophic transfer from polluted prey. The ingestion analysis of these MPs from top predators, such as pinnipeds in Mexico, is relatively unexplored. Forty-eight scats from California sea lions were collected on six rookeries along the Gulf of California. From these scat samples, 294 suspected MPs particles were classified and chemically analyzed; 34% were synthetic and semi-synthetic, and 66% were non-synthetic. Blue-colored polyethylene terephthalate fibers were the most common type of MP registered. During laboratory work, multiple contamination control measures were implemented. Although the ingestion pathway is still unknown, our results support the other authors that suggest the potential trophic transfer of MPs to top predators and incidental ingestion while foraging. The particles documented here provide important baseline information for future MP research in the Gulf of California.
Collapse
Affiliation(s)
- José Ángel Ortega-Borchardt
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora, C.P. 85480, Mexico.
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas-UABC, Carretera Tijuana-Ensenada 3917, Col. Playitas, Ensenada, B.C., C.P. 22860, Mexico.
| | - Lorena M Rios Mendoza
- University of Wisconsin-Superior, Department of Natural Sciences/Chemistry, Superior, WI 54880, USA.
| | - Juan Pablo Gallo-Reynoso
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora, C.P. 85480, Mexico.
| | - Isai David Barba-Acuña
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora, C.P. 85480, Mexico.
| | - Jaqueline García-Hernández
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora, C.P. 85480, Mexico.
| | - Janitzio Égido-Villarreal
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora, C.P. 85480, Mexico.
| | - Trevor Kubenik
- University of Wisconsin-Superior, Department of Natural Sciences/Chemistry, Superior, WI 54880, USA
| |
Collapse
|
16
|
Bošković N, Joksimović D, Bajt O. Microplastics in fish and sediments from the Montenegrin coast (Adriatic Sea): Similarities in accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158074. [PMID: 35981574 DOI: 10.1016/j.scitotenv.2022.158074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The accumulation of microplastics (MPs) in the biotic and abiotic components of the marine environment poses a major threat to marine ecosystems worldwide. The objective of this study was to document, for the first time, differences in MP accumulation in the gastrointestinal tract of two commercially important fish species and to evaluate the possible correlation between MP accumulation in the biotic (fish) and abiotic (sediment) components of the marine environment of the Montenegrin coast (Adriatic Sea). Samples were collected from two areas of the Montenegrin coast, Boka Kotorska Bay and the coastal part of the open sea. The frequency of MP ingestion was 58.6 % for Mullus barbatus and 54 % for Merluccius merluccius, while the average number of ingested MPs was 2.9 ± 0.5 and 3.2 ± 1.0 items/individual, respectively. Average MP abundance in surface sediments from Boka Kotorska Bay and the coastal part of the open sea was 315 ± 45 and 435 ± 258 MPs/kg of dry sediment, respectively. Most MPs identified were filaments, followed by fragments and films, while the most abundant polymers found in fish and sediments samples were polypropylene and polyethylene. The present results indicate that MP pollution in the study area is reflected in the accumulation of MPs in the biotic (fish) and abiotic (sediment) components of the marine environment. Measures need to be taken to reduce the input of plastics/MPs into the marine environment.
Collapse
Affiliation(s)
- Neda Bošković
- Institute of Marine Biology, University of Montenegro, 85330, Put I Bokeljske brigade 68, Kotor, Montenegro.
| | - Danijela Joksimović
- Institute of Marine Biology, University of Montenegro, 85330, Put I Bokeljske brigade 68, Kotor, Montenegro
| | - Oliver Bajt
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia; Faculty of Maritime Studies and Transport, University of Ljubljana, Pot pomorscakov 4, 6320 Portoroz, Slovenia
| |
Collapse
|
17
|
Obhodas J, Castellote M, Romano E, Heise S, Lemiere B. Sediment challenges and opportunities due to climate change and sustainable development. JOURNAL OF SOILS AND SEDIMENTS 2022; 22:2841-2843. [PMID: 36193338 PMCID: PMC9517963 DOI: 10.1007/s11368-022-03343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Affiliation(s)
| | - Marta Castellote
- Institute of Construction Science Eduardo, Torroja (IETcc-CSIC), Madrid, Spain
| | - Elena Romano
- ISPRA, Italian Institute for Environmental Protection and Research, Rome, Italy
| | - Susanne Heise
- Hamburg University of Applied Sciences, Hamburg, Germany
| | - Bruno Lemiere
- Bureau de Recherches Géologiques Et Minières (BRGM), Lille, France
| |
Collapse
|