1
|
Xi Z, Dai R, Ze Y, Jiang X, Liu M, Xu H. Traditional Chinese medicine in lung cancer treatment. Mol Cancer 2025; 24:57. [PMID: 40001110 PMCID: PMC11863959 DOI: 10.1186/s12943-025-02245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains a major global health challenge and one of the leading causes of cancer-related deaths worldwide. Despite significant advancements in treatment, challenges such as drug resistance, side effects, metastasis and recurrence continue to impact patient outcomes and quality of life. In response, there is growing interest in complementary and integrative approaches to cancer care. Traditional Chinese medicine (TCM), with its long history, abundant clinical experience, holistic perspective and individualized approach, has garnered increasing attention for its role in lung cancer prevention and management. This review provides a comprehensive overview of the advances in TCM for lung cancer treatment, covering its theoretical foundation, treatment principles, clinical experiences and evidence supporting its efficacy. We also provide a systematic summary of the preclinical mechanisms, through which TCM impacts lung cancer, including the induction of cell death, reversal of drug resistance, inhibition of metastasis and modulation of immune responses. Additionally, future prospects for TCM in lung cancer treatment are discussed, offering insights into its expanded application and integration with modern medicine to address this challenging disease.
Collapse
Affiliation(s)
- Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| |
Collapse
|
2
|
He C, He J. Metabolic reprogramming and signaling adaptations in anoikis resistance: mechanisms and therapeutic targets. Mol Cell Biochem 2025:10.1007/s11010-024-05199-3. [PMID: 39821582 DOI: 10.1007/s11010-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Anoikis, a form of programmed cell death triggered by detachment from the extracellular matrix (ECM), maintains tissue homeostasis by removing mislocalized or detached cells. Cancer cells, however, have evolved multiple mechanisms to evade anoikis under conditions of ECM detachment, enabling survival and distant metastasis. Studies have identified differentially expressed proteins between suspended and adherent cancer cells, revealing that key metabolic and signaling pathways undergo significant alterations during the acquisition of anoikis resistance. This review explores the regulatory roles of epithelial-mesenchymal transition, cancer stem cell characteristics, metabolic reprogramming, and various signaling pathway alterations in promoting anoikis resistance. And the corresponding reagents and non-coding RNAs that target the aforementioned pathways are reviewed. By discussing the regulatory mechanisms that facilitate anoikis resistance in cancer cells, this review aims to shed light on potential strategies for inhibiting tumor progression and preventing metastasis.
Collapse
Affiliation(s)
- Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of Nursing, Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Pote MS, Singh D, M. A A, Suchita J, Gacche RN. Cancer metastases: Tailoring the targets. Heliyon 2024; 10:e35369. [PMID: 39170575 PMCID: PMC11336595 DOI: 10.1016/j.heliyon.2024.e35369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Metastasis is an intricate and formidable pathophysiological process encompassing the dissemination of cancer cells from the primary tumour body to distant organs. It stands as a profound and devastating phenomenon that constitutes the primary driver of cancer-related mortality. Despite great strides of advancements in cancer research and treatment, tailored anti-metastasis therapies are either lacking or have shown limited success, necessitating a deeper understanding of the intrinsic elements driving cancer invasiveness. This comprehensive review presents a contemporary elucidation of pivotal facets within the realm of cancer metastasis, commencing with the intricate processes of homing and invasion. The process of angiogenesis, which supports tumour growth and metastasis, is addressed, along with the pre-metastatic niche, wherein the primary tumour prepares for a favorable microenvironment at distant sites for subsequent metastatic colonization. The landscape of metastasis-related genetic and epigenetic mechanisms, involvement of metastasis genes and metastasis suppressor genes, and microRNAs (miRNA) are also discussed. Furthermore, immune modulators' impact on metastasis and their potential as therapeutic targets are addressed. The interplay between cancer cells and the immune system, including immune evasion mechanisms employed by metastatic cells, is discussed, highlighting the importance of targeting immune modulation in arresting metastatic progression. Finally, this review presents promising treatment opportunities derived from the insights gained into the mechanisms of metastasis. Identifying novel therapeutic targets and developing innovative strategies to disrupt the metastatic cascade holds excellent potential for improving patient outcomes and ultimately reducing cancer-related mortality.
Collapse
Affiliation(s)
| | | | | | | | - Rajesh N. Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
4
|
He Z, Wang Y, Han L, Hu Y, Cong X. The mechanism and application of traditional Chinese medicine extracts in the treatment of lung cancer and other lung-related diseases. Front Pharmacol 2023; 14:1330518. [PMID: 38125887 PMCID: PMC10731464 DOI: 10.3389/fphar.2023.1330518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lung cancer stands as one of the most prevalent malignancies worldwide, bearing the highest morbidity and mortality rates among all malignant tumors. The treatment of lung cancer primarily encompasses surgical procedures, radiotherapy, and chemotherapy, which are fraught with significant side effects, unfavorable prognoses, and a heightened risk of metastasis and relapse. Although targeted therapy and immunotherapy have gradually gained prominence in lung cancer treatment, diversifying the array of available methods, the overall recovery and survival rates for lung cancer patients remain suboptimal. Presently, with a holistic approach and a focus on syndrome differentiation and treatment, Traditional Chinese Medicine (TCM) has emerged as a pivotal player in the prognosis of cancer patients. TCM possesses characteristics such as targeting multiple aspects, addressing a wide range of concerns, and minimizing toxic side effects. Research demonstrates that Traditional Chinese Medicine can significantly contribute to the treatment or serve as an adjunct to chemotherapy for lung cancer and other lung-related diseases. This is achieved through mechanisms like inhibiting tumor cell proliferation, inducing tumor cell apoptosis, suppressing tumor angiogenesis, influencing the cellular microenvironment, regulating immune system function, impacting signal transduction pathways, and reversing multidrug resistance in tumor cells. In this article, we offer an overview of the advancements in research concerning Traditional Chinese Medicine extracts for the treatment or adjunctive chemotherapy of lung cancer and other lung-related conditions. Furthermore, we delve into the challenges that Traditional Chinese Medicine extracts face in lung cancer treatment, laying the foundation for the development of diagnostic, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
- Zhenglin He
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Wu CP, Murakami M, Li YC, Huang YH, Chang YT, Hung TH, Wu YS, Ambudkar SV. Imperatorin Restores Chemosensitivity of Multidrug-Resistant Cancer Cells by Antagonizing ABCG2-Mediated Drug Transport. Pharmaceuticals (Basel) 2023; 16:1595. [PMID: 38004460 PMCID: PMC10674403 DOI: 10.3390/ph16111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The high expression of the ATP-binding cassette (ABC) drug transporter ABCG2 in cancer cells contributes to the emergence of multidrug resistance (MDR) in individuals afflicted with either solid tumors or blood cancers. MDR poses a major impediment in the realm of clinical cancer chemotherapy. Recently, substantial endeavors have been dedicated to identifying bioactive compounds isolated from nature capable of counteracting ABCG2-mediated MDR in cancer cells. Imperatorin, a natural coumarin derivative renowned for its diverse pharmacological properties, has not previously been explored for its impact on cancer drug resistance. This study investigates the chemosensitizing potential of imperatorin in ABCG2-overexpressing cancer cells. Experimental results reveal that at sub-toxic concentrations, imperatorin significantly antagonizes the activity of ABCG2 and reverses ABCG2-mediated MDR in a concentration-dependent manner. Furthermore, biochemical data and in silico analysis of imperatorin docking to the inward-open conformation of human ABCG2 indicate that imperatorin directly interacts with multiple residues situated within the transmembrane substrate-binding pocket of ABCG2. Taken together, these results furnish substantiation that imperatorin holds promise for further evaluation as a potent inhibitor of ABCG2, warranting exploration in combination drug therapy to enhance the effectiveness of therapeutic agents for patients afflicted with tumors that exhibit high levels of ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan;
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
| | - Yu-Tzu Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan;
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan;
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
6
|
Wang Q, Li Y, Wang S, Xiang Z, Dong W, Li X, Wei Y, Gao P, Dai L. A review of the historical records, chemistry, pharmacology, pharmacokinetics and edibility of Angelica dahurica. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
|
7
|
Wang J, Luo Z, Lin L, Sui X, Yu L, Xu C, Zhang R, Zhao Z, Zhu Q, An B, Wang Q, Chen B, Leung ELH, Wu Q. Anoikis-Associated Lung Cancer Metastasis: Mechanisms and Therapies. Cancers (Basel) 2022; 14:cancers14194791. [PMID: 36230714 PMCID: PMC9564242 DOI: 10.3390/cancers14194791] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary Anoikis is a programmed cell death process resulting from the loss of interaction between cells and the extracellular matrix. Therefore, it is necessary to overcome anoikis when tumor cells acquire metastatic potential. In lung cancer, the composition of the extracellular matrix, cell adhesion-related membrane proteins, cytoskeletal regulators, and epithelial–mesenchymal transition are involved in the process of anoikis, and the initiation of apoptosis signals is a critical step in anoikis. Inversely, activation of growth signals counteracts anoikis. This review summarizes the regulators of lung cancer-related anoikis and explores potential drug applications targeting anoikis. Abstract Tumor metastasis occurs in lung cancer, resulting in tumor progression and therapy failure. Anoikis is a mechanism of apoptosis that combats tumor metastasis; it inhibits the escape of tumor cells from the native extracellular matrix to other organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat lung cancer. Several natural and synthetic products exhibit the pro-anoikis potential in lung cancer cells and in vivo models. These products include artonin E, imperatorin, oroxylin A, lupalbigenin, sulforaphane, renieramycin M, avicequinone B, and carbenoxolone. This review summarizes the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in lung cancer metastasis and discusses the therapeutic potential of targeting anoikis in the treatment of lung cancer metastasis.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhijie Luo
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lizhu Lin
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinbing Sui
- School of Pharmacy, Department of Medical Oncology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Cong Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ruonan Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qianru Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bo An
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qiao Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bi Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangzhou 510006, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| |
Collapse
|
8
|
Zhao H, Feng YL, Wang M, Wang JJ, Liu T, Yu J. The Angelica dahurica: A Review of Traditional Uses, Phytochemistry and Pharmacology. Front Pharmacol 2022; 13:896637. [PMID: 35847034 PMCID: PMC9283917 DOI: 10.3389/fphar.2022.896637] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Angelica dahurica (A. dahurica) root is a famous edible medicinal herb that has been used in China for thousands of years. To date, more than 300 chemical constituents have been discovered from A. dahurica. Among these ingredients, coumarins and volatile oils are the major active compounds. Moreover, a few other compounds have also been isolated from the root of A. dahurica, such as alkaloids, phenols, sterols, benzofurans, polyacetylenes and polysaccharides. Modern pharmacological studies demonstrated that the root of A. dahurica and its active components displayed various bioactivities such as anti-inflammation, anti-tumor, anti-oxidation, analgesic activity, antiviral and anti-microbial effects, effects on the cardiovascular system, neuroprotective function, hepatoprotective activity, effects on skin diseases and so on. Based on these studies, this review focused on the research publications of A. dahurica and aimed to summarize the advances in the traditional uses, phytochemistry and pharmacology which will provide reference for the further studies and applications of A. dahurica.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an International Medical Center Hospital, Xi’an, China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi’an, China
| | - Ya-Long Feng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, China
| | - Jing-Jing Wang
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Science, Northwest University, Xi’an, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an International Medical Center Hospital, Xi’an, China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi’an, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an International Medical Center Hospital, Xi’an, China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi’an, China
- *Correspondence: Jun Yu,
| |
Collapse
|
9
|
Tsai YF, Chen CY, Lin IW, Leu YL, Yang SC, Syu YT, Chen PJ, Hwang TL. Imperatorin Alleviates Psoriasiform Dermatitis by Blocking Neutrophil Respiratory Burst, Adhesion, and Chemotaxis Through Selective Phosphodiesterase 4 Inhibition. Antioxid Redox Signal 2021; 35:885-903. [PMID: 33107318 DOI: 10.1089/ars.2019.7835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aim: Neutrophil infiltration and increased oxidative stress are involved in the pathogenesis and severity of psoriasis. Although the therapy of psoriasis remains elusive, targeting treatment to reduce oxidative stress is considered a potential option. Our study demonstrates the anti-inflammatory effects of a natural furocoumarin, imperatorin, on activated human neutrophils and psoriasiform dermatitis in mice. Results: Imperatorin inhibited superoxide anion generation, neutrophil adhesion, and migration in N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF)-stimulated human neutrophils. Further studies showed that imperatorin induced a decrease in cAMP-specific phosphodiesterase (PDE) activity, and increased intracellular cAMP levels and protein kinase A (PKA) activity in human neutrophils. The enzyme activities of PDE4 subtypes, but not PDE3 and PDE7, were inhibited by imperatorin. Furthermore, imperatorin inhibited the phosphorylation of protein kinase B (Akt), extracellular regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), as well as Ca2+ mobilization in fMLF-stimulated neutrophils. These suppressive effects of imperatorin on cell responses and signaling were reversed by PKA inhibitor, suggesting that cAMP/PKA is involved in the anti-inflammatory effects of imperatorin. In vivo studies of imiquimod- and interleukin-23-induced mouse psoriasiform dermatitis demonstrated that imperatorin alleviated skin desquamation, epidermal thickening, keratinocyte hyperproliferation, and neutrophil infiltration. Innovation and Conclusion: Our results demonstrate that imperatorin inhibits human neutrophil respiratory burst, adhesion, and migration through the elevation of cAMP/PKA to inhibit Akt, ERK, JNK, and Ca2+ mobilization. Imperatorin is a natural inhibitor of PDE4A/B/C and may serve as a lead for developing new therapeutics to treat neutrophilic psoriasis. Antioxid. Redox Signal. 35, 885-903.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-Wen Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shun-Chin Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Syu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
10
|
Ahmed S, Khan H, Aschner M, Mirzae H, Küpeli Akkol E, Capasso R. Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects. Int J Mol Sci 2020; 21:E5622. [PMID: 32781533 PMCID: PMC7460698 DOI: 10.3390/ijms21165622] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most extreme medical conditions in both developing and developed countries around the world, causing millions of deaths each year. Chemotherapy and/or radiotherapy are key for treatment approaches, but both have numerous adverse health effects. Furthermore, the resistance of cancerous cells to anticancer medication leads to treatment failure. The rising burden of cancer overall requires novel efficacious treatment modalities. Natural medications offer feasible alternative options against malignancy in contrast to western medication. Furanocoumarins' defensive and restorative impacts have been observed in leukemia, glioma, breast, lung, renal, liver, colon, cervical, ovarian, and prostate malignancies. Experimental findings have shown that furanocoumarins activate multiple signaling pathways, leading to apoptosis, autophagy, antioxidant, antimetastatic, and cell cycle arrest in malignant cells. Additionally, furanocoumarins have been shown to have chemo preventive and chemotherapeutic synergistic potential when used in combination with other anticancer drugs. Here, we address different pathways which are activated by furanocoumarins and their therapeutic efficacy in various tumors. Ideally, this review will trigger interest in furanocoumarins and their potential efficacy and safety as a cancer lessening agents.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA;
| | - Hamed Mirzae
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715973474, Iran;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
11
|
Deng M, Xie L, Zhong L, Liao Y, Liu L, Li X. Imperatorin: A review of its pharmacology, toxicity and pharmacokinetics. Eur J Pharmacol 2020; 879:173124. [PMID: 32339515 DOI: 10.1016/j.ejphar.2020.173124] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
As a naturally occurring furanocoumarin, the medicinal value of imperatorin has been studied more and more. We hope to provide useful information for the further development of imperatorin by analyzing the literature of imperatorin in recent years. By collating the literature on the pharmacology of imperatorin, we found that the pharmacological activity of imperatorin is wide and imperatorin can be used for anti-cancer, neuroprotection, anti-inflammatory, anti-hypertension and antibacterial. In addition, we found that some researchers confirmed the toxicity of imperatorin. Pharmacokinetic studies demonstrated that oxidation metabolism is the main metabolic pathways of imperatorin. At present, the shortcomings of research on imperatorin mainly include: most pharmacological studies are concentrated in vitro, lacking enough in vivo experimental data; more and more studies showed that imperatorin has synergistic effect with other drugs in anticancer and other aspects, but lacking the detailed explanation of the mechanism of the synergistic effect; imperatorin has side effect, but it lacks enough experimental conclusions. Based on the above defects, we believe that more in vivo experiments of imperatorin should be carried out in the future; future research need to explore synergistic mechanisms of imperatorin with other drugs, especially in anticancer; the dose affects both the pharmacological activity and the side effect of imperatorin. The relationship between the dose and the two aspects need to be further studied in order to reduce the side effect. In addition, through structural modification of imperatorin, it is possible to improve the treatment effect and reduce side effect.
Collapse
Affiliation(s)
- Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Li Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Yanmei Liao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Luona Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
12
|
Hwangbo H, Choi EO, Kim MY, Kwon DH, Ji SY, Lee H, Hong SH, Kim GY, Hwang HJ, Hong SH, Choi YH. Suppression of tumor growth and metastasis by ethanol extract of Angelica dahurica Radix in murine melanoma B16F10 cells. Biosci Trends 2020; 14:23-34. [PMID: 32092745 DOI: 10.5582/bst.2019.01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The roots of Angelica dahurica have long been used as a traditional medicine in Korea to treat various diseases such as toothache and cold. In this study, we investigated the effect of ethanol extract from the roots of this plant on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells and B16F10 cell inoculated-C57BL/6 mice. Our results showed that the ethanol extracts of Angelicae dahuricae Radix (EEAD) suppressed cell growth and induced apoptotic cell death in B16F10 cells. EEAD also activated the mitochondria-mediated intrinsic apoptosis pathway, with decreased mitochondrial membrane potential, and increased production of intracellular reactive oxygen species and ration of Bax/Bcl-2 expression. Furthermore, EEAD reduced the migration, invasion, and colony formation of B16F10 cells through the reduced expression and activity of matrix metalloproteinase (MMP)-2 and -9. In addition, in vivo results demonstrated that oral administration of EEAD inhibited lactate dehydrogenase activity, hepatotoxicity, and nephrotoxicity without weight loss in B16F10 cell inoculated-mice. Importantly, EEAD was able to markedly suppress lung hypertrophy, the incidence of B16F10 cells lung metastasis, and the expression of tumor necrosis factor-alpha in lung tissue. Taken together, our findings suggest that EEAD may be useful for managing metastasis and growth of malignant cancers, including melanoma.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Da Hye Kwon
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, Korea
| | - Hye Jin Hwang
- Department of Food and Nutrition, Dong-eui University, Busan, Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| |
Collapse
|
13
|
Sumorek-Wiadro J, Zając A, Maciejczyk A, Jakubowicz-Gil J. Furanocoumarins in anticancer therapy - For and against. Fitoterapia 2020; 142:104492. [PMID: 32032635 DOI: 10.1016/j.fitote.2020.104492] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Furanocoumarins are a class of natural compounds produced by several plants, including those consumed by humans. They have been used medicinally in eastern countries for ages. Given the growing body of evidence about their anticancer potential and observations that naturally occurring compounds potentiate the antitumor activity of chemotherapeutics, more attention is paid to elucidation of the nature of furanocoumarins and the possibility of using thereof in practice. The general mechanism by which furanocoumarins eliminate cancer cells is based on cell cycle blockage and initiation of programmed death like apoptosis or autophagy. The precise molecular mechanism of such an action depends on the chemical structure of furanocoumarins, which is based on the furan ring attached to the coumarin backbone in a linear or angular form as well as the type, location, and number of the substituents attached. The review summarizes the current evidence of the antitumor properties of linear and angular furanocoumarins with special emphasis on the molecular mechanism of elimination of cancer cells via apoptosis and autophagy. Negative aspects of the use of coumarins in anticancer therapy will be also discussed especially in the context of their phototoxicity and potential cancerogenic effect.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
14
|
Nasser MI, Zhu S, Hu H, Huang H, Guo M, Zhu P. Effects of imperatorin in the cardiovascular system and cancer. Biomed Pharmacother 2019; 120:109401. [PMID: 31622950 DOI: 10.1016/j.biopha.2019.109401] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023] Open
Abstract
Patients with cancer survivors are at increased risk of cardiovascular disease(CVD). Cardio-oncology has developed as a new discipline with the advances in cancer treatment. There are many new challenges for the clinician and a new frontier for research and investigation. There is an urgent need for further study on the prevention of cardiovascular toxicity. Imperatorin (IMP) is a natural form of coumarin and extract from several plants with diver's pharmacokinetic effects, including antioxidant and anti-inflammatory properties. This review focus on the molecular mechanisms and pharmacological effects of Imperatorin maybe provide potential cancer and cardiovascular protection that targets IMP. Further studies are required to elucidate the entire spectrum of cytotoxic activities of these compounds to validate and expand their preclinical and clinical applications and to clarify the potential role of IMP.
Collapse
Affiliation(s)
- M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080)
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080)
| | - Haiyan Hu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080)
| | - Huanlei Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080)
| | - Minghui Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080).
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China 106 ZhongshanEr Road, Guangzhou, P.R. China (510080).
| |
Collapse
|
15
|
Sui Z, Luo J, Yao R, Huang C, Zhao Y, Kong L. Functional characterization and correlation analysis of phenylalanine ammonia-lyase (PAL) in coumarin biosynthesis from Peucedanum praeruptorum Dunn. PHYTOCHEMISTRY 2019; 158:35-45. [PMID: 30448740 DOI: 10.1016/j.phytochem.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Coumarins exhibit many biological activities and are the main specialised metabolites of Peucedanum praeruptorum Dunn, an important plant used in traditional Chinese medicine. In preliminary studies, we cloned several genes involved in coumarin biosynthesis in P. praeruptorum, such as 4-coumarate: CoA ligase (4CL), p-coumaroyl CoA 2'-hydroxylase (C2'H), feruloyl CoA 6'-hydroxylase (F6'H) and bergaptol O-methyltransferase (BMT). However, phenylalanine ammonia-lyase (PAL) in P. praeruptorum (PpPAL) has not yet been studied. In the present study, we cloned one novel PpPAL gene. Subsequently, the relationship between gene and compounds was studied using quantitative real-time PCR (qRT-PCR) and High Performance Liquid Chromatography (HPLC) analysis. Then, enzyme function was analyzed with L-phenylalanine (L-Phe) as substrate. These experiments showed that the coumarin content could be upregulated by methyl jasmonate (MeJA), UV irradiation and cold, which was consistent with increased expression levels of PpPAL. In addition, correlation analysis indicated that coumarins were partially related to PpPAL. And the recombinant protein could catalyze the conversion of L-Phe to trans-cinnamic acid (t-CA) with a Km of 120 ± 33 μM and a Kcat of 117 ± 32 min-1. Besides, Tyr110, Phe116, Gly117, Ser206, Leu209, Leu259, Tyr354, Arg357, Asn387 and Phe403 were essential for enzymatic activity based on three-dimensional modeling and site-directed mutagenesis experiments. Altogether these results highlight the importance of PpPAL in abiotically induced coumarin biosynthesis and provide further insights regarding the structure-function relationships of this protein.
Collapse
Affiliation(s)
- Ziwei Sui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ruolan Yao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Chuanlong Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yucheng Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
16
|
Biomolecular Targets of Oxyprenylated Phenylpropanoids and Polyketides. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 108:143-205. [PMID: 30924014 DOI: 10.1007/978-3-030-01099-7_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxyprenylated secondary metabolites (e.g. phenylpropanoids and polyketides) represent a rare class of natural compounds. Over the past two decades, this group of phytochemicals has become a topic of intense research activity by several teams worldwide due to their in vitro and in vivo pharmacological activities, and to their great therapeutic and nutraceutical potential for the chemoprevention of acute and chronic diseases affecting humans. Such investigations have provided evidence that oxyprenylated secondary metabolites are able to interact with several biological targets at different levels accounting for their observed anticarcinogenic, anti-inflammatory, neuroprotective, immunomodulatory, antihypertensive, and metabolic effects. The aim of the present contribution is to provide a detailed survey of the so far reported data on the capacities of selected oxyprenylated phenylpropanoids and polyketides to trigger receptors, enzymes, and other types of cellular factors for which they exhibit a high degree of affinity and therefore evoke specific responses. With respect to the rather small amounts of these compounds available from natural sources, their chemical synthesis is also highlighted.
Collapse
|
17
|
Lee JU, Kim LK, Choi JM. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases. Front Immunol 2018; 9:2747. [PMID: 30538703 PMCID: PMC6277705 DOI: 10.3389/fimmu.2018.02747] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promotor region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| |
Collapse
|
18
|
Preparation, Characterization, and Pharmacokinetic Evaluation of Imperatorin Lipid Microspheres and Their Effect on the Proliferation of MDA-MB-231 Cells. Pharmaceutics 2018; 10:pharmaceutics10040236. [PMID: 30453503 PMCID: PMC6321357 DOI: 10.3390/pharmaceutics10040236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
Imperatorin is a chemical compound belonging to the linear furanocoumarins. Imperatorin is attracting considerable attention because of its antitumor, antibacterial, anti-inflammatory, and anticoagulant activities, inhibition of myocardial hypertrophy, and other pharmacological efficacies. However, imperatorin has limited water solubility and has better lipid solubility; thus, we decided to design and synthesize imperatorin lipid microspheres to optimize the preparation conditions. The aim was to develop and formulate imperatorin lipid microspheres through nanoemulsion technology and apply the response surface⁻central composite design to optimize the imperatorin lipid microsphere formulation. The influence of the amounts of egg lecithin, poloxamer 188, and soybean oil for injection on the total percentage of the oil phase was investigated. The integrated effect of dependent variables, including particle size, polydispersity index, zeta potentials, drug loading, and encapsulation efficiency, was investigated. Data of overall desirabilities were fitted to a second-order polynomial equation, through which three-dimensional response surface graphs were described. Optimum experimental conditions were calculated by Design-Expert 8.06. Results indicated that the optimum preparation conditions were as follows: 1.39 g of egg lecithin, 0.21 g of poloxamer 188, and 10.57% soybean oil for injection. Preparation of imperatorin lipid microspheres according to the optimum experimental conditions resulted in an overall desirability of 0.7286, with the particle size of 168 ± 0.54 nm, polydispersity index (PDI) of 0.138 ± 0.02, zeta potentials of -43.5 ± 0.5 mV, drug loading of 0.833 ± 0.27 mg·mL-1, and encapsulation efficiency of 90 ± 1.27%. The difference between the observed and predicted values of the overall desirability of the optimum formulation was in the range from 2.4% to 4.3%. Subsequently, scanning electron microscopy was used to observe the micromorphology of the imperatorin lipid microspheres, showing round globules of relatively uniform shape and sizes within 200 nm. The effect of imperatorin lipid microspheres on MDA-MB-231 proliferation was investigated by the MTT method. Furthermore, pharmacokinetics in Sprague-Dawley rats was evaluated using orbital bleeding. A sensitive and reliable liquid chromatography with the high-performance liquid chromatography (HPLC) method was established and validated for the quantification of imperatorin in rat plasma samples. The data were calculated by DAS (drug and statistics) Pharmacokinetic Software version 3.3.0 (Version 3.3.0, Shanghai, China). Results demonstrated that imperatorin lipid microspheres can significantly enhance the bioavailability of imperatorin and can significantly inhibit MDA-MB-231 cell proliferation. In conclusion, our results suggested that the response surface⁻central composite design is suitable for achieving an optimized lipid microsphere formulation. Imperatorin lipid microspheres can improve the bioavailability of imperatorin and better inhibit the proliferation of MDA-MB-231 cells as compared to imperatorin alone.
Collapse
|
19
|
Li C, Zhu H, Zhang H, Yang Y, Wang F. Synthesis of 2H-Chromenones from Salicylaldehydes and Arylacetonitriles. Molecules 2017; 22:molecules22071197. [PMID: 28718827 PMCID: PMC6152355 DOI: 10.3390/molecules22071197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023] Open
Abstract
An efficient and convenient protocol for the synthesis of 2H-chromenones has been developed. In the presence of tBuOK in DMF, good to excellent yields of various chromenones were obtained from the corresponding salicylaldehydes and arylacetonitriles. No protection of inert gas atmosphere is required here.
Collapse
Affiliation(s)
- Chengcai Li
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Campous, Hangzhou 310018, China.
| | - Hailin Zhu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Campous, Hangzhou 310018, China.
- Zhejiang Kertice Hi-Tech Fluor-Material Co., LTD, Huzhou 313000, China.
| | - Hang Zhang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Campous, Hangzhou 310018, China.
| | - Yongfeng Yang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Campous, Hangzhou 310018, China.
| | - Feng Wang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Campous, Hangzhou 310018, China.
- Zhejiang Kertice Hi-Tech Fluor-Material Co., LTD, Huzhou 313000, China.
| |
Collapse
|
20
|
Yang WQ, Zhu ZX, Song YL, Qi BW, Wang J, Su C, Tu PF, Shi SP. Dimeric furanocoumarins from the roots of Angelica dahurica. Nat Prod Res 2016; 31:870-877. [DOI: 10.1080/14786419.2016.1250090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wan-Qing Yang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Xiang Zhu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue-Lin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Wen Qi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Su
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41:4-34. [PMID: 27262793 DOI: 10.1016/j.semcancer.2016.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| |
Collapse
|
22
|
Lin CL, Hsiao G, Wang CC, Lee YL. Imperatorin exerts antiallergic effects in Th2-mediated allergic asthma via induction of IL-10-producing regulatory T cells by modulating the function of dendritic cells. Pharmacol Res 2016; 110:111-121. [PMID: 27185659 DOI: 10.1016/j.phrs.2016.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022]
Abstract
Imperatorin is a furanocoumarin compound which exists in many medicinal herbs and possesses various biological activities. Herein, we investigated the antiallergic effects of imperatorin in asthmatic mice and explored the immunomodulatory actions of imperatorin on immune cells. We used a murine model of ovalbumin (OVA)-induced asthma to evaluate the therapeutic potential of imperatorin. Additionally, bone marrow-derived dendritic cells (DCs; BMDCs) were used to clarify whether imperatorin exerts an antiallergic effect through altering the ability of DCs to regulate T cells. Oral administration of imperatorin to OVA-sensitized and -challenged mice decreased serum OVA-specific immunoglobulin E (IgE) production, attenuated the airway hyperresponsiveness (AHR), and alleviated airway inflammation in a dose-dependent manner. Notably, secretions of Th2 cytokines and chemokines were reduced, and numbers of interleukin (IL)-10-producing regulatory T cells (Tregs) increased in imperatorin-treated mice. Imperatorin inhibited proinflammatory cytokines and IL-12 production but enhanced IL-10 secretion by lipopolysaccharide (LPS)-stimulated BMDCs. Compared to fully mature DCs, imperatorin-treated DCs expressed high levels of the inducible costimulatory ligand (ICOSL) and Jagged1 molecules, and had the regulatory capacity to promote the generation of IL-10-producing CD4(+) T cells in vitro. Additionally, imperatorin directly suppressed activated CD4(+) T-cell proliferation and cytokine production. Imperatorin may possess therapeutic potential against Th2-mediated allergic asthma not only via stimulating DC induction of Tregs but also via direct inhibition of Th2 cell activation. These findings provide new insights into how imperatorin affects the Th2 immune response and the development of imperatorin as a Treg-type immunomodulatory agent to treat allergic asthma.
Collapse
Affiliation(s)
- Chu-Lun Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - George Hsiao
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
23
|
Pramchu-em C, Meksawan K, Chanvorachote P. Zinc Sensitizes Lung Cancer Cells to Anoikis through Down-Regulation of Akt and Caveolin-1. Nutr Cancer 2016; 68:312-9. [DOI: 10.1080/01635581.2016.1142582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Kozioł E, Skalicka-Woźniak K. Imperatorin-pharmacological meaning and analytical clues: profound investigation. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:627-649. [PMID: 27453708 PMCID: PMC4939159 DOI: 10.1007/s11101-016-9456-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/13/2016] [Indexed: 05/09/2023]
Abstract
Imperatorin, a furanocoumarin derivative, has many documented pharmacological properties which make it a candidate for possible drug development. In this review, the activity on the central nervous system, the anticancer and antiviral properties and the influence on the cardiovascular system are described. The aim of this review is also to present an overview of the techniques used for the analysis, isolation, and separation of imperatorin from plant material from the practical perspective.
Collapse
Affiliation(s)
- Ewelina Kozioł
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
25
|
Imperatorin acts as a cisplatin sensitizer via downregulating Mcl-1 expression in HCC chemotherapy. Tumour Biol 2015. [DOI: 10.1007/s13277-015-3591-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
26
|
Yang WQ, Song YL, Zhu ZX, Su C, Zhang X, Wang J, Shi SP, Tu PF. Anti-inflammatory dimeric furanocoumarins from the roots of Angelica dahurica. Fitoterapia 2015; 105:187-93. [PMID: 26183116 DOI: 10.1016/j.fitote.2015.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 11/27/2022]
Abstract
Seven new dimeric furanocoumarins, dahuribiethrins A-G (1-7), were isolated from the roots of Angelica dahurica. Their structures were determined by chemical derivatization and extensive spectroscopic techniques, including (1)H NMR, (13)C NMR, HSQC, (1)H-(1)H COSY, HMBC, and NOESY experiments. Compounds 2, 3, 4, and 5 exhibited significant inhibition of nitric oxide production in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values in the range of 8.8-9.8 μM.
Collapse
Affiliation(s)
- Wan-Qing Yang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Yue-Lin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Zhi-Xiang Zhu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Cong Su
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Xu Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
27
|
Yang IJ, Lee DU, Shin HM. Anti-inflammatory and antioxidant effects of coumarins isolated fromFoeniculum vulgarein lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol Immunotoxicol 2015; 37:308-17. [DOI: 10.3109/08923973.2015.1038751] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Dendrofalconerol A sensitizes anoikis and inhibits migration in lung cancer cells. J Nat Med 2014; 69:178-90. [PMID: 25391454 DOI: 10.1007/s11418-014-0876-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/16/2014] [Indexed: 12/28/2022]
Abstract
Resistance to anoikis, enhanced cell motility, and growth in anchorage-independent conditions are hallmarks of highly metastatic cancer cells. The present study demonstrates the anoikis-sensitizing and anti-migration activities of dendrofalconerol A (DF-A), a pure bis(bibenzyl) isolated from the stem of Dendrobium falconeri (Orchidaceae), and its underlying mechanisms in human lung cancer H460 cells. DF-A at non-toxic concentrations significantly increased the anoikis response of the cancer cells, but caused no toxic effect on normal keratinocytes. In addition, DF-A significantly inhibited the growth of lung cancer cells in anchorage-independent conditions. Western blot analysis revealed that the anoikis-sensitizing effect of such a compound involves its ability to suppress survival signals as well as anti-apoptotic proteins, namely, activated protein kinase B (Akt) and Bcl-2. Furthermore, DF-A decreased caveolin-1 (Cav-1), a protein responsible for aggressiveness, while having no effect on Bax, Mcl-1, and activated Erk (p42/44) proteins. In the case of cell motility, DF-A exhibited strong anti-migration activity with the mechanism involving suppression of pFAK and Rho-GTP, but had no effect on Rac-GTP in lung cancer cells. Taken together, DF-A possesses anoikis-sensitizing activity along with anti-migration effects, and may be developed as a novel active compound for cancer treatment.
Collapse
|
29
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
30
|
Bądziul D, Jakubowicz-Gil J, Langner E, Rzeski W, Głowniak K, Gawron A. The effect of quercetin and imperatorin on programmed cell death induction in T98G cells in vitro. Pharmacol Rep 2014; 66:292-300. [PMID: 24911084 DOI: 10.1016/j.pharep.2013.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 09/29/2013] [Accepted: 10/31/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND High expression of HSP27 and HSP72 in glioma cells has been closely associated with chemoresistance and decreased sensitivity to programmed cell death induction. Therefore, it is important to devise therapies that effectively target invasive cancer cells by inducing cell death. The aim of our study was to assess the effect of quercetin and imperatorin applied separately and in combinations on the apoptosis and autophagy induction in human T98G cells cultured in vitro. METHODS Cell death induction was analyzed by the staining method. The Western blotting technique and fluorimetric measurements of activity were used to assess the expression of marker proteins of apoptosis and autophagy. The specific siRNA transfected method was used for blocking of the expression of HSP27 and HSP72 genes. RESULTS The experiments revealed the highest percentage of apoptotic cells after using a 50?M concentration of both compounds. Simultaneous quercetin and imperatorin administration induced apoptosis more effectively than incubation with single drugs. These results were accompanied with decreased HSP27 and HSP72 expression, and a high level of caspase-3 and caspase-9 activity. Autophagy was not observed. Additional experiments were performed on a cell line with blocked Hsp27 and Hsp72 expression and significant increase the sensitivity to apoptosis induction upon quercetin and imperatorin treatment was noticed. CONCLUSIONS The present study indicates that quercetin and imperatorin are potent apoptosis inducers, especially when they act synergistically, which may be a promising combination useful in glioma therapy. Our results also demonstrated that blocking the HSP27 and HSP72 gene expression might serve as a therapeutic target for the human brain cancer.
Collapse
Affiliation(s)
- Dorota Bądziul
- Department of Comparative Anatomy and Anthropology, Institute of Biology, Maria Curie-Sklodowska University, Lublin, Poland.
| | - Joanna Jakubowicz-Gil
- Department of Comparative Anatomy and Anthropology, Institute of Biology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Ewa Langner
- Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland; Department of Immunology and Virology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Poland
| | - Kazimierz Głowniak
- Department of Pharmacognosy with Medical Plant Unit, Medical University, Lublin, Poland
| | - Antoni Gawron
- Department of Comparative Anatomy and Anthropology, Institute of Biology, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|