1
|
Hussein NR, Mahfodh DS. Letter to the editor: Viral load decline time offers theoretical insight rather than practical value. Euro Surveill 2025; 30:2500151. [PMID: 40051398 PMCID: PMC11887032 DOI: 10.2807/1560-7917.es.2025.30.9.2500151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/10/2025] Open
Affiliation(s)
- Nawfal R Hussein
- Department of Biomedical Sciences, College of Medicine, University of Zakho, Duhok, Iraq
| | - Delovan S Mahfodh
- Department of Medicine, College of Medicine, University of Duhok, Duhok, Iraq
| |
Collapse
|
2
|
Ríos Carrasco M, Gröne A, van den Brand JMA, de Vries RP. The mammary glands of cows abundantly display receptors for circulating avian H5 viruses. J Virol 2024; 98:e0105224. [PMID: 39387556 PMCID: PMC11575340 DOI: 10.1128/jvi.01052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
Influenza A viruses (IAVs) from the H5N1 2.3.4.4b clade are circulating in dairy farms in the USA.; ruminants were presumed not to be hosts for IAVs. Previously, IAV-positive mammalian species were hunters and scavengers, possibly getting infected while feeding on infected birds. It is now recognized that H5N1 viruses that circulate in US dairy cattle transmit through a mammary gland route, in contrast to transmission by aerosols via the respiratory tract. The sialome in the cow mammary and respiratory tract is so far solely defined using plant lectins. Here, we used recombinant HA proteins representing current circulating and classical H5 viruses to determine the distribution of IAV receptors in the respiratory and mammary tract tissues of cows. We complemented our study by mapping the glycan distribution of the upper and lower respiratory tracts of horses and pigs. Most of the sialome of the cow respiratory tract is lined with sialic acid modifications, such as N-glycolyl and O-acetyl, which are not bound by IAV. Interestingly, the H5 protein representing the cow isolates is bound significantly in the mammary gland, whereas classical H5 proteins failed to do so. Furthermore, whereas the 9-O-acetyl modification is prominent in all tissues tested, the 5-N-glycolyl modification is not, resulting in the display of receptors for avian IAV hemagglutinins. This could explain the high levels of virus found in these tissues and milk, adding supporting data to this virus transmission route.IMPORTANCEH5N1 influenza viruses, which usually affect birds, have been found on dairy farms in the USA. Surprisingly, these viruses are spreading among dairy cows, and there is a possibility that they do not spread through the air but through their milk glands. To understand this better, we studied how the virus attaches to tissues in the cow's respiratory tract and mammary glands using specific viral proteins. We found that the cow-associated virus binds strongly to the mammary glands, unlike older versions infecting birds. This might explain why the virus is found in cow's milk, suggesting a new way the virus could be spreading.
Collapse
Affiliation(s)
- María Ríos Carrasco
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andrea Gröne
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Liu Y, Zeng Q, Hu X, Xu Z, Pan C, Liu Q, Yu J, Wu S, Sun M, Liao M. Natural variant R246K in hemagglutinin increased zoonotic characteristics and renal inflammation in mice infected with H9N2 influenza virus. Vet Microbiol 2023; 279:109667. [PMID: 36804565 DOI: 10.1016/j.vetmic.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Considered a potential pandemic candidate, the widespread among poultry of H9N2 avian influenza viruses across Asia and North Africa pose an increasing threat to poultry and human health. The massive epidemic of H9N2 viruses has expanded the host range; however, the molecular basis and characteristic underlying the transmission to poultry and mammals remains unclear. Our previous study has proved that some natural mutations in the HA gene enhanced the binding ability of the H9N2 virus to α-2,6 SA receptors. Here, we systematically analyzed the impact of these natural mutations on zoonotic characteristics and the pathogenicity of H9N2 AIVs in poultry and mammals. Our study demonstrated that mutation R246K increased the replication in human lung epithelial cells in vitro. Mutation R246K increased the virus shedding of oropharyngeal swabs during early-stage infection in chickens. Moreover, mutation R246K displayed stronger pH stability and pathogenicity in mice. The strong renal tropism and inflammatory response may accelerate the pathogenicity. In summary, we found that natural variation R246K in HA of prevalent H9N2 in China promoted the transmissibility in chicken and accelerate the pathogenicity in mice, posing a great concern for zoonotic and pandemic emergence.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Qinghang Zeng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; College of Animal Science & Technology, Zhongkai University of Agricultural and Engineering, Guangzhou, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Xinyu Hu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; College of Animal Science & Technology, Zhongkai University of Agricultural and Engineering, Guangzhou, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Zhihong Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Chungen Pan
- Haid Research Institute, Guangdong HaidGroup Co., Ltd., Guangzhou, PR China
| | - Quan Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Jieshi Yu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Siyu Wu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, PR China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China; Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, PR China.
| |
Collapse
|
4
|
Rosário-Ferreira N, Preto AJ, Melo R, Moreira IS, Brito RMM. The Central Role of Non-Structural Protein 1 (NS1) in Influenza Biology and Infection. Int J Mol Sci 2020; 21:E1511. [PMID: 32098424 PMCID: PMC7073157 DOI: 10.3390/ijms21041511] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/07/2023] Open
Abstract
Influenza (flu) is a contagious viral disease, which targets the human respiratory tract and spreads throughout the world each year. Every year, influenza infects around 10% of the world population and between 290,000 and 650,000 people die from it according to the World Health Organization (WHO). Influenza viruses belong to the Orthomyxoviridae family and have a negative sense eight-segment single-stranded RNA genome that encodes 11 different proteins. The only control over influenza seasonal epidemic outbreaks around the world are vaccines, annually updated according to viral strains in circulation, but, because of high rates of mutation and recurrent genetic assortment, new viral strains of influenza are constantly emerging, increasing the likelihood of pandemics. Vaccination effectiveness is limited, calling for new preventive and therapeutic approaches and a better understanding of the virus-host interactions. In particular, grasping the role of influenza non-structural protein 1 (NS1) and related known interactions in the host cell is pivotal to better understand the mechanisms of virus infection and replication, and thus propose more effective antiviral approaches. In this review, we assess the structure of NS1, its dynamics, and multiple functions and interactions, to highlight the central role of this protein in viral biology and its potential use as an effective therapeutic target to tackle seasonal and pandemic influenza.
Collapse
Affiliation(s)
- Nícia Rosário-Ferreira
- Coimbra Chemistry Center, Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - António J. Preto
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - Rita Melo
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Irina S. Moreira
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rui M. M. Brito
- Coimbra Chemistry Center, Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
5
|
Ji Y, White YJ, Hadden JA, Grant OC, Woods RJ. New insights into influenza A specificity: an evolution of paradigms. Curr Opin Struct Biol 2017; 44:219-231. [PMID: 28675835 DOI: 10.1016/j.sbi.2017.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023]
Abstract
Understanding the molecular origin of influenza receptor specificity is complicated by the paucity of quantitative affinity measurements, and the qualitative and variable nature of glycan array data. Further obstacles arise from the varied impact of viral glycosylation and the relatively narrow spectrum of biologically relevant receptors present on glycan arrays. A survey of receptor conformational properties is presented, leading to the conclusion that conformational entropy plays a key role in defining specificity, as does the newly reported ability of biantennary receptors that terminate in Siaα2-6Gal sequences to form bidentate interactions to two binding sites in a hemagglutinin trimer. Bidentate binding provides a functional explanation for the observation that Siaα2-6 receptors adopt an open-umbrella topology when bound to hemagglutinins from human-infective viruses, and calls for a reassessment of virus avidity and tissue tropism.
Collapse
Affiliation(s)
- Ye Ji
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Yohanna Jb White
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Jodi A Hadden
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States.
| |
Collapse
|
6
|
Expression of Factor X in BHK-21 Cells Promotes Low Pathogenic Influenza Viruses Replication. Adv Virol 2016; 2015:675921. [PMID: 26880918 PMCID: PMC4735987 DOI: 10.1155/2015/675921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/05/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022] Open
Abstract
A cDNA clone for factor 10 (FX) isolated from chicken embryo inserted into the mammalian cell expression vector pCDNA3.1 was transfected into the baby hamster kidney (BHK-21) cell line. The generated BHK-21 cells with inducible expression of FX were used to investigate the efficacy of the serine transmembrane protease to proteolytic activation of influenza virus hemagglutinin (HA) with monobasic cleavage site. Data showed that the BHK-21/FX stably expressed FX after ten serial passages. The cells could proteolytically cleave the HA of low pathogenic avian influenza virus at multiplicity of infection 0.01. Growth kinetics of the virus on BHK-21/FX, BHK-21, and MDCK cells were evaluated by titrations of virus particles in each culture supernatant. Efficient multicycle viral replication was markedly detected in the cell at subsequent passages. Virus titration demonstrated that BHK-21/FX cell supported high-titer growth of the virus in which the viral titer is comparable to the virus grown in BHK-21 or MDCK cells with TPCK-trypsin. The results indicate potential application for the BHK-21/FX in influenza virus replication procedure and related studies.
Collapse
|
7
|
New England harbor seal H3N8 influenza virus retains avian-like receptor specificity. Sci Rep 2016; 6:21428. [PMID: 26888262 PMCID: PMC4757820 DOI: 10.1038/srep21428] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 01/25/2016] [Indexed: 11/30/2022] Open
Abstract
An influenza H3N8 virus, carrying mammalian adaptation mutations, was isolated from New England harbor seals in 2011. We sought to assess the risk of its human transmissibility using two complementary approaches. First, we tested the binding of recombinant hemagglutinin (HA) proteins of seal H3N8 and human-adapted H3N2 viruses to respiratory tissues of humans and ferrets. For human tissues, we observed strong tendency of the seal H3 to bind to lung alveoli, which was in direct contrast to the human-adapted H3 that bound mainly to the trachea. This staining pattern was also consistent in ferrets, the primary animal model for human influenza pathogenesis. Second, we compared the binding of the recombinant HAs to a library of 610 glycans. In contrast to the human H3, which bound almost exclusively to α-2,6 sialylated glycans, the seal H3 bound preferentially to α-2,3 sialylated glycans. Additionally, the seal H3N8 virus replicated in human lung carcinoma cells. Our data suggest that the seal H3N8 virus has retained its avian-like receptor binding specificity, but could potentially establish infection in human lungs.
Collapse
|
8
|
Parvin R, Shehata AA, Heenemann K, Gac M, Rueckner A, Halami MY, Vahlenkamp TW. Differential replication properties among H9N2 avian influenza viruses of Eurasian origin. Vet Res 2015; 46:75. [PMID: 26149130 PMCID: PMC4491879 DOI: 10.1186/s13567-015-0198-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/24/2015] [Indexed: 12/14/2022] Open
Abstract
Avian influenza H9N2 viruses have become panzootic in Eurasia causing respiratory manifestations, great economic losses and occasionally being transmitted to humans. To evaluate the replication properties and compare the different virus quantification methods, four Eurasian H9N2 viruses from different geographical origins were propagated in embryonated chicken egg (ECE) and Madin-Darby canine kidney epithelial cell systems. The ECE-grown and cell culture-grown viruses were monitored for replication kinetics based on tissue culture infectious dose (TCID50), Hemagglutination (HA) test and quantitative real time RT-PCR (qRT-PCR). The cellular morphology was analyzed using immunofluorescence (IF) and cellular ELISA was used to screen the sensitivity of the viruses to amantadine. The Eurasian wild type-H9N2 virus produced lower titers compared to the three G1-H9N2 viruses at respective time points. Detectable titers were observed earliest at 16 h post inoculation (hpi), significant morphological changes on cells were first observed at 32 hpi. Few nucleotide and amino acid substitutions were noticed in the HA, NA and NS gene sequences but none of them are related to the known conserved region that can alter pathogenesis or virulence following a single passage in cell culture. All studied H9N2 viruses were sensitive to amantadine. The G1-H9N2 viruses have higher replication capabilities compared to the European wild bird-H9N2 probably due to their specific genetic constitutions which is prerequisite for a successful vaccine candidate. Both the ECE and MDCK cell system allowed efficient replication but the ECE system is considered as the better cultivation system for H9N2 viruses in order to get maximum amounts of virus within a short time period.
Collapse
Affiliation(s)
- Rokshana Parvin
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany. .,Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh.
| | - Awad A Shehata
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany. .,Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Kristin Heenemann
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany.
| | - Malgorzata Gac
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany.
| | - Antje Rueckner
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany.
| | - Mohammad Y Halami
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany.
| | - Thomas W Vahlenkamp
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04109, Leipzig, Saxony, Germany.
| |
Collapse
|
9
|
Ogiwara H, Yasui F, Munekata K, Takagi-Kamiya A, Munakata T, Nomura N, Shibasaki F, Kuwahara K, Sakaguchi N, Sakoda Y, Kida H, Kohara M. Histopathological evaluation of the diversity of cells susceptible to H5N1 virulent avian influenza virus. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:171-83. [PMID: 24200852 DOI: 10.1016/j.ajpath.2013.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 09/02/2013] [Accepted: 10/03/2013] [Indexed: 11/29/2022]
Abstract
Patients infected with highly pathogenic avian influenza A H5N1 viruses (H5N1 HPAIV) show diffuse alveolar damage. However, the temporal progression of tissue damage and repair after viral infection remains poorly defined. Therefore, we assessed the sequential histopathological characteristics of mouse lung after intranasal infection with H5N1 HPAIV or H1N1 2009 pandemic influenza virus (H1N1 pdm). We determined the amount and localization of virus in the lung through IHC staining and in situ hybridization. IHC used antibodies raised against the virus protein and antibodies specific for macrophages, type II pneumocytes, or proliferating cell nuclear antigen. In situ hybridization used RNA probes against both viral RNA and mRNA encoding the nucleoprotein and the hemagglutinin protein. H5N1 HPAIV infection and replication were observed in multiple lung cell types and might result in rapid progression of lung injury. Both type II pneumocytes and macrophages proliferated after H5N1 HPAIV infection. However, the abundant macrophages failed to block the viral attack, and proliferation of type II pneumocytes failed to restore the damaged alveoli. In contrast, mice infected with H1N1 pdm exhibited modest proliferation of type II pneumocytes and macrophages and slight alveolar damage. These results suggest that the virulence of H5N1 HPAIV results from the wide range of cell tropism of the virus, excessive virus replication, and rapid development of diffuse alveolar damage.
Collapse
Affiliation(s)
- Haru Ogiwara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keisuke Munekata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Asako Takagi-Kamiya
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tsubasa Munakata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Namiko Nomura
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Futoshi Shibasaki
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Kuwahara
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobuo Sakaguchi
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
10
|
Replication Efficiency of Influenza A Virus H9N2: A Comparative Analysis Between Different Origin Cell Types. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.8584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Hauser MJ, Dlugolenski D, Culhane MR, Wentworth DE, Tompkins SM, Tripp RA. Antiviral responses by Swine primary bronchoepithelial cells are limited compared to human bronchoepithelial cells following influenza virus infection. PLoS One 2013; 8:e70251. [PMID: 23875024 PMCID: PMC3707852 DOI: 10.1371/journal.pone.0070251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/18/2013] [Indexed: 12/24/2022] Open
Abstract
Swine generate reassortant influenza viruses because they can be simultaneously infected with avian and human influenza; however, the features that restrict influenza reassortment in swine and human hosts are not fully understood. Type I and III interferons (IFNs) act as the first line of defense against influenza virus infection of respiratory epithelium. To determine if human and swine have different capacities to mount an antiviral response the expression of IFN and IFN-stimulated genes (ISG) in normal human bronchial epithelial (NHBE) cells and normal swine bronchial epithelial (NSBE) cells was evaluated following infection with human (H3N2), swine (H1N1), and avian (H5N3, H5N2, H5N1) influenza A viruses. Expression of IFNλ and ISGs were substantially higher in NHBE cells compared to NSBE cells following H5 avian influenza virus infection compared to human or swine influenza virus infection. This effect was associated with reduced H5 avian influenza virus replication in human cells at late times post infection. Further, RIG-I expression was lower in NSBE cells compared to NHBE cells suggesting reduced virus sensing. Together, these studies identify key differences in the antiviral response between human and swine respiratory epithelium alluding to differences that may govern influenza reassortment.
Collapse
Affiliation(s)
- Mary J. Hauser
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Daniel Dlugolenski
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Marie R. Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - S. Mark Tompkins
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Shahsavandi S, Ebrahimi MM, Mohammadi A, Zarrin Lebas N. Impact of chicken-origin cells on adaptation of a low pathogenic influenza virus. Cytotechnology 2012; 65:419-24. [PMID: 23011740 DOI: 10.1007/s10616-012-9495-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/21/2012] [Indexed: 12/16/2022] Open
Abstract
Understanding the growth dynamics of influenza viruses is an essential step in virus replication and cell-adaptation. The aim of this study was to elucidate the growth kinetic of a low pathogenic avian influenza H9N2 subtype in chicken embryo fibroblast (CEF) and chicken tracheal epithelial (CTE) cells during consecutive passages. An egg-adapted H9N2 virus was seeded into both cell culture systems. The amount of infectious virus released into the cell culture supernatants at interval times post-infection were titered and plaque assayed. The results as well as cell viability results indicate that the infectivity of the influenza virus was different among these primary cells. The egg-adapted H9N2 virus featured higher infectivity in CTE than in CEF cells. After serial passages and plaque purifications of the virus, a CTE cell-adapted strain was generated which carried amino acid substitutions within the HA stem region. The strain showed faster replication kinetics in cell culture resulting in an increase in virus titer. Overall, the present study provides the impact of cell type, multiplicity of infection, cellular protease roles in virus infectivity and finally molecular characterization during H9N2 virus adaptation procedure.
Collapse
Affiliation(s)
- Shahla Shahsavandi
- Razi Vaccine & Serum Research Institute, P.O.Box 31975-148, Karaj, Iran,
| | | | | | | |
Collapse
|
13
|
Wang B, Liu B, Chen L, Zhang J, He H, Zhang H. Qualitative and quantitative analyses of influenza virus receptors in trachea and lung tissues of humans, mice, chickens and ducks. SCIENCE CHINA-LIFE SCIENCES 2012; 55:612-7. [PMID: 22864835 DOI: 10.1007/s11427-012-4341-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/11/2012] [Indexed: 01/16/2023]
Abstract
To accurately determine the expression and distribution patterns of two influenza virus receptors (SAα2,3-gal and SAα2,6-gal) in trachea and lung tissues of humans, mice, chickens and ducks, we analyzed lectin immunofluorescence stainings of various tissue sections qualitatively and quantitatively. Results from the qualitative analysis showed that both influenza virus receptors were expressed in lung tissues of humans, mice, chickens and ducks as well as trachea tissues of mice and ducks. However, SAα2,6-gal receptor was expressed only in the human trachea tissue and SAα2,3-gal receptor was expressed only in the chicken trachea tissue. Results from the quantitative analysis demonstrated that both receptors were expressed in trachea tissues of human and mouse, as well as in lung tissues of humans, chickens and ducks. Meanwhile, our results also showed that the expression and distribution of influenza virus receptors in the same tissue were not always uniform, indicating that their distribution and expression in various tissues are not simply the distinction between the presence or absence of receptors, but rather the difference in the amount of expressed receptors.
Collapse
Affiliation(s)
- Baolin Wang
- Laboratory of Respiratory Medicine, Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China
| | | | | | | | | | | |
Collapse
|
14
|
van Riel D, Kuiken T. The role of cell tropism for the pathogenesis of influenza in humans. Future Virol 2012. [DOI: 10.2217/fvl.12.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seasonal, pandemic and avian influenza viruses are able to infect humans, but the disease outcome often differs, ranging from mild upper respiratory tract disease to fatal pneumonia. The cell tropism of influenza viruses is thought to be an important determinant of these factors. Therefore, this review focuses on the factors that, together, determine the cell tropism of influenza viruses. These include: the receptor specificity of the viral hemagglutinin and the distribution of these receptors in the respiratory tract; the presence of inhibitory factors in the fluid lining the respiratory mucosa; and the requirement for host cell proteases that can cleave the precursor hemagglutinin of influenza viruses. Finally, we will discuss how the route of inoculation influences the cell types infected by influenza viruses and associated pathogenesis.
Collapse
Affiliation(s)
- Debby van Riel
- Department of Virology, Erasmus MC Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Virology, Erasmus MC Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
15
|
Garcia JM, Lai JCC. Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Rev Anti Infect Ther 2011; 9:443-55. [PMID: 21504401 DOI: 10.1586/eri.11.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudotyped viral particles are being used as safe surrogates to mimic the structure and surface of many viruses, including highly pathogenic viruses such as avian influenza H5N1, to investigate biological functions mediated by the envelope proteins derived from these viruses. The first part of this article evaluates and discusses the differences in the production and characterization of influenza pseudoparticles. The second part focuses on the applications that such a flexible tool can provide in modern influenza research, in particular in the fields of drug discovery, molecular biology and diagnosis.
Collapse
Affiliation(s)
- Jean-Michel Garcia
- HKU-Pasteur Research Centre, Dexter HC Man Building, 8 Sassoon Road, Pokfulam, Hong Kong.
| | | |
Collapse
|