1
|
Kohs TCL, Fallon ME, Oseas EC, Healy LD, Tucker EI, Gailani D, McCarty OJT, Vandenbark AA, Offner H, Verbout NG. Pharmacological targeting of coagulation factor XI attenuates experimental autoimmune encephalomyelitis in mice. Metab Brain Dis 2023; 38:2383-2391. [PMID: 37341855 PMCID: PMC10530106 DOI: 10.1007/s11011-023-01251-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Multiple sclerosis (MS) is the most common causes of non-traumatic disability in young adults worldwide. MS pathophysiologies include the formation of inflammatory lesions, axonal damage and demyelination, and blood brain barrier (BBB) disruption. Coagulation proteins, including factor (F)XII, can serve as important mediators of the adaptive immune response during neuroinflammation. Indeed, plasma FXII levels are increased during relapse in relapsing-remitting MS patients, and previous studies showed that reducing FXII levels was protective in a murine model of MS, experimental autoimmune encephalomyelitis (EAE). Our objective was to determine if pharmacological targeting of FXI, a major substrate of activated FXII (FXIIa), improves neurological function and attenuates CNS damage in the setting of EAE. EAE was induced in male mice using murine myelin oligodendrocyte glycoprotein peptides combined with heat-inactivated Mycobacterium tuberculosis and pertussis toxin. Upon onset of symptoms, mice were treated every other day intravenously with anti-FXI antibody, 14E11, or saline. Disease scores were recorded daily until euthanasia for ex vivo analyses of inflammation. Compared to the vehicle control, 14E11 treatment reduced the clinical severity of EAE and total mononuclear cells, including CD11b+CD45high macrophage/microglia and CD4+ T cell numbers in brain. Following pharmacological targeting of FXI, BBB disruption was reduced, as measured by decreased axonal damage and fibrin(ogen) accumulation in the spinal cord. These data demonstrate that pharmacological inhibition of FXI reduces disease severity, immune cell migration, axonal damage, and BBB disruption in mice with EAE. Thus, therapeutic agents targeting FXI and FXII may provide a useful approach for treating autoimmune and neurologic disorders.
Collapse
Affiliation(s)
- Tia C L Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA.
| | - Meghan E Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Ethan C Oseas
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Laura D Healy
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Erik I Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
- Aronora, Inc., Portland, OR, USA
| | - David Gailani
- Department of Pathology and Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Norah G Verbout
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S. Bond Avenue, Portland, OR, 97239, USA
- Aronora, Inc., Portland, OR, USA
| |
Collapse
|
2
|
Zhang D, Ren J, Luo Y, He Q, Zhao R, Chang J, Yang Y, Guo ZN. T Cell Response in Ischemic Stroke: From Mechanisms to Translational Insights. Front Immunol 2021; 12:707972. [PMID: 34335623 PMCID: PMC8320432 DOI: 10.3389/fimmu.2021.707972] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke, caused by a sudden disruption of blood flow to the brain, is a leading cause of death and exerts a heavy burden on both patients and public health systems. Currently available treatments for ischemic stroke are very limited and are not feasible in many patients due to strict time windows required for their administration. Thus, novel treatment strategies are keenly required. T cells, which are part of the adaptive immune system, have gained more attention for its effects in ischemic stroke. Both preclinical and clinical studies have revealed the conflicting roles for T cells in post-stroke inflammation and as potential therapeutic targets. This review summarizes the mediators of T cell recruitment, as well as the temporal course of its infiltration through the blood-brain-barrier, choroid plexus, and meningeal pathways. Furthermore, we describe the mechanisms behind the deleterious and beneficial effects of T cells in the brain, in both antigen-dependent and antigen-independent manners, and finally we specifically focus on clinical and preclinical studies that have investigated T cells as potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Dianhui Zhang
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yun Luo
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China.,Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qianyan He
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Junlei Chang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Neuroscience Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Loftis JM, Navis T, Taylor J, Hudson R, Person U, Lattal KM, Vandenbark AA, Shirley R, Huckans M. Partial MHC/neuroantigen peptide constructs attenuate methamphetamine-seeking and brain chemokine (C-C motif) ligand 2 levels in rats. Eur J Pharmacol 2020; 880:173175. [PMID: 32416183 DOI: 10.1016/j.ejphar.2020.173175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
There are no medications that target the neurotoxic effects or reduce the use of methamphetamine. Recombinant T-cell receptor ligand (RTL) 1000 [a partial major histocompatibility complex (pMHC) class II construct with a tethered myelin peptide], addresses the neuroimmune effects of methamphetamine addiction by competitively inhibiting the disease-promoting activity of macrophage migration inhibitory factor to CD74, a key pathway involved in several chronic inflammatory conditions, including substance use disorders. We previously reported that RTL constructs improve learning and memory impairments and central nervous system (CNS) inflammation induced by methamphetamine in mouse models. The present study in Lewis rats evaluated the effects of RTL1000 on maintenance of self-administration and cue-induced reinstatement using operant behavioral methods. Post-mortem brain and serum samples were evaluated for the levels of inflammatory factors. Rats treated with RTL1000 displayed significantly fewer presses on the active lever as compared to rats treated with vehicle during the initial extinction session, indicating more rapid extinction in the presence of RTL1000. Immunoblotting of rat brain sections revealed reduced levels of the pro-inflammatory chemokine (C-C motif) ligand 2 (CCL2) in the frontal cortex of rats treated with RTL1000, as compared to vehicle. Post hoc analysis identified a positive association between the levels of CCL2 detected in the frontal cortex and the number of lever presses during the first extinction session. Taken together, results suggest that RTL1000 may block downstream inflammatory effects of methamphetamine exposure and facilitate reduced drug seeking-potentially offering a new strategy for the treatment of methamphetamine-induced CNS injury and neuropsychiatric impairments.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Methamphetamine Research Center, Portland, OR, USA.
| | - Tommy Navis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan Taylor
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Rebekah Hudson
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Ulziibat Person
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Arthur A Vandenbark
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Renee Shirley
- Virogenomics BioDevelopment, Inc., Portland, OR, USA
| | - Marilyn Huckans
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Methamphetamine Research Center, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
4
|
Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060333. [PMID: 32486045 PMCID: PMC7348736 DOI: 10.3390/brainsci10060333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system and is considered to be the leading non-traumatic cause of neurological disability in young adults. Current treatments for MS comprise long-term immunosuppressant drugs and disease-modifying therapies (DMTs) designed to alter its progress with the enhanced risk of severe side effects. The Holy Grail for the treatment of MS is to specifically suppress the disease while at the same time allow the immune system to be functionally active against infectious diseases and malignancy. This could be achieved via the development of immunotherapies designed to specifically suppress immune responses to self-antigens (e.g., myelin antigens). The present study attempts to highlight the various antigen-specific immunotherapies developed so far for the treatment of multiple sclerosis (e.g., vaccination with myelin-derived peptides/proteins, plasmid DNA encoding myelin epitopes, tolerogenic dendritic cells pulsed with encephalitogenic epitopes of myelin proteins, attenuated autologous T cells specific for myelin antigens, T cell receptor peptides, carriers loaded/conjugated with myelin immunodominant peptides, etc), focusing on the outcome of their recent preclinical and clinical evaluation, and to shed light on the mechanisms involved in the immunopathogenesis and treatment of multiple sclerosis.
Collapse
|
5
|
Zhou Y, Leng X, Luo X, Mo C, Zou Q, Liu Y, Wang Y. Regulatory Dendritic Cells Induced by K313 Display Anti-Inflammatory Properties and Ameliorate Experimental Autoimmune Encephalitis in Mice. Front Pharmacol 2020; 10:1579. [PMID: 32063843 PMCID: PMC6997778 DOI: 10.3389/fphar.2019.01579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
As a GSK-3β inhibitor reported by our group, K313 is a novel benzoxazole derivative and displays anti-inflammatory properties in RAW264.7 macrophages without cytotoxicity. The activity of GSK-3β affects the differentiation and maturation of bone marrow-derived dendritic cells (DCs). This study aims to investigate whether K313 can be used to induce regulatory/tolerogenic dendritic cells (DCregs), and the therapeutic effects of DCregs induced by K313 in the autoimmune model of experimental autoimmune encephalitis (EAE). The results show that compared with LPS stimulated mature DCs, K313-treated bone marrow-derived DCs display obvious tolerogenic characteristics with decreased expression of co-stimulatory molecules, downregulated secretions of pro-inflammatory cytokines and unregulated secretion of anti-inflammatory cytokine IL-10. The above characteristics conform to the typical phenotypes of DCregs. Moreover, K313-modified DCregs inhibit antigen-specific T cell responses in vitro. Furthermore, by adoptive transfer, K313 modified DCregs to the EAE mice, and the development of disease was ameliorated to some extent. In addition, treatment with K313-modified DCregs also significantly reduced the percentages of splenetic Th1 and Th17 cells and increased the percentage of regulatory T cells in EAE mice. In conclusion, K313-modified DCregs show anti-inflammatory properties in vitro and have a significant positive effect on the EAE disease in vivo. Our data indicate that K313-induced DCregs pulsed with auto-antigen might have potential use as a therapeutic approach for autoimmune inflammation of the central nervous system.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Emergency, West China Second University Hospital and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiao Leng
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xingyan Luo
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Chunfen Mo
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Qiang Zou
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yang Liu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yantang Wang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, China
| |
Collapse
|
6
|
Bix GJ, Fraser JF, Mack WJ, Carmichael ST, Perez-Pinzon M, Offner H, Sansing L, Bosetti F, Ayata C, Pennypacker KR. Uncovering the Rosetta Stone: Report from the First Annual Conference on Key Elements in Translating Stroke Therapeutics from Pre-Clinical to Clinical. Transl Stroke Res 2018; 9:258-266. [PMID: 29633156 PMCID: PMC5982459 DOI: 10.1007/s12975-018-0628-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 01/12/2023]
Abstract
The first annual Stroke Translational Research Advancement Workshop (STRAW), entitled “Uncovering the Rosetta Stone: Key Elements in Translating Stroke Therapeutics from Pre-Clinical to Clinical” was held at the University of Kentucky on October 4–5, 2017. This workshop was organized by the Center for Advanced Translational Stroke Science. The workshop consisted of 2 days of activities. These included three presentations establishing the areas of research in stroke therapeutics, discussing the routes for translation from bench to bedside, and identifying successes and failures in the field. On day 2, grant funding opportunities and goals for the National Institute for Neurological Diseases and Stroke were presented. In addition, the meeting also included break-out sessions designed to connect researchers in areas of stroke, and to foster potential collaborations. Finally, the meeting concluded with an open discussion among attendees led by a panel of experts.
Collapse
Affiliation(s)
- Gregory J Bix
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Department of Neurosurgery, University of Kentucky, Lexington, KY, USA.,Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - William J Mack
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, California, Los Angeles, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, California, Los Angeles, USA
| | - Miguel Perez-Pinzon
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Halina Offner
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA.,Department of Anesthesiology, Oregon Health & Science University, Portland, Oregon, USA.,Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Lauren Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Francesca Bosetti
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cenk Ayata
- Department of Neurology, Harvard Medical School, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Keith R Pennypacker
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA. .,Department of Neurology, University of Kentucky, Lexington, KY, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
Benedek G, Meza-Romero R, Bourdette D, Vandenbark AA. The use of flow cytometry to assess a novel drug efficacy in multiple sclerosis. Metab Brain Dis 2015; 30:877-84. [PMID: 25502010 PMCID: PMC4465883 DOI: 10.1007/s11011-014-9634-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/17/2014] [Indexed: 11/29/2022]
Abstract
Applying different technologies to monitor disease activity and treatment efficacy are essential in a complex disease such as multiple sclerosis. Combining current assays with flow cytometry could create a powerful tool for such analyses. The cell surface expression level of CD74, the MHC class II invariant chain, is a potential disease biomarker that could be monitored by FACS analysis in order to assess disease progression and the clinical efficacy of partial MHC class II constructs in treating MS. These constructs, which can bind to and down-regulate CD74 cell-surface expression on monocytes and inhibit macrophage migration inhibitory factor (MIF) effects, can reverse clinical and histological signs of EAE. These properties of partial class II constructs are highly compatible with a flow cytometry approach for monitoring CD74 expression as a possible biomarker for disease activity/progression and as a treatment response marker.
Collapse
Affiliation(s)
- Gil Benedek
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR, USA
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Roberto Meza-Romero
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR, USA
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR, USA
| | - Dennis Bourdette
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR, USA
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
- Sr. Research Career Scientist, Research Service, Department of Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
8
|
Verbout NG, Yu X, Healy LD, Phillips KG, Tucker EI, Gruber A, McCarty OJT, Offner H. Thrombin mutant W215A/E217A treatment improves neurological outcome and attenuates central nervous system damage in experimental autoimmune encephalomyelitis. Metab Brain Dis 2015; 30:57-65. [PMID: 24810631 PMCID: PMC4225189 DOI: 10.1007/s11011-014-9558-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by demyelination and axonal damage of the central nervous system. The pathogenesis of MS has also been linked to vascular inflammation and local activation of the coagulation system, resulting in perivascular fibrin deposition. Treatment of experimental autoimmune encephalomyelitis (EAE), a model of human MS, with antithrombotic and antiinflammatory activated protein C (APC) reduces disease severity. Since recombinant APC (Drotecogin alfa), originally approved for the treatment of severe sepsis, is not available for human MS studies, we tested the hypothesis that pharmacologic activation of endogenous protein C could likewise improve the outcome of EAE. Mice were immunized with murine myelin oligodendrocyte glycoprotein (MOG) peptides and at the onset of EAE symptoms, were treated every other day with either WE thrombin (25 μg/kg; i.v.), a selective recombinant protein C activator thrombin analog, or saline control. Mice were monitored for changes in disease score until euthanized for ex vivo analysis of inflammation. Administration of WE thrombin significantly ameliorated clinical severity of EAE, reduced inflammatory cell infiltration and demyelination, suppressed the activation of macrophages comprising the CD11b + population and reduced accumulation of fibrin (ogen) in the spinal cord. These data suggest that symptomatic MS may respond to a treatment strategy that involves temporal pharmacological enhancement of endogenous APC generation.
Collapse
Affiliation(s)
- Norah G Verbout
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA,
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Recombinant T cell receptor ligands improve outcome after experimental cerebral ischemia. Transl Stroke Res 2013; 2:404-10. [PMID: 21961027 DOI: 10.1007/s12975-011-0085-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A key target for novel stroke therapy is the regulation of post-ischemic inflammatory mechanisms. Recent evidence emphasizes the role of T lymphocytes of differing subtypes in the evolution is ischemic brain damage. We have recently demonstrated the benefit of myelin antigen-specific immunodulatory agents known as recombinant T cell receptor ligands (RTLs) in a standard murine model of focal stroke. The aim of the current study was to extend this initial observation to RTL treatment in a therapeutically relevant timing after middle cerebral artery occlusion (MCAO) and verify functional benefit to complement histological outcome measures. We observed that the administration of mouse-specific RTL551 reduced infarct size and improved sensorimotor outcome when administered within a 3 h post-ischemic therapeutic window. RTL551 treatment reduced cortical, caudate putamen, and total infarct volume as compared to vehicle-treated mice. Using a standard behavioral testing repertoire, we observed that RTL551 reduced sensorimotor impairment 3 days after MCAO. Humanized RTL1000 (HLA-DR2 moiety linked to hMOG-35-55 peptide) also reduced infarct size in HLA-DR2 transgenic mice. These data indicate that this neuroantigen-specific immunomodulatory agent reduces damage when administered in a therapeutically relevant reperfusion timeframe.
Collapse
|
10
|
Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline. PLoS One 2012; 7:e51869. [PMID: 23284794 PMCID: PMC3527485 DOI: 10.1371/journal.pone.0051869] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/12/2012] [Indexed: 01/05/2023] Open
Abstract
In multiple sclerosis (MS) and other autoimmune diseases, the autoreactive T cells overcome the resistance provided by the regulatory T cells (Tregs) due to a decrease in the number of Foxp3-expressing Tregs. Therefore, upregulation and/or maintenance of Tregs during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Here we have undertaken an innovative approach to upregulate Tregs and achieve immunomodulation. RNS60 is a 0.9% saline solution generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) and PNS60 (saline containing excess oxygen without TCP modification), was found to upregulate Foxp3 and enrich Tregs in MBP-primed T cells. Moreover, RNS60, but not NS, RNS10.3 and PNS60, inhibited the production of nitric oxide (NO) and the expression of iNOS in MBP-primed splenocytes. Incubation of the cells with an NO donor abrogated the RNS60-mediated upregulation of Foxp3. These results suggest that RNS60 boosts Tregs via suppression of NO production. Consistent to the suppressive activity of Tregs towards autoreactive T cells, RNS60, but not NS, RNS10.3, or PNS60, suppressed the differentiation of Th17 and Th1 cells and shifted the balance towards a Th2 response. Finally, RNS60 treatment exhibited immunomodulation and ameliorated adoptive transfer of experimental allergic encephalomyelitis, an animal model of MS, via Tregs. These results describe a novel immunomodulatory property of RNS60 and suggest its exploration for therapeutic intervention in MS and other autoimmune disorders.
Collapse
|
11
|
Vandenbark AA, Meza-Romero R, Benedek G, Andrew S, Huan J, Chou YK, Buenafe AC, Dahan R, Reiter Y, Mooney JL, Offner H, Burrows GG. A novel regulatory pathway for autoimmune disease: binding of partial MHC class II constructs to monocytes reduces CD74 expression and induces both specific and bystander T-cell tolerance. J Autoimmun 2012; 40:96-110. [PMID: 23026773 DOI: 10.1016/j.jaut.2012.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Treatment with partial (p)MHC class II-β1α1 constructs (also referred to as recombinant T-cell receptor ligands - RTL) linked to antigenic peptides can induce T-cell tolerance, inhibit recruitment of inflammatory cells and reverse autoimmune diseases. Here we demonstrate a novel regulatory pathway that involves RTL binding to CD11b(+) mononuclear cells through a receptor comprised of MHC class II invariant chain (CD74), cell-surface histones and MHC class II itself for treatment of experimental autoimmune encephalomyelitis (EAE). Binding of RTL constructs with CD74 involved a previously unrecognized MHC class II-α1/CD74 interaction that inhibited CD74 expression, blocked activity of its ligand, macrophage migration inhibitory factor, and reduced EAE severity. These findings implicate binding of RTL constructs to CD74 as a key step in both antigen-driven and bystander T-cell tolerance important in treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Research Service, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Roberto Meza-Romero
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gil Benedek
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shayne Andrew
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jianya Huan
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yuan K Chou
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Abigail C Buenafe
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rony Dahan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoram Reiter
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jeffery L Mooney
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Halina Offner
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gregory G Burrows
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.,Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
12
|
Recombinant T-Cell Receptor Ligand (RTL) for Treatment of Multiple Sclerosis: A Double-Blind, Placebo-Controlled, Phase 1, Dose-Escalation Study. Autoimmune Dis 2012; 2012:954739. [PMID: 22548151 PMCID: PMC3328144 DOI: 10.1155/2012/954739] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 11/23/2022] Open
Abstract
Background. Recombinant T-cell receptor ligand 1000 (RTL1000) is a single-chain protein construct containing the outer two domains of HLA-DR2 linked to myelin-oligodendrocyte-glycoprotein- (MOG-) 35–55 peptide. Analogues of RTL1000 induce T-cell tolerance, reverse clinical and histological disease, and promote repair in experimental autoimmune encephalomyelitis (EAE) in DR2 transgenic, C57BL/6, and SJL/J mice. Objective. Determining the maximum tolerated dose, safety, and tolerability of RTL1000 in multiple sclerosis (MS) subjects. Methods. This was a multicenter, Phase I dose-escalation study in HLA-DR2+ MS subjects. Consecutive cohorts received RTL1000 doses of 2, 6, 20, 60, 200, and 100 mg, respectively. Subjects within each cohort randomly received a single intravenous infusion of RTL1000 or placebo at a 4 : 2 ratio. Safety monitoring included clinical, laboratory, and brain magnetic resonance imaging (MRI) evaluations. Results. Thirty-four subjects completed the protocol. All subjects tolerated the 2–60 mg doses of RTL1000. Doses ≥100 mg caused hypotension and diarrhea in 3 of 4 subjects, leading to discontinuation of further enrollment. Conclusions. The maximum tolerated dose of RTL1000 in MS subjects is 60 mg, comparable to effective RTL doses in EAE. RTL1000 is a novel approach for MS treatment that may induce immunoregulation without immunosuppression and promote neural repair.
Collapse
|
13
|
Sinha S, Miller LM, Subramanian S, Burrows GG, Vandenbark AA, Offner H. RTL551 treatment of EAE reduces CD226 and T-bet+ CD4 T cells in periphery and prevents infiltration of T-bet+ IL-17, IFN-γ producing T cells into CNS. PLoS One 2011; 6:e21868. [PMID: 21750737 PMCID: PMC3130056 DOI: 10.1371/journal.pone.0021868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/08/2011] [Indexed: 01/12/2023] Open
Abstract
Recombinant T cell receptor ligands (RTLs) that target encephalitogenic T-cells can reverse clinical and histological signs of EAE, and are currently in clinical trials for treatment of multiple sclerosis. To evaluate possible regulatory mechanisms, we tested effects of RTL therapy on expression of pathogenic and effector T-cell maturation markers, CD226, T-bet and CD44, by CD4+ Th1 cells early after treatment of MOG-35-55 peptide-induced EAE in C57BL/6 mice. We showed that 1–5 daily injections of RTL551 (two-domain I-Ab covalently linked to MOG-35-55 peptide), but not the control RTL550 (“empty” two-domain I-Ab without a bound peptide) or Vehicle, reduced clinical signs of EAE, prevented trafficking of cells outside the spleen, significantly reduced the frequency of CD226 and T-bet expressing CD4+ T-cells in blood and inhibited expansion of CD44 expressing CD4+ T-cells in blood and spleen. Concomitantly, RTL551 selectively reduced CNS inflammatory lesions, absolute numbers of CNS infiltrating T-bet expressing CD4+ T-cells and IL-17 and IFN-γ secretion by CNS derived MOG-35-55 reactive cells cultured ex vivo. These novel results demonstrate that a major effect of RTL therapy is to attenuate Th1 specific changes in CD4+ T-cells during EAE and prevent expansion of effector T-cells that mediate clinical signs and CNS inflammation in EAE.
Collapse
Affiliation(s)
- Sushmita Sinha
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon, United States of America
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lisa M. Miller
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon, United States of America
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Sandhya Subramanian
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon, United States of America
| | - Gregory G. Burrows
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Arthur A. Vandenbark
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon, United States of America
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States of America
- Research Service, Department of Veterans Affairs Medical Center, Portland, Oregon, United States of America
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Halina Offner
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon, United States of America
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
14
|
Peptide-MHC-based nanovaccines for the treatment of autoimmunity: a "one size fits all" approach? J Mol Med (Berl) 2011; 89:733-42. [PMID: 21499734 DOI: 10.1007/s00109-011-0757-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 01/26/2023]
Abstract
Nanotechnology offers enormous potential in drug delivery and in vivo imaging. Nanoparticles (NPs), for example, are being extensively tested as scaffolds to deliver anti-cancer therapeutics or imaging tags. Our recent work, discussed herein, indicates that an opportunity exists to use NPs to deliver ligands for, and trigger, cognate receptors on T lymphocytes as a way to induce therapeutic immune responses in vivo. Specifically, systemic delivery of NPs coated with Type 1 diabetes (T1D)-relevant peptide-major histocompatibility complex molecules triggered the expansion of cognate memory autoregulatory (disease-suppressing) T cells, suppressed the progression of autoimmune attack against insulin-producing beta cells, and restored glucose homeostasis. This therapeutic avenue exploits a new paradigm in the progression of chronic autoimmune responses that enables the rational design of disease-specific "nanovaccines" capable of blunting autoimmunity without impairing systemic immunity, a long sought-after goal in the therapy of these disorders. Here, we discuss the research paths that led to the discovery of this therapeutic avenue and highlight the features that make it an attractive approach for the treatment, in an antigen-specific manner, of a whole host of autoimmune diseases.
Collapse
|
15
|
Characterization of human platelet binding of recombinant T cell receptor ligand. J Neuroinflammation 2010; 7:75. [PMID: 21059245 PMCID: PMC2992052 DOI: 10.1186/1742-2094-7-75] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Recombinant T cell receptor ligands (RTLs) are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS). RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used to regulate T cell responses and inhibit experimental autoimmune encephalomyelitis (EAE). The mechanisms by which RTLs impede local recruitment and retention of inflammatory cells in the CNS, however, are not completely understood. Methods We have recently shown that RTLs bind strongly to B cells, macrophages, and dendritic cells, but not to T cells, in an antigenic-independent manner, raising the question whether peripheral blood cells express a distinct RTL-receptor. Our study was designed to characterize the molecular mechanisms by which RTLs bind human blood platelets, and the ability of RTL to modulate platelet function. Results Our data demonstrate that human blood platelets support binding of RTL. Immobilized RTL initiated platelet intracellular calcium mobilization and lamellipodia formation through a pathway dependent upon Src and PI3 kinases signaling. The presence of RTL in solution reduced platelet aggregation by collagen, while treatment of whole blood with RTL prolonged occlusive thrombus formation on collagen. Conclusions Platelets, well-known regulators of hemostasis and thrombosis, have been implicated in playing a major role in inflammation and immunity. This study provides the first evidence that blood platelets express a functional RTL-receptor with a putative role in modulating pathways of neuroinflammation.
Collapse
|
16
|
Sinha S, Miller L, Subramanian S, McCarty OJT, Proctor T, Meza-Romero R, Huan J, Burrows GG, Vandenbark AA, Offner H. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis. J Neuroimmunol 2010; 225:52-61. [PMID: 20546940 DOI: 10.1016/j.jneuroim.2010.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 11/19/2022]
Abstract
Recombinant T cell ligands (RTLs) ameliorate experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner. We evaluated effects of RTL401 (I-A(s) alpha1beta1+PLP-139-151) on splenocytes from SJL/J mice with EAE to study RTL-T cell tolerance-inducing mechanisms. RTLs bound to B, macrophages and DCs, through RTL-MHC-alpha1beta1 moiety. RTL binding reduced CD11b expression on splenic macrophages/DC, and RTL401-conditioned macrophages/DC, not B cells, inhibited T cell activation. Reduced ability of RTL- incubated splenocytes to transfer EAE was likely mediated through macrophages/DC, since B cells were unnecessary for RTL treatment of EAE. These results demonstrate a novel pathway of T cell regulation by RTL-bound APCs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- CD11b Antigen/metabolism
- Cells, Cultured
- Coculture Techniques
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Flow Cytometry
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Ligands
- Macrophages/drug effects
- Macrophages/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Monocytes/drug effects
- Monocytes/metabolism
- Myelin Proteolipid Protein/immunology
- Peptide Fragments/immunology
- Protein Binding/drug effects
- Protein Binding/physiology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Recombinant Proteins/therapeutic use
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Sushmita Sinha
- Neuroimmunology Research R&D-31, Portland VA Medical Center, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pahan K. Neuroimmune pharmacological control of EAE. J Neuroimmune Pharmacol 2010; 5:165-7. [PMID: 20414732 DOI: 10.1007/s11481-010-9219-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/14/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Kalipada Pahan
- Department of Neurological sciences, Rush University Medical Center, Cohn Research Building, Suite 320, 1735 West Harrison St, Chicago, IL 60612, USA.
| |
Collapse
|