1
|
Sato F, Nakamura Y, Katsuki A, Khadka S, Ahmad I, Omura S, Martinez NE, Tsunoda I. Curdlan, a Microbial β-Glucan, Has Contrasting Effects on Autoimmune and Viral Models of Multiple Sclerosis. Front Cell Infect Microbiol 2022; 12:805302. [PMID: 35198458 PMCID: PMC8859099 DOI: 10.3389/fcimb.2022.805302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelination and axonal degeneration in the central nervous system (CNS). Bacterial and fungal infections have been associated with the development of MS; microbial components that are present in several microbes could contribute to MS pathogenesis. Among such components, curdlan is a microbial 1,3-β-glucan that can stimulate dendritic cells, and enhances T helper (Th) 17 responses. We determined whether curdlan administration could affect two animal models for MS: an autoimmune model, experimental autoimmune encephalomyelitis (EAE), and a viral model, Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD). We induced relapsing-remitting EAE by sensitizing SJL/J mice with the myelin proteolipid protein (PLP)139-151 peptide and found that curdlan treatment prior to PLP sensitization converted the clinical course of EAE into hyperacute EAE, in which the mice developed a progressive motor paralysis and died within 2 weeks. Curdlan-treated EAE mice had massive infiltration of T cells and neutrophils in the CNS with higher levels of Th17 and Th1 responses, compared with the control EAE mice. On the other hand, in TMEV-IDD, we found that curdlan treatment reduced the clinical scores and axonal degeneration without changes in inflammation or viral persistence in the CNS. In summary, although curdlan administration exacerbated the autoimmune MS model by enhancing inflammatory demyelination, it suppressed the viral MS model with reduced axonal degeneration. Therefore, microbial infections may play contrasting roles in MS depending on its etiology: autoimmunity versus viral infection.
Collapse
Affiliation(s)
- Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Yumina Nakamura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Aoshi Katsuki
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Sundar Khadka
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ijaz Ahmad
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Nicholas E. Martinez
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health-Shreveport, Shreveport, LA, United States
| |
Collapse
|
2
|
Motta F, Gershwin ME, Selmi C. Mushrooms and immunity. J Autoimmun 2020; 117:102576. [PMID: 33276307 DOI: 10.1016/j.jaut.2020.102576] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
In the wide field of nutraceuticals, the effects of mushrooms on immunity, cancer and including autoimmunity have been proposed for centuries but in recent years a growing interest has led scientists to elucidate which specific compounds have bioactive properties and through which mechanisms. Glucans and specific proteins are responsible for most of the biological effects of mushrooms, particularly in terms of immunomodulatory and anti-tumor results. Proteins with bioactive effects include lectins, fungal immunomodulatory proteins (FIPs), ribosome inactivating proteins (RIPs), ribonucleases, laccases, among others. At the present status of knowledge, numerous studies have been performed on cell lines and murine models while only a few clinical trials have been conducted. As in most cases of dietary components, the multitude of variables implicated in the final effect and an inadequate standardization are expected to affect the observed differences, thus making the available evidence insufficient to justify the treatment of human diseases with mushrooms extracts. We will herein provide a comprehensive review and critically discussion the biochemical changes induced by different mushroom compounds as observed in in vitro studies, particularly on macrophages, dendritic cells, T cells, and NK cells, compared to in vivo and human studies. Additional effects are represented by lipids which constitute a minor part of mushrooms but may have a role in reducing serum cholesterol levels or phenols acting as antioxidant and reducing agents. Human studies provide a minority of available data, as well illustrated by a placebo-controlled study of athletes treated with β-glucan from Pleurotus ostreatus. Variables influencing study outcomes include different mushrooms strains, growing conditions, developmental stage, part of mushroom used, extraction method, and storage conditions. We foresee that future rigorous research will be needed to determine the potential of mushroom compounds for human health to reproduce the effects of some compounds such as lentinan which a metaanalysis demonstrated to increase the efficacy of chemotherapy in the treatment of lung cancer and in the improvement of the patients quality of life.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
3
|
Libbey JE, Sanchez JMS, Fleming BA, Doty DJ, DePaula-Silva AB, Mulvey MA, Fujinami RS. Modulation of experimental autoimmune encephalomyelitis through colonisation of the gut with Escherichia coli. Benef Microbes 2020; 11:669-684. [PMID: 33045841 DOI: 10.3920/bm2020.0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) is a neuro-inflammatory autoimmune disease of the central nervous system (CNS) that affects young adults. It is characterised by the development of demyelinating lesions and inflammation within the CNS. Although the causes of MS are still elusive, recent work using patient samples and experimental animal models has demonstrated a strong relationship between the gut microbiota and its contribution to CNS inflammation and MS. While there is no cure for MS, alteration of the gut microbiota composition through the use of probiotics is a very promising treatment. However, while most recent works have focused on the use of probiotics to modify pre-existing disease, little is known about its role in protecting from the establishment of MS. In this study, we determined whether colonisation with the probiotic bacterium Escherichia coli strain Nissle 1917 (EcN) could be used as a prophylactic strategy to prevent or alter the development of experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS. We found that double gavage (two doses) of EcN before induction of EAE delayed disease onset and decreased disease severity. We also found that EcN-treated mice had decreased amounts of perivascular cuffing, CD4+ T cell infiltration into the CNS, together with significantly decreased absolute numbers of Th1 cells, and reduced activation of microglia. Although further studies are necessary to comprehend the exact protective mechanisms induced, our study supports a promising use of EcN as a probiotic for the prevention of MS.
Collapse
Affiliation(s)
- J E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - J M S Sanchez
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - B A Fleming
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 2 Room 202, 903 4th Street, Hamilton, MT 59840, USA
| | - D J Doty
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - A B DePaula-Silva
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - M A Mulvey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - R S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Omura S, Sato F, Martinez NE, Park AM, Fujita M, Kennett NJ, Cvek U, Minagar A, Alexander JS, Tsunoda I. Bioinformatics Analyses Determined the Distinct CNS and Peripheral Surrogate Biomarker Candidates Between Two Mouse Models for Progressive Multiple Sclerosis. Front Immunol 2019; 10:516. [PMID: 30941144 PMCID: PMC6434997 DOI: 10.3389/fimmu.2019.00516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Previously, we have established two distinct progressive multiple sclerosis (MS) models by induction of experimental autoimmune encephalomyelitis (EAE) with myelin oligodendrocyte glycoprotein (MOG) in two mouse strains. A.SW mice develop ataxia with antibody deposition, but no T cell infiltration, in the central nervous system (CNS), while SJL/J mice develop paralysis with CNS T cell infiltration. In this study, we determined biomarkers contributing to the homogeneity and heterogeneity of two models. Using the CNS and spleen microarray transcriptome and cytokine data, we conducted computational analyses. We identified up-regulation of immune-related genes, including immunoglobulins, in the CNS of both models. Pro-inflammatory cytokines, interferon (IFN)-γ and interleukin (IL)-17, were associated with the disease progression in SJL/J mice, while the expression of both cytokines was detected only at the EAE onset in A.SW mice. Principal component analysis (PCA) of CNS transcriptome data demonstrated that down-regulation of prolactin may reflect disease progression. Pattern matching analysis of spleen transcriptome with CNS PCA identified 333 splenic surrogate markers, including Stfa2l1, which reflected the changes in the CNS. Among them, we found that two genes (PER1/MIR6883 and FKBP5) and one gene (SLC16A1/MCT1) were also significantly up-regulated and down-regulated, respectively, in human MS peripheral blood, using data mining.
Collapse
Affiliation(s)
- Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Nicholas E. Martinez
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Nikki J. Kennett
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Urška Cvek
- Department of Computer Science, Louisiana State University Shreveport, Shreveport, LA, United States
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - J. Steven Alexander
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
5
|
Cusick MF, Libbey JE, Oh L, Jordan S, Fujinami RS. Acthar gel treatment suppresses acute exacerbations in a murine model of relapsing-remitting multiple sclerosis. Autoimmunity 2014; 48:222-30. [PMID: 25410153 DOI: 10.3109/08916934.2014.984836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acthar gel is indicated for the treatment of acute exacerbations of multiple sclerosis (MS) in adults. Its effects on immune cells during a relapse are unknown. This study investigated the effects of Acthar in an animal model of relapsing-remitting MS, using SJL/J mice sensitized with myelin peptide. All animal studies were reviewed and approved by the University of Utah Institutional Animal Care and Use Committee and conducted in accordance with the guidelines prepared by the Committee on Care and Use of Laboratory Animals, Institute of Laboratory Animals Resources, National Research Council. Mice injected with Acthar to treat the second attack had a significantly lower mean clinical score during relapse and a significantly reduced cumulative disease burden compared to Placebo gel-treated mice. Furthermore, Acthar treatment ameliorated inflammation/demyelination in the spinal cord and markedly suppressed ex vivo myelin peptide-induced CD4(+) T cell proliferation.
Collapse
Affiliation(s)
- Matthew F Cusick
- Department of Pathology, University of Utah , Salt Lake City, UT , USA and
| | | | | | | | | |
Collapse
|
6
|
DA virus mutant H101 has altered CNS pathogenesis and causes immunosuppression. J Neuroimmunol 2014; 277:118-26. [PMID: 25468274 DOI: 10.1016/j.jneuroim.2014.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
Abstract
Viruses use various mechanisms to evade clearance by the host. Investigating how a few changes in the genome of a non-lethal virus can lead to altered disease, from survivable to immunosuppression/death, would provide valuable information into viral pathogenesis. The Daniels strain of Theiler's murine encephalomyelitis virus causes an asymptomatic infection or acute encephalitis followed by viral clearance. A mutant, H101, carries several alterations in the viral genome. H101 infection causes profound immunosuppression and death. Thus, a virus that is normally cleared by its natural host can become lethal due to just a few changes in the viral genome.
Collapse
|
7
|
Cusick MF, Libbey JE, Trede NS, Fujinami RS. Targeting insulin-like growth factor 1 leads to amelioration of inflammatory demyelinating disease. PLoS One 2014; 9:e94486. [PMID: 24718491 PMCID: PMC3981810 DOI: 10.1371/journal.pone.0094486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/15/2014] [Indexed: 11/18/2022] Open
Abstract
In patients with multiple sclerosis (MS) and in mice with experimental autoimmune encephalomyelitis (EAE), proliferating autoreactive T cells play an important role in the pathogenesis of the disease. Due to the importance of these myelin-specific T cells, these cells have been therapeutic targets in a variety of treatments. Previously we found that Lenaldekar (LDK), a novel small molecule, could inhibit exacerbations in a preclinical model of MS when given at the start of an EAE exacerbation. In those studies, we found that LDK could inhibit human T cell recall responses and murine myelin responses in vitro. In these new studies, we found that LDK could inhibit myelin specific T cell responses through the insulin-like growth factor-1 receptor (IGF-1R) pathway. Alteration of this pathway led to marked reduction in T cell proliferation and expansion. Blocking this pathway could account for the observed decreases in clinical signs and inflammatory demyelinating disease, which was accompanied by axonal preservation. Our data indicate that IGF-1R could be a potential target for new therapies for the treatment of autoimmune diseases where autoreactive T cell expansion is a requisite for disease.
Collapse
Affiliation(s)
- Matthew F. Cusick
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jane E. Libbey
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Nikolaus S. Trede
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States of America
| | - Robert S. Fujinami
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
8
|
Libbey JE, Tsunoda I, Fujinami RS. Possible role of interleukin-17 in a prime/challenge model of multiple sclerosis. J Neurovirol 2012; 18:471-478. [PMID: 22991336 PMCID: PMC3508306 DOI: 10.1007/s13365-012-0125-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/02/2012] [Accepted: 08/08/2012] [Indexed: 02/05/2023]
Abstract
No one single pathogen has been identified as the causative agent of multiple sclerosis (MS). Alternately, the likelihood of an autoimmune event may be nonspecifically enhanced by different infectious agents. In a novel animal model of MS, SJL/J mice primed through infection with a recombinant vaccinia virus (VV) encoding myelin proteolipid protein (PLP) (VV(PLP)) were susceptible to a central nervous system (CNS) inflammatory disease following administration of a nonspecific immunostimulant [complete Freund's adjuvant (CFA) plus Bordetella pertussis (BP)]. Mononuclear cells isolated from the brains, but not the spleens, of VV(PLP)-primed CFA/BP challenged mice produced interleukin (IL)-17 and interferon-γ and transferred a CNS inflammatory disease to naïve SJL/J mice. Administration of curdlan, a T helper 17 cell inducer, unexpectedly resulted in less severe clinical and histological signs of disease, compared to CFA/BP challenged mice, despite the induction of IL-17 in the periphery. Further examination of the VV(PLP)-prime CFA/BP challenge model may suggest new mechanisms for how different pathogens associated with MS can protect or enhance disease.
Collapse
Affiliation(s)
- Jane E. Libbey
- Department of Pathology University of Utah School of Medicine 30 North 1900 East, 3R330 SOM Salt Lake City, Utah 84132
| | - Ikuo Tsunoda
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center 1501 Kings Highway Shreveport, LA 71130
- Center for Molecular & Tumor Virology Louisiana State University Health Sciences Center 1501 Kings Highway Shreveport, LA 71130
| | - Robert S. Fujinami
- Department of Pathology University of Utah School of Medicine 30 North 1900 East, 3R330 SOM Salt Lake City, Utah 84132
| |
Collapse
|
9
|
Two discreet subsets of CD8 T cells modulate PLP(91-110) induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice. J Autoimmun 2012; 38:344-53. [PMID: 22459490 DOI: 10.1016/j.jaut.2012.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/23/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
Previously we showed that transgenic mice expressing human HLA-DR3 gene are susceptible to PLP(91-110) induced experimental autoimmune encephalomyelitis (EAE) and can serve as an animal model of multiple sclerosis (MS). HLA-DR3 mice with EAE showed increased number of CD8 T cells indicating their important role in disease pathogenesis. The role of CD8 T cells in MS, an inflammatory demyelinating disease of CNS, has been enigmatic as it has been assigned both regulatory and pathogenic roles. Therefore, to evaluate the role of CD8 T cells, we generated CD8 deficient HLA-DR3 transgenic mice (DR3.CD8(-/-)). Immunization with PLP(91-110) led to more severe EAE in DR3.CD8(-/-) mice compared to HLA-DR3 mice indicating a regulatory role for CD8 T cells. Interestingly, DR3.CD8(-/-) mice with EAE showed decreased CNS pathology compared to DR3 mice thus suggesting a pathogenic role for CD8 T cells. We show that these two subsets of CD8 T cells can be differentiated based on the surface expression of CD122 (IL-2 Rβ chain). CD8 T cells expressing CD122 (CD8+CD122+) play a regulatory role while CD8+CD122- T cells act as a pathogenic subset. CD122 expressing CD8 T cells are the regulatory subset of CD8 T cells and regulate the encephalitogenic CD4 T cells through direct modulation of antigen presenting cells and/or through the release of immunoregulatory cytokines such as IL-10, IFNγ and TGFβ. We also showed that adoptive transfer of CD8CD122- T cells caused increased spinal cord demyelination indicating that these are pathogenic subset of CD8 T cells. Our study suggests that CD8+ T cells play both regulatory as well as pathogenic role in disease pathogenesis of EAE. A better understanding of these subsets could aid in designing novel therapy for MS patients.
Collapse
|
10
|
Lyck R, Martinelli R. Mechanisms of T-cell migration across the BBB. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under physiological conditions, the highly specialized BBB strictly limits the entrance of immune cells into the CNS. By contrast, in the course of neuroinflammation such as that observed in multiple sclerosis, circulating T cells readily breach the BBB and initiate a cascade of events culminating in disease onset. Lymphocyte extravasation across the BBB occurs through a sequential multistep process, orchestrated by chemokines and cell adhesion molecules that precisely regulate the dynamic interaction of T cells with the endothelial cells forming the BBB. In this article, we will discuss the molecular players triggering the sophisticated process of T-cell migration across the BBB during pathological conditions.
Collapse
Affiliation(s)
- Ruth Lyck
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Roberta Martinelli
- Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
11
|
Pahan K. Immunomodulation of experimental allergic encephalomyelitis by cinnamon metabolite sodium benzoate. Immunopharmacol Immunotoxicol 2011; 33:586-93. [PMID: 21425926 DOI: 10.3109/08923973.2011.561861] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Experimental allergic encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), the most common human demyelinating disease of the central nervous system. Sodium benzoate (NaB), a metabolite of cinnamon and a FDA-approved drug against urea cycle disorders in children, is a widely used food additive, which is long known for its microbicidal effect. However, recent studies reveal that apart from its microbicidal effects, NaB can also regulate many immune signaling pathways responsible for inflammation, glial cell activation, switching of T-helper cells, modulation of regulatory T cells, cell-to-cell contact, and migration. As a result, NaB alters the neuroimmunology of EAE and ameliorates the disease process of EAE. In this review, we have made an honest attempt to analyze these newly-discovered immunomodulatory activities of NaB and associated mechanisms that may help in considering this drug for various inflammatory human disorders including MS as primary or adjunct therapy.
Collapse
Affiliation(s)
- Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Pahan K. Neuroimmune pharmacological control of EAE. J Neuroimmune Pharmacol 2010; 5:165-7. [PMID: 20414732 DOI: 10.1007/s11481-010-9219-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/14/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Kalipada Pahan
- Department of Neurological sciences, Rush University Medical Center, Cohn Research Building, Suite 320, 1735 West Harrison St, Chicago, IL 60612, USA.
| |
Collapse
|