1
|
Martiniakova M, Kovacova V, Biro R, Mondockova V, Sarocka A, Penzes N, Folwarczna J, Omelka R. Relationships among osteoporosis, redox homeostasis, and alcohol addiction: Importance of the brain-bone axis. Biomed Pharmacother 2025; 187:118063. [PMID: 40253828 DOI: 10.1016/j.biopha.2025.118063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Overabundance of reactive oxygen species (oxidative distress) leads to redox homeostasis disturbance and is associated with many pathological conditions. Accumulating evidence suggests that oxidative distress may contribute to osteoporosis. This review thoroughly outlines the relationships among osteoporosis, redox homeostasis, and alcohol addiction, since these relations are not sufficiently known and subsequently summarized. The brain-bone axis plays a crucial role in alcohol-induced damage to the nervous and skeletal systems. Alterations in the nervous system can lead to osteoporosis because the central nervous system is involved in bone remodeling through various neural pathways. Conversely, as an endocrine organ, bone secretes a number of bone-derived factors (osteokines), which can influence brain function and behavior. As a result, osteoporosis is more common in individuals with neurological disorders, and sudden neurological events can rapidly increase the risk of osteoporosis. Excessive alcohol consumption is linked to many neurological complications, as well as osteoporosis, which are manifested by disrupted redox homeostasis, inflammation, neurodegeneration, inhibition of neurogenesis, decreased bone mineral density, impaired bone microarchitecture, altered mineral homeostasis, raising fracture risk, hormonal dysregulation, and altered gut microbiota composition. Compared to men, alcohol dependence has more negative consequences for women, including an increased risk of liver, cardiovascular, metabolic, mental disorders, and breast cancer. Abstinence has been demonstrated to improve bone and brain health in alcohol addiction. The discovery of the brain-bone axis may lead to the development of new therapeutic approaches for alcohol and other substance addictions. Further research is needed in this direction, as many questions remain unanswered.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| |
Collapse
|
2
|
Dos Santos DM, Khachornsakkul K, Sonkusale S. Microneedle-integrated distance-based paper device for simultaneous transdermal detection of cortisol and dopamine. LAB ON A CHIP 2025; 25:2708-2721. [PMID: 40314079 DOI: 10.1039/d4lc00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Accurate measurement of stress marker cortisol and neurotransmitter dopamine is essential for understanding the physiological effects of chronic stress, enabling early therapeutic interventions to prevent adverse health consequences. Herein, we introduce the first fully integrated wearable device comprising a microneedle (MN) patch and distance-based paper analytical device (dPAD) for minimally invasive dermal interstitial fluid (ISF) sampling and simultaneous cortisol and dopamine sensing. The MN patch employs a swellable hydrogel matrix for efficient ISF extraction, whereas the simple dPAD sensor can simultaneously detect cortisol and dopamine through colorimetric reactions. Quantitative analysis was achieved through simple measurement of the colored distance proportional to the analyte concentration using a ruler. The device demonstrates high sensitivity, with detection limits of 0.25 μg mL-1 for cortisol and 1.0 ng mL-1 for dopamine, along with excellent selectivity for both analytes. It also exhibited high accuracy and precision, with recovery rates of 98.5-100.7% for cortisol and 98.8-102.2% for dopamine. These results show that the developed sensor device is user-friendly, simplifies the analysis process, reduces costs, and eliminates the need for complex instrumentation, making it a promising tool for point-of-care (POC) testing for stress and its relative disorders, with potential applications in diagnosing other biomarkers.
Collapse
Affiliation(s)
- Danilo Martins Dos Santos
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA.
- Sonkusale Research Labs, Halligan Hall, Tufts University, Medford, MA 02155, USA
| | - Kawin Khachornsakkul
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA.
- Sonkusale Research Labs, Halligan Hall, Tufts University, Medford, MA 02155, USA
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA.
- Sonkusale Research Labs, Halligan Hall, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
3
|
Xie T, Cui Y, Ren Z, Wang Q, Chen M. Neurobehavioral response in zebrafish exposed to perfluorooctane sulfonate and its substitutes: Underestimated ecological risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 379:126527. [PMID: 40436096 DOI: 10.1016/j.envpol.2025.126527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/09/2025] [Accepted: 05/23/2025] [Indexed: 06/01/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant with adverse effects. Alongside PFOS, its substitutes, such as 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and 6:2 fluorotelomer sulfonic acid (6:2 FTSA), are frequently detected in aquatic environments. While the effects of PFOS and its substitutes on the aquatic organism behavior have been observed, the underlying mechanisms of these effects remain poorly understood. In this study, an online biological monitoring system was utilized to investigate the behavioral effects of 7-day exposure to PFOS, F-53B, and 6:2 FTSA in adult zebrafish (Danio rerio), and assess alterations in neurotoxicity-related biomarker levels. Results demonstrate that exposure to PFOS, F-53B, and 6:2 FTSA significantly reduced the behavioral strength (BS) and the amplitude of circadian rhythm in zebrafish. Notably, PFOS and 6:2 FTSA exposure induced circadian rhythm phase shifts. Furthermore, acetylcholinesterase (AChE) activity and dopamine (DA)/melatonin (MT) levels showed significant reductions consistent with BS alterations across all exposure groups. Molecular docking analysis revealed that PFOS, F-53B, and 6:2 FTSA exhibited significant binding affinities to related receptors. Among the three pollutants, F-53B exerted the most pronounced effects on BS values, circadian rhythm amplitude, and levels of related biomarkers. In contrast, 6:2 FTSA displayed the most significant impact on circadian rhythm phase shifts. These findings suggest that the effects and the underlying mechanisms of PFOS and its substitutes on zebrafish behavior may vary. A comprehensive evaluation of the neurotoxicity of PFOS substitutes for aquatic organisms is required to prevent underestimation of their potential risks.
Collapse
Affiliation(s)
- Ting Xie
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, China
| | - Yixiao Cui
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, China; Bureau of Agriculture and Rural Affairs of Zoucheng, Jining, 272000, China
| | - Zongming Ren
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Meng Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
4
|
Mounish BSC, Muthubharathi BC, Gowripriya T, Emmanuvel Rajan K, Balamurugan K. Coupled dopamine and insulin signaling mediated transgenerational and multigenerational inheritance of adaptive traits in Caenorhabditis elegans upon parental training with Salmonella enterica Serovar Typhi. Microbiol Spectr 2025:e0257524. [PMID: 40401953 DOI: 10.1128/spectrum.02575-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/12/2025] [Indexed: 05/23/2025] Open
Abstract
The nervous system's ability to perceive and learn about the environment can help organisms evolve and acquire traits, potentially generating adaptive responses. However, its potential to produce heritable modulations is a scientific lacuna, which is under-explored. Here, with the help of Caenorhabditis elegans, which has a well-established neuronal networking, we found that on training the worms on a candidate pathogenic bacterium Salmonella enterica Serovar Typhi, the worms could exhibit a characteristic transgenerational pathogenic avoidance up to three subsequent generations to the otherwise attractive pathogen. Our further analyses suggested that dopamine signaling is essential for the learning and transmission of the learned traits across generations and that inhibiting or mutating the expression of DAT-1 involved in dopamine transportation eliminated the inheritance patterns. Also, the offspring generations showed enhanced survival resistance against S. Typhi, which was coupled with the higher levels of C-type lectins suggesting priming of the offspring's immune system to generate resistance against S. Typhi upon re-exposure. Enhanced DAF-2/DAF-16-mediated insulin signaling pathway was observed, suggesting that the inherited immune response could be mediated through insulin/IGF-1 signaling (IIS). Furthermore, mutigenerational training on S. Typhi for three continuous generations induced preferential adaptation and better survivability toward S. Typhi. Taken together, the present study indicates that S. Typhi infection could generate transgenerational heritable dopaminergic modulations, which could possibly be the key signaling player in determining the decision-making ability of the host and also generate adaptive survival response, which could be mediated by the insulin-signaling pathway.IMPORTANCEAdaptation is a phenomenon by which an organism learns and develops a mechanism to respond to dynamic and challenging conditions. It provides animals with an advantage to exhibit phenotypic as well as genotypic plasticity, enabling better survivability. The current study helps in understanding how animals respond to environmental stresses such as bacterial infections and the possible mechanism by which the information of the experience is being transmitted across future generations. Neuronal signaling promotes the brain's ability to learn and generate memory, thereby reorganizing the response of the organism. The study also tries to understand how neuronal signaling could be essential for transmitting the information of parental experiences transgenerationally. Collectively, the study helps us understand the evolutionary adaptations exhibited across generations, which will also help us understand the long-term effects of pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | |
Collapse
|
5
|
Godoy SR, Sanchis P, Frau J, Vilanova B, Adrover M. On the Potential Role of Phytate Against Neurodegeneration: It Protects Against Fe 3+-Catalyzed Degradation of Dopamine and Ascorbate and Against Fe 3+-Induced Protein Aggregation. Int J Mol Sci 2025; 26:4799. [PMID: 40429940 PMCID: PMC12112605 DOI: 10.3390/ijms26104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) is commonly found in plant-derived foods and has important pharmacological properties against many pathologies. One of them appears to be neurodegeneration, which is notably stimulated by dysregulated metal metabolism. Consequently, we explore the role of IP6 in mitigating neurodegenerative events catalyzed by dysregulated free iron. More precisely, we performed spectrophotometric measurements in aqueous solutions to investigate the ability of IP6 to chelate Fe3+ and inhibit its role in catalyzing the oxidative degradation of dopamine and ascorbic acid, two key molecules in neuronal redox systems. Our results demonstrate that IP6 effectively prevents the formation of harmful intermediates, such as neuromelanin and reactive oxygen species, which are linked to neuronal damage. Additionally, we assessed the effect of IP6 on Fe3+-induced protein aggregation, focusing on α-synuclein, which is closely associated with Parkinson's disease. Our data reveal that IP6 accelerates the conversion of toxic α-synuclein oligomers into less harmful amyloid fibrils, thereby reducing their neurotoxic potential. Our findings highlight the dual function of IP6 as a potent Fe3+ chelator and modulator of protein aggregation pathways, reinforcing its potential as a neuroprotective agent. Consequently, IP6 offers promising therapeutic potential for mitigating the progression of neurodegenerative disorders such as Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Samantha Rebeca Godoy
- Interdisciplinary Group on Neurodegeneration, Vascular and Metabolic Diseases (INNoVAM), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain; (S.R.G.); (P.S.); (J.F.); (B.V.)
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, E-07010 Palma de Mallorca, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Pilar Sanchis
- Interdisciplinary Group on Neurodegeneration, Vascular and Metabolic Diseases (INNoVAM), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain; (S.R.G.); (P.S.); (J.F.); (B.V.)
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, E-07010 Palma de Mallorca, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan Frau
- Interdisciplinary Group on Neurodegeneration, Vascular and Metabolic Diseases (INNoVAM), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain; (S.R.G.); (P.S.); (J.F.); (B.V.)
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, E-07010 Palma de Mallorca, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Interdisciplinary Group on Neurodegeneration, Vascular and Metabolic Diseases (INNoVAM), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain; (S.R.G.); (P.S.); (J.F.); (B.V.)
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, E-07010 Palma de Mallorca, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Interdisciplinary Group on Neurodegeneration, Vascular and Metabolic Diseases (INNoVAM), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain; (S.R.G.); (P.S.); (J.F.); (B.V.)
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, E-07010 Palma de Mallorca, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
6
|
Monteagudo‐Cascales E, Lozano‐Montoya A, Krell T. Pseudomonas aeruginosa Performs Chemotaxis to the Neurotransmitters Serotonin, Dopamine, Epinephrine and Norepinephrine. Microb Biotechnol 2025; 18:e70161. [PMID: 40387537 PMCID: PMC12087296 DOI: 10.1111/1751-7915.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/25/2025] [Accepted: 05/03/2025] [Indexed: 05/20/2025] Open
Abstract
Bacteria use chemotaxis to move to favourable ecological niches. For many pathogenic bacteria, chemotaxis is required for full virulence, particularly for the initiation of host colonisation. There do not appear to be limits to the type of compounds that attract bacteria, and we are just beginning to understand how chemotaxis adapts them to their lifestyles. Quantitative capillary assays for chemotaxis show that P. aeruginosa is strongly attracted to serotonin, dopamine, epinephrine and norepinephrine. Chemotaxis to these compounds is greatly decreased in a mutant lacking the TlpQ chemoreceptor, and complementation of this mutant with a plasmid harbouring the tlpQ gene restores wild-type-like chemotaxis. Microcalorimetric titrations of the TlpQ sensor domain with these four compounds indicate that they bind directly to TlpQ. All four compounds are hormones and neurotransmitters that control a variety of processes and are also important signal molecules involved in the virulence of P. aeruginosa. They modulate motility, biofilm formation, the production of virulence factors and serve as siderophores that chelate iron. Additionally, this is the first report of bacterial chemotaxis to serotonin. This study provides an incentive for research to define the contribution of chemotaxis to these host signalling molecules to the virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Elizabet Monteagudo‐Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| | - Andrea Lozano‐Montoya
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
7
|
Jiang Y, Zhao B, Wang X, Tang B, Peng H, Luo Z, Shen Y, Wang Z, Jiang Z, Wang J, Ye J, Wang X, Zhu H. UKB-MDRMF: a multi-disease risk and multimorbidity framework based on UK biobank data. Nat Commun 2025; 16:3767. [PMID: 40263246 PMCID: PMC12015417 DOI: 10.1038/s41467-025-58724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
The rapid accumulation of biomedical cohort data presents opportunities to explore disease mechanisms, risk factors, and prognostic markers. However, current research often has a narrow focus, limiting the exploration of risk factors and inter-disease correlations. Additionally, fragmented processes and time constraints can hinder comprehensive analysis of the disease landscape. Our work addresses these challenges by integrating multimodal data from the UK Biobank, including basic, lifestyle, measurement, environment, genetic, and imaging data. We propose UKB-MDRMF, a comprehensive framework for predicting and assessing health risks across 1560 diseases. Unlike single disease models, UKB-MDRMF incorporates multimorbidity mechanisms, resulting in superior predictive accuracy, with all disease types showing improved performance in risk assessment. By jointly predicting and assessing multiple diseases, UKB-MDRMF uncovers shared and distinctive connections among risk factors and diseases, offering a broader perspective on health and multimorbidity mechanisms.
Collapse
Affiliation(s)
- Yukang Jiang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaopu Wang
- School of Management, University of Science and Technology of China, Hefei, AH, China
| | - Borui Tang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Huiyang Peng
- School of Management, University of Science and Technology of China, Hefei, AH, China
| | - Zidan Luo
- School of Management, University of Science and Technology of China, Hefei, AH, China
| | - Yue Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, AH, China
| | | | - Zhiwen Jiang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jie Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, AH, China
| | | | - Xueqin Wang
- School of Management, University of Science and Technology of China, Hefei, AH, China.
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Walle KM, Gustavson K, Mjaaland S, Askeland RB, Magnus P, Susser E, Lipkin WI, Stoltenberg C, Bresnahan M, Reichborn-Kjennerud T, Hornig M, Ask H. Maternal Immune-Mediated Conditions and ADHD Risk in Offspring. RESEARCH SQUARE 2025:rs.3.rs-5594521. [PMID: 40321771 PMCID: PMC12047969 DOI: 10.21203/rs.3.rs-5594521/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
BACKGROUND Maternal immune-mediated conditions during pregnancy have been linked with increased risk of attention-deficit/hyperactivity disorder (ADHD) in offspring. However, we do not know the extent to which these associations are influenced by shared genetic predispositions, as opposed to maternal inflammatory/immune responses during pregnancy. This study contributes by using paternal immune-mediated conditions as a negative control to explore these underlying factors, as we investigate associations between maternal immune-mediated conditions during pregnancy and offspring ADHD. METHODS Prospective data from the Norwegian Mother, Father, and Child Cohort Study (MoBa) was linked with the Medical Birth Registry of Norway (MBRN) and the Norwegian Patient Registry (NPR) to assess associations between prenatal exposure to maternal immune-mediated conditions and offspring ADHD risk up to age 18. Nationwide recruitment from 1999 to 2008 resulted in 104,270 eligible mother-child pairs. Among these, 21,340 children were exposed to maternal allergic conditions (asthma, allergies, atopic conditions) and 7,478 to other immune conditions (autoimmune, inflammatory). Paternal self-reported immune conditions served as negative controls for genetic confounding. Data was mostly collected through MoBa, with additional maternal condition cases sourced from MBRN, and children's ADHD diagnoses obtained from NPR. Cox proportional hazard models estimated Hazard ratios for ADHD diagnoses. RESULTS Both overall categories were associated with increased offspring ADHD risk (allergic conditions HR 1.23 95% CI, 1.14-1.34; other immune conditions HR 1.36 95% CI, 1.21-1.53). Specifically, we found associations for maternal asthma (HR 1.47 95% CI, 1.30-1.67); allergies (HR 1.20 95% CI, 1.10-1.31); rheumatologic/musculoskeletal conditions (HR 1.64 95% CI, 1.28-2.10), Crohn's disease/ulcerative colitis (adjusted HR 1.95 95% CI, 1.23-3.09), and endocrine conditions (HR 1.42 95% CI, 1.15-1.77), specifically, type 1 diabetes (adjusted HR 2.50 95% CI, 1.66-3.75). Although some paternal immune-mediated conditions (psoriasis, ulcerative colitis, Crohn's disease) showed similar trends of increased ADHD risk in offspring, only paternal asthma was significantly associated (adjusted HR 1.26 95% CI, 1.10-1.45). CONCLUSIONS Several maternal immune-mediated conditions were associated with increased ADHD risk in offspring. Observations of higher, more consistent estimates of ADHD risk in offspring for most maternal immune-mediated conditions versus paternal ones indicate that unmeasured genetic confounding does not fully explain these associations. These results suggest direct effects on fetal development through events at the maternal-fetal interface which may alter fetal immune responses and potentially lead to greater risk of ADHD in the offspring. Asthma may be a possible exception to this mechanism, as paternal asthma was also linked with risk of offspring ADHD.
Collapse
Affiliation(s)
| | | | | | | | | | - Ezra Susser
- Columbia University Mailman School of Public Health
| | - W Ian Lipkin
- Columbia University Mailman School of Public Health
| | | | | | | | - Mady Hornig
- Columbia University Mailman School of Public Health
| | - Helga Ask
- Norwegian Institute of Public Health
| |
Collapse
|
9
|
Wang F, Huang X, Wang W, Li X, Hao M, Taylor EW, Zhang J. L-Theanine Effectively Protects Against Copper-Facilitated Dopamine Oxidation: Implication for Relieving Dopamine Overflow-Associated Neurotoxicities. Mol Neurobiol 2025; 62:4993-5005. [PMID: 39499422 DOI: 10.1007/s12035-024-04601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Non-physiological disorders release dopamine into extracellular brain fluid to induce neurodegenerative brain diseases. The harmful mechanism of dopamine overflow is attributed to the dopamine-mediated production of hydroxyl radicals, suggesting that transition metal copper which is high in the brain is involved in promoting dopamine oxidation. MPP+ , an intermediate formed from the conversion of MPTP, is one of the most potent dopamine-releasing agents. It has been reported that L-theanine could improve motor dysfunction in MPTP-treated mice, suggesting that L-theanine may restrain copper-mediated oxidation of released dopamine. The present study examined the influences of L-theanine on extracellular dopamine-mediated cytotoxicity in the absence and presence of copper in SH-SY5Y cells. L-theanine significantly but only moderately suppressed cytotoxicity caused by dopamine alone. Surprisingly, dopamine together with copper rapidly and dramatically caused apoptotic responses by massively disrupting redox homeostasis. Nonetheless, L-theanine exhibited an extraordinary protective effect against these devastating events by chelating copper. The above great contrast in terms of copper could be recapitulated in a cell-free system. Though L-theanine reduced dopamine autoxidation as detected by HPLC, the capacity was not impressive, since a molar ratio of 10,000 (L-theanine to dopamine) was required for fully suppressing dopamine decrease. However, HPLC measurement showed that L-theanine was highly efficient in suppressing copper-mediated dopamine oxidation because only a molar ratio of 10 was required for fully suppressing dopamine decrease. Since copper plays a crucial role in promoting extracellular dopamine oxidation, our results suggest that L-theanine by chelating copper is an attractive food-based protective agent against dopamine overflow.
Collapse
Affiliation(s)
- Fuming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoyu Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China
| | - Wenping Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuli Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China
| | - Meng Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Han C, Zhu X, Sokol CL. Neuroimmune Circuits in Allergic Diseases. Annu Rev Immunol 2025; 43:367-394. [PMID: 39977604 DOI: 10.1146/annurev-immunol-082423-032154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Communication between the nervous and immune systems is evolutionarily conserved. From primitive eukaryotes to higher mammals, neuroimmune communication utilizes multiple complex and complementary mechanisms to trigger effective but balanced responses to environmental dangers such as allergens and tissue damage. These responses result from a tight integration of the nervous and immune systems, and accumulating evidence suggests that this bidirectional communication is crucial in modulating the initiation and development of allergic inflammation. In this review, we discuss the basic mechanisms of neuroimmune communication, with a focus on the recent advances underlying the importance of such communication in the allergic immune response. We examine neuronal sensing of allergens, how neuropeptides and neurotransmitters regulate allergic immune cell functions, and how inflammatory factors derived from immune cells coordinate complex peripheral and central nervous system responses. Furthermore, we highlight how fundamental aspects of host biology, from aging to circadian rhythm, might affect these pathways. Appreciating neuroimmune communications as an evolutionarily conserved and functionally integrated system that is fundamentally involved in type 2 immunity will provide new insights into allergic inflammation and reveal exciting opportunities for the management of acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Cai Han
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
11
|
Tan X, Zhang J, Chen W, Chen T, Cui G, Liu Z, Hu R. Progress on Direct Regulation of Systemic Immunity by the Central Nervous System. World Neurosurg 2025; 196:123814. [PMID: 39983990 DOI: 10.1016/j.wneu.2025.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
This article reviews the research progress on the direct regulation of the immune system by the central nervous system (CNS). The traditional "neuro-endocrine-immune" network model has confirmed the close connection between the CNS and the immune system. However, due to the complex mediating role of the endocrine system, its application in clinical treatment is limited. In recent years, the direct regulation of the peripheral immune system through the CNS has provided new methods for the clinical treatment of neuroimmune-related diseases. This article analyzes the changes in the peripheral immune system after CNS injury and summarizes the effects of various stimulation methods, including transcranial magnetic stimulation, transcranial electrical stimulation, deep brain stimulation, spinal cord stimulation, and vagus nerve stimulation, on the peripheral immune system. Additionally, it explores the clinical research progress and future development directions of these stimulation methods. It is proposed that these neural regulation techniques exhibit positive effects in reducing peripheral inflammation, protecting immune cells and organ functions, and improving immunosuppressive states, providing new perspectives and therapeutic potential for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junming Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weiming Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoyu Cui
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi Liu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
12
|
Matt SM, Nolan R, Manikandan S, Agarwal Y, Channer B, Oteju O, Daniali M, Canagarajah JA, LuPone T, Mompho K, Runner K, Nickoloff-Bybel E, Li B, Niu M, Schlachetzki JCM, Fox HS, Gaskill PJ. Dopamine-driven increase in IL-1β in myeloid cells is mediated by differential dopamine receptor expression and exacerbated by HIV. J Neuroinflammation 2025; 22:91. [PMID: 40122818 PMCID: PMC11931822 DOI: 10.1186/s12974-025-03403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1β in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1β in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1β, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1β. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1β gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1β signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1β in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1β, will be critical to effectively tailor medication regimens.
Collapse
Affiliation(s)
- Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Rachel Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Samyuktha Manikandan
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Oluwatofunmi Oteju
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Marzieh Daniali
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Joanna A Canagarajah
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Teresa LuPone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Krisna Mompho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Kaitlyn Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Emily Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Benjamin Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
13
|
Janmanee R, Sriwichai S. Development of an Electrochemical Biosensor Based on Polypyrrole-3-carboxylic Acid/Polypyrrole/Au Nanoparticle Composites for Detection of Dopamine. Polymers (Basel) 2025; 17:754. [PMID: 40292600 PMCID: PMC11944982 DOI: 10.3390/polym17060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Dopamine (DA) is a neurotransmitter that works in the brain. It plays several important roles in executive functions, including motor control, memory, mood, motivation, and reward. DA imbalances are associated with diseases in the nervous system such as Parkinson's disease, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder (ADHD). Therefore, the development of a biosensor for the detection of precise amounts of DA is of great interest. In this research, polypyrrole-3-carboxylic acid/polypyrrole/gold nanoparticle (PP3C/PPy/AuNPs) composites were developed for the electrochemical detection of DA. Firstly, a PP3C/PPy/AuNPs composite thin film was synthesized by electropolymerization on a fluorine-doped tin oxide (FTO)-coated glass substrate. Subsequently, cyclic voltammetry (CV), scanning electron microscopy (SEM), and differential pulse voltammetry (DPV) were used for the characterization and study of the efficiency of the obtained conducting polymer-gold nanoparticle composite thin film for the detection of DA. The proposed electrochemical sensor showed good sensitivity and selectivity for the detection of DA with a wide detection linear range from 5 to 180 μM (R2 = 0.9913). The limit of detection (LOD) and limit of quantitation (LOQ) values were 9.72 nM and 0.032 μM, respectively. Therefore, it can be concluded that the electrochemically fabricated PP3C/PPy/AuNPs composite thin film can be applied as an electrochemical biosensor for the detection of dopamine for the early diagnosis of various neurological disorders in the future.
Collapse
Affiliation(s)
- Rapiphun Janmanee
- Chemistry Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | - Saengrawee Sriwichai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Li G, Jiang Y, Tong H, Liu J, Jiang Z, Zhao Y, Tan K, Zhang Y, Yin X, Yun H, He Y, Liao H, Qin J, Ma X. Sciatic nerve stimulation enhances NK cell cytotoxicity through dopamine signaling and synergizes immunotherapy in triple-negative breast cancer. Drug Resist Updat 2025; 79:101212. [PMID: 39951881 DOI: 10.1016/j.drup.2025.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
AIMS Triple-negative breast cancer (TNBC) has shown resistance to immunotherapy. Stimulating ProkR2-bearing sensory neurons of the sciatic nerve has been reported to regulate immune function by catecholamine release through the vagal-adrenal axis. We aimed to investigate the impact of sciatic nerve stimulation on anti-tumor immune responses and immunotherapy efficacy in TNBC. METHODS We implemented ProkR2-bearing neuron stimulation in a TNBC mouse model. Single-cell RNA sequencing, flow cytometry, and immunohistochemistry were employed to uncover alterations in the tumor immune microenvironment. Immune cell depletion and receptor inhibitors were used to verify the cellular and molecular mechanisms by which neurostimulation regulates anti-tumor immunity. RESULTS Sciatic nerve stimulation inhibited 4T1 tumor growth by activating natural killer (NK) cells in the tumor microenvironment. The D1-like dopamine receptor-cAMP-PKA-CREB signaling pathway is essential for enhanced NK cell cytotoxicity and tumor inhibition induced by neurostimulation. Neurostimulation upregulated tumor PD-L1 expression through IFN-gamma pathway. Combining sciatic nerve stimulation with anti-PD-1 therapy resulted in superior tumor control compared to either approach alone and demonstrated good safety. CONCLUSIONS This research addresses a long-standing gap in understanding neuro-immune regulation in cancer treatment, presenting a promising strategy for overcoming immunoresistance in TNBC.
Collapse
Affiliation(s)
- Guangqi Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yuting Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jifeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqin Tan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomeng Yin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Yun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuxin He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hu Liao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Jiangjiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Ruckodanov DA, Maidment NT, Monbouquette HG. Electrochemical Sensing of Dopamine with an Implantable Microelectrode Array Microprobe Including an On-Probe Iridium Oxide Reference Electrode. ACS Chem Neurosci 2025; 16:642-648. [PMID: 39909725 DOI: 10.1021/acschemneuro.4c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Inclusion of an on-probe iridium oxide (IrOx) reference electrode on an implantable microelectrode array (MEA) microprobe enabled dopamine (DA) sensing with high sensitivity, an ultralow limit of detection, and high selectivity against common electroactive interferents. The monitoring of DA signaling in vivo is important for the study of brain disorders such as Parkinson's disease and substance abuse. A postfabrication method for electrochemical deposition of an IrOx film onto a targeted microelectrode enabled integration of an IrOx reference electrode (RE) onto the same MEA as the DA sensing, working electrode (WE). The on-probe IrOx RE is an attractive alternative to commonly used external Ag/AgCl wire REs, which can be unstable and can cause inflammatory responses in vivo. The on-probe IrOx RE was tested for support of DA sensing performance in two-electrode (i.e., WE and RE) and three-electrode (i.e., WE, RE and counter electrode) configurations. The sensitivities of the integrated and externally referenced DA sensing microprobes were comparable at ∼2500 nA/(μM·cm2), however the integrated three-electrode configuration exhibited a 6-fold lower limit of detection of ∼9 nM due to an 82% reduction in baseline noise. In addition, excellent 1000:1 selectivity against common electroactive interferents makes these DA sensing microprobes attractive for implementation in vivo.
Collapse
Affiliation(s)
- Dmitriy A Ruckodanov
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Nigel T Maidment
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Harold G Monbouquette
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Deepti, Kolay A, Majumder S, Kumar A. Low-cost graphite and double-gate FET-based label-free biosensor for dopamine sensing to detect neural diseases. Med Eng Phys 2025; 136:104282. [PMID: 39979005 DOI: 10.1016/j.medengphy.2025.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/24/2024] [Accepted: 01/05/2025] [Indexed: 02/22/2025]
Abstract
The manuscript proposes biosensors for detecting different concentrations of neurotransmitters named dopamine, which have a critical role in the human body's neurological, hormonal, and renal systems. In this work, the primary focus is to detect dopamine, whose disorder levels cause many neurological disabilities such as Alzheimer's and Parkinson's disease. In the present work, the simulation of two different structures has been studies: a) a graphite-based structure and b) a double gate TFET structure for detecting dopamine using TCAD Silvaco software. The proposed device utilizes a graphite-based structure with respective work functions of the used materials and studies the change in ON current (ION sensing factor is calculated for simulation study for VGS = 0.8 V). The cavity is increased to 800 µm for graphite-based biosensors for improved sensitivity. The graphite-based biosensors can detect up to 13.3 nM concentration of dopamine. Experimental electrochemical analysis results verify the proposed graphite-based biosensors' sensitivity for different dopamine concentrations. Another double gate field effect transistor (FET) biosensor has also been investigated for the detection of dopamine. The effective dielectric constant has been calculated using Bruggeman's model to check the sensitivity of double gate FET-based sensors for varying dopamine and uric acid concentrations. The sensitivity is increased with the increase of dopamine concentration percentage.
Collapse
Affiliation(s)
- Deepti
- Department of Physics, National Institute of Technology Patna, Bihar India
| | - Anirban Kolay
- Nextgen Adaptive Systems Group, Department of Electrical Engineering, National Institute of Technology Patna, Bihar India; Department of Electrical Engineering, Heritage Institute of Technology, Kolkata, West Bengal India
| | - Subrata Majumder
- Department of Physics, National Institute of Technology Patna, Bihar India
| | - Amitesh Kumar
- Nextgen Adaptive Systems Group, Department of Electrical Engineering, National Institute of Technology Patna, Bihar India.
| |
Collapse
|
17
|
Zhang Q, Ma H, Huo L, Wang S, Yang Q, Ye Z, Cao J, Wu S, Ma C, Shang C. Neural mechanism of trigeminal nerve stimulation recovering defensive arousal responses in traumatic brain injury. Theranostics 2025; 15:2315-2337. [PMID: 39990219 PMCID: PMC11840743 DOI: 10.7150/thno.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/03/2025] [Indexed: 02/25/2025] Open
Abstract
The arousal state is defined as the degree to which an individual is aware of themselves and their surroundings, and is a crucial component of consciousness. Trigeminal nerve stimulation (TNS), a non-invasive clinical neuromodulation technique, has shown potential in aiding the functional recovery of patients with impaired consciousness. Understanding the specific neuronal subpopulations and circuits through which TNS improves arousal states is essential for advancing its clinical application. Methods: A mouse model of traumatic brain injury (TBI) was established using a weight-drop technique to induce neurological dysfunction, and the arousal state was assessed through visual and auditory defensive responses. Techniques such as viral tracing, chemogenetics, patch-clamp recordings, calcium signaling, and neurotransmitter probes were employed to investigate the relevant subpopulations of trigeminal ganglion (TG) neurons and the underlying mechanisms in the central nervous system. Results: Neuronal subgroups involved in TNS therapy at the key peripheral nucleus, the TG, were identified. Two distinct types of neurons were found to contribute differently: The Tac1+TG-locus coeruleus (LC)-superior colliculus (SC) pathway elevated noradrenaline levels in the SC, enhancing receptive field sensitivity recovery in TBI mice; the Piezo2+TG-paraventricular hypothalamic nucleus (PVN)-substantia nigra pars compacta (SNc)-dorsal striatum (DS) pathway initiated dopamine (DA) release in the DS, ameliorating motor disorders in TBI mice. Conclusion: These pathways contribute to the improvement of defensive arousal responses from different perspectives. The findings from this study imply that TNS effectively restores defensive arousal responses to visual and auditory threats in mice suffering from TBI, offering insights that may facilitate the implementation of TNS therapy in clinical settings.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510030, China
| | - Haiyun Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510030, China
| | - Lifang Huo
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510005, China
| | - Shaoling Wang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510030, China
| | - Qian Yang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510030, China
| | - Zhimin Ye
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510005, China
| | - Jie Cao
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510005, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510030, China
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510030, China
| | - Congping Shang
- School of Basic Medical Sciences, Guangzhou National Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510005, China
| |
Collapse
|
18
|
Chen S, Liu TL, Jia Y, Li J. Recent advances in bio-integrated electrochemical sensors for neuroengineering. FUNDAMENTAL RESEARCH 2025; 5:29-47. [PMID: 40166092 PMCID: PMC11955048 DOI: 10.1016/j.fmre.2023.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 04/02/2025] Open
Abstract
Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes. The complex nature of these conditions demands precise and quantitative monitoring of disease-associated biomarkers in a continuous, real-time manner. Current chemical sensing strategies exhibit restricted clinical effectiveness due to labor-intensive laboratory analysis prerequisites, dependence on clinician expertise, and prolonged and recurrent interventions. Bio-integrated electronics for chemical sensing is an emerging, multidisciplinary field enabled by rapid advances in electrical engineering, biosensing, materials science, analytical chemistry, and biomedical engineering. This review presents an overview of recent progress in bio-integrated electrochemical sensors, with an emphasis on their relevance to neuroengineering and neuromodulation. It traverses vital neurological biomarkers and explores bio-recognition elements, sensing strategies, transducer designs, and wireless signal transmission methods. The integration of in vivo biochemical sensors is showcased through applications. The review concludes by outlining future trends and advancements in in vivo electrochemical sensing, and highlighting ongoing research and technological innovation, which aims to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhen Jia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Basu S, Hendler-Neumark A, Bisker G. Role of Oxygen Defects in Eliciting a Divergent Fluorescence Response of Single-Walled Carbon Nanotubes to Dopamine and Serotonin. ACS NANO 2024; 18:34134-34146. [PMID: 39632591 PMCID: PMC11656842 DOI: 10.1021/acsnano.4c10360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Modulating the optical response of fluorescent nanoparticles through rational modification of their surface chemistry can yield distinct optical signatures upon the interaction with structurally related molecules. Herein, we present a method for tuning the fluorescence response of single-walled carbon nanotubes (SWCNTs) toward dopamine (DA) and serotonin, two structurally related monoamine-hydroxylated aromatic neurotransmitters, by introducing oxygen defects into (6,5) chirality-enriched SWCNTs suspended by sodium cholate (SC). This modification facilitated opposite optical responses toward these neurotransmitters, where DA distinctly increased the fluorescence of the defect-induced emission of SWCNTs (D-SWCNTs) 6-fold, while serotonin notably decreased it. In contrast, pristine, defect-free SWCNTs exhibited similar optical responses to both neurotransmitters. The underlying mechanisms for the divergent fluorescence response were found to be polydopamine (PDA) surface adsorption in the case of the fluorescence enhancement in response to DA, while the fluorescence decrease in response to serotonin was attributed to enhanced solvent relaxation effects in the presence of defects. Importantly, the divergent optical response of D-SWCNTs to DA and serotonin, via the introduction of defects, was validated in complex biological environments such as serum. Further, the generality of our approach was confirmed by the demonstrations of a divergent fluorescence response of D-SWCNTs suspended by an additional dispersant, namely lipid-polyethylene glycol (PEG). This study offers promising avenues for the broad applicability of surface functionalization of SWCNTs to achieve divergent responses toward structurally related molecules and advance applications in sensing, imaging, and diagnostic technologies.
Collapse
Affiliation(s)
- Srestha Basu
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
20
|
Xiang SL, Xu KZ, Yin LJ, Rao Y, Wang B, Jia AQ. Dopamine, an exogenous quorum sensing signaling molecule or a modulating factor in Pseudomonas aeruginosa? Biofilm 2024; 8:100208. [PMID: 39036334 PMCID: PMC11260039 DOI: 10.1016/j.bioflm.2024.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Pseudomonas aeruginosa is recognized globally as an opportunistic pathogen of considerable concern due to its high virulence and pathogenicity, especially in immunocompromised individuals. While research has identified several endogenous quorum sensing (QS) signaling molecules that enhance the virulence and pathogenicity of P. aeruginosa, investigations on exogenous QS signaling molecules or modulating factors remain limited. This study found that dopamine serves as an exogenous QS signaling molecule or modulating factor of P. aeruginosa PAO1, enhancing the production of virulence factors and biofilms. Compared to the control group, treatment with 40 μM dopamine resulted in a 33.1 % increase in biofilm formation, 68.1 % increase in swimming mobility, 63.1 % increase in swarming mobility, 147.2 % increase in the signaling molecule 3-oxo-C12-HSL, and 50.5 %, 28.5 %, 27.0 %, and 33.2 % increases in the virulence factors alginate, rhamnolipids, protease, and pyocyanin, respectively. This study further explored the mechanism of dopamine regulating the biofilm formation and virulence of P. aeruginosa PAO1 through transcriptome and metabolome. Transcriptomic analysis showed that dopamine promoted the expression of virulence genes psl, alg, lasA, rhlABC, rml, and phz in P. aeruginosa PAO1. Metabolomic analysis revealed changes in the concentrations of tryptophan, pyruvate, ethanolamine, glycine, 3-hydroxybutyric acid, and alizarin. Furthermore, KEGG enrichment analysis of altered genes and metabolites indicated that dopamine enhanced phenylalanine, tyrosine, and tryptophan in P. aeruginosa PAO1. The results of this study will contribute to the development of novel exogenous QS signaling molecules or modulating factors and advance our understanding of the interactions between P. aeruginosa and the host environment.
Collapse
Affiliation(s)
- Shi-Liang Xiang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Kai-Zhong Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Lu-Jun Yin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yong Rao
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| |
Collapse
|
21
|
Liu J, Tan H, Wang J, Lin C, Xiao H, Liu J, Xu Z, Huang C, Bian Z. Understanding of Polydopamine Formulation for Oral Therapeutic Delivery in Ulcerative Colitis Treatment. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 2024. [DOI: 10.1002/ppsc.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractOral therapeutic delivery remains challenged by gastrointestinal tract (GI) barriers, which hinders the successful transition of therapeutic candidates into clinical treatments. Polydopamine (PDA), with its versatile ability to overcome GI barriers, offers a promising drug formulation technology to address the challenge. Nevertheless, many critical questions remain unanswered regarding the practicality of PDA‐based formulations. Building on the previous research, which tackled multiple physicochemical aspects, the current study aims to address another three outstanding issues, including the quantification of residual dopamine (DA) in PDA‐based formulations, the examination of these formulations stimulatory effects on colon tissue, and the potential anti‐inflammatory properties. To facilitate this investigation, a curcumin‐containing nanomedicine (CP@CCS) is prepared as a representative PDA‐based formulation. The results reveal a marked decrease of residual DA within the formulation. In the treatment of ulcerative colitis (UC), the formulation do not provoke the substantial contractions in colon tissue typically induced by DA. Furthermore, in vivo evaluation verified the supplementary anti‐UC benefits of PDA. These outcomes add evidence for the practicality of PDA‐based formulations in terms of safety and therapeutic efficacy. Finally, a conceptual framework is proposed for understanding the role of PDA in oral therapeutic delivery, thereby providing insightful directions for subsequent research.
Collapse
Affiliation(s)
- Jie Liu
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
- School of Chinese Medicine Hong Kong Baptist University Hong Kong 000000 China
- GoodMedX Tech Limited Hong Kong 000000 China
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen Guangdong 518107 China
| | - Hui‐Shi Tan
- Department of Gastroenterology and Hepatology Guangzhou First People's Hospital School of Medicine South China University of Technology Guangzhou 510180 China
| | - Jun Wang
- Department of Gastroenterology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510330 China
| | - Cheng‐Yuan Lin
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
| | - Hai‐Tao Xiao
- School of Pharmaceutical Sciences Shenzhen University Shenzhen 518060 China
| | - Jun Liu
- Department of General Surgery Jiujiang No.1 People's Hospital Jiujiang Jiangxi 332000 China
| | - Zhi‐Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen Guangdong 518107 China
- Australian Institute for Bioengineering and Nanotechnology the University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Chong‐Yang Huang
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
- Department of Gastroenterology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510330 China
| | - Zhao‐Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development Limited Hong Kong Baptist University Hong Kong 000000 China
- School of Chinese Medicine Hong Kong Baptist University Hong Kong 000000 China
| |
Collapse
|
22
|
Kajumba MM, Kakooza-Mwesige A, Nakasujja N, Koltai D, Canli T. Treatment-resistant depression: molecular mechanisms and management. MOLECULAR BIOMEDICINE 2024; 5:43. [PMID: 39414710 PMCID: PMC11485009 DOI: 10.1186/s43556-024-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
Due to the heterogeneous nature of depression, the underlying etiological mechanisms greatly differ among individuals, and there are no known subtype-specific biomarkers to serve as precise targets for therapeutic efficacy. The extensive research efforts over the past decades have not yielded much success, and the currently used first-line conventional antidepressants are still ineffective for close to 66% of patients. Most clinicians use trial-and-error treatment approaches, which seem beneficial to only a fraction of patients, with some eventually developing treatment resistance. Here, we review evidence from both preclinical and clinical studies on the pathogenesis of depression and antidepressant treatment response. We also discuss the efficacy of the currently used pharmacological and non-pharmacological approaches, as well as the novel emerging therapies. The review reveals that the underlying mechanisms in the pathogenesis of depression and antidepressant response, are not specific, but rather involve an interplay between various neurotransmitter systems, inflammatory mediators, stress, HPA axis dysregulation, genetics, and other psycho-neurophysiological factors. None of the current depression hypotheses sufficiently accounts for the interactional mechanisms involved in both its etiology and treatment response, which could partly explain the limited success in discovering efficacious antidepressant treatment. Effective management of treatment-resistant depression (TRD) requires targeting several interactional mechanisms, using subtype-specific and/or personalized therapeutic modalities, which could, for example, include multi-target pharmacotherapies in augmentation with psychotherapy and/or other non-pharmacological approaches. Future research guided by interaction mechanisms hypotheses could provide more insights into potential etiologies of TRD, precision biomarker targets, and efficacious therapeutic modalities.
Collapse
Affiliation(s)
- Mayanja M Kajumba
- Department of Mental Health and Community Psychology, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Pediatrics and Child Health, Mulago National Referral Hospital, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah Koltai
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, USA
| | - Turhan Canli
- Department of Psychology, Stony Brook University, New York, USA
- Department of Psychiatry, Stony Brook University, New York, USA
| |
Collapse
|
23
|
Zhou JT, Xu Y, Liu XH, Cheng C, Fan JN, Li X, Yu J, Li S. Single-cell RNA-seq Reveals the Inhibitory Effect of Methamphetamine on Liver Immunity with the Involvement of Dopamine Receptor D1. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae060. [PMID: 39196711 PMCID: PMC11576359 DOI: 10.1093/gpbjnl/qzae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that causes physical and psychological damage and immune system disorder, especially in the liver which contains a significant number of immune cells. Dopamine, a key neurotransmitter in METH addiction and immune regulation, plays a crucial role in this process. Here, we developed a chronic METH administration model and conducted single-cell RNA sequencing (scRNA-seq) to investigate the effect of METH on liver immune cells and the involvement of dopamine receptor D1 (DRD1). Our findings reveal that chronic exposure to METH induces immune cell identity shifts from IFITM3+ macrophage (Mac) and CCL5+ Mac to CD14+ Mac, as well as from FYN+CD4+ T effector (Teff), CD8+ T, and natural killer T (NKT) to FOS+CD4+ T and RORα+ group 2 innate lymphoid cell (ILC2), along with the suppression of multiple functional immune pathways. DRD1 is implicated in regulating certain pathways and identity shifts among the hepatic immune cells. Our results provide valuable insights into the development of targeted therapies to mitigate METH-induced immune impairment.
Collapse
Affiliation(s)
- Jin-Ting Zhou
- Key Laboratory of National Health Commission for Forensic Sciences, Xi’an Jiaotong University, Xi'an 710061, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an 710115, China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Xiao-Huan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Cheng Cheng
- Key Laboratory of National Health Commission for Forensic Sciences, Xi’an Jiaotong University, Xi'an 710061, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an 710115, China
| | - Jing-Na Fan
- Key Laboratory of National Health Commission for Forensic Sciences, Xi’an Jiaotong University, Xi'an 710061, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an 710115, China
| | - Xiaoming Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jun Yu
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an 710115, China
- OneHealth Technology Company, Xi'an 710000, China
| | - Shengbin Li
- Key Laboratory of National Health Commission for Forensic Sciences, Xi’an Jiaotong University, Xi'an 710061, China
- National Biosafety Evidence Foundation, Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an 710115, China
| |
Collapse
|
24
|
Gwon G, Jung Y, Hong H, Cho H, Kim H, Kim KH, Kim NH. Real-Time Monitoring of Molecules in Aqueous Solution via a Surface-Functionalized Ag-Anodic Aluminum Oxide Surface-Enhanced Raman Scattering Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53123-53131. [PMID: 39313356 DOI: 10.1021/acsami.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Real-time monitoring of molecular species in aqueous solutions is crucial for diverse scientific applications, from biomedical diagnostics to environmental analysis. In this study, we investigate the selective detection and discrimination of specific molecules in aqueous solution samples using a Ag-coated anodized aluminum oxide (Ag-AAO) surface functionalized with thiol molecules. Our investigation harnesses the power of surface-enhanced Raman scattering (SERS) synergized with principal component analysis (PCA) to elucidate the distinctive signatures of aqueous dopamine and l-tyrosine molecules. By scrutinizing the Raman spectra of surface-treated molecules, we unveil nuanced variations driven by the unique functional groups of the thiol molecules and their dynamic interactions with the target molecules in solution. Notably, we observe different alterations in the SERS spectra of Ag-AAO surface-functionalized boronic acid molecules for detection of dopamine and l-tyrosine, even at a concentration as low as 10-8 M. Moreover, the spectral PCA elucidates the discrimination of dopamine and l-tyrosine within the aqueous environment attributed to the different molecular interactions near SERS-active hotspots. Our findings facilitate real-time monitoring of minute analytes with exceptional molecular selectivity, ushering in an era of precise chemical analysis in aqueous solutions.
Collapse
Affiliation(s)
- Geunyeol Gwon
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yujin Jung
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyowon Hong
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Heeyeong Cho
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyunwoo Kim
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kyoung-Ho Kim
- Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nam Hoon Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
25
|
Gamboa J, El Attar R, Thuau D, Estrany F, Abbas M, Torras J. Carbon quantum dots composite for enhanced selective detection of dopamine with organic electrochemical transistors. Mikrochim Acta 2024; 191:639. [PMID: 39354107 PMCID: PMC11445364 DOI: 10.1007/s00604-024-06722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
A compact organic electrochemical transistors (OECT) sensor enriched with carbon quantum dots (CQDs) was developed to enhance the transconductance of an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film, enabling the precise and selective detection of dopamine (DA). Accurate monitoring of DA levels is critical for diagnosing and managing related conditions. Incorporating CQDs, we have achieved a remarkable up to threefold increase in current at the DA detection peak in differential pulse voltammetry. This enhancement showcases superior selectivity even in the presence of high concentrations of interferents like uric acid and ascorbic acid. This material significantly boosts the sensitivity of OECTs for DA detection, delivering an amperometric response with a detection limit of 55 nM and a broader detection range (1 - 500 µM). Our results underscore the potential of low-dimensional carbonaceous materials in creating cost-effective, high-sensitivity devices for detecting DA and other biomolecules. This breakthrough sets the stage for the development of next-generation biosensors for point-of-care diagnostics.
Collapse
Affiliation(s)
- Jillian Gamboa
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain
| | - Reem El Attar
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Pessac, 33607, France
| | - Damien Thuau
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Pessac, 33607, France.
| | - Francesc Estrany
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain
| | - Mamatimin Abbas
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Pessac, 33607, France
| | - Juan Torras
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain.
- Barcelona Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 10-14, 08019, Barcelona, Spain.
| |
Collapse
|
26
|
Joo SH, Chun KS. Therapeutic strategies for colorectal cancer: antitumor efficacy of dopamine D2 receptor antagonists. Toxicol Res 2024; 40:533-540. [PMID: 39345737 PMCID: PMC11436607 DOI: 10.1007/s43188-024-00259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of death, accounting for more than half a million deaths annually. Even worse, an increasing number of cancer cases are diagnosed yearly, and two and a half million new cancer cases are estimated to be diagnosed in 2035. Some antipsychotic drugs, especially those targeting dopamine receptor (DR) D2, demonstrated anticancer activity. Studies have revealed the potential of DRD2 antagonists as anticancer therapeutics, whether alone or as an adjuvant, in treating breast cancer, lung cancer, and others. Emerging evidences indicate DRD2 is involved in the CRC biology, and the association between DRD2 and CRC could be utilized in treating CRC. This study selected DRD2 antagonists with anticancer activity to elucidate the possibility of DRD2 antagonists as new therapeutics for treating CRC.
Collapse
Affiliation(s)
- Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan, 38430 Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, 42601 Republic of Korea
| |
Collapse
|
27
|
Mostafa IM, Abdussalam A, Liu H, Dong Z, Xia S, Alboull AMA, Lou B, Xu G. Signal-On Detection of Dopamine and Tyrosinase Using Tris(hydroxypropyl)phosphine as a New Lucigenin Chemiluminescence Coreactant. Anal Chem 2024; 96:14741-14748. [PMID: 39234648 DOI: 10.1021/acs.analchem.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Dopamine (DA) is a very imperative neurotransmitter in our body, since it contributes to several physiological processes in our body, for example, memory, feeling, cognition, cardiovascular diseases, and hormone secretion. Meanwhile, tyrosinase is a critical biomarker for several dangerous skin diseases, including vitiligo and melanoma cancer. Most of the reported chemiluminescent (CL) methods for monitoring DA and tyrosinase are signal-off biosensors. Herein, we introduce a new chemiluminescent "signal-on" system, lucigenin-tris(hydroxypropyl)phosphine (THPP), for the selective determination of DA and tyrosinase. THPP is well known as a versatile and highly water-soluble sulfhydryl-reducing compound that is more highly stable against air oxidation than common disulfide reductants. By employing THPP for the first time as an efficient lucigenin coreactant, the lucigenin-THPP system has shown a high CL response (approximately 16-fold) compared to the lucigenin-H2O2 classical CL system. Surprisingly, DA can remarkably boost the CL intensity of the lucigenin-THPP CL system. Additionally, tyrosinase can efficiently catalyze the conversion of tyramine to DA. Therefore, lucigenin-THPP was employed as an ultrasensitive and selective signal-on CL system for the quantification of DA, tyrosinase, and THPP. The linear ranges for the quantification of DA, tyrosinase, and THPP were 50-1000 nM, 0.2-50 μg/mL, and 0.1-800 μM, respectively. LODs for DA and tyrosinase were estimated to be 24 nM and 0.18 μg/mL, respectively. Additionally, the CL system has been successfully employed for the detection of tyrosinase in human serum samples and the assay of DA in human serum samples as well as in dopamine injection ampules with excellent obtained recoveries.
Collapse
Affiliation(s)
- Islam M Mostafa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Department of Chemistry, College of Natural and Pharmaceutical Sciences, Bayero University, PMB 3011, Kano 700006, Nigeria
| | - Hongzhan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhiyong Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Ala'a Mhmoued Abdllh Alboull
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
28
|
Zhang X, Su J, Sun L, Ben Y, Sun Y, Wei Y, Xu Y. Sea urchin-like Ni 3(HITP) 2 as the substrate of molecular imprinted polymer: the voltammetric mechanism for sensitive detection of dopamine. Mikrochim Acta 2024; 191:605. [PMID: 39287661 DOI: 10.1007/s00604-024-06680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
An electrochemical sensor composed of conductive metal-organic framework [Ni3(HITP)2] and molecular imprinted polymers (MIP) is fabricated to detect dopamine. Ni3(HITP)2 promotes electrons transfer due to the structure of in-plane charge delocalization and layered expansion conjugation. The combination of MIP with Ni3(HITP)2 improves the selectivity and conductivity, exhibiting a wide detection range (0.06 ~ 200 µM) and a low detection limit (0.109 µM). The kinetic mechanism on the electrode surface is an adsorption controlled process, with the equal number of electrons and protons participating in oxidation in the electrocatalytic process of catechol converting to o-quinone.
Collapse
Affiliation(s)
- Xia Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Jishan Su
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Lili Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yingying Ben
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yizhan Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yajun Wei
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Yuandong Xu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
29
|
Li C, He Y, Ingebrandt S, Vu XT. Microscale Sensor Arrays for the Detection of Dopamine Using PEDOT:PSS Organic Electrochemical Transistors. SENSORS (BASEL, SWITZERLAND) 2024; 24:5244. [PMID: 39204939 PMCID: PMC11360330 DOI: 10.3390/s24165244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
We present a sensor array of microscale organic electrochemical transistors (OECTs) using poly (3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) as the channel material. The devices show high sensitivity and selectivity to detect dopamine (DA) with platinum (Pt) as a pseudo-reference gate electrode. First, we describe the wafer-scale fabrication process for manufacturing the PEDOT:PSS OECTs, and then we introduce a dilution method to adjust the thickness of the PEDOT:PSS film. Next, we investigate the effect of the film thickness on the sensitivity of DA detection. Reducing the film thickness enhances the sensitivity of DA detection within the concentration range of 1 μM to 100 μM. The OECTs show impressive sensitivitywith a limit of detection (LoD) as low as 1 nM and a high selectivity against uric acid (UA) and ascorbic acid (AA). Finally, we modify the surface of the Pt gate electrode with chitosan to improve the selectivity of OECTs at high concentrations of up to 100 µM to expand the detection range.
Collapse
Affiliation(s)
| | | | | | - Xuan Thang Vu
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany; (C.L.); (Y.H.); (S.I.)
| |
Collapse
|
30
|
Zhou S, Chen W, Yang H. Dopamine. Trends Endocrinol Metab 2024:S1043-2760(24)00186-3. [PMID: 39138070 DOI: 10.1016/j.tem.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Siyao Zhou
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Liangzhu Laboratory, The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China
| | - Wenqiang Chen
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Steno Diabetes Center Copenhagen, Herlev 2730, Denmark.
| | - Hongbin Yang
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital, Liangzhu Laboratory, The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310000, China; MOE Frontier Science Center for Brain Science & Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
31
|
Akinyemi DE, Chevre R, Soehnlein O. Neuro-immune crosstalk in hematopoiesis, inflammation, and repair. Trends Immunol 2024; 45:597-608. [PMID: 39030115 DOI: 10.1016/j.it.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Innate immune cells are primary effectors during host defense and in sterile inflammation. Their production in the bone marrow is tightly regulated by growth and niche factors, and their activity at sites of inflammation is orchestrated by a network of alarmins and cytokines. Yet, recent work highlights a significant role of the peripheral nervous system in these processes. Sympathetic neural pathways play a key role in regulating blood cell homeostasis, and sensory neural pathways mediate pro- or anti-inflammatory signaling in a tissue-specific manner. Here, we review emerging evidence of the fine titration of hematopoiesis, leukocyte trafficking, and tissue repair via neuro-immune crosstalk, and how its derailment can accelerate chronic inflammation, as in atherosclerosis.
Collapse
Affiliation(s)
- Damilola Emmanuel Akinyemi
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| | - Raphael Chevre
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
32
|
Hao M, He Y, Song T, Guo H, Rayman MP, Zhang J. Dopamine and its precursor levodopa inactivate SARS-CoV-2 main protease by forming a quinoprotein. Free Radic Biol Med 2024; 220:167-178. [PMID: 38718952 DOI: 10.1016/j.freeradbiomed.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Many studies show either the absence, or very low levels of, SARS-CoV-2 viral RNA and/or antigen in the brain of COVID-19 patients. Reports consistently indicate an abortive infection phenomenon in nervous cells despite the fact that they contain the SARS-CoV-2 receptor, ACE2. Dopamine levels in different brain regions are in the range of micromolar to millimolar concentrations. We have shown that sub-micromolar to low micromolar concentrations of dopamine or its precursor (levodopa) time- and dose-dependently inhibit the activity of SARS-CoV-2 main protease (Mpro), which is vital for the viral life cycle, by forming a quinoprotein. Thiol detection coupled with the assessment of Mpro activity suggests that among the 12 cysteinyl thiols, the active site, Cys145-SH, is preferentially conjugated to the quinone derived from the oxidation of dopamine or levodopa. LC-MS/MS analyses show that the Cys145-SH is covalently conjugated by dopamine- or levodopa-o-quinone. These findings help explain why SARS-CoV-2 causes inefficient replication in many nerve cell lines. It is well recognized that inhaled pulmonary drug delivery is the most robust therapy pathway for lung diseases. CVT-301 (orally inhaled levodopa) was approved by the FDA as a drug for Parkinson's patients prior to the outbreak of COVID-19 in 2018. Based on the fact that SARS-CoV-2 causes inefficient replication in the CNS with abundant endogenous Mpro inhibitor in addition to the current finding that levodopa has an Mpro-inhibitory effect somewhat stronger than dopamine, we should urgently investigate the use of CVT-301 as a lung-targeting, COVID-19, Mpro inhibitor.
Collapse
Affiliation(s)
- Meng Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Tingting Song
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
33
|
Guevara‐Salinas A, Netzahualcoyotzi C, Álvarez‐Luquín DD, Pérez‐Figueroa E, Sevilla‐Reyes EE, Castellanos‐Barba C, Vega‐Ángeles VT, Terán‐Dávila E, Estudillo E, Velasco I, Adalid‐Peralta L. Treating activated regulatory T cells with pramipexole protects human dopaminergic neurons from 6-OHDA-induced degeneration. CNS Neurosci Ther 2024; 30:e14883. [PMID: 39097919 PMCID: PMC11298200 DOI: 10.1111/cns.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, which promotes a sustained inflammatory environment in the central nervous system. Regulatory T cells (Tregs) play an important role in the control of inflammation and might play a neuroprotective role. Indeed, a decrease in Treg number and function has been reported in PD. In this context, pramipexole, a dopaminergic receptor agonist used to treat PD symptoms, has been shown to increase peripheral levels of Treg cells and improve their suppressive function. The aim of this work was to determine the effect of pramipexole on immunoregulatory Treg cells and its possible neuroprotective effect on human dopaminergic neurons differentiated from human embryonic stem cells. METHODS Treg cells were sorted from white blood cells of healthy human donors. Assays were performed with CD3/CD28-activated and non-activated Treg cells treated with pramipexole at concentrations of 2 or 200 ng/mL. These regulatory cells were co-cultured with in vitro-differentiated human dopaminergic neurons in a cytotoxicity assay with 6-hydroxydopamine (6-OHDA). The role of interleukin-10 (IL-10) was investigated by co-culturing activated IL-10-producing Treg cells with neurons. To further investigate the effect of treatment on Tregs, gene expression in pramipexole-treated, CD3/CD28-activated Treg cells was determined by Fluidigm analysis. RESULTS Pramipexole-treated CD3/CD28-activated Treg cells showed significant protective effects on dopaminergic neurons when challenged with 6-OHDA. Pramipexole-treated activated Treg cells showed neuroprotective capacity through mechanisms involving IL-10 release and the activation of genes associated with regulation and neuroprotection. CONCLUSION Anti-CD3/CD28-activated Treg cells protect dopaminergic neurons against 6-OHDA-induced damage. In addition, activated, IL-10-producing, pramipexole-treated Tregs also induced a neuroprotective effect, and the supernatants of these co-cultures promoted axonal growth. Pramipexole-treated, activated Tregs altered their gene expression in a concentration-dependent manner, and enhanced TGFβ-related dopamine receptor regulation and immune-related pathways. These findings open new perspectives for the development of immunomodulatory therapies for the treatment of PD.
Collapse
Affiliation(s)
- Adrián Guevara‐Salinas
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Citlalli Netzahualcoyotzi
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
- Instituto de Fisiología Celular – NeurocienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Diana Denisse Álvarez‐Luquín
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Erandi Pérez‐Figueroa
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Edgar E. Sevilla‐Reyes
- Centro de Investigación en Enfermedades InfecciosasInstituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”Mexico CityMexico
- Laboratorio de Transcriptómica e Inmunología MolecularInstituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas"Mexico CityMexico
| | - Carlos Castellanos‐Barba
- Laboratorio Nacional de Citometría de FlujoInstituto de Investigaciones Biomédicas UNAMMexico CityMexico
| | - Vera Teresa Vega‐Ángeles
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Edgar Terán‐Dávila
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| | - Iván Velasco
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
- Instituto de Fisiología Celular – NeurocienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Laura Adalid‐Peralta
- Laboratorio de Reprogramación CelularInstituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”Mexico CityMexico
| |
Collapse
|
34
|
Balsamo J, Zhou K, Kammarchedu V, Ebrahimi A, Bess EN. Mechanistic Insight into Intestinal α-Synuclein Aggregation in Parkinson's Disease Using a Laser-Printed Electrochemical Sensor. ACS Chem Neurosci 2024; 15:2623-2632. [PMID: 38959406 PMCID: PMC11258680 DOI: 10.1021/acschemneuro.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Aggregated deposits of the protein α-synuclein and depleting levels of dopamine in the brain correlate with Parkinson's disease development. Treatments often focus on replenishing dopamine in the brain; however, the brain might not be the only site requiring attention. Aggregates of α-synuclein appear to accumulate in the gut years prior to the onset of any motor symptoms. Enteroendocrine cells (specialized gut epithelial cells) may be the source of intestinal α-synuclein, as they natively express this protein. Enteroendocrine cells are constantly exposed to gut bacteria and their metabolites because they border the gut lumen. These cells also express the dopamine metabolic pathway and form synapses with vagal neurons, which innervate the gut and brain. Through this connection, Parkinson's disease pathology may originate in the gut and spread to the brain over time. Effective therapeutics to prevent this disease progression are lacking due to a limited understanding of the mechanisms by which α-synuclein aggregation occurs in the gut. We previously proposed a gut bacterial metabolic pathway responsible for the initiation of α-synuclein aggregation that is dependent on the oxidation of dopamine. Here, we develop a new tool, a laser-induced graphene-based electrochemical sensor chip, to track α-synuclein aggregation and dopamine level over time. Using these sensor chips, we evaluated diet-derived catechols dihydrocaffeic acid and caffeic acid as potential inhibitors of α-synuclein aggregation. Our results suggest that these molecules inhibit dopamine oxidation. We also found that these dietary catechols inhibit α-synuclein aggregation in STC-1 enteroendocrine cells. These findings are critical next steps to reveal new avenues for targeted therapeutics to treat Parkinson's disease, specifically in the context of functional foods that may be used to reshape the gut environment.
Collapse
Affiliation(s)
- Julia
M. Balsamo
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Keren Zhou
- School
of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Vinay Kammarchedu
- School
of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Aida Ebrahimi
- School
of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
- Department
of Biomedical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Elizabeth N. Bess
- Department
of Chemistry, University of California, Irvine, California 92617, United States
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92617, United States
| |
Collapse
|
35
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
36
|
Sun Q, Li H, Lv J, Shi W, Bai Y, Pan K, Chen A. Dopamine β-hydroxylase shapes intestinal inflammation through modulating T cell activation. Cell Immunol 2024; 401-402:104839. [PMID: 38850753 DOI: 10.1016/j.cellimm.2024.104839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic and relapsing disease characterized by immune-mediated dysfunction of intestinal homeostasis. Alteration of the enteric nervous system and the subsequent neuro-immune interaction are thought to contribute to the initiation and progression of IBD. However, the role of dopamine beta-hydroxylase (DBH), an enzyme converting dopamine into norepinephrine, in modulating intestinal inflammation is not well defined. METHODS CD4+CD45RBhighT cell adoptive transfer, and 2,4-dinitrobenzene sulfonic acid (DNBS) or dextran sodium sulfate (DSS)-induced colitis were collectively conducted to uncover the effects of DBH inhibition by nepicastat, a DBH inhibitor, in mucosal ulceration, disease severity, and T cell function. RESULTS Inhibition of DBH by nepicastat triggered therapeutic effects on T cell adoptive transfer induced chronic mouse colitis model, which was consistent with the gene expression of DBH in multiple cell populations including T cells. Furthermore, DBH inhibition dramatically ameliorated the disease activity and colon shortening in chemically induced acute and chronic IBD models, as evidenced by morphological and histological examinations. The reshaped systemic inflammatory status was largely associated with decreased pro-inflammatory mediators, such as TNF-α, IL-6 and IFN-γ in plasma and re-balanced Th1, Th17 and Tregs in mesenteric lymph nodes (MLNs) upon colitis progression. Additionally, the conversion from dopamine (DA) to norepinephrine (NE) was inhibited resulting in increase in DA level and decrease in NE level and DA/NE showed immune-modulatory effects on the activation of immune cells. CONCLUSION Modulation of neurotransmitter levels via inhibition of DBH exerted protective effects on progression of murine colitis by modulating the neuro-immune axis. These findings suggested a promising new therapeutic strategy for attenuating intestinal inflammation.
Collapse
Affiliation(s)
- Qiaoling Sun
- Asieris Pharmaceuticals Co., Ltd, Shanghai, China.
| | - Heng Li
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Jing Lv
- Asieris Pharmaceuticals Co., Ltd, Shanghai, China
| | - Weilin Shi
- Asieris Pharmaceuticals Co., Ltd, Shanghai, China
| | - Yanfeng Bai
- Asieris Pharmaceuticals Co., Ltd, Shanghai, China
| | - Ke Pan
- Asieris Pharmaceuticals Co., Ltd, Shanghai, China
| | - Alice Chen
- Asieris Pharmaceuticals Co., Ltd, Palo Alto, CA, USA.
| |
Collapse
|
37
|
Kim DH, Loke H, Thompson J, Hill R, Sundram S, Lee J. The dopamine D2-like receptor and the Y-chromosome gene, SRY, are reciprocally regulated in the human male neuroblastoma M17 cell line. Neuropharmacology 2024; 251:109928. [PMID: 38552780 DOI: 10.1016/j.neuropharm.2024.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Dong-Hyun Kim
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Hannah Loke
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | - James Thompson
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Rachel Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia; Mental Health Program, Monash Health, Clayton, Victoria, 3168, Australia
| | - Joohyung Lee
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia; Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
38
|
Matt SM, Nolan R, Manikandan S, Agarwal Y, Channer B, Oteju O, Daniali M, Canagarajah JA, LuPone T, Mompho K, Runner K, Nickoloff-Bybel E, Li B, Niu M, Schlachetzki JCM, Fox HS, Gaskill PJ. Dopamine-driven Increase in IL-1β in Myeloid Cells is Mediated by Differential Dopamine Receptor Expression and Exacerbated by HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598137. [PMID: 38915663 PMCID: PMC11195146 DOI: 10.1101/2024.06.09.598137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1β in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1β in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1β, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1β. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1β gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1β signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1β in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1β, will be critical to effectively tailor medication regimens.
Collapse
|
39
|
Naseri B, Masoumi J, Abdolzadeh S, Abedimanesh S, Baghbani E, Hatami-Sadr A, Heris JA, Shanehbandi D, Akbari M, Vaysi S, Alizadeh N, Baradaran B. Dopamine receptor agonist cabergoline promotes immunogenic phenotype in human monocyte-derived dendritic cells. Cell Biochem Funct 2024; 42:e4067. [PMID: 38874324 DOI: 10.1002/cbf.4067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Dendritic cells (DCs) are known as antigen-presenting cells that are capable of regulating immune responses. DCs and T cells can interact mutually to induce antigen-specific T-cell responses. Cabergoline, which is a dopamine (DA) receptor agonist, seems to implement anti-inflammatory properties in the immune system, and therefore in the present study the impact of a DA receptor agonist cabergoline on the monocyte-derived DCs (moDCs) was assessed. Immature moDCs were treated with lipopolysaccharide to produce mature DCs (mDCs). The expression of DCs' related surface markers namely: CD11c, HLA-DR, and CD86 was measured by utilizing of flow cytometry. Real-time PCR was the technique of choice to determine the levels at which diverse inflammatory and anti-inflammatory factors in cabergoline-treated and control mDC groups were expressed. DCs treated with cabergoline displayed a significant decrease in CD86 and HLA-DR expression, markers linked to maturation and antigen presentation, respectively. In addition, the cabergoline-mDC group showed a considerable decline in terms of the levels at which IL-10, TGF-β, and IDO genes were expressed, and an increase in the expression of TNF-α and IL-12 in comparison to the mDC control group. Our findings revealed that cabergoline as an immunomodulatory agent can relatively shift DCs into an immunogenic state, and there is a requirement for further investigations to evaluate the effects of cabergoline-treated DCs on the T cell responses in vitro, and also in various diseases including cancer in animal models.
Collapse
Affiliation(s)
- Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Abdolzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Abedimanesh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vaysi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) - Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson's Disease? Int Immunopharmacol 2024; 133:112062. [PMID: 38652967 DOI: 10.1016/j.intimp.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Cristina Januário
- Univ Coimbra, CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Marco Cosentino
- Univ Insubria, Center for Research in Medical Pharmacology, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
41
|
Ghosh D, Tabassum R, Sarkar PP, Rahman MA, Jalal AH, Islam N, Ashraf A. Graphene Nanocomposite Ink Coated Laser Transformed Flexible Electrodes for Selective Dopamine Detection and Immunosensing. ACS APPLIED BIO MATERIALS 2024; 7:3143-3153. [PMID: 38662615 DOI: 10.1021/acsabm.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Novel and flexible disposable laser-induced graphene (LIG) sensors modified with graphene conductive inks have been developed for dopamine and interleukin-6 (IL-6) detection. The LIG sensors exhibit high reproducibility (relative standard deviation, RSD = 0.76%, N = 5) and stability (RSD = 4.39%, N = 15) after multiple bendings, making the sensors ideal for wearable and stretchable bioelectronics applications. We have developed electrode coatings based on graphene conductive inks, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (G-PEDOT:PSS) and polyaniline (G-PANI), for working electrode modification to improve the sensitivity and limit of detection (LOD). The selectivity of LIG sensors modified with the G-PANI ink is 41.47 times higher than that of the screen-printed electrode with the G-PANI ink modification. We have compared our fabricated bare laser-engraved Kapton sensor (LIG) with the LIG sensors modified with G-PEDOT (LIG/G-PEDOT) and G-PANI (LIG/G-PANI) conductive inks. We have further compared the performance of the fabricated electrodes with commercially available screen-printed electrodes (SPEs) and screen-printed electrodes modified with G-PEDOT:PSS (SPE/G-PEDOT:PSS) and G-PANI (SPE/G-PANI). SPE/G-PANI has a lower LOD of 0.632 μM compared to SPE/G-PEDOT:PSS (0.867 μM) and SPE/G-PANI (1.974 μM). The lowest LOD of the LIG/G-PANI sensor (0.4084 μM, S/N = 3) suggests that it can be a great alternative to measure dopamine levels in a physiological medium. Additionally, the LIG/G-PANI electrode has excellent LOD (2.6234 pg/mL) to detect IL-6. Also, the sensor is successfully able to detect ascorbic acid (AA), dopamine (DA), and uric acid (UA) in their ternary mixture. The differential pulse voltammetry (DPV) result shows peak potential separation of 229, 294, and 523 mV for AA-DA, DA-UA, and UA-AA, respectively.
Collapse
Affiliation(s)
- Dipannita Ghosh
- Oregon State University, Corvallis, Oregon 97331, United States
| | - Ridma Tabassum
- The University of Texas at Rio Grande Valley, ESCNE 2.515, Edinburg, Texas 78539, United States
| | - Pritu Parna Sarkar
- The University of Texas at Rio Grande Valley, ESCNE 2.515, Edinburg, Texas 78539, United States
| | | | - Ahmed Hasnain Jalal
- Department of Electrical and Computer Engineering, The University of Texas at Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Nazmul Islam
- Department of Electrical and Computer Engineering, The University of Texas at Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Ali Ashraf
- The University of Texas at Rio Grande Valley, Edinburg, Texas 78539, United States
| |
Collapse
|
42
|
Gu R, Pan J, Awan MUN, Sun X, Yan F, Bai L, Bai J. The major histocompatibility complex participates in Parkinson's disease. Pharmacol Res 2024; 203:107168. [PMID: 38583689 DOI: 10.1016/j.phrs.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.
Collapse
Affiliation(s)
- Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianyu Pan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Maher Un Nisa Awan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming 650500, China
| | - Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
43
|
Agakidou E, Chatziioannidis I, Kontou A, Stathopoulou T, Chotas W, Sarafidis K. An Update on Pharmacologic Management of Neonatal Hypotension: When, Why, and Which Medication. CHILDREN (BASEL, SWITZERLAND) 2024; 11:490. [PMID: 38671707 PMCID: PMC11049273 DOI: 10.3390/children11040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Anti-hypotensive treatment, which includes dopamine, dobutamine, epinephrine, norepinephrine, milrinone, vasopressin, terlipressin, levosimendan, and glucocorticoids, is a long-established intervention in neonates with arterial hypotension (AH). However, there are still gaps in knowledge and issues that need clarification. The main questions and challenges that neonatologists face relate to the reference ranges of arterial blood pressure in presumably healthy neonates in relation to gestational and postnatal age; the arterial blood pressure level that potentially affects perfusion of critical organs; the incorporation of targeted echocardiography and near-infrared spectroscopy for assessing heart function and cerebral perfusion in clinical practice; the indication, timing, and choice of medication for each individual patient; the limited randomized clinical trials in neonates with sometimes conflicting results; and the sparse data regarding the potential effect of early hypotension or anti-hypotensive medications on long-term neurodevelopment. In this review, after a short review of AH definitions used in neonates and existing data on pathophysiology of AH, we discuss currently available data on pharmacokinetic and hemodynamic effects, as well as the effectiveness and safety of anti-hypotensive medications in neonates. In addition, data on the comparisons between anti-hypotensive medications and current suggestions for the main indications of each medication are discussed.
Collapse
Affiliation(s)
- Eleni Agakidou
- 1st Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (I.C.); (A.K.); (T.S.); (K.S.)
| | - Ilias Chatziioannidis
- 1st Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (I.C.); (A.K.); (T.S.); (K.S.)
| | - Angeliki Kontou
- 1st Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (I.C.); (A.K.); (T.S.); (K.S.)
| | - Theodora Stathopoulou
- 1st Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (I.C.); (A.K.); (T.S.); (K.S.)
| | - William Chotas
- Department of Neonatology, University of Vermont, Burlington, VT 05405, USA
| | - Kosmas Sarafidis
- 1st Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (I.C.); (A.K.); (T.S.); (K.S.)
| |
Collapse
|
44
|
Labandeira-Garcia JL, Labandeira CM, Guerra MJ, Rodriguez-Perez AI. The role of the brain renin-angiotensin system in Parkinson´s disease. Transl Neurodegener 2024; 13:22. [PMID: 38622720 PMCID: PMC11017622 DOI: 10.1186/s40035-024-00410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca2+ release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood-brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.
Collapse
Affiliation(s)
- Jose Luis Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson´S Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | | | - Maria J Guerra
- Cellular and Molecular Neurobiology of Parkinson´S Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Cellular and Molecular Neurobiology of Parkinson´S Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
45
|
Jayaprakash R, Pook C, Ramzan F, Miles-Chan JL, Mithen RF, Foster M. Human Metabolism and Excretion of Kawakawa (Piper excelsum) Leaf Chemicals. Mol Nutr Food Res 2024; 68:e2300583. [PMID: 38389156 DOI: 10.1002/mnfr.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 02/24/2024]
Abstract
SCOPE Piper excelsum (kawakawa) has a history of therapeutic use by Māori in Aotearoa New Zealand. It is currently widely consumed as a beverage and included as an ingredient in "functional" food product. Leaves contain compounds that are also found in a wide range of other spices, foods, and medicinal plants. This study investigates the human metabolism and excretion of kawakawa leaf chemicals. METHODS AND RESULTS Six healthy male volunteers in one study (Bioavailability of Kawakawa Tea metabolites in human volunteers [BOKA-T]) and 30 volunteers (15 male and 15 female) in a second study (Impact of acute Kawakawa Tea ingestion on postprandial glucose metabolism in healthy human volunteers [TOAST]) consume a hot water infusion of dried kawakawa leaves (kawakawa tea [KT]). Untargeted Liquid Chromatography-Tandem Mass spectrometry (LC-MS/MS) analyses of urine samples from BOKA-T identified 26 urinary metabolites that are significantly associated with KT consumption, confirmed by the analysis of samples from the independent TOAST study. Seven of the 26 metabolites are also detected in plasma. Thirteen of the 26 urinary compounds are provisionally identified as metabolites of specific compounds in KT, eight metabolites are identified as being derived from specific compounds in KT but without resolution of chemical structure, and five are of unknown origin. CONCLUSIONS Several kawakawa compounds that are also widely found in other plants are bioavailable and are modified by phase 1 and 2 metabolism.
Collapse
Affiliation(s)
- Ramya Jayaprakash
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, 85 Park Road, Private Bag 92019, Auckland, 1142, New Zealand
| | - Chris Pook
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, 85 Park Road, Private Bag 92019, Auckland, 1142, New Zealand
| | - Farha Ramzan
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, 85 Park Road, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jennifer L Miles-Chan
- Human Nutrition Unit, School of Biological Sciences, Waipapa Taumata Rau - The University of Auckland, Auckland, New Zealand
| | - Richard F Mithen
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, 85 Park Road, Private Bag 92019, Auckland, 1142, New Zealand
| | - Meika Foster
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, 85 Park Road, Private Bag 92019, Auckland, 1142, New Zealand
- AuOra Ltd, Wakatū Incorporation, Nelson, 7010, New Zealand
| |
Collapse
|
46
|
Camacho-Hernandez G, Gopinath A, Okorom AV, Khoshbouei H, Newman AH. Development of a Fluorescently Labeled Ligand for Rapid Detection of DAT in Human and Mouse Peripheral Blood Monocytes. JACS AU 2024; 4:657-665. [PMID: 38425927 PMCID: PMC10900201 DOI: 10.1021/jacsau.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
The dopamine transporter (DAT) is one of the key regulators of dopamine (DA) signaling in the central nervous system (CNS) and in the periphery. Recent reports in a model of Parkinson's disease (PD) have shown that dopamine neuronal loss in the CNS impacts the expression of DAT in peripheral immune cells. The mechanism underlying this connection is still unclear but could be illuminated with sensitive and high-throughput detection of DAT-expressing immune cells in the circulation. Herein, we have developed fluorescently labeled ligands (FLL) that bind to surface-expressing DAT with high affinity and selectivity. The diSulfoCy5-FLL (GC04-38) was utilized to label DAT in human and mouse peripheral blood mononuclear cells (PBMCs) that were analyzed via flow cytometry. Selective labeling was validated using DAT KO mouse PBMCs. Our studies provide an efficient and highly sensitive method using this novel DAT-selective FLL to advance our fundamental understanding of DAT expression and activity in PBMCs in health and disease and as a potential peripheral biomarker.
Collapse
Affiliation(s)
- Gisela
Andrea Camacho-Hernandez
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural
Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Adithya Gopinath
- Department
of Neuroscience, University of Florida College
of Medicine, Gainesville, Florida 32611, United States
| | - Amarachi V. Okorom
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural
Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Habibeh Khoshbouei
- Department
of Neuroscience, University of Florida College
of Medicine, Gainesville, Florida 32611, United States
| | - Amy Hauck Newman
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural
Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
47
|
Martirosyan A, Ansari R, Pestana F, Hebestreit K, Gasparyan H, Aleksanyan R, Hnatova S, Poovathingal S, Marneffe C, Thal DR, Kottick A, Hanson-Smith VJ, Guelfi S, Plumbly W, Belgard TG, Metzakopian E, Holt MG. Unravelling cell type-specific responses to Parkinson's Disease at single cell resolution. Mol Neurodegener 2024; 19:7. [PMID: 38245794 PMCID: PMC10799528 DOI: 10.1186/s13024-023-00699-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disorder. The pathological hallmark of PD is loss of dopaminergic neurons and the presence of aggregated α-synuclein, primarily in the substantia nigra pars compacta (SNpc) of the midbrain. However, the molecular mechanisms that underlie the pathology in different cell types is not currently understood. Here, we present a single nucleus transcriptome analysis of human post-mortem SNpc obtained from 15 sporadic Parkinson's Disease (PD) cases and 14 Controls. Our dataset comprises ∼84K nuclei, representing all major cell types of the brain, allowing us to obtain a transcriptome-level characterization of these cell types. Importantly, we identify multiple subpopulations for each cell type and describe specific gene sets that provide insights into the differing roles of these subpopulations. Our findings reveal a significant decrease in neuronal cells in PD samples, accompanied by an increase in glial cells and T cells. Subpopulation analyses demonstrate a significant depletion of tyrosine hydroxylase (TH) enriched astrocyte, microglia and oligodendrocyte populations in PD samples, as well as TH enriched neurons, which are also depleted. Moreover, marker gene analysis of the depleted subpopulations identified 28 overlapping genes, including those associated with dopamine metabolism (e.g., ALDH1A1, SLC6A3 & SLC18A2). Overall, our study provides a valuable resource for understanding the molecular mechanisms involved in dopaminergic neuron degeneration and glial responses in PD, highlighting the existence of novel subpopulations and cell type-specific gene sets.
Collapse
Affiliation(s)
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | | | | | - Hayk Gasparyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - Razmik Aleksanyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - Silvia Hnatova
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, and Department of Pathology, UZ Leuven, Leuven, Belgium
| | | | | | | | - William Plumbly
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | | | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK.
- bit.bio, The Dorothy Hodgkin Building, Babraham Research Institute, Cambridge, CB22 3FH, UK.
| | - Matthew G Holt
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.
- Laboratory of Synapse Biology, i3S, Porto, Portugal.
| |
Collapse
|
48
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
49
|
Gálvez I, Fioravanti A, Ortega E. Spa therapy and peripheral serotonin and dopamine function: a systematic review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:153-161. [PMID: 37950094 PMCID: PMC10752831 DOI: 10.1007/s00484-023-02579-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Spa therapy consists of multiple techniques based on the healing effects of water, including hydrotherapy, balneotherapy, and mud therapy, often combined with therapeutic exercises, massage, or physical therapy. Balneotherapy is a clinically effective complementary approach in the treatment of low-grade inflammation- and stress-related pathologies, especially rheumatic conditions due to its anti-inflammatory properties. The main objective of this investigation was to conduct a systematic review analyzing the available evidence on the effect of spa therapy on serotonin and dopamine function. The databases PubMed, Web of Science, Scopus, and Cochrane Central Register of Controlled Trials (CENTRAL) were used from June to July 2023. Exclusion criteria were (1) articles not written in English, (2) full text not available, (3) article not related to the objective of the review. JADAD scale was used for methodological quality evaluation. Four studies were included in the systematic review. Two studies were related to serotonin in healthy individuals, one to serotonin in fibromyalgia, and one to dopamine in healthy individuals. One of the studies evaluated hydrotherapy, another one balneotherapy and mud-bath therapy, and the other two assessed balneotherapy interventions. Studies were very heterogeneous, and their methodological quality was low, making it difficult to draw clear conclusions regarding the effect of spa therapy on peripheral serotonin and dopamine function. The findings of this review highlight the lack of studies evaluating these neurotransmitters and hormones in the context of spa therapy. Further research is needed to evaluate the potential effects of these therapies on serotonin or dopamine function.
Collapse
Affiliation(s)
- Isabel Gálvez
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain
- Departamento de Enfermería, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006, Badajoz, Spain
| | - Antonella Fioravanti
- Organisation Mondiale du Thermalisme (OMTh) - World Hydrothermal Organization, Sede Palazzo Terme, via Vittorio Emanuele, 38056, Levico Terme, Italy
| | - Eduardo Ortega
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06006, Badajoz, Spain.
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain.
| |
Collapse
|
50
|
Tripathi RK, Goyal L, Singh S. Potential Therapeutic Approach using Aromatic l-amino Acid Decarboxylase and Glial-derived Neurotrophic Factor Therapy Targeting Putamen in Parkinson's Disease. Curr Gene Ther 2024; 24:278-291. [PMID: 38310455 DOI: 10.2174/0115665232283842240102073002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by specific loss of dopaminergic neurons, resulting in impaired motor movement. Its prevalence is twice as compared to the previous 25 years and affects more than 10 million individuals. Lack of treatment still uses levodopa and other options as disease management measures. Treatment shifts to gene therapy (GT), which utilizes direct delivery of specific genes at the targeted area. Therefore, the use of aromatic L-amino acid decarboxylase (AADC) and glial-derived neurotrophic factor (GDNF) therapy achieves an effective control to treat PD. Patients diagnosed with PD may experience improved therapeutic outcomes by reducing the frequency of drug administration while utilizing provasin and AADC as dopaminergic protective therapy. Enhancing the enzymatic activity of tyrosine hydroxylase (TH), glucocorticoid hormone (GCH), and AADC in the striatum would be useful for external L-DOPA to restore the dopamine (DA) level. Increased expression of glutamic acid decarboxylase (GAD) in the subthalamic nucleus (STN) may also be beneficial in PD. Targeting GDNF therapy specifically to the putaminal region is clinically sound and beneficial in protecting the dopaminergic neurons. Furthermore, preclinical and clinical studies supported the role of GDNF in exhibiting its neuroprotective effect in neurological disorders. Another Ret receptor, which belongs to the tyrosine kinase family, is expressed in dopaminergic neurons and sounds to play a vital role in inhibiting the advancement of PD. GDNF binding on those receptors results in the formation of a receptor-ligand complex. On the other hand, venous delivery of recombinant GDNF by liposome-based and encapsulated cellular approaches enables the secure and effective distribution of neurotrophic factors into the putamen and parenchyma. The current review emphasized the rate of GT target GDNF and AADC therapy, along with the corresponding empirical evidence.
Collapse
Affiliation(s)
- Raman Kumar Tripathi
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|