1
|
El-Shafey HW, Al-Sanea MM, Elnagar MR, Gendy AM, Serag MI, Almatary AM, Khalaf MA, Abdulla MH, Alhassan NS, Mohammed MAV, Eldehna WM, Hamdi A. Design and synthesis of novel 2-S-alkylated Quinazolinones as dual BRAF V600E and EGFR inhibitors in melanoma: Mechanistic insights from apoptosis and cell cycle modulation. Bioorg Chem 2025; 161:108526. [PMID: 40311244 DOI: 10.1016/j.bioorg.2025.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Melanoma, an aggressive and highly metastatic form of skin cancer, remains challenging to treat due to its resistance to conventional therapies and frequent mutations in the BRAF signaling pathway. In this study, we report the design and synthesis of a novel series of thirteen quinazolinone derivatives, featuring a phenyl thiazole moiety linked via a triazole acetamide spacer. These compounds were developed as potential dual inhibitors of BRAFV600E and EGFR, which should offer a promising therapeutic strategy for melanoma treatment. The antiproliferative activity of these compounds was evaluated against the NCI-60 cell line panel, with six compounds advancing to a five-dose screening. Three compounds, 7k, 7l, and 7m, exhibited broad-spectrum anticancer activity, with mean growth inhibition (GI%) exceeding 100 %. Compound 7l demonstrated exceptional efficacy against melanoma subpanels (GI% = 152 %) and potent dual kinase inhibition, with IC50 values of 0.048 μM against B-RAFV600E and 0.037 μM against EGFR. In vitro studies of compound 7l revealed significant cytotoxicity against MALME-3 M (IC50 = 3.16 μM) and LOX-IMVI (IC50 = 2.50 μM) melanoma cell lines, with minimal toxicity towards normal Vero cells. Cell cycle analysis showed G1-phase arrest and disrupted DNA synthesis in melanoma cells, while apoptosis assays demonstrated a dramatic increase in early apoptotic cells from 7.28 % to 40.69 %. Compound 7l modulated key apoptotic markers, increasing the BAX/Bcl-2 ratio by 14.42-fold and elevating caspase 3 and 9 levels, indicating its potential to overcome drug resistance and enhance therapeutic efficacy in melanoma treatment.
Collapse
Affiliation(s)
- Hamed W El-Shafey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Campus, Queensland, 4222, Australia
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia.
| | - Mohamed R Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt; Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Abdallah M Gendy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Marwa I Serag
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Aya M Almatary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Mohamed A Khalaf
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Noura S Alhassan
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mansoor-Ali Vaali Mohammed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria; Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Bai J, Wan Z, Zhou W, Wang L, Lou W, Zhang Y, Jin H. Global trends and emerging insights in BRAF and MEK inhibitor resistance in melanoma: a bibliometric analysis. Front Mol Biosci 2025; 12:1538743. [PMID: 39897423 PMCID: PMC11782018 DOI: 10.3389/fmolb.2025.1538743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Objective This study aims to perform a comprehensive bibliometric analysis of global research on BRAF and MEK inhibitor resistance in melanoma, identifying key research trends, influential contributors, and emerging themes from 2003 to 2024. Methods A systematic search was conducted in the Web of Science Core Collection (WoSCC) database to retrieve publications related to BRAF and MEK inhibitor resistance from 1 January 2003, to 1 September 2024. Bibliometric analyses, including publication trends, citation networks, and keyword co-occurrence patterns, were performed using VOSviewer and CiteSpace. Collaborative networks, co-cited references, and keyword burst analyses were mapped to uncover shifts in research focus and global cooperation. Results A total of 3,503 documents, including 2,781 research articles and 722 review papers, were analyzed, highlighting significant growth in this field. The United States, China, and Italy led in publication volume and citation impact, with Harvard University and the University of California System among the top contributing institutions. Research output showed three phases of growth, peaking in 2020. Keyword and co-citation analyses revealed a transition from early focus on BRAF mutations and MAPK pathway activation to recent emphasis on immunotherapy, combination therapies, and non-apoptotic cell death mechanisms like ferroptosis and pyroptosis. These trends reflect the evolving priorities and innovative approaches shaping the field of resistance to BRAF and MEK inhibitors in melanoma. Conclusion Research on BRAF and MEK inhibitor resistance has evolved significantly. This analysis provides a strategic framework for future investigations, guiding the development of innovative, multi-modal approaches to improve treatment outcomes for melanoma patients.
Collapse
Affiliation(s)
- Jianhao Bai
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wanru Zhou
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lijun Wang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Lou
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Kot M, Simiczyjew A, Wądzyńska J, Ziętek M, Matkowski R, Nowak D. Characterization of two melanoma cell lines resistant to BRAF/MEK inhibitors (vemurafenib and cobimetinib). Cell Commun Signal 2024; 22:410. [PMID: 39175042 PMCID: PMC11342534 DOI: 10.1186/s12964-024-01788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND BRAF (v-raf murine sarcoma viral oncogene homolog B1)/MEK (mitogen-activated protein kinase kinase) inhibitors are used for melanoma treatment. Unfortunately, patients treated with this combined therapy develop resistance to treatment quite quickly, but the mechanisms underlying this phenomenon are not yet fully understood. Here, we report and characterize two melanoma cell lines (WM9 and Hs294T) resistant to BRAF (vemurafenib) and MEK (cobimetinib) inhibitors. METHODS Cell viability was assessed via the XTT test. The level of selected proteins as well as activation of signaling pathways were evaluated using Western blotting. The expression of the chosen genes was assessed by RT-PCR. The distribution of cell cycle phases was analyzed by flow cytometry, and confocal microscopy was used to take photos of spheroids. The composition of cytokines secreted by cells was determined using a human cytokine array. RESULTS The resistant cells had increased survival and activation of ERK kinase in the presence of BRAF/MEK inhibitors. The IC50 values for these cells were over 1000 times higher than for controls. Resistant cells also exhibited elevated activation of AKT, p38, and JNK signaling pathways with increased expression of EGFR, ErbB2, MET, and PDGFRβ receptors as well as reduced expression of ErbB3 receptor. Furthermore, these cells demonstrated increased expression of genes encoding proteins involved in drug transport and metabolism. Resistant cells also exhibited features of epithelial-mesenchymal transition and cancer stem cells as well as reduced proliferation rate and elevated cytokine secretion. CONCLUSIONS In summary, this work describes BRAF/MEK-inhibitor-resistant melanoma cells, allowing for better understanding the underlying mechanisms of resistance. The results may thus contribute to the development of new, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marcin Ziętek
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Rafał Matkowski
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| |
Collapse
|
4
|
Makhal PN, Sood A, Shaikh AS, Dayare LN, Khatri DK, Rao Kaki V. Development of trisubstituted thiophene-3-arboxamide selenide derivatives as novel EGFR kinase inhibitors with cytotoxic activity. RSC Med Chem 2023; 14:2677-2698. [PMID: 38107169 PMCID: PMC10718591 DOI: 10.1039/d3md00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023] Open
Abstract
Overexpression of EGFR is one of the eminent oncogenic drivers detected in the development of several human cancers. The increasing incidences of mutation-based resistance in the tyrosine kinase domain call upon the need for the development of a newer class of small-molecule TK inhibitors. Accordingly, a new series of symmetrical trisubstituted thiophene-3-carboxamide selenide derivatives was developed via the hybridization of complementary pharmacophores. Most of the compounds showed a modest to excellent antiproliferative action at 20 μM concentration. The utmost antiproliferative activity was portrayed by compound 16e on the selected cancer cell lines with IC50 < 9 μM, the lowest being 3.20 ± 0.12 μM in the HCT116 cell line. Further, it also displayed an impressive EGFR kinase inhibition with an IC50 value of 94.44 ± 2.22 nM concentration. As a corollary of the reported EGFR inhibition, the nature, energy, and stability of the binding interactions were contemplated via in silico studies.
Collapse
Affiliation(s)
- Priyanka N Makhal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Lahu N Dayare
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| |
Collapse
|
5
|
Jung JM, Yoon HK, Kim SY, Yun MR, Kim GH, Lee WJ, Lee MW, Chang SE, Won CH. Anticancer Effect of Cold Atmospheric Plasma in Syngeneic Mouse Models of Melanoma and Colon Cancer. Molecules 2023; 28:molecules28104171. [PMID: 37241912 DOI: 10.3390/molecules28104171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Cold atmospheric plasma (CAP) may have applications in treating various types of malignant tumors. This study assessed the anticancer effects of CAP using melanoma and colon cancer cell lines. CAP treatment significantly reduced the in vitro viability of melanoma and colon cancer cell lines and had a negligible effect on the viability of normal human melanocytes. Additionally, CAP and epidermal growth factor receptor (EGFR) inhibitor had an additive anticancer effect in a CAP-resistant melanoma cell line. Reactive oxygen and nitrogen species known to be generated by CAP enhanced the anticancer effects of CAP and EGFR inhibitors. The in vivo anticancer activities of CAP were evaluated by testing its effects against syngeneic tumors induced in mice by melanoma and colon cancer cells. CAP treatment reduced tumor volume and weight in both cancer models, with the extent of tumor reduction dependent on the duration and number of CAP treatments. Histologic examination also revealed the tumoricidal effects of CAP in both tumor models. In conclusion, CAP inhibits the growth of mouse melanoma and colon cancer cell lines in vitro and shows tumoricidal effects against mouse models of melanoma and colon cancer in vivo.
Collapse
Affiliation(s)
- Joon-Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Hae-Kyeong Yoon
- Asan Institute for Life Sciences, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Su-Yeon Kim
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Mi-Ra Yun
- Asan Institute for Life Sciences, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Gyeong-Hoon Kim
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Woo-Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Mi-Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Sung-Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Chong-Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
- Asan Institute for Life Sciences, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| |
Collapse
|
6
|
Paris A, Tardif N, Baietti FM, Berra C, Leclair HM, Leucci E, Galibert M, Corre S. The AhR-SRC axis as a therapeutic vulnerability in BRAFi-resistant melanoma. EMBO Mol Med 2022; 14:e15677. [PMID: 36305167 PMCID: PMC9728058 DOI: 10.15252/emmm.202215677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
The nongenetic mechanisms required to control tumor phenotypic plasticity and shape drug-resistance remain unclear. We show here that the Aryl hydrocarbon Receptor (AhR) transcription factor directly regulates the gene expression program associated with the acquisition of resistance to BRAF inhibitor (BRAFi) in melanoma. In addition, we show in melanoma cells that canonical activation of AhR mediates the activation of the SRC pathway and promotes the acquisition of an invasive and aggressive resistant phenotype to front-line BRAFi treatment in melanoma. This nongenetic reprogramming identifies a clinically compatible approach to reverse BRAFi resistance in melanoma. Using a preclinical BRAFi-resistant PDX melanoma model, we demonstrate that SRC inhibition with dasatinib significantly re-sensitizes melanoma cells to BRAFi. Together we identify the AhR/SRC axis as a new therapeutic vulnerability to trigger resistance and warrant the introduction of SRC inhibitors during the course of the treatment in combination with front-line therapeutics to delay BRAFi resistance.
Collapse
Affiliation(s)
- Anaïs Paris
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Nina Tardif
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Francesca M Baietti
- Laboratory for RNA Cancer Biology, Department of OncologyLKI, KU LeuvenLeuvenBelgium,Trace PDX Platform, Department of OncologyLKI, KU LeuvenLeuvenBelgium
| | - Cyrille Berra
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance,Department of Molecular Genetics and GenomicsHospital University of Rennes (CHU Rennes)RennesFrance
| | - Héloïse M Leclair
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of OncologyLKI, KU LeuvenLeuvenBelgium,Trace PDX Platform, Department of OncologyLKI, KU LeuvenLeuvenBelgium
| | - Marie‐Dominique Galibert
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance,Department of Molecular Genetics and GenomicsHospital University of Rennes (CHU Rennes)RennesFrance
| | - Sébastien Corre
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| |
Collapse
|
7
|
Targeting EGFR in melanoma - The sea of possibilities to overcome drug resistance. Biochim Biophys Acta Rev Cancer 2022; 1877:188754. [PMID: 35772580 DOI: 10.1016/j.bbcan.2022.188754] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/15/2022] [Accepted: 06/23/2022] [Indexed: 12/21/2022]
Abstract
Melanoma is considered one of the most aggressive skin cancers. It spreads and metastasizes quickly and is intrinsically resistant to most conventional chemotherapeutics, thereby presenting a challenge to researchers and clinicians searching for effective therapeutic strategies to treat patients with melanoma. The use of inhibitors of mutated serine/threonine-protein kinase B-RAF (BRAF), e.g., vemurafenib and dabrafenib, has revolutionized melanoma chemotherapy. Unfortunately, the response to these drugs lasts a limited time due to the development of acquired resistance. One of the proteins responsible for this process is epidermal growth factor receptor (EGFR). In this review, we summarize the role of EGFR signaling in the multidrug resistance of melanomas and discuss possible applications of EGFR inhibitors to overcome the development of drug resistance in melanoma cells during therapy.
Collapse
|
8
|
Ferroptosis-Associated Classifier and Indicator for Prognostic Prediction in Cutaneous Melanoma. JOURNAL OF ONCOLOGY 2021; 2021:3658196. [PMID: 34745259 PMCID: PMC8568558 DOI: 10.1155/2021/3658196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis plays a critical role in different types of cancers, but the prognostic impact of ferroptosis in cutaneous melanoma remains lacking. Therefore, ferroptosis-related genes (FRGs) were firstly obtained from the FerrDb database and the differentially expressed FRGs were identified by the “limma” algorithm. Next, the prognostic differentially expressed FRGs were screened out by univariate Cox regression, which were subsequently used to cluster melanomas into two subtypes (clusters A and B). Besides, the Boruta algorithm and principal component analysis (PCA) were performed to build a 15-FRGs indicator, which can robustly predict patients' overall survival (OS) and be considered as an independent prognostic factor in melanoma. The melanoma patients were further divided into high- and low-FRGs score groups. The high score group have a good prognosis, with higher T cell immune infiltrating and lower mutation frequencies in NRAS, KRAS, and NF1. Finally, we discovered that many immune processes and several chemotherapy drugs were closely associated with FRGs score. Thus, our study provides a novel ferroptosis-associated classifier and indicator to predict the prognosis of melanoma. Besides, we identified several potential chemotherapy drugs to induce ferroptosis and could supply additional effective treatments.
Collapse
|
9
|
Rolfes KM, Sondermann NC, Vogeley C, Dairou J, Gilardino V, Wirth R, Meller S, Homey B, Krutmann J, Lang D, Nakamura M, Haarmann-Stemmann T. Inhibition of 6-formylindolo[3,2-b]carbazole metabolism sensitizes keratinocytes to UVA-induced apoptosis: Implications for vemurafenib-induced phototoxicity. Redox Biol 2021; 46:102110. [PMID: 34418602 PMCID: PMC8379514 DOI: 10.1016/j.redox.2021.102110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Ultraviolet (UV) B irradiation of keratinocytes results in the formation of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) which is a high-affinity ligand for the aryl hydrocarbon receptor (AHR). The resulting activation of AHR signaling induces the expression of cytochrome P450 (CYP) 1A1 which subsequently metabolizes FICZ. Importantly, FICZ is also a nanomolar photosensitizer for UVA radiation. Here, we assess whether a manipulation of the AHR-CYP1A1 axis in human epidermal keratinocytes affects FICZ/UVA-induced phototoxic effects and whether this interaction might be mechanistically relevant for the phototoxicity of the BRAF inhibitor vemurafenib. Treatment of keratinocytes with an AHR agonist enhanced the CYP1A1-catalyzed metabolism of FICZ and thus prevented UVA photosensitization, whereas an inhibition of either AHR signaling or CYP1A1 enzyme activity resulted in an accumulation of FICZ and a sensitization to UVA-induced oxidative stress and apoptosis. Exposure of keratinocytes to vemurafenib resulted in the same outcome. Specifically, CYP phenotyping revealed that vemurafenib is primarily metabolized by CYP1A1 and to a lesser degree by CYP2J2 and CYP3A4. Hence, vemurafenib sensitized keratinocytes to UVA-induced apoptosis by interfering with the CYP1A1-mediated oxidative metabolism of FICZ. In contrast to this pro-apoptotic effect, a treatment of UVB-damaged keratinocytes with vemurafenib suppressed apoptosis, a process which might contribute to the skin carcinogenicity of the drug. Our results provide insight into the mechanisms responsible for the photosensitizing properties of vemurafenib and deliver novel information about its metabolism which might be relevant regarding potential drug-drug interactions. The data emphasize that the AHR-CYP1A1 axis contributes to the pathogenesis of cutaneous adverse drug reactions.
Collapse
Affiliation(s)
- Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Natalie C Sondermann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006, Paris, France
| | - Viola Gilardino
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Ragnhild Wirth
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Stephan Meller
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Dieter Lang
- Bayer AG, Drug Metabolism and Pharmacokinetics, Research Center, 42096, Wuppertal, Germany
| | - Motoki Nakamura
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany; Department of Environmental and Geriatric Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | | |
Collapse
|
10
|
Salama Y, Jaradat N, Hattori K, Heissig B. Aloysia Citrodora Essential Oil Inhibits Melanoma Cell Growth and Migration by Targeting HB-EGF-EGFR Signaling. Int J Mol Sci 2021; 22:ijms22158151. [PMID: 34360915 PMCID: PMC8347434 DOI: 10.3390/ijms22158151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/25/2022] Open
Abstract
Patients diagnosed with melanoma have a poor prognosis due to regional invasion and metastases. The receptor tyrosine kinase epidermal growth factor receptor (EGFR) is found in a subtype of melanoma with a poor prognosis and contributes to drug resistance. Aloysia citrodora essential oil (ALOC-EO) possesses an antitumor effect. Understanding signaling pathways that contribute to the antitumor of ALOC-EO is important to identify novel tumor types that can be targeted by ALOC-EO. Here, we investigated the effects of ALOC-EO on melanoma growth and tumor cell migration. ALOC-EO blocked melanoma growth in vitro and impaired primary tumor cell growth in vivo. Mechanistically, ALOC-EO blocked heparin-binding-epidermal growth factor (HB-EGF)-induced EGFR signaling and suppressed ERK1/2 phosphorylation. Myelosuppressive drugs upregulated HB-EGF and EGFR expression in melanoma cells. Cotreatment of myelosuppressive drugs with ALOC-EO improved the antitumor activity and inhibited the expression of matrix metalloproteinase-7 and -9 and a disintegrin and metalloproteinase domain-containing protein9. In summary, our study demonstrates that ALOC-EO blocks EGFR and ERK1/2 signaling, with preclinical efficacy as a monotherapy or in combination with myelosuppressive drugs in melanoma.
Collapse
Affiliation(s)
- Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus 99900800, Palestine
- Correspondence: (Y.S.); (B.H.)
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine;
| | - Koichi Hattori
- Center for Genomic & Regenerative Medicine, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan;
| | - Beate Heissig
- Department of Immunological Diagnosis, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (Y.S.); (B.H.)
| |
Collapse
|
11
|
Quadri M, Comitato A, Palazzo E, Tiso N, Rentsch A, Pellacani G, Marconi A, Marigo V. Activation of cGMP-Dependent Protein Kinase Restricts Melanoma Growth and Invasion by Interfering with the EGF/EGFR Pathway. J Invest Dermatol 2021; 142:201-211. [PMID: 34265328 DOI: 10.1016/j.jid.2021.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/07/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
Drug resistance mechanisms still characterize metastatic melanoma, despite the new treatments that have been recently developed. Targeting of the cGMP/protein kinase G pathway is emerging as a therapeutic approach in cancer research. In this study, we evaluated the anticancer effects of two polymeric-linked dimeric cGMP analogs able to bind and activate protein kinase G, called protein kinase G activators (PAs) 4 and 5. PA5 was identified as the most effective compound on melanoma cell lines as well as on patient-derived metastatic melanoma cells cultured as three-dimensional spheroids and in a zebrafish melanoma model. PA5 was able to significantly reduce cell viability, size, and invasion of melanoma spheroids. Importantly, PA5 showed a tumor-specific outcome because no toxic effect was observed in healthy melanocytes exposed to the cGMP analog. We defined that by triggering protein kinase G, PA5 interfered with the EGF pathway as shown by lower EGFR phosphorylation and reduction of activated, phosphorylated forms of protein kinase B and extracellular signal‒regulated kinase 1/2 in melanoma cells. Finally, PA5 significantly reduced the metastatic process in zebrafish. These studies open future perspectives for the cGMP analog PA5 as a potential therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLab, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Palazzo
- DermoLab, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology, University of Padua, Padua, Italy
| | - Andreas Rentsch
- BIOLOG Life Science Institute. Forschungslabor und Biochemica-Vertrieb, Bremen, Germany
| | - Giovanni Pellacani
- DermoLab, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLab, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy.
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Madheswaran S, Mungra N, Biteghe FAN, De la Croix Ndong J, Arowolo AT, Adeola HA, Ramamurthy D, Naran K, Khumalo NP, Barth S. Antibody-Based Targeted Interventions for the Diagnosis and Treatment of Skin Cancers. Anticancer Agents Med Chem 2021; 21:162-186. [PMID: 32723261 DOI: 10.2174/1871520620666200728123006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cutaneous malignancies most commonly arise from skin epidermal cells. These cancers may rapidly progress from benign to a metastatic phase. Surgical resection represents the gold standard therapeutic treatment of non-metastatic skin cancer while chemo- and/or radiotherapy are often used against metastatic tumors. However, these therapeutic treatments are limited by the development of resistance and toxic side effects, resulting from the passive accumulation of cytotoxic drugs within healthy cells. OBJECTIVE This review aims to elucidate how the use of monoclonal Antibodies (mAbs) targeting specific Tumor Associated Antigens (TAAs) is paving the way to improved treatment. These mAbs are used as therapeutic or diagnostic carriers that can specifically deliver cytotoxic molecules, fluorophores or radiolabels to cancer cells that overexpress specific target antigens. RESULTS mAbs raised against TAAs are widely in use for e.g. differential diagnosis, prognosis and therapy of skin cancers. Antibody-Drug Conjugates (ADCs) particularly show remarkable potential. The safest ADCs reported to date use non-toxic photo-activatable Photosensitizers (PSs), allowing targeted Photodynamic Therapy (PDT) resulting in targeted delivery of PS into cancer cells and selective killing after light activation without harming the normal cell population. The use of near-infrared-emitting PSs enables both diagnostic and therapeutic applications upon light activation at the specific wavelengths. CONCLUSION Antibody-based approaches are presenting an array of opportunities to complement and improve current methods employed for skin cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Suresh Madheswaran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fleury A N Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, 8700 Beverly Blvd, Los Angeles, CA, United States
| | - Jean De la Croix Ndong
- Department of Orthopedic Surgery, New York University Langone Orthopedic Hospital, 301 East 17th Street, New York, NY, United States
| | - Afolake T Arowolo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Henry A Adeola
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Dharanidharan Ramamurthy
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Thompson EL, Hu JJ, Niedernhofer LJ. The Role of Senescent Cells in Acquired Drug Resistance and Secondary Cancer in BRAFi-Treated Melanoma. Cancers (Basel) 2021; 13:2241. [PMID: 34066966 PMCID: PMC8125319 DOI: 10.3390/cancers13092241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
BRAF is the most common gene mutated in malignant melanoma, and predominately it is a missense mutation of codon 600 in the kinase domain. This oncogenic BRAF missense mutation results in constitutive activation of the mitogen-activate protein kinase (MAPK) pro-survival pathway. Several BRAF inhibitors (BRAFi) have been developed to specifically inhibit BRAFV600 mutations that improve melanoma survival, but resistance and secondary cancer often occur. Causal mechanisms of BRAFi-induced secondary cancer and resistance have been identified through upregulation of MAPK and alternate pro-survival pathways. In addition, overriding of cellular senescence is observed throughout the progression of disease from benign nevi to malignant melanoma. In this review, we discuss melanoma BRAF mutations, the genetic mechanism of BRAFi resistance, and the evidence supporting the role of senescent cells in melanoma disease progression, drug resistance and secondary cancer. We further highlight the potential benefit of targeting senescent cells with senotherapeutics as adjuvant therapy in combating melanoma.
Collapse
Affiliation(s)
- Elizabeth L. Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiayi J. Hu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.J.H.); (L.J.N.)
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Shou Y, Yang L, Yang Y, Zhu X, Li F, Xu J. Determination of hypoxia signature to predict prognosis and the tumor immune microenvironment in melanoma. Mol Omics 2021; 17:307-316. [PMID: 33624645 DOI: 10.1039/d0mo00159g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Melanoma is one of the highly malignant skin tumors, the incidence and death of which continue to increase. The hypoxic microenvironment drives tumor growth, progression, and heterogeneity; it also triggers a cascade of immunosuppressive responses and affects the levels of T cells, macrophages, and natural killer cells. Here, we aim to develop a hypoxia-based gene signature for prognosis evaluation and help evaluate the status of hypoxia and the immune microenvironment in melanoma. Based on the data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, we performed integrated bioinformatics to analyze the hypoxia-related genes. Using Lasso Cox regression, a hypoxia model was constructed. The receiver operating characteristic and the Kaplan-Meier curve were used to evaluate the predictive capacity of the model. With the CIBERSORT algorithm, the abundance of 22 immune cells in the melanoma microenvironment was analyzed. A total of 20 hypoxia-related genes were significantly related to prognosis in the log-rank test. Lasso regression showed that FBP1, SDC3, FOXO3, IGFBP1, S100A4, EGFR, ISG20, CP, PPARGC1A, KIF5A, and DPYSL4 displayed the best features. Based on these genes, a hypoxia model was established, and the area under the curve for the model was 0.734. Furthermore, the hypoxia score was identified as an independent prognostic factor. Besides, the hypoxia score could also predict the immune microenvironment in melanoma. Down-regulated activated CD4 memory T cells, CD8 T cells, and M1-like macrophages, and up-regulated Tregs were observed in patients with a high hypoxia score. The hypoxia-related genes were identified, and the hypoxia score was found to be a prognostic factor for overall survival and a predictor for the immune microenvironment. Our findings provide new ideas for evaluation and require further validation in clinical practice.
Collapse
Affiliation(s)
- Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
16
|
Melittin from Apis florea Venom as a Promising Therapeutic Agent for Skin Cancer Treatment. Antibiotics (Basel) 2020; 9:antibiotics9080517. [PMID: 32823904 PMCID: PMC7460526 DOI: 10.3390/antibiotics9080517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023] Open
Abstract
Melittin, a major component found in bee venom, is produced by the Apis species of the honey bee. In this study, the effect of melittin derived from Apis florea (Mel-AF), which is a wild honey bee species that is indigenous to Thailand, was investigated against human malignant melanoma (A375) cells. In this study, Mel-AF exhibited considerable potential in the anti-proliferative action of A375 cells. Subsequently, the cellular mechanism of Mel-AF that induced cell death was investigated in terms of apoptosis. As a result, gene and protein expression levels, which indicated the activation of cytochrome-c release and caspase-9 expression, eventually triggered the release of the caspase-3 executioner upon Mel-AF. We then determined that apoptosis-mediated cell death was carried out through the intrinsic mitochondrial pathway. Moreover, advanced abilities, including cell motility and invasion, were significantly suppressed. Mel-AF manipulated the actin arrangement via the trapping of stress fibers that were found underneath the membrane, which resulted in the defective actin cytoskeleton organization. Consequently, the expression of EGFR, a binding protein to F-actin, was also found to be suppressed. This outcome strongly supports the effects of Mel-AF in the inhibition of progressive malignant activity through the disruption of actin cytoskeleton-EGFR interaction and the EGFR signaling system. Thus, the findings of our current study indicate the potential usefulness of Mel-AF in cancer treatments as an apoptosis inducer and a potential actin-targeting agent.
Collapse
|
17
|
Czarnecka AM, Bartnik E, Fiedorowicz M, Rutkowski P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int J Mol Sci 2020; 21:ijms21134576. [PMID: 32605090 PMCID: PMC7369697 DOI: 10.3390/ijms21134576] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
The common mutation BRAFV600 in primary melanomas activates the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) pathway and the introduction of proto-oncogene B-Raf (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors (BRAFi and MEKi) was a breakthrough in the treatment of these cancers. However, 15–20% of tumors harbor primary resistance to this therapy, and moreover, patients develop acquired resistance to treatment. Understanding the molecular phenomena behind resistance to BRAFi/MEKis is indispensable in order to develop novel targeted therapies. Most often, resistance develops due to either the reactivation of the MAPK/ERK pathway or the activation of alternative kinase signaling pathways including phosphatase and tensin homolog (PTEN), neurofibromin 1 (NF-1) or RAS signaling. The hyperactivation of tyrosine kinase receptors, such as the receptor of the platelet-derived growth factor β (PDFRβ), insulin-like growth factor 1 receptor (IGF-1R) and the receptor for hepatocyte growth factor (HGF), lead to the induction of the AKT/3-phosphoinositol kinase (PI3K) pathway. Another pathway resulting in BRAFi/MEKi resistance is the hyperactivation of epidermal growth factor receptor (EGFR) signaling or the deregulation of microphthalmia-associated transcription factor (MITF).
Collapse
Affiliation(s)
- Anna M. Czarnecka
- Department of Soft Tissue/Bone, Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Interinstitute Laboratory of New Diagnostic Applications of MRI, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone, Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
18
|
Dissecting Mechanisms of Melanoma Resistance to BRAF and MEK Inhibitors Revealed Genetic and Non-Genetic Patient- and Drug-Specific Alterations and Remarkable Phenotypic Plasticity. Cells 2020; 9:cells9010142. [PMID: 31936151 PMCID: PMC7017165 DOI: 10.3390/cells9010142] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical benefit of MAPK pathway inhibition in BRAF-mutant melanoma patients is limited by the development of acquired resistance. Using drug-naïve cell lines derived from tumor specimens, we established a preclinical model of melanoma resistance to vemurafenib or trametinib to provide insight into resistance mechanisms. Dissecting the mechanisms accompanying the development of resistance, we have shown that (i) most of genetic and non-genetic alterations are triggered in a cell line- and/or drug-specific manner; (ii) several changes previously assigned to the development of resistance are induced as the immediate response to the extent measurable at the bulk levels; (iii) reprogramming observed in cross-resistance experiments and growth factor-dependence restricted by the drug presence indicate that phenotypic plasticity of melanoma cells largely contributes to the sustained resistance. Whole-exome sequencing revealed novel genetic alterations, including a frameshift variant of RBMX found exclusively in phospho-AKThigh resistant cell lines. There was no similar pattern of phenotypic alterations among eleven resistant cell lines, including expression/activity of crucial regulators, such as MITF, AXL, SOX, and NGFR, which suggests that patient-to-patient variability is richer and more nuanced than previously described. This diversity should be considered during the development of new strategies to circumvent the acquired resistance to targeted therapies.
Collapse
|
19
|
Simiczyjew A, Pietraszek-Gremplewicz K, Dratkiewicz E, Podgórska M, Matkowski R, Ziętek M, Nowak D. Combination of Selected MET and EGFR Inhibitors Decreases Melanoma Cells' Invasive Abilities. Front Pharmacol 2019; 10:1116. [PMID: 31649529 PMCID: PMC6792435 DOI: 10.3389/fphar.2019.01116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
We have previously shown that combination of foretinib, an inhibitor of MET (hepatocyte growth factor receptor), with gefitinib or lapatinib, inhibitors of EGFR (epidermal growth factor receptor), has a synergistic cytotoxic effect on melanoma cells. However, there are cancer cells resistant to drugs’ treatment which are still able to invade. Thus, in this study, we examined the influence of these drugs on invasive abilities of melanoma cells. To investigate cell migration and invasion, Transwell inserts and wound healing assay were used. Cell viability was evaluated by XTT method, while invadopodia formation by immunocytochemistry. Level of phosphorylated Src kinase (pSrc) was verified by Western blot. Proteolytic activity of cells was analyzed using gelatin conjugated with fluorescein degradation assay and gelatin zymography. Combination of used inhibitors diminished cell movement, resulting in smaller distances covered by cells, and decreased the ratio of cells with ability to cross the Transwell inserts. These inhibitors induced changes in formation of invadopodia and actin cytoskeleton organization. Their application also decreased the level of pSrc kinase. Furthermore, used drugs led to reduction of proteolytic activity of examined cells. Our data support the idea that simultaneous targeting of EGFR and MET could be a promising therapeutic strategy inhibiting not only tumor cell growth but also its metastasis.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Marta Podgórska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw, Poland.,Lower Silesian Oncology Center, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw, Poland.,Lower Silesian Oncology Center, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
20
|
Cheng CC, Lin HC, Tsai KJ, Chiang YW, Lim KH, Chen CGS, Su YW, Peng CL, Ho AS, Huang L, Chang YC, Lin HC, Chang J, Chang YF. Epidermal growth factor induces STAT1 expression to exacerbate the IFNr-mediated PD-L1 axis in epidermal growth factor receptor-positive cancers. Mol Carcinog 2018; 57:1588-1598. [PMID: 30035369 DOI: 10.1002/mc.22881] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) overexpressed in many cancers, including lung and head and neck cancers, and is involved in cancer cell progression and survival. PD-L1, increases in tumor cells to evade and inhibit CD8+ T cells, is a clinical immunotherapeutic target. This study investigated the molecular mechanism of EGF on regulating PD-L1 in EGFR-positive cancers and determined potential agents to reduce PD-L1 expression. RNA sequencing (RNAseq) and bioinformatics analysis were performed to determine potential driver genes that regulate PD-L1 in tumor cells-derived tumorspheres which mimicking cancer stem cells. Then, the specific inhibitors targeting EGFR were applied to reduce the expression of PD-L1 in vitro and in vivo. We validated that EGF could induce PD-L1 expression in the selected EGFR-positive cancers. RNAseq results revealed that STAT1 increased as a driver gene in KOSC-3-derived tumorspheres; these data were analyzed using PANTHER followed by NetworkAnalyst. The blockade of EGFR by afatinib resulted in decreased STAT1 and IRF-1 levels, both are transcriptional factors of PD-L1, and disabled the IFNr-STAT1-mediated PD-L1 axis in vitro and in vivo. Moreover, STAT1 knockdown significantly reduced EGF-mediated PD-L1 expression, and ruxolitinib, a JAK1/JAK2 inhibitor, significantly inhibited STAT1 phosphorylation to reduce the IFNr-mediated PD-L1 axis. These results indicate that EGF exacerbates PD-L1 by increasing the protein levels of STAT1 to enforce the IFNr-JAK1/2-mediated signaling axis in selected EGFR-positive cancers. The inhibition of EGFR by afatinib significantly reduced PD-L1 and may be a potential strategy for enhancing immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Chun-Chia Cheng
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Hsin-Chi Lin
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Kaun-Jer Tsai
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ya-Wen Chiang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Caleb Gon-Shen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ying-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Cheng-Liang Peng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ling Huang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Yu-Cheng Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Huan-Chau Lin
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
21
|
Dietrich P, Kuphal S, Spruss T, Hellerbrand C, Bosserhoff AK. Wild-type KRAS is a novel therapeutic target for melanoma contributing to primary and acquired resistance to BRAF inhibition. Oncogene 2018; 37:897-911. [PMID: 29059159 DOI: 10.1038/onc.2017.391] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/08/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
Malignant melanoma reveals rapidly increasing incidence and mortality rates worldwide. By now, BRAF inhibition is the standard therapy for advanced melanoma in patients carrying BRAF mutations. However, only approximately 50% of melanoma patients harbor therapeutically attackable BRAF mutations, and overall survival after treatment with BRAF inhibitors is modest. KRAS (Kirsten Rat sarcoma) proteins are acting upstream of BRAF and have a major role in human cancer. Recent approaches awaken the hope to use KRAS inhibition (KRASi) as a clinical tool. In this study, we identified wild-type KRAS as a novel therapeutic target in melanoma. KRASi functions synergistically with BRAF inhibition to reduce melanoma proliferation and to induce apoptosis independently of BRAF mutational status. Moreover, acquired resistance to BRAF inhibitors in melanoma is dependent on dynamic regulation of KRAS expression with subsequent AKT and extracellular-signal regulated kinase activation and can be overcome by KRASi. This suggests KRASi as novel approach in melanoma-alone or in combination with other therapeutic regimes.
Collapse
Affiliation(s)
- P Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - S Kuphal
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - T Spruss
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - C Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - A K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
22
|
Hu Y, Li Z, Wang L, Deng L, Sun J, Jiang X, Zhang Y, Tian L, Wang Y, Bai W. Scandenolone, a natural isoflavone derivative from Cudrania tricuspidata fruit, targets EGFR to induce apoptosis and block autophagy flux in human melanoma cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
23
|
Peterson TA, Gauran IIM, Park J, Park D, Kann MG. Oncodomains: A protein domain-centric framework for analyzing rare variants in tumor samples. PLoS Comput Biol 2017; 13:e1005428. [PMID: 28426665 PMCID: PMC5398485 DOI: 10.1371/journal.pcbi.1005428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
The fight against cancer is hindered by its highly heterogeneous nature. Genome-wide sequencing studies have shown that individual malignancies contain many mutations that range from those commonly found in tumor genomes to rare somatic variants present only in a small fraction of lesions. Such rare somatic variants dominate the landscape of genomic mutations in cancer, yet efforts to correlate somatic mutations found in one or few individuals with functional roles have been largely unsuccessful. Traditional methods for identifying somatic variants that drive cancer are 'gene-centric' in that they consider only somatic variants within a particular gene and make no comparison to other similar genes in the same family that may play a similar role in cancer. In this work, we present oncodomain hotspots, a new 'domain-centric' method for identifying clusters of somatic mutations across entire gene families using protein domain models. Our analysis confirms that our approach creates a framework for leveraging structural and functional information encapsulated by protein domains into the analysis of somatic variants in cancer, enabling the assessment of even rare somatic variants by comparison to similar genes. Our results reveal a vast landscape of somatic variants that act at the level of domain families altering pathways known to be involved with cancer such as protein phosphorylation, signaling, gene regulation, and cell metabolism. Due to oncodomain hotspots' unique ability to assess rare variants, we expect our method to become an important tool for the analysis of sequenced tumor genomes, complementing existing methods.
Collapse
Affiliation(s)
- Thomas A. Peterson
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- University of California, San Francisco, Institute for Computational Health Science, San Francisco, California, United States of America
| | - Iris Ivy M. Gauran
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Junyong Park
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - DoHwan Park
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Maricel G. Kann
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
24
|
Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett 2017; 391:125-140. [PMID: 28131904 DOI: 10.1016/j.canlet.2017.01.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
Melanoma is a cutaneous neoplastic growth of melanocytes with great potential to invade and metastasize, especially when not treated early and effectively. Epithelial-mesenchymal transition (EMT) is the process by which melanocytes lose their epithelial characteristics and acquire mesenchymal phenotypes. Mesenchymal protein expression increases the motility, invasiveness, and metastatic potential of melanoma. Many pathways play a role in promotion of mesenchymal protein expression including RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, Wnt/β-catenin, and several others. Downstream effectors of these pathways induce expression of EMT transcription factors including Snail, Slug, Twist, and Zeb that promote repression of epithelial and induction of mesenchymal character. Emerging research has demonstrated that a variety of small molecule inhibitors as well as phytochemicals can influence the progression of EMT and may even reverse the process, inducing re-expression of epithelial markers. Phytochemicals are of particular interest as supplementary treatment options because of their relatively low toxicities and anti-EMT properties. Modulation of EMT signaling pathways using synthetic small molecules and phytochemicals is a potential therapeutic strategy for reducing the aggressive progression of metastatic melanoma. In this review, we discuss the emerging pathways and transcription factor targets that regulate EMT and evaluate potential synthetic small molecules and naturally occurring compounds that may reduce metastatic melanoma progression.
Collapse
|
25
|
Efficacy of BRAF Inhibitors in Asian Metastatic Melanoma Patients: Potential Implications of Genomic Sequencing in BRAF-Mutated Melanoma. Transl Oncol 2016; 9:557-564. [PMID: 27883956 PMCID: PMC5122709 DOI: 10.1016/j.tranon.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND: The BRAF inhibitors vemurafenib and dabrafenib are currently the standard treatment for metastatic melanoma with BRAF V600 mutations. However, given the rarity of noncutaneous melanoma, including acral and mucosal subtypes, the efficacy of BRAF inhibitors for this subset of patients has not been extensively investigated. Acquired resistance generally appears 6 to 8 months after treatment with a BRAF inhibitor, and the mechanism of resistance is not well established. METHODS: We examined treatment outcomes for patients diagnosed with metastatic melanoma and treated with BRAF inhibitors at Samsung Medical Center between April 2013 and December 2015. We analyzed genomic alterations in selected patients using targeted sequencing. RESULTS: Twenty-seven patients with a median age of 49 years (range 23-82 years) with metastatic melanoma and treated with a BRAF inhibitor were identified. Of these patients, 19 (70.3%) had noncutaneous melanoma, including acral and mucosal melanoma. All patients had BRAFV600E mutations. The median progression-free survival of all patients was 9.2 months (95% confidence interval, 1.6-16.7), and the objective response rate was 78.9% in the mucosal/acral melanoma group and 75.0% in the cutaneous melanoma group. Three (11.1%) patients achieved complete response, and 19 (70.4%) showed a partial response. Targeted sequencing in five patients demonstrated NF1 mutations in three patients who did not respond to BRAF inhibitors. CONCLUSION: BRAF inhibitors were an effective therapeutic option for Korean patients with metastatic melanoma harboring a BRAF V600 mutation regardless of melanoma subtype (acral/mucosa versus cutaneous).
Collapse
|
26
|
Sweeny L, Prince A, Patel N, Moore LS, Rosenthal EL, Hughley BB, Warram JM. Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope 2016; 126:E387-E395. [PMID: 27576611 DOI: 10.1002/lary.26215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Evaluate if vascular normalization with an antiangiogenic monoclonal antibody improves detection of melanoma using fluorescently labeled antibody-based imaging. STUDY DESIGN Preclinical. METHODS Panitumumab and control IgG were covalently linked to a near-infrared fluorescent probe (IRDye800CW). Immunodeficient mice with ear xenografts of melanoma cell lines (A375 and SKMEL5) were systemically injected (200 μg, tail vein) with either IgG-IRDye800CW, panitumumab-IRDye800CW, or a combination (bevacizumab [5mg/kg], administered 72 hours prepanitumumab-IRDye800CW) (n = 5). Primary tumors were imaged with open-field (LUNA, Novadaq, Toronto, Ontario, Canada) and closed-field (Pearl, LI-COR Biosciences, Lincoln, NB) imaging devices. Postresection, the concentration of labeled antibody within the tumor (μg/g) was calculated using normalized standards. RESULTS The mean fluorescence within the melanoma tumors was greater for the combination group compared to panitumumab alone for both cell lines (P < 0.001). The tumor-to-background ratio (TBR) for the A375 tumors was greater for the combination (3.4-7.1) compared to the panitumumab alone (3.2-5.0) (P = 0.04). The TBR for SKMEL5 tumors was greater for the combination (2.4-6.0) compared to the panitumumab alone (2.2-3.9) (P = 0.02). Within A375 tumors, the concentration was lower for panitumumab (0.51 μg/g) compared to combination group (0.68 μg/g) (P = 0.036). Within SKMEL5 tumors, the concentration was lower for panitumumab (0.0.17 μg/g) compared to combination group (0.35 μg/g) (P = 0.048). Residual tumor (1.0-0.2 mg) could be differentiated from background in both panitumumab and combination groups. For both cell lines, panitumumab and combination groups had greater mean fluorescence of the tumor compared to control IgG. CONCLUSION The addition of antiangiogenic therapy improves uptake of fluorescently labeled monoclonal antibodies within melanoma tumors. Clinical translation could improve detection of melanoma intraoperatively, reducing positive margins and sparing normal tissue. LEVEL OF EVIDENCE NA Laryngoscope, 126:E387-E395, 2016.
Collapse
Affiliation(s)
- Larissa Sweeny
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Andrew Prince
- the University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, U.S.A
| | - Neel Patel
- the Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Lindsay S Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University, Stanford, California, U.S.A
| | - Brian B Hughley
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Jason M Warram
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| |
Collapse
|
27
|
von Felbert V, Bauerschlag D, Maass N, Bräutigam K, Meinhold-Heerlein I, Woitok M, Barth S, Hussain AF. A specific photoimmunotheranostics agent to detect and eliminate skin cancer cells expressing EGFR. J Cancer Res Clin Oncol 2016; 142:1003-11. [PMID: 26847542 DOI: 10.1007/s00432-016-2122-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE The term "theranostics" represents a new paradigm in medicine especially for cancer treatment. This term was coined by Funkhouser in 2002 and defines a reagent that combines therapeutic and diagnostic properties. It is widely believed that theranostics agents will have considerable impact on healthcare before, during, and after disease by improving cancer prognosis and management simultaneously. Current theranostics approaches still rely on passive tumor targeting strategies, which have scattergun effects and tend to damage both neoplastic and non-neoplastic cells. METHODS Here we describe a simple, controlled, and efficient method to generate homogeneous photoimmunotheranostics reagents. This method combines molecular optical imaging, photodynamic therapy, and immunotherapy using SNAP-tag technology. SNAP-tag is a derivative of the O(6)-alkylguanine-DNA alkyltransferase (AGT) which has the ability to efficiently conjugate to O(6)-benzylguanine (BG) molecules under physiological conditions depending on its folding pattern. RESULTS The theranostics agent was able to specifically recognize various epidermal growth factor receptor (EGFR)-expressing skin cancer cell lines using flow cytometry analysis and confocal microscopy and eliminate them at EC50's of 32-55 nM. CONCLUSIONS These experiments provide a framework for using SNAP-tag technology to generate homogeneous photoimmunotheranostics reagents with unified pharmacokinetic and therapeutic profiles. Furthermore, the reagent generated in this work could be used to simultaneously monitor and suppress the growth of skin squamous carcinoma and melanoma cells expressing EGFR.
Collapse
Affiliation(s)
- Verena von Felbert
- Department of Dermatology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Dirk Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Karen Bräutigam
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Mira Woitok
- Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Ahmad Fawzi Hussain
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
28
|
A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-016-0108-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Ji Z, Erin Chen Y, Kumar R, Taylor M, Jenny Njauw CN, Miao B, Frederick DT, Wargo JA, Flaherty KT, Jönsson G, Tsao H. MITF Modulates Therapeutic Resistance through EGFR Signaling. J Invest Dermatol 2015; 135:1863-1872. [PMID: 25789707 PMCID: PMC4466007 DOI: 10.1038/jid.2015.105] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/11/2015] [Accepted: 02/27/2015] [Indexed: 01/03/2023]
Abstract
Response to targeted therapies varies significantly despite shared oncogenic mutations. Nowhere is this more apparent than in BRAF (V600E)-mutated melanomas where initial drug response can be striking and yet relapse is commonplace. Resistance to BRAF inhibitors have been attributed to the activation of various receptor tyrosine kinases (RTKs), although the underlying mechanisms have been largely uncharacterized. Here, we found that EGFR-induced vemurafenib resistance is ligand dependent. We employed whole-genome expression analysis and discovered that vemurafenib resistance correlated with the loss of microphthalmia-associated transcription factor (MITF), along with its melanocyte lineage program, and with the activation of EGFR signaling. An inverse relationship between MITF, vemurafenib resistance, and EGFR was then observed in patient samples of recurrent melanoma and was conserved across melanoma cell lines and patients' tumor specimens. Functional studies revealed that MITF depletion activated EGFR signaling and consequently recapitulated the resistance phenotype. In contrast, forced expression of MITF in melanoma and colon cancer cells inhibited EGFR and conferred sensitivity to BRAF/MEK inhibitors. These findings indicate that an "autocrine drug resistance loop" is suppressed by melanocyte lineage signal(s), such as MITF. This resistance loop modulates drug response and could explain the unique sensitivity of melanomas to BRAF inhibition.
Collapse
Affiliation(s)
- Zhenyu Ji
- Wellman Center for Photomedicine/Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yiyin Erin Chen
- Wellman Center for Photomedicine/Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine/Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Taylor
- Wellman Center for Photomedicine/Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ching-Ni Jenny Njauw
- Wellman Center for Photomedicine/Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benchun Miao
- Wellman Center for Photomedicine/Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennie T Frederick
- MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jennifer A Wargo
- Surgical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keith T Flaherty
- MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Göran Jönsson
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Hensin Tsao
- Wellman Center for Photomedicine/Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|