1
|
Leon A, Castro-Echeverry E, Jordan D, Fussell AM, Kip NS, Roy A, Suarez CJ, Temple-Smolkin RL, Coleman J. Clinical Bioinformatician Body of Knowledge-Molecular Diagnostics Core: A Report of the Association for Molecular Pathology. J Mol Diagn 2025:S1525-1578(25)00088-1. [PMID: 40280409 DOI: 10.1016/j.jmoldx.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Clinical bioinformaticians play a critical role in clinical molecular diagnostics laboratories as developers of data analysis pipelines, tools, and databases. They also contribute to a variety of other tasks, such as genomic data interpretation, database administration, hardware engineering, informatics, information technology, infrastructure support, and software engineering. To effectively perform these functions, the clinical bioinformatician must possess a strong foundational knowledge of molecular biology, genetics, genomics, computational biology, and the relevant federal, state, and/or regional regulations, laboratory accreditation requirements, and other standards and best practices. This first article in the Association for Molecular Pathology's Clinical Bioinformatician Body of Knowledge series provides a comprehensive core knowledge base on molecular biology, genetics, genomics, clinical laboratory practices, sequencing technologies, databases, and clinical applications. This resource serves not only to equip clinical bioinformaticians for their professional roles but also as a valuable reference for laboratorians.
Collapse
Affiliation(s)
- Annette Leon
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; Fabric Genomics, Oakland, California.
| | - Eduardo Castro-Echeverry
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; Baylor Scott and White Medical Center, Temple, Texas
| | - Danielle Jordan
- The Association for Molecular Pathology, Rockville, Maryland
| | - Amber M Fussell
- The Association for Molecular Pathology, Rockville, Maryland
| | - Nefize Sertac Kip
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; PathGroup, Nashville, Tennessee
| | - Angshumoy Roy
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Carlos J Suarez
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; Stanford University School of Medicine, Palo Alto, California
| | | | - Joshua Coleman
- AMP Clinical Bioinformatician Body of Knowledge Molecular Diagnostics Core Working Group of the Informatics Subdivision, Association for Molecular Pathology, Rockville, Maryland; University of Utah and ARUP Laboratories, Salt Lake City, Utah
| |
Collapse
|
2
|
Sui Q, Zhou Y, Li M, Wang D, Cui R, Cai X, Liu J, Wang X, Teng D, Zhou J, Hou H, Zhang S, Zheng M. Design, synthesis, and structure-activity relationship studies of triazolo-pyrimidine derivatives as WRN inhibitors for the treatment of MSI tumors. Eur J Med Chem 2025; 282:117039. [PMID: 39561494 DOI: 10.1016/j.ejmech.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Werner syndrome RecQ helicase (WRN), a member of the RecQ helicase family, has recently been identified as a synthetic lethal target in microsatellite instability (MSI) tumors. The triazolo-pyrimidine compound HRO761 is the first WRN inhibitor to enter clinical trials, but research on this scaffold remains limited. Here, we designed a series of derivatives to systematically study the structure-activity relationship (SAR) of triazolo-pyrimidine scaffolds, leading to the discovery of compound S35. S35 exhibited excellent WRN helicase inhibitory activity (ADP-Glo kinase assay IC50 = 16.1 nM, fluorometric helicase assay IC50 = 23.5 nM). Additionally, S35 exhibited excellent cellular selectivity, with antiproliferative activity against multiple MSI cell lines (GI50 = 36.4-306 nM), while the GI50 values for multiple microsatellite stability (MSS) cell lines were greater than 20,000 nM. Furthermore, we observed that compound S35 induced DNA damage and caused G2/M cell cycle arrest in MSI cells, which did not occur in MSS cells. S35 demonstrated favorable oral pharmacokinetic properties, with oral administration resulting in dose-dependent tumor growth inhibition in the SW48 xenograft model. These findings provide a promising outlook for the development of WRN inhibitors for the treatment of MSI tumors.
Collapse
Affiliation(s)
- Qibang Sui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yuanyang Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China
| | - Manjia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dan Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rongrong Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Cai
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jia Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaofeng Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Dan Teng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Lingang Laboratory, Shanghai, 200031, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
3
|
Wang F, Lai C, Lv Y, Zhang F, Shi L, Wang Y, Shen Y, Xu L, Hu P, Tang W, Xu D, Cao G, Shan L, Jia X, Chen Y, Larson DW, Wang D, Lao W, Gu H, Sun X, Huang X, Dai S. Efficacy and safety of combining short-course neoadjuvant chemoradiotherapy with envafolimab in locally advanced rectal cancer patients with microsatellite stability: a phase II PRECAM experimental study. Int J Surg 2025; 111:334-345. [PMID: 39093871 PMCID: PMC11745671 DOI: 10.1097/js9.0000000000001960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Conventional neoadjuvant chemoradiotherapy (nCRT) yields a pathologic complete response (pCR) rate of 15-30% for locally advanced rectal cancer (LARC). This study ventures to shift this paradigm by incorporating short-course nCRT with immunotherapy, specifically Envafolimab, to achieve improved treatment efficacy and possibly redefine the standard of care for LARC. MATERIALS AND METHODS The PRECAM study is a prospective, single-arm, phase 2 clinical trial for LARC in patients with microsatellite stable (MSS) tumors. Participants received short-course radiotherapy (25Gy/5f), followed by two cycles of CAPEOX chemotherapy and six weekly doses of Envafolimab, a PD-L1 antibody, before total mesorectal excision surgery. The primary endpoint was the pCR rate. RESULTS From April to December 2022, 34 patients were enrolled, of whom 32 completed the study, each diagnosed with an MSS rectal adenocarcinoma. All patients underwent preoperative CRT combined with Envafolimab. Remarkably, a pCR rate of 62.5% (20/32) was attained, and a significant pathologic response rate of 75% (24/32) was achieved. Additionally, 21 of 32 participants achieved a neoadjuvant rectal (NAR) score below 8, suggesting an effective treatment response. Common adverse events included tenesmus (78.1%), diarrhea (62.5%), and leukocyte decrease (40.6%). Two Grade 3 adverse events were noted, one related to liver function abnormality and the other to a decrease in platelet count. Surgical procedures were performed in all cases, with minor complications, including ileus, infections, and anastomotic leakage. As of this report, there have been no reported cases of recurrence or death during the follow-up period, ranging from 12 to 20 months. CONCLUSION In LARC patients exhibiting MSS tumors, combining short-course nCRT with Envafolimab demonstrated favorable efficacy, leading to a significant pCR rate. Minor adverse effects and surgical complications were observed. These preliminary but promising results underscore the potential of this approach and call for further exploration and validation through a randomized controlled trial.
Collapse
Affiliation(s)
- Fei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Chuanxi Lai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Yiming Lv
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Feixiang Zhang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Liming Shi
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Yunfei Wang
- Hangzhou Shengting Medical Technology Co., Ltd
| | - Yanbin Shen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Lingna Xu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Peng Hu
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Wen Tang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang
| | - Dengyong Xu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Gaoyang Cao
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Lina Shan
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Xiya Jia
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Yiyi Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - David W. Larson
- Department of Surgery, Division of Colon and Rectal Surgery, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota, USA
| | - Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Weifeng Lao
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Xuefeng Huang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| | - Sheng Dai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Biotherapy of Zhejiang Province
| |
Collapse
|
4
|
Høye E, Kanduri C, Torgunrud A, Lorenz S, Edwin B, Larsen SG, Fretland ÅA, Dagenborg VJ, Flatmark K, Lund-Andersen C. Enrichment of Cancer-Associated Fibroblasts, Macrophages, and Up-Regulated TNF-α Signaling in the Tumor Microenvironment of CMS4 Colorectal Peritoneal Metastasis. Cancer Med 2025; 14:e70521. [PMID: 39739693 DOI: 10.1002/cam4.70521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) is the main cause of CRC mortality, with limited treatment options. Although immunotherapy has benefited some cancer patients, mCRC typically lacks the molecular features that respond to this treatment. However, recent studies indicate that the immune microenvironment of mCRC may be modified to enhance the effect of immune checkpoint inhibitors. This study aimed to explore the metastatic tumor microenvironment (TME) by comparing cell populations in colorectal liver (CLM), lung (mLu), and peritoneal (PM) metastases. METHODS RNA isolated from 20 CLM, 15 mLu, and 35 PM samples was subjected to mRNA sequencing and explored through TME deconvolution tools, consensus molecular subtyping (CMS), and differential gene expression and gene set enrichment analysis, with respect to the metastatic sites. Clinical data and KRAS/BRAF hotspot mutation status were also obtained for all the cases. RESULTS The cell type fractions in the TME were relatively similar between the metastatic sites, except for cancer-associated fibroblasts (CAFs), B cells, endothelial cells, and CD4+ T cells. Notably, PM showed enrichment for CAFs and endothelial cells, consistent with distinct pathways associated with metastatic growth and progression in the peritoneal cavity. PM with the mesenchymal subtype, CMS4, had increased CAFs, endothelial cells, and macrophages, along with up-regulated genes related to TNF-α signaling via NF-κB, EMT, and angiogenesis. CONCLUSIONS Tumor samples from different metastatic sites exhibited a broadly similar TME in terms of immune cell composition, with some intriguing differences. Targeting CAF-associated pathways, macrophages, and TNF-α signaling through NR4A could represent potential novel therapeutic approaches in CMS4 PM.
Collapse
Affiliation(s)
- Eirik Høye
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Annette Torgunrud
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Susanne Lorenz
- Department of Core Facilities, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bjørn Edwin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Stein G Larsen
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Åsmund A Fretland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Vegar J Dagenborg
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Christin Lund-Andersen
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Bo S, You Y, Wang Y, Zhang Y, Bai B, Jiang T, Gao Y. Identification of signatures associated with microsatellite instability and immune characteristics to predict the prognostic risk of colon cancer. Open Med (Wars) 2024; 19:20241056. [PMID: 39726813 PMCID: PMC11669901 DOI: 10.1515/med-2024-1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 12/28/2024] Open
Abstract
Background Microsatellite instability (MSI) significantly impacts treatment response and outcomes in colon cancer; however, its underlying molecular mechanisms remain unclear. This study aimed to identify prognostic biomarkers by comparing MSI and microsatellite stability (MSS). Methods Data from the GSE39582 dataset downloaded from the Gene Expression Omnibus database were analyzed for differentially expressed genes (DEGs) and immune cell infiltration between MSI and MSS. Then, weighted gene co-expression network analysis (WGCNA) was utilized to identify the key modules, and the modules related to immune infiltration phenotypes were considered as the immune-related gene modules, followed by enrichment analysis of immune-related module genes. Prognostic signatures were derived using Cox regression, and their correlation with immune features and clinical features was assessed, followed by a nomogram construction. Results A total of 857 DEGs and 14 differential immune cell infiltration between MSI and MSS were obtained. Then, WGCNA identified two immune-related modules comprising 356 genes, namely MEturquoise and MEbrown. Eight signature genes were identified, namely PLK2, VSIG4, LY75, GZMB, GAS1, LIPG, ANG, and AMACR, followed by prognostic model construction. Both training and validation cohorts revealed that these eight signature genes have prognostic value, and the prognostic model showed superior predictive performance for colon cancer prognosis and distinguished the clinical characteristics of colon cancer patients. Notably, VSIG4 among the signature genes correlated significantly with immune infiltration, human leukocyte antigen expression, and immune pathway enrichment. Finally, the constructed nomogram model could significantly predict the prognosis of colorectal cancer. Conclusion This study identifies eight prognostic signature genes associated with MSI and immune infiltration in colon cancer, suggesting their potential for predicting prognostic risk.
Collapse
Affiliation(s)
- Sihan Bo
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yong You
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yongwei Wang
- Department of Anatomy, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yan Zhang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Bing Bai
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Tao Jiang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| |
Collapse
|
6
|
Cai Z, Zhai X, Xu J, Hong T, Yang K, Min S, Du J, Cai Z, Wang Z, Shen M, Wang D, Shen Y. ELAVL1 regulates PD-L1 mRNA stability to disrupt the infiltration of CD4-positive T cells in prostate cancer. Neoplasia 2024; 57:101049. [PMID: 39265220 PMCID: PMC11416606 DOI: 10.1016/j.neo.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Prostate cancer (PCa) currently ranks second in male tumor mortality. Targeting immune checkpoint in tumor as immunotherapy is a new direction for tumor treatment. However, targeting PD-1/PD-L1 and CTLA4 to treat PCa has poor immunotherapeutic efficacy because PCa is known as a cold tumor. Understanding the mechanism of immunosuppression in PCa can promote the use of immunotherapy to treat PCa. ELAVL1 is highly expressed in many tumors, participates in almost all tumor biological activities and is an oncogene. ELAVL1 is also involved in the development and differentiation of T and B lymphocytes. However, the relationship between ELAVL1 and tumor immunity has not yet been reported. In recent years, ELAVL1 has been shown to regulate downstream targets in an m6A -dependent manner. PD-L1 has been shown to have m6A sites in multiple tumors that are regulated by m6A. In this study, ELAVL1 was highly expressed in PCa, and PCa with high ELAVL1 expression is immunosuppressive. Knocking down ELAVL1 reduced PD-L1 expression in PCa. Moreover, PD-L1 was shown to have an m6A site, and its m6A level was upregulated in PCa. ELAVL1 interacts with PD-L1 mRNA and promotes PD-L1 RNA stability via m6A, ultimately inhibiting the infiltration of CD4-positive T cells. In addition, androgen receptor (AR) was shown to be regulated with ELAVL1, and knocking down AR could also affect the expression of PD-L1. Therefore, ELAVL1 can directly or indirectly regulate the expression of PD-L1, thereby affecting the infiltration of CD4-positive T cells in PCa and ultimately leading to immune suppression.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuxia Zhai
- School of Nursing, Peking University, Beijing, China; Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, China
| | - Jidong Xu
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Tianyu Hong
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Kuo Yang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Shasha Min
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Jianuo Du
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Zhikang Cai
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
| | - Zhong Wang
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
| | - Ming Shen
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| | - Di Wang
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yanting Shen
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
| |
Collapse
|
7
|
Luo Z, Jiang M, Cheng N, Zhao X, Liu H, Wang S, Lin Q, Huang J, Guo X, Liu X, Shan X, Lu Y, Shi Y, Luo L, You J. Remodeling the hepatic immune microenvironment and demolishing T cell traps to enhance immunotherapy efficacy in liver metastasis. J Control Release 2024; 373:890-904. [PMID: 39067794 DOI: 10.1016/j.jconrel.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Immune checkpoint inhibitors (ICIs) exhibit compromised therapeutic efficacy in many patients with advanced cancers, particularly those with liver metastases. Much of this incapability can be ascribed as an irresponsiveness resulting from the "cold" hepatic tumor microenvironment that acts as T cell "traps" for which there currently lack countermeasures. We report a novel nanomedicine that converts the hepatic immune microenvironment to a "hot" phenotype by targeting hepatic macrophage-centric T cell elimination. Using the nanomedicine, composed of KIRA6 (an endothelium reticulum stress inhibitor), α-Tocopherol nanoemulsions, and anti-PD1 antibodies, we found its potency in murine models of orthotopic colorectal tumors and hepatic metastases, restoring immune responses and enhancing anti-tumor effects. A post-treatment scrutiny of the immune microenvironment landscape in the liver reveals repolarization of immunosuppressive hepatic macrophages, upregulation of Th1-like effector CD4+ T cells, and rejuvenation of dendritic cells along with CD8+ T cells. These findings suggest adaptations of liver-centric immune milieu modulation strategies to improve the efficacy of ICIs for a variety of "cold" tumors and their liver metastases.
Collapse
Affiliation(s)
- Zhenyu Luo
- School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ningtao Cheng
- School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Hangzhou Yuhang BoYu Intelligent Health Innovation Lab, Hangzhou, Zhejiang 311121, China.
| | - Xiaoqi Zhao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Huihui Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Qing Lin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Crisafulli G. Mutational Signatures in Colorectal Cancer: Translational Insights, Clinical Applications, and Limitations. Cancers (Basel) 2024; 16:2956. [PMID: 39272814 PMCID: PMC11393898 DOI: 10.3390/cancers16172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
A multitude of exogenous and endogenous processes have the potential to result in DNA damage. While the repair mechanisms are typically capable of correcting this damage, errors in the repair process can result in mutations. The findings of research conducted in 2012 indicate that mutations do not occur randomly but rather follow specific patterns that can be attributed to known or inferred mutational processes. The process of mutational signature analysis allows for the inference of the predominant mutational process for a given cancer sample, with significant potential for clinical applications. A deeper comprehension of these mutational signatures in CRC could facilitate enhanced prevention strategies, facilitate the comprehension of genotoxic drug activity, predict responses to personalized treatments, and, in the future, inform the development of targeted therapies in the context of precision oncology. The efforts of numerous researchers have led to the identification of several mutational signatures, which can be categorized into different mutational signature references. In CRC, distinct mutational signatures are identified as correlating with mismatch repair deficiency, polymerase mutations, and chemotherapy treatment. In this context, a mutational signature analysis offers considerable potential for enhancing minimal residual disease (MRD) tests in stage II (high-risk) and stage III CRC post-surgery, stratifying CRC based on the impacts of genetic and epigenetic alterations for precision oncology, identifying potential therapeutic vulnerabilities, and evaluating drug efficacy and guiding therapy, as illustrated in a proof-of-concept clinical trial.
Collapse
|
9
|
Picco G, Rao Y, Al Saedi A, Lee Y, Vieira SF, Bhosle S, May K, Herranz-Ors C, Walker SJ, Shenje R, Dincer C, Gibson F, Banerjee R, Hewitson Z, Werner T, Cottom JE, Peng Y, Deng N, Zhang Y, Nartey E, Nickels L, Landis P, Conticelli D, McCarten K, Bush J, Sharma M, Lightfoot H, House D, Milford E, Grant EK, Glogowski MP, Wagner CD, Bantscheff M, Rutkowska-Klute A, Zappacosta F, Pettinger J, Barthorpe S, Eberl HC, Jones BT, Schneck JL, Murphy DJ, Voest EE, Taygerly JP, DeMartino MP, Coelho MA, Houseley J, Sharma G, Schwartz B, Garnett MJ. Novel WRN Helicase Inhibitors Selectively Target Microsatellite-Unstable Cancer Cells. Cancer Discov 2024; 14:1457-1475. [PMID: 38587317 PMCID: PMC7616858 DOI: 10.1158/2159-8290.cd-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumors, and WRN inhibitors are in development. In this study, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth in vitro and in vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic lethal targeting of WRN in MSI cancer and tools to dissect WRN biology. Significance: We report the discovery and characterization of potent, selective WRN helicase inhibitors for MSI cancer treatment, with biomarker analysis and evaluation of efficacy in vivo and in immunotherapy-refractory preclinical models. These findings pave the way to translate WRN inhibition into MSI cancer therapies and provide tools to investigate WRN biology. See related commentary by Wainberg, p. 1369.
Collapse
Affiliation(s)
| | | | | | - Yang Lee
- GSK, Upper Providence, PA, US 19426
| | | | | | - Kieron May
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cell Model Network UK Group
- Wellcome Sanger Institute, Cambridge, UK
- GSK, Upper Providence, PA, US 19426
- GSK, Stevenage, UK, SG1 2NY
- GSK, 69117 Heidelberg, Germany
- GSK, Cambridge, MA, US 02139
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Candiolo Cancer Institute, Italy
- IDEAYA Biosciences, South San Francisco, CA 94080
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | - Emile E. Voest
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Frey C, Etminan M. Adverse Events of PD-1, PD-L1, CTLA-4, and LAG-3 Immune Checkpoint Inhibitors: An Analysis of the FDA Adverse Events Database. Antibodies (Basel) 2024; 13:59. [PMID: 39051335 PMCID: PMC11270294 DOI: 10.3390/antib13030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
This study aimed to identify the 25 most prevalent adverse events (AEs) associated with FDA-approved immune checkpoint inhibitors (ICIs)-specifically, PD-1, PD-L1, CTLA-4, and LAG-3 inhibitors-using data from the FDA Adverse Events Reporting System (FAERS), a publicly available repository of reported drug adverse events, and AERSMine, an open-access pharmacovigilance tool, to investigate these adverse events. For PD-1 inhibitors, the most common AEs were diarrhea, fatigue, and pyrexia, with notable instances of neutropenia and hypothyroidism, particularly with toripalimab and dostarlimab. PD-L1 inhibitors also frequently caused pyrexia, diarrhea, and fatigue, with interstitial lung disease and hypothyroidism showing a class effect, and drug-specific AEs such as hepatotoxicity and chills. CTLA-4 inhibitors predominantly resulted in diarrhea and colitis, with ipilimumab frequently causing pyrexia and rash, while tremelimumab exhibited unique AEs such as biliary tract infection. The LAG-3 inhibitor relatlimab reported fewer AEs, including pyrexia and pneumonia. Rare but significant AEs across all inhibitors included myocarditis and myasthenia gravis. This study provides a detailed overview of the 25 most common AEs associated with ICIs, offering valuable insights for clinical decision-making and AE management. Further research is necessary to elucidate the mechanisms underlying these AEs and to develop targeted interventions to enhance the safety and efficacy of ICI therapy in patients with cancer.
Collapse
Affiliation(s)
- Connor Frey
- Department of Medicine, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Mahyar Etminan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, BC V5Z 3N9, Canada;
| |
Collapse
|
11
|
Mao J, He Y, Chu J, Hu B, Yao Y, Yan Q, Han S. Analysis of clinical characteristics of mismatch repair status in colorectal cancer: a multicenter retrospective study. Int J Colorectal Dis 2024; 39:100. [PMID: 38967814 PMCID: PMC11226506 DOI: 10.1007/s00384-024-04674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Microsatellite instability (MSI) caused by DNA mismatch repair (MMR) deficiency is of great significance in the occurrence, diagnosis and treatment of colorectal cancer (CRC). AIM This study aimed to analyze the relationship between mismatch repair status and clinical characteristics of CRC. METHODS The histopathological results and clinical characteristics of 2029 patients who suffered from CRC and underwent surgery at two centers from 2018 to 2020 were determined. After screening the importance of clinical characteristics through machine learning algorithms, the patients were divided into deficient mismatch repair (dMMR) and proficient mismatch repair (pMMR) groups based on the immunohistochemistry results and the clinical feature data between the two groups were observed by statistical methods. RESULTS The dMMR and pMMR groups had significant differences in histologic type, TNM stage, maximum tumor diameter, lymph node metastasis, differentiation grade, gross appearance, and vascular invasion. There were significant differences between the MLH1 groups in age, histologic type, TNM stage, lymph node metastasis, tumor location, and depth of invasion. The MSH2 groups were significantly different in age. The MSH6 groups had significant differences in age, histologic type, and TNM stage. There were significant differences between the PMS2 groups in lymph node metastasis and tumor location. CRC was dominated by MLH1 and PMS2 combined expression loss (41.77%). There was a positive correlation between MLH1 and MSH2 and between MSH6 and PMS2 as well. CONCLUSIONS The proportion of mucinous adenocarcinoma, protruding type, and poor differentiation is relatively high in dMMR CRCs, but lymph node metastasis is rare. It is worth noting that the expression of MMR protein has different prognostic significance in different stages of CRC disease.
Collapse
Affiliation(s)
- Jing Mao
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Yang He
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, No. 92, Zheshan West Road, Jinghu District, Wuhu, Anhui, 241001, People's Republic of China
| | - Jian Chu
- Department of Gastroenterology, The Fifth Affiliated Clinical Medical College of Zhejiang, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Boyang Hu
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Yanjun Yao
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Qiang Yan
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
| |
Collapse
|
12
|
Chen Z, Zou Z, Qian M, Xu Q, Xue G, Yang J, Luo T, Hu L, Wang B. A retrospective cohort study of neoadjuvant chemoradiotherapy combined with immune checkpoint inhibitors in locally advanced rectal cancer. Transl Oncol 2024; 44:101955. [PMID: 38583351 PMCID: PMC11004196 DOI: 10.1016/j.tranon.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the safety and efficacy of neoadjuvant chemoradiotherapy combined with immune checkpoint inhibitors (ICIs) in patients with locally advanced rectal cancer (LARC). Patients diagnosed with LARC and treated with programmed cell death protein-1 (PD-1) inhibitors were recruited. METHODS Four different treatment strategies were employed in this study: plan A [long-course radiotherapy + PD-1 inhibitor/capecitabine + PD-1 inhibitor/XELOX+ total mesorectal excision (TME)], plan B (long-course radiotherapy + capecitabine + PD-1 inhibitor/XELOX + TME), plan C (short-course radiotherapy + PD-1 inhibitor/XELOX + TME), and plan D (PD-1 inhibitor/XELOX + short-course radiotherapy + TME). The basic information about patients, pathological indicators, adverse events, and efficacy indexes of treatment plans were analyzed. RESULTS 96.8 % of patients were mismatch repair proficient (pMMR) and only 2 patients belonged to mismatch repair deficient (dMMR). The 2 patients with dMMR showed a pathological complete response (pCR) rate of 100 %, while the pCR rate of pMMR patients was 43.3 %. The overall tumor descending rate reached 79 %, and the anus-retained rate was 88.7 % in all LARC patients. Plan A exhibited the highest pCR rate of 60 %, and plan C had the highest tumor descending rate and anal preservation rate. Radiation enteritis was the most common adverse event in LARC patients after neoadjuvant therapy, and its incidence was the highest in Plan A. CONCLUSION Neoadjuvant chemoradiotherapy combined with ICIs demonstrated favorable efficacy and safety in treating LARC patients.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhuoling Zou
- Queen Mary School, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Min Qian
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China
| | - Qin Xu
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China
| | - Guojuan Xue
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China
| | - Juan Yang
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China
| | - Tinglan Luo
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China
| | - Lianjie Hu
- Gastrocolorectoanal surgery, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China.
| | - Bin Wang
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 401320, China.
| |
Collapse
|
13
|
Xiao M, Wang L, Tang Q, Yang Q, Yang X, Zhu G, Lei L, Li S. Postoperative tumor treatment strategies: From basic research to clinical therapy. VIEW 2024; 5. [DOI: 10.1002/viw.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
AbstractDespite progression in advanced treatments for malignant tumors, surgery remains the primary treatment intervention, which removes a large portion of firm tumor tissues; however, the postoperative phase poses a possible risk for provincial tumor recurrence and metastasis. Consequently, the prevention of tumor recurrence and metastasis has attracted research attention. In this review, we summarized the postoperative treatment strategies for various tumors from both basic research and clinical perspectives. We delineated the underlying factors contributing to the recurrence of malignant tumors with a substantial prevalence rate, related molecular mechanisms of tumor recurrence post‐surgery, and related means of monitoring recurrence and metastasis after surgery. Furthermore, we described relevant therapeutic approaches for postoperative tumor recurrence, including chemotherapy, radiation therapy, immunotherapy, targeted therapy, and photodynamic therapy. This review focused on the emerging technologies used for postoperative tumor treatment in recent years in terms of functional classification, including the prevention of postoperative tumor recurrence, functional reconstruction, and monitoring of recurrence. Finally, we discussed the future development and deficiencies of postoperative tumor therapy. To understand postoperative treatment strategies for tumors from clinical treatment and basic research and further guide the research directions for postoperative tumors.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery Binzhou People's Hospital Binzhou China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lanjie Lei
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
14
|
Vick LV, Rosario S, Riess JW, Canter RJ, Mukherjee S, Monjazeb AM, Murphy WJ. Potential roles of sex-linked differences in obesity and cancer immunotherapy: revisiting the obesity paradox. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:5. [PMID: 38800540 PMCID: PMC11116109 DOI: 10.1038/s44324-024-00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
Obesity, a condition of excess adiposity usually defined by a BMI > 30, can have profound effects on both metabolism and immunity, connecting the condition with a broad range of diseases, including cancer and negative outcomes. Obesity and cancer have been associated with increased incidence, progression, and poorer outcomes of multiple cancer types in part due to the pro-inflammatory state that arises. Surprisingly, obesity has also recently been demonstrated in both preclinical models and clinical outcomes to be associated with improved response to immune checkpoint inhibition (ICI). These observations have laid the foundation for what has been termed the "obesity paradox". The mechanisms underlying these augmented immunotherapy responses are still unclear given the pleiotropic effects obesity exerts on cells and tissues. Other important variables such as age and sex are being examined as further affecting the obesity effect. Sex-linked factors exert significant influences on obesity biology, metabolism as well as differential effects of different immune cell-types. Age can be another confounding factor contributing to the effects on both sex-linked changes, immune status, and obesity. This review aims to revisit the current body of literature describing the immune and metabolic changes mediated by obesity, the role of obesity on cancer immunotherapy, and to highlight questions on how sex-linked differences may influence obesity and immunotherapy outcome.
Collapse
Affiliation(s)
- Logan V. Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA USA
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Jonathan W. Riess
- Department of Medicine, Division of Hematology/Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Robert J. Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA USA
| | - Sarbajit Mukherjee
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA USA
| | - William J. Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA USA
- Department of Internal Medicine, Division of Malignant Hematology, Cellular Therapy and Transplantation, University of California Davis School of Medicine, Sacramento, CA USA
| |
Collapse
|
15
|
Wang Y, Wang Z, Guo X, Cao Y, Xing H, Wang Y, Xing B, Wang Y, Yao Y, Ma W. Artificial neural network identified a 20-gene panel in predicting immunotherapy response and survival benefits after anti-PD1/PD-L1 treatment in glioblastoma patients. Cancer Med 2024; 13:e7218. [PMID: 38733169 PMCID: PMC11087814 DOI: 10.1002/cam4.7218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are a promising immunotherapy approach, but glioblastoma clinical trials have not yielded satisfactory results. OBJECTIVE To screen glioblastoma patients who may benefit from immunotherapy. METHODS Eighty-one patients receiving anti-PD1/PD-L1 treatment from a large-scale clinical trial and 364 patients without immunotherapy from The Cancer Genome Atlas (TCGA) were included. Patients in the ICI-treated cohort were divided into responders and nonresponders according to overall survival (OS), and the most critical responder-relevant features were screened using random forest (RF). We constructed an artificial neural network (ANN) model and verified its predictive value with immunotherapy response and OS. RESULTS We defined two groups of ICI-treated glioblastoma patients with large differences in survival benefits as nonresponders (OS ≤6 months, n = 18) and responders (OS ≥17 months, n = 8). No differentially mutated genes were observed between responders and nonresponders. We performed RF analysis to select the most critical responder-relevant features and developed an ANN with 20 input variables, five hidden neurons and one output neuron. Receiver operating characteristic analysis and the DeLong test demonstrated that the ANN had the best performance in predicting responders, with an AUC of 0.97. Survival analysis indicated that ANN-predicted responders had significantly better OS rates than nonresponders. CONCLUSION The 20-gene panel developed by the ANN could be a promising biomarker for predicting immunotherapy response and prognostic benefits in ICI-treated GBM patients and may guide oncologists to accurately select potential responders for the preferential use of ICIs.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking UnionMedical CollegeBeijingChina
| | - Zihao Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking UnionMedical CollegeBeijingChina
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking UnionMedical CollegeBeijingChina
| | - Yaning Cao
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking UnionMedical CollegeBeijingChina
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking UnionMedical CollegeBeijingChina
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking UnionMedical CollegeBeijingChina
| | - Bing Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking UnionMedical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking UnionMedical CollegeBeijingChina
| | - Yong Yao
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking UnionMedical CollegeBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking UnionMedical CollegeBeijingChina
| |
Collapse
|
16
|
Li J, Li Z, Yang W, Pan J, You H, Yang L, Zhang X. Development and verification of a novel immunogenic cell death-related signature for predicting the prognosis and immune infiltration in triple-negative breast cancer. Cancer Rep (Hoboken) 2024; 7:e2007. [PMID: 38425247 PMCID: PMC10905160 DOI: 10.1002/cnr2.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/01/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Insufficient understanding of the pathogenesis and tumor immunology of triple-negative breast cancer (TNBC) has limited the development of immunotherapy. The importance of tumor microenvironment (TME) in immunotyping, prognostic assessment and immunotherapy efficacy of cancer has been emphasized, however, potential immunogenic cell death (ICD) related genes function in TME of TNBC has been rarely investigated. AIMS To initially explore the role and related mechanisms of ICD in TNBC, especially the role played in the TME of TNBC, and to identify different relevant subtypes based on ICD, and then develop an ICD-related risk score to predict each TNBC patient TME status, prognosis and immunotherapy response. METHODS AND RESULTS In this study, we identified distinct ICD-related modification patterns based on 158 TNBC cases in the TCGA-TNBC cohort. We then investigated the possible correlation between ICD-related modification patterns and TME cell infiltration characteristics in TNBC. By using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis, we created a risk scoring system (ICD score) to quantifiably evaluate the impact of ICD-related modification patterns in individual TNBC patient. Two different ICD-related modification patterns were found with significant differences in immune infiltration. Lower ICD score was correlated with higher immune infiltration, tumor mutational burden and significantly enriched in immune-related pathways, indicating a strong ability to activate immune response, which might account for relatively favorable prognosis of TNBC patients and could serve as a predictor to select suitable candidates for immunotherapy. We used two independent cohorts, GSE58812 cohort and Metabric cohort to validate prognosis and immunohistochemistry for preliminary in vitro validation. CONCLUSION This study evidenced that the ICD-related modification patterns might exert pivotal roles in the immune infiltration landscape of TNBC and ICD score might act as potential predictors of prognostic assessment and immunotherapy response. This research provides unique insights for individualize immune treatment strategies and promising immunotherapy candidates screening.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhengtian Li
- Department of Bone and Joint SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenkang Yang
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jianmin Pan
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Huazong You
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Lixiang Yang
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiaodong Zhang
- Department of Gastrointestinal and Gland SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
17
|
Zhang M, Wu Y, Mou J, Yao Y, Wen P, Liu X, Shang S, Kang X, Tian J, Liu Y, Lv E, Wang L. The global landscape of immune-derived lncRNA signature in colorectal cancer. Heliyon 2024; 10:e25568. [PMID: 38420407 PMCID: PMC10900961 DOI: 10.1016/j.heliyon.2024.e25568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly heterogeneous cancer. This heterogeneity has an impact on the efficacy of immunotherapy. Long noncoding RNAs (lncRNAs) have been found to play regulatory functions in cancer immunity. However, the global landscape of immune-derived lncRNA signatures has not yet been explored in colorectal cancer. METHODS In this study, we applied DESeq2 to identify differentially expressed lncRNAs in colon cancer. Next, we performed an integrative analysis to globally identify immune-driven lncRNA markers in CRC, including immune-associated pathways, tumor immunogenomic features, tumor-infiltrating immune cells, immune checkpoints, microsatellite instability (MSI) and tumor mutation burden (TMB). RESULTS We also identified dysregulated lncRNAs, such as LINC01354 and LINC02257, and their clinical relevance in CRC. Our findings revealed that the differentially expressed lncRNAs were closely associated with immune pathways. In addition, we found that RP11-354P11.3 and RP11-545G3.1 had the highest association with the immunogenomic signature. As a result, these signatures could serve as markers to assess immunogenomic activity in CRC. Among the immune cells, resting mast cells and M0 macrophages had the highest association with lncRNAs in CRC. The AC006129.2 gene was significantly associated with several immune checkpoints, for example, programmed cell death protein 1 (PD-1) and B and T lymphocyte attenuator (BTLA). Therefore, the AC006129.2 gene could be targeted to regulate the condition of immune cells or immune checkpoints to enhance the efficacy of immunotherapy in CRC patients. Finally, we identified 15 immune-related lncRNA-generated open reading frames (ORFs) corresponding to 15 cancer immune epitopes. CONCLUSION In conclusion, we provided a genome-wide immune-driven lncRNA signature for CRC that might provide new insights into clinical applications and immunotherapy.
Collapse
Affiliation(s)
- Mengying Zhang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yifei Wu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyi Mou
- Department of Clinical Medicine, School of 1st Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yang Yao
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengbo Wen
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shipeng Shang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xingxing Kang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaqi Tian
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Liu
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Enhui Lv
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Division of Microbiology and Immunology, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Hsieh HH, Chen CL, Chan HW, Chi KH, Wu CY. Enhanced antitumour response of gold nanostar-mediated photothermal therapy in combination with immunotherapy in a mouse model of colon carcinoma. Br J Cancer 2024; 130:406-416. [PMID: 38135715 PMCID: PMC10844602 DOI: 10.1038/s41416-023-02537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVES This study investigated the potential of combining PTT with dendritic cell (DC)-based immunotherapy and anti-PD-L1 immune checkpoint blockade (ICB) therapy against colorectal cancer and elucidated the underlying mechanisms. METHODS The CT26 tumour-bearing mice were divided into seven treatment groups: control, atezolizumab (A), dendritic cells (DC), pAuNSs-mediated PTT (PTT), PTT combined with atezolizumab (PTT + A), PTT combined with dendritic cells (PTT + DC), and PTT combined with dendritic cells and atezolizumab (PTT + DC + A). Therapeutic efficacy was monitored. RESULTS PTT upregulated most immune cell membrane receptor genes, including PD-L1, and downregulated genes associated with antigen presentation and T cell activation. Although the PTT + A and PTT + DC treatments showed partial tumour growth retardation, the combination of PTT with DCs and atezolizumab (PTT + DC + A) exhibited the most significant antitumour effect, with a complete remission rate of 50% and prolonged survival. On day 14, tumour samples from non-responsive mice revealed insufficient recruitment of T cells as the reason for uncured tumours. Notably, mice cured with PTT + DC and PTT + DC + A treatments showed no detectable lung nodules. CONCLUSION This study demonstrated that the combination of PTT with DC-based immunotherapy and atezolizumab effectively overcomes the non-sensitive nature of CT26 tumours. These findings highlight the potential of this combination approach for colorectal cancer treatment.
Collapse
Affiliation(s)
- Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kwan-Hwa Chi
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
19
|
Zhang Y, Feng Y, Zhao Y, Feng Y, Li M, Wang W, Ni Z, Zhu H, Wang Y. Single-cell RNA sequencing reveals that the immunosuppression landscape induced by chronic stress promotes colorectal cancer metastasis. Heliyon 2024; 10:e23552. [PMID: 38169984 PMCID: PMC10758883 DOI: 10.1016/j.heliyon.2023.e23552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The high prevalence of depressive disorders in individuals with cancer and their contribution to tumour progression is a topic that is gradually gaining attention. Recent evidence has shown that there are prominent connections between immune gene variants and mood disorders. The homeostasis of the tumour immune microenvironment (TIME) and the infiltration and activation of immune cells play a very important role in the antitumour effect. In this study, we established a compound mouse model with chronic unpredictable mild stress (CUMS) and orthotopic colorectal cancer to simulate colorectal cancer (CRC) patients with depression. Using 10✕Genomics single-cell transcriptome sequencing technology, we profiled nearly 30,000 cells from tumour samples of 8 mice from the control and CUMS groups, revealed that immune cells in tumours under a chronic stress state trend toward a more immunosuppressive and exhaustive status, and described the crosstalk between the overall inflammatory environment and immunosuppressive landscape to provide mechanistic information or efficacious strategies for immune-oncology treatments in CRC with depressive disorders.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Feng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengyao Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenkai Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhongya Ni
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huirong Zhu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
20
|
Battaglin F, Baca Y, Millstein J, Yang Y, Xiu J, Arai H, Wang J, Ou FS, Innocenti F, Mumenthaler SM, Jayachandran P, Kawanishi N, Lenz A, Soni S, Algaze S, Zhang W, Khoukaz T, Roussos Torres E, Seeber A, Abraham JP, Lou E, Philip PA, Weinberg BA, Shields AF, Goldberg RM, Marshall JL, Venook AP, Korn WM, Lenz HJ. CCR5 and CCL5 gene expression in colorectal cancer: comprehensive profiling and clinical value. J Immunother Cancer 2024; 12:e007939. [PMID: 38212126 PMCID: PMC10806545 DOI: 10.1136/jitc-2023-007939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The C-C motif chemokine receptor 5 (CCR5)/C-C motif chemokine ligand 5 (CCL5) axis plays a major role in colorectal cancer (CRC). We aimed to characterize the molecular features associated with CCR5/CCL5 expression in CRC and to determine whether CCR5/CCL5 levels could impact treatment outcomes. METHODS 7604 CRCs tested with NextGen Sequencing on DNA and RNA were analyzed. Molecular features were evaluated according to CCR5 and CCL5 tumor gene expression quartiles. The impact on treatment outcomes was assessed in two cohorts, including 6341 real-world patients and 429 patients from the Cancer and Leukemia Group B (CALGB)/SWOG 80405 trial. RESULTS CCR5/CCL5 expression was higher in right-sided versus left-sided tumors, and positively associated with consensus molecular subtypes 1 and 4. Higher CCR5/CCL5 expression was associated with higher tumor mutational burden, deficiency in mismatch repair and programmed cell death ligand 1 (PD-L1) levels. Additionally, high CCR5/CCL5 were associated with higher immune cell infiltration in the tumor microenvironment (TME) of MMR proficient tumors. Ingenuity pathway analysis revealed upregulation of the programmed cell death protein 1 (PD-1)/PD-L1 cancer immunotherapy pathway, phosphatase and tensin homolog (PTEN) and peroxisome proliferator-activated receptors (PPAR) signaling, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) signaling in cytotoxic T lymphocytes, whereas several inflammation-related pathways were downregulated. Low CCR5/CCL5 expression was associated with increased benefit from cetuximab-FOLFOX treatment in the CALGB/SWOG 80405 trial, where significant treatment interaction was observed with biologic agents and chemotherapy backbone. CONCLUSIONS Our data show a strong association between CCR5/CCL5 gene expression and distinct molecular features, gene expression profiles, TME cell infiltration, and treatment benefit in CRC. Targeting the CCR5/CCL5 axis may have clinical applications in selected CRC subgroups and may play a key role in developing and deploying strategies to modulate the immune TME for CRC treatment.
Collapse
Affiliation(s)
- Francesca Battaglin
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | | | - Joshua Millstein
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Yan Yang
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Joanne Xiu
- Caris Life Sciences, Phoenix, Arizona, USA
| | - Hiroyuki Arai
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Jingyuan Wang
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Fang-Shu Ou
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Federico Innocenti
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shannon M Mumenthaler
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
- Lawrence J Ellison Institute for Transformative Medicine, Los Angeles, California, USA
| | - Priya Jayachandran
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Natsuko Kawanishi
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Annika Lenz
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Shivani Soni
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Sandra Algaze
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Wu Zhang
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Taline Khoukaz
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Evanthia Roussos Torres
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Innsbruck Medical University, Innsbruck, Tirol, Austria
| | | | - Emil Lou
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Philip A Philip
- Department of Oncology and Pharmacology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Benjamin A Weinberg
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Richard M Goldberg
- West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| | - John L Marshall
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Alan P Venook
- University of California San Francisco, San Francisco, California, USA
| | | | - Heinz-Josef Lenz
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| |
Collapse
|
21
|
Chen C, Jiang X, Zhao Z. Inhibition or promotion, the potential role of arginine metabolism in immunotherapy for colorectal cancer. ALL LIFE 2023. [DOI: 10.1080/26895293.2022.2163306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Chengyang Chen
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
22
|
Han J, Zhang B, Zhang Y, Yin T, Cui Y, Liu J, Yang Y, Song H, Shang D. Gut microbiome: decision-makers in the microenvironment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1299977. [PMID: 38156313 PMCID: PMC10754537 DOI: 10.3389/fcimb.2023.1299977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract, accounting for the second most common cause of gastrointestinal tumors. As one of the intestinal barriers, gut bacteria form biofilm, participate in intestinal work, and form the living environment of intestinal cells. Metagenomic next-generation sequencing (mNGS) of the gut bacteria in a large number of CRC patients has been established, enabling specific microbial signatures to be associated with colorectal adenomato-carcinoma. Gut bacteria are involved in both benign precursor lesions (polyps), in situ growth and metastasis of CRC. Therefore, the term tumorigenic bacteria was proposed in 2018, such as Escherichia coli, Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, etc. Meanwhile, bacteria toxins (such as cytolethal distending toxin (CDT), Colibactin (Clb), B. fragilis toxin) affect the tumor microenvironment and promote cancer occurrence and tumor immune escape. It is important to note that there are differences in the bacteria of different types of CRC. In this paper, the role of tumorigenic bacteria in the polyp-cancer transformation and the effects of their secreted toxins on the tumor microenvironment will be discussed, thereby further exploring new ideas for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yongnian Zhang
- Departments of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianyi Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Cui
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanfei Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Yue Y, Cheng M, Xi X, Wang Q, Wei M, Zheng B. Can neoadjuvant chemoradiotherapy combined with immunotherapy benefit patients with microsatellite stable locally advanced rectal cancer? a pooled and integration analysis. Front Oncol 2023; 13:1280995. [PMID: 37869097 PMCID: PMC10588447 DOI: 10.3389/fonc.2023.1280995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Objective To assess the clinical efficacy of neoadjuvant chemoradiotherapy combined with immunotherapy for patients with microsatellite stable (MSS) locally advanced rectal cancer and provide evidence to support clinical decision-making. Methods A systematic search was conducted on the PubMed, Embase, Cochrane Collaboration databases, conference summaries, and Chinese databases for clinical studies that investigated neoadjuvant chemoradiotherapy combined with immunotherapy for the treatment of locally advanced rectal cancer with MSS status. The search spanned from the inception of each database through July 2023. Data from the identified studies were extracted using a pre-designed table, and efficacy outcomes were analyzed. An integrated analysis was conducted using Stata 12.0 software. Results Eight studies were included, comprising 204 patients with locally advanced MSS rectal cancer who received chemoradiotherapy combined with immunotherapy. The integrated analysis revealed a pathologic complete remission rate of 0.33, a sphincter preservation rate of 0.86, an R0 resection rate of 0.83, a major pathologic remission rate of 0.33, and a clinical complete remission rate of 0.30. Conclusion Neoadjuvant chemoradiotherapy combined with immunotherapy demonstrates significant short-term efficacy in MSS-type locally advanced rectal cancer, notably enhancing the pathologic complete remission and sphincter preservation rates. This combination is a recommended treatment for patients with MSS-type rectal cancer.
Collapse
Affiliation(s)
- Yumin Yue
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Min Cheng
- Department of Colorectal Surgery, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Xiaohui Xi
- Department of Colorectal Surgery, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Quan Wang
- Ambulatory Surgery Center of Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bobo Zheng
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
24
|
Potenza A, Balestrieri C, Spiga M, Albarello L, Pedica F, Manfredi F, Cianciotti BC, De Lalla C, Botrugno OA, Faccani C, Stasi L, Tassi E, Bonfiglio S, Scotti GM, Redegalli M, Biancolini D, Camisa B, Tiziano E, Sirini C, Casucci M, Iozzi C, Abbati D, Simeoni F, Lazarevic D, Elmore U, Fiorentini G, Di Lullo G, Casorati G, Doglioni C, Tonon G, Dellabona P, Rosati R, Aldrighetti L, Ruggiero E, Bonini C. Revealing and harnessing CD39 for the treatment of colorectal cancer and liver metastases by engineered T cells. Gut 2023; 72:1887-1903. [PMID: 37399271 DOI: 10.1136/gutjnl-2022-328042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/02/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.
Collapse
Affiliation(s)
- Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Balestrieri
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pedica
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudia De Lalla
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Faccani
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Stasi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bonfiglio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Maria Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Redegalli
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Donatella Biancolini
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Camisa
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tiziano
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Sirini
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Iozzi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Simeoni
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ugo Elmore
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Fiorentini
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Di Lullo
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Tonon
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Rosati
- Vita-Salute San Raffaele University, Milan, Italy
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Aldrighetti
- Vita-Salute San Raffaele University, Milan, Italy
- Hepatobiliary Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
25
|
Li S, Zheng H, Ge Q, Xia S, Zhang K, Wang C, Wang F. Effectiveness and Safety of Apatinib Plus Programmed Cell Death Protein 1 Blockades for Patients with Treatment-refractory Metastatic Colorectal Cancer: A Retrospective Exploratory Study. J Cancer Prev 2023; 28:106-114. [PMID: 37830117 PMCID: PMC10564635 DOI: 10.15430/jcp.2023.28.3.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to investigate the efficacy and safety of apatinib plus programmed cell death protein 1 (PD-1) blockades for patients with metastatic colorectal cancer (CRC) who were refractory to the standard regimens. In this retrospective study, patients with metastatic CRC who received apatinib plus PD-1 blockades in clinical practice were included. The initial dosage of apatinib was 250 mg or 500 mg, and PD-1 blockades were comprised of camrelizumab, sintilimab and pembrolizumab. Efficacy and safety data were collected through the hospital's electronic medical record system. From October 2018 to March 2022, a total of 43 patients with metastatic CRC were evaluated for efficacy and safety. The results showed an objective response rate of 25.6% (95% CI, 13.5%-41.2%) and a disease control rate of 72.1% (95% CI, 56.3%-84.7%). The median progression-free survival (PFS) of the cohort was 5.8 months (95% CI, 3.81-7.79), and the median overall survival (OS) was 10.3 months (95% CI, 5.75-14.85). The most common adverse reactions were fatigue (76.7%), hypertension (72.1%), diarrhea (62.8%), and hand-foot syndrome (51.2%). Multivariate Cox regression analysis revealed that Eastern Cooperative Oncology Group (ECOG) performance status and location of CRC (left or right-side) were independent factors to predict PFS of patients with metastatic CRC treated with the combination regimen. Consequently, the combination of apatinib and PD-1 blockades demonstrated potential efficacy and acceptable safety for patients with treatment-refractory metastatic CRC. This conclusion should be confirmed in prospective clinical trials subsequently.
Collapse
Affiliation(s)
- Shenglong Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Zheng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinghong Ge
- Department of Internal Medicine, Harbin Orthopedics Hospital, Harbin, China
| | - Shuli Xia
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ke Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunjing Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fujing Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Botta C, Perez C, Larrayoz M, Puig N, Cedena MT, Termini R, Goicoechea I, Rodriguez S, Zabaleta A, Lopez A, Sarvide S, Blanco L, Papetti DM, Nobile MS, Besozzi D, Gentile M, Correale P, Siragusa S, Oriol A, González-Garcia ME, Sureda A, de Arriba F, Rios Tamayo R, Moraleda JM, Gironella M, Hernandez MT, Bargay J, Palomera L, Pérez-Montaña A, Goldschmidt H, Avet-Loiseau H, Roccaro A, Orfao A, Martinez-Lopez J, Rosiñol L, Lahuerta JJ, Blade J, Mateos MV, San-Miguel JF, Martinez Climent JA, Paiva B. Large T cell clones expressing immune checkpoints increase during multiple myeloma evolution and predict treatment resistance. Nat Commun 2023; 14:5825. [PMID: 37730678 PMCID: PMC10511411 DOI: 10.1038/s41467-023-41562-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Tumor recognition by T cells is essential for antitumor immunity. A comprehensive characterization of T cell diversity may be key to understanding the success of immunomodulatory drugs and failure of PD-1 blockade in tumors such as multiple myeloma (MM). Here, we use single-cell RNA and T cell receptor sequencing to characterize bone marrow T cells from healthy adults (n = 4) and patients with precursor (n = 8) and full-blown MM (n = 10). Large T cell clones from patients with MM expressed multiple immune checkpoints, suggesting a potentially dysfunctional phenotype. Dual targeting of PD-1 + LAG3 or PD-1 + TIGIT partially restored their function in mice with MM. We identify phenotypic hallmarks of large intratumoral T cell clones, and demonstrate that the CD27- and CD27+ T cell ratio, measured by flow cytometry, may serve as a surrogate of clonal T cell expansions and an independent prognostic factor in 543 patients with MM treated with lenalidomide-based treatment combinations.
Collapse
Grants
- This work was supported by grants from the Instituto de Salud Carlos III/Subdireccion General de Investigacion Sanitaria and co-financed by FEDER funds (CB16/12/00233, CB16/12/00369, PI17/01243, PI19/00818 and PI20/00048), and together with Fundación Científica de la Asociación Española Contra el Cáncer (FCAECC) for iMMunocell Transcan-2 (AC17/00101), FCAECC Predoctoral Grant Junta Provincial Navarra, the Cancer Research UK (C355/A26819), FCAECC and Italian Association for Cancer Research (AIRC) under the Accelerator Award Program (EDITOR), 2017 Multiple Myeloma Research Foundation Immunotherapy Networks of Excellence, Black Swan Research Initiative of the International Myeloma Foundation, European Hematology Association nonclinical advanced research grant (3680644), European Research Council 2015 Starting Grant (MYELOMANEXT grant 680200), the Cancer Research Innovation in Science Cancer Foundation (PR_EX_2020-02), the Leukemia Lymphoma Society, unrestricted grants from Bristol-Myers Squibb/Celgene and Takeda, Roche imCORE program (NAV-4 and NAV-15), Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia) (Project ID 065 JTC 2016), ERA-NET TRANSCAN-2, and by My First AIRC Grant 2020 (n. 24534, 2021/2026), and by the Riney Family Multiple Myeloma Research Program Fund.
Collapse
Affiliation(s)
- Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain.
| | - Cristina Perez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Marta Larrayoz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Noemi Puig
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC number CB16/12/00233, Salamanca, Spain
| | - Maria-Teresa Cedena
- Hospital Universitario 12 de Octubre, CIBER-ONC number CB16/12/00369, Madrid, Spain
| | - Rosalinda Termini
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Ibai Goicoechea
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Sara Rodriguez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Aitziber Lopez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Sarai Sarvide
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Laura Blanco
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Daniele M Papetti
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Marco S Nobile
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre-B4, Milan, Italy
| | - Daniela Besozzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre-B4, Milan, Italy
| | - Massimo Gentile
- Department of Oncohematology, "Annunziata" Hospital, Cosenza, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, Great Metropolitan Hospital "Riuniti" of Reggio Calabria, Reggio Calabria, Italy
| | - Sergio Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Albert Oriol
- Institut Català d'Oncologia i Institut Josep Carreras, Badalona, Spain
| | | | - Anna Sureda
- Institut Català d'Oncologia-Hospitalet, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Felipe de Arriba
- Hospital Morales Meseguer, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain
| | | | - Jose-Maria Moraleda
- Hospital Morales Meseguer, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain
| | | | | | - Joan Bargay
- Hospital Son Llatzer, Palma de Mallorca, Spain
| | | | | | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | - Aldo Roccaro
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, BS, Italy
| | - Alberto Orfao
- Cancer Research Center (IBMCC-CSIC/USAL-IBSAL), CIBER-ONC number CB16/12/00400, Salamanca, Spain
- Cytometry Service (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | | | | | - Juan-José Lahuerta
- Hospital Universitario 12 de Octubre, CIBER-ONC number CB16/12/00369, Madrid, Spain
| | - Joan Blade
- Hospital Clínic IDIBAPS, Barcelona, Spain
| | - Maria-Victoria Mateos
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC number CB16/12/00233, Salamanca, Spain
| | - Jesús F San-Miguel
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Jose-Angel Martinez Climent
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), CCUN, Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC numbers CB16/12/00369, CB16/12/00489, Pamplona, Spain.
| |
Collapse
|
27
|
Fawaz J, Pocard M, Liberale G, Eveno C, Malgras B, Sideris L, Hübner M, Sabbagh C, Sgarbura O, Taibi A, Hobeika C. A prediction model to refine the timing of an early second-look laparoscopic exploration in patients with colon cancer at high risk of early peritoneal metastasis recurrence. J Surg Oncol 2023; 128:576-584. [PMID: 37226983 DOI: 10.1002/jso.27359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND In patients at high risk of peritoneal metastasis (PM) recurrence following surgical treatment of colon cancer (CC), second-look laparoscopic exploration (SLLE) is mandatory; however, the best timing is unknown. We created a tool to refine the timing of early SLLE in patients at high risk of PM recurrence. METHODS This international cohort study included patients who underwent CC surgery between 2009 and 2020. All patients had PM recurrence. Factors associated with PM-free survival (PMFS) were assessed using Cox regression. The primary endpoint was early PM recurrence defined as a PMFS of <6 months. A model (logistic regression) was fitted and corrected using bootstrap. RESULTS In total, 235 patients were included. The median PMFS was 13 (IQR, 8-22) months, and 15.7% of the patients experienced an early PM recurrence. Synchronous limited PM and/or ovarian metastasis (hazard ratio [HR]: 2.50; 95% confidence interval [CI]: [1.66-3.78]; p < 0.001) were associated with a very high-risk status requiring SLLE. T4 (HR: 1.47; 95% CI: [1.03-2.11]; p = 0.036), transverse tumor localization (HR: 0.35; 95% CI: [0.17-0.69]; p = 0.002), emergency surgery (HR: 2.06; 95% CI: [1.36-3.13]; p < 0.001), mucinous subtype (HR: 0.50; 95% CI [0.30, 0.82]; p = 0.006), microsatellite instability (HR: 2.29; 95% CI [1.06, 4.93]; p = 0.036), KRAS mutation (HR: 1.78; 95% CI: [1.24-2.55]; p = 0.002), and complete protocol of adjuvant chemotherapy (HR: 0.93; 95% CI: [0.89-0.96]; p < 0.001) were also prognostic factors for PMFS. Thus, a model was fitted (area under the curve: 0.87; 95% CI: [0.82-0.92]) for prediction, and a cutoff of 150 points was identified to classify patients at high risk of early PM recurrence. CONCLUSION Using a nomogram, eight prognostic factors were identified to select patients at high risk for early PM recurrence objectively. Patients reaching 150 points could benefit from an early SLLE.
Collapse
Affiliation(s)
- Jade Fawaz
- Department of Digestive, Hepatobiliary and Liver Transplantation Surgery, Hôpital de la Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris and Sorbonne Université, Paris, France
- Sorbonne University, Paris, France
| | - Marc Pocard
- Department of Digestive, Hepatobiliary and Liver Transplantation Surgery, Hôpital de la Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris and Sorbonne Université, Paris, France
- UMR INSERM 1275 CAP Paris-Tech, Lariboisière Hospital, Université de Paris, Paris, France
| | - Gabriel Liberale
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Clarisse Eveno
- Department of Digestive and Oncologic Surgery, Claude Huriez University Hospital, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Brice Malgras
- Department of Digestive and Endocrine Surgery, Bégin Military Teaching Hospital, Saint-Mandé, France
| | - Lucas Sideris
- Department of Surgery, Maisonneuve-Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Martin Hübner
- Department of Visceral Surgery, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Charles Sabbagh
- Department of Digestive Surgery, University Hospital of Amiens Picardie, Jules Verne University of Picardie, Amiens, France
| | - Olivia Sgarbura
- Department of Surgical Oncology, Cancer Institute Montpellier (ICM), University of Montpellier, Montpellier, France
| | - Abdelkader Taibi
- Digestive Surgery Department, Dupuytren Limoges University Hospital, Limoges, France
| | - Christian Hobeika
- Department of Digestive, Hepatobiliary and Liver Transplantation Surgery, Hôpital de la Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris and Sorbonne Université, Paris, France
- UMR INSERM 1275 CAP Paris-Tech, Lariboisière Hospital, Université de Paris, Paris, France
| |
Collapse
|
28
|
Tran TH, Kao M, Liu HS, Hong YR, Su Y, Huang CYF. Repurposing thioridazine for inducing immunogenic cell death in colorectal cancer via eIF2α/ATF4/CHOP and secretory autophagy pathways. Cell Commun Signal 2023; 21:184. [PMID: 37488534 PMCID: PMC10364410 DOI: 10.1186/s12964-023-01190-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly prevalent cancer type with limited targeted therapies available and 5-year survival rate, particularly for late-stage patients. There have been numerous attempts to repurpose drugs to tackle this problem. It has been reported that autophagy inducers could augment the effect of certain chemotherapeutic agents by enhancing immunogenic cell death (ICD). METHODS In this study, we employed bioinformatics tools to identify thioridazine (THD), an antipsychotic drug, and found that it could induce autophagy and ICD in CRC. Then in vitro and in vivo experiments were performed to further elucidate the molecular mechanism of THD in CRC. RESULTS THD was found to induce endoplasmic reticulum (ER) stress in CRC cells by activating the eIF2α/ATF4/CHOP axis and facilitating the accumulation of secretory autophagosomes, leading to ICD. In addition, THD showed a remarkable ICD-activating effect when combined with oxaliplatin (OXA) to prevent tumor progression in the mouse model. CONCLUSIONS Together, our findings suggest that the repurposed function of THD in inhibiting CRC involves the upregulation of autophagosomes and ER stress signals, promoting the release of ICD markers, and providing a potential candidate to enhance the clinical outcome for CRC treatment. Video Abstract.
Collapse
Affiliation(s)
- Thu-Ha Tran
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ming Kao
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- M. Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Ren Hong
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yeu Su
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112, Taiwan.
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chi-Ying F Huang
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112, Taiwan.
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
29
|
Duggan WP, Kisakol B, O'Connell E, Matveeva A, O'Grady T, McDonough E, Lindner AU, McNamara D, Longley D, Ginty F, Burke JP, Prehn JHM. Multiplexed Immunofluorescence Imaging Reveals an Immune-Rich Tumor Microenvironment in Mucinous Rectal Cancer Characterized by Increased Lymphocyte Infiltration and Enhanced Programmed Cell Death Protein 1 Expression. Dis Colon Rectum 2023; 66:914-922. [PMID: 36525395 PMCID: PMC10591203 DOI: 10.1097/dcr.0000000000002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mucinous rectal cancer is associated with a higher incidence of microsatellite instability and a poorer response to neoadjuvant chemoradiotherapy compared to other subtypes of rectal adenocarcinoma. Immune checkpoint inhibitors are an emerging family of anticancer therapeutics associated with highly variable outcomes in colorectal cancer. Although the immune landscape of mucinous rectal cancer has not been fully explored, the presence of mucin is thought to act as a barrier preventing immune-cell infiltration. OBJECTIVE The aim of this study was to determine the immune properties of mucinous rectal cancer and investigate the degree of lymphocyte infiltration in this cohort. DESIGN This is a retrospective cohort study that involved multiplexed immunofluorescence staining of tumor microarrays. SETTINGS Samples originated from a single university teaching hospital. PATIENTS Our cohort included 15 cases of mucinous and 43 cases of nonmucinous rectal cancer. MAIN OUTCOME MEASURES Immune cells were classified and quantified. Immune-cell counts were compared between mucinous and nonmucinous cohorts. Immune marker expression within tumor epithelial tissue was evaluated to determine the degree of lymphocyte infiltration. RESULTS Cytotoxic ( p = 0.022) and regulatory T cells ( p = 0.010) were found to be overrepresented in the mucinous cohort compared to the nonmucinous group. Programmed cell death protein 1 expression was also found to be significantly greater in the mucinous group ( p = 0.001). CD3 ( p = 0.001) and CD8 ( p = 0.054) expressions within the tumor epithelium were also higher in the mucinous group, suggesting adequate immune infiltration despite the presence of mucin. In our analysis, microsatellite instability status was not a predictor of immune marker expression. LIMITATIONS The relatively small size of the cohort. CONCLUSIONS Mucinous rectal cancer is associated with an immune-rich tumor microenvironment, which was not associated with microsatellite instability status. See Video Abstract at http://links.lww.com/DCR/C65 . IMGENES DE INMUNOFLUORESCENCIA MULTIPLEXADAS REVELAN UN MICROAMBIENTE TUMORAL RICO EN INMUNIDAD EN EL CNCER RECTAL MUCINOSO CARACTERIZADO POR UNA MAYOR INFILTRACIN DE LINFOCITOS Y UNA EXPRESIN MEJORADA DE PD ANTECEDENTES:El cáncer rectal mucinoso se asocia con una mayor incidencia de inestabilidad de microsatélites y una peor respuesta a la quimiorradioterapia neoadyuvante en comparación con otros subtipos de adenocarcinoma rectal. Los inhibidores de puntos de control inmunitarios son una familia emergente de tratamientos contra el cáncer asociados con resultados muy variables en el cáncer colorrectal. Aunque el panorama inmunitario del cáncer rectal mucinoso no se ha explorado completamente, se cree que la presencia de mucina actúa como una barrera que previene la infiltración de células inmunitarias.OBJETIVO:El objetivo de este estudio fue determinar las propiedades inmunes del cáncer de recto mucinoso e investigar el grado de infiltración de linfocitos en esta cohorte.DISEÑO:Este es un estudio de cohorte retrospectivo que involucró la tinción de inmunofluorescencia multiplexada de micromatrices tumorales.AJUSTES:Las muestras se originaron en un solo hospital docente universitario.PACIENTES:Nuestra cohorte incluyó 15 casos de cáncer de recto mucinoso y 43 casos de cáncer de recto no mucinosoPRINCIPALES MEDIDAS DE RESULTADO:Las células inmunitarias se clasificaron y cuantificaron. Se compararon los recuentos de células inmunitarias entre cohortes mucinosas y no mucinosas. Se evaluó la expresión del marcador inmunitario dentro del tejido epitelial tumoral para determinar el grado de infiltración de linfocitos.RESULTADOS:Se encontró que las células T citotóxicas ( p = 0,022) y reguladoras ( p = 0,010) estaban sobrerrepresentadas en la cohorte mucinosa en comparación con el grupo no mucinoso. También se encontró que la expresión de PD-1 era significativamente mayor en el grupo mucinoso ( p = 0,001). La expresión de CD3 ( p = 0,001) y CD8 ( p = 0,054) dentro del epitelio tumoral también fue mayor en el grupo mucinoso, lo que sugiere una infiltración inmunitaria adecuada a pesar de la presencia de mucina. En nuestro análisis, no se encontró que el estado de inestabilidad de los microsatélites sea un predictor de la expresión del marcador inmunitario.LIMITACIONES:El tamaño relativamente pequeño de la cohorte.CONCLUSIONES:El cáncer rectal mucinoso se asocia con un microambiente tumoral rico en inmunidad, que no se asoció con el estado de inestabilidad de microsatélites. Consulte el Video del Resumen en http://links.lww.com/DCR/C65 . (Traducción- Dr. Yesenia Rojas-Khalil ).
Collapse
Affiliation(s)
- William P Duggan
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emer O'Connell
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anna Matveeva
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tony O'Grady
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | | | - Andreas U Lindner
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Deborah McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | | | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
30
|
Wong KK. Integrated transcriptomics and proteomics data analysis identifies CDH17 as a key cell surface target in colorectal cancer. Comput Biol Chem 2023; 105:107897. [PMID: 37247573 DOI: 10.1016/j.compbiolchem.2023.107897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/28/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Immunotherapy development against colorectal cancer (CRC) is hindered by the lack of cell surface target highly expressed in cancer cells but with restricted presence in normal tissues to minimize off-tumor toxicities. In this in silico analysis, a longlist of genes (n = 13,488) expressed in CRCs according to the Human Protein Atlas (HPA) database were evaluated to shortlist for potential surface targets based on the following prerequisites: (i) Absent from the brain and lung tissues to minimize the likelihood of neurologic and pulmonary toxicities; (ii) Restricted expression profile in other normal human tissues; (iii) Genes that potentially encode cell surface proteins and; (iv) At least moderately expressed in CRC cases. Fifteen potential targets were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in CRCs derived from multiple datasets (i.e. DepMap, TCGA, CPTAC-2, and HPA CRCs). The top-ranked target with the highest and homogenous expression in CRCs was cadherin 17 (CDH17). Downstream analysis of CRC transcriptomics and proteomics datasets showed that CDH17 was significantly correlated with carcinoembryonic antigen expression. Moreover, CDH17 expression was significantly lower in CRC cases with high microsatellite instability, as well as negatively associated with immune response gene sets and the expression of MHC class I and II molecules. CDH17 represents an optimal target for therapeutic development against CRCs, and this study provides a novel framework to identify key cell surface targets for therapeutic development against other malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia.
| |
Collapse
|
31
|
Ma Y, Zhou J, Ye Y, Wang X, Ma A, Li H. The cost-effectiveness analysis of serplulimab versus regorafenib for treating previously treated unresectable or metastatic microsatellite instability-high or deficient mismatch repair colorectal cancer in China. Front Oncol 2023; 13:1113346. [PMID: 37182176 PMCID: PMC10171919 DOI: 10.3389/fonc.2023.1113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Objective The aim of this study was to investigate the cost-effectiveness of serplulimab versus regorafenib in previously treated unresectable or metastatic microsatellite instability-high (MSI-H)/deficient mismatch repair (dMMR) colorectal cancer in China. Methods From the perspective of China's health-care system, a Markov model with three health states (progression free, progression, death) was developed for estimating the costs and health outcomes of serplulimab and regorafenib. Data for unanchored matching-adjusted indirect comparison (MAIC), standard parametric survival analysis, the mixed cure model, and transition probabilities calculation were obtained from clinical trials (ASTRUM-010 and CONCUR). Health-care resource utilization and costs were derived from government-published data and expert interviews. Utilities used to calculate quality-adjusted life years (QALYs) were obtained from clinical trials and literature reviews. The primary outcome was the incremental cost-effectiveness ratio (ICER) expressed as cost/QALY gained. Four scenarios were considered in scenario analysis: (a) using original survival data without conducting MAIC; (b) limiting the time horizon to the follow-up time of the clinical trial of serplulimab; (c) adopting a fourfold increase in the risk of death; and (d) applying utilities from two other sources. One-way sensitivity analysis and probabilistic sensitivity analysis were also performed to assess the uncertainty of the results. Results In the base-case analysis, serplulimab provided 6.00 QALYs at a cost of $68,722, whereas regorafenib provided 0.69 QALYs at a cost of $40,106. Compared with that for treatment with regorafenib, the ICER for treatment with serplulimab was $5,386/QALY, which was significantly lower than the triple GDP per capita of China in 2021 ($30,036), which was the threshold used to define the cost-effectiveness. In the scenario analysis, the ICERs were $6,369/QALY, $20,613/QALY, $6,037/QALY, $4,783/QALY, and $6,167/QALY, respectively. In the probabilistic sensitivity analysis, the probability of serplulimab being cost-effective was 100% at the threshold of $30,036/QALY. Conclusion Compared with regorafenib, serplulimab is a cost-effective treatment for patients with previously treated unresectable or metastatic MSI-H/dMMR colorectal cancer in China.
Collapse
Affiliation(s)
- Yue Ma
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Jiting Zhou
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Yuxin Ye
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Xintian Wang
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Aixia Ma
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Hongchao Li
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
32
|
Hui YJ, Chen H, Peng XC, Li LG, Di MJ, Liu H, Hu XH, Yang Y, Zhao KL, Li TF, Yu TT, Wang WX. Up-regulation of ABCG2 by MYBL2 deletion drives Chlorin e6-mediated photodynamic therapy resistance in colorectal cancer. Photodiagnosis Photodyn Ther 2023; 42:103558. [PMID: 37030434 DOI: 10.1016/j.pdpdt.2023.103558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
OBJECTIVE Photodynamic therapy (PDT) is an effective therapeutic strategy for colorectal cancer at an early stage. However, malignant cells' resistance to photodynamic agents can lead to treatment failure. MYBL2 (B-Myb) is an oncogene in colorectal carcinogenesis and development, for which little research has focused on its effect on drug resistance. MATERIALS AND METHODS In the present work, a colorectal cancer cell line with a stable knockdown of MYBL2 (ShB-Myb) was constructed first. Chlorin e6 (Ce6) was utilized to induced PDT. The anti-cancer efficacy was measured by CCK-8, PI staining, and Western blots. The drug uptake of Ce6 was assayed by flow cytometry and confocal microscopy. The ROS generation was detected by the CellROX probe. DDSB and DNA damage were assayed through comet experiment and Western blots. The over-expression of MYBL2 was conducted by MYBL2 plasmid. RESULTS The findings indicated that the viability of ShB-Myb treated with Ce6-PDT was not decreased compared to control SW480 cells (ShNC), which were resistant to PDT. Further investigation revealed reduced photosensitizer enrichment and mitigated oxidative DNA damage in colorectal cancer cells with depressed MYBL2. It turned out that SW480 cells knocking down MYBL2 showed phosphorylation of NF-κB and led to up-regulation of ABCG2 expression thereupon. When MYBL2 was replenished back in MYBL2-deficient colorectal cancer cells, phosphorylation of NF-κB was blocked and ABCG2 expression up-regulation was suppressed. Additionally, replenishment of MYBL2 also increased the enrichment of Ce6 and the efficacy of PDT. CONCLUSION In summary, MYBL2 absence in colorectal cancer contributes to drug resistance by activating NF-κB to up-regulate ABCG2 and thereby leading to photosensitizer Ce6 efflux. This study provides a novel theoretical basis and strategy for how to effectively improve the anti-tumor efficacy of PDT.
Collapse
Affiliation(s)
- Yuan-Jian Hui
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang road No. 238, Wuhan 430060, Hubei Province, China; Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin south road No. 32, Shiyan 442000, Hubei Province, China
| | - Hao Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin south road No. 30, Shiyan 442000, Hubei Province, China
| | - Xing-Chun Peng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin south road No. 30, Shiyan 442000, Hubei Province, China
| | - Liu-Gen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin south road No. 30, Shiyan 442000, Hubei Province, China
| | - Mao-Jun Di
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin south road No. 32, Shiyan 442000, Hubei Province, China
| | - Hui Liu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin south road No. 32, Shiyan 442000, Hubei Province, China
| | - Xu-Hao Hu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin south road No. 32, Shiyan 442000, Hubei Province, China
| | - Yan Yang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin south road No. 32, Shiyan 442000, Hubei Province, China
| | - Kai-Liang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang road No. 238, Wuhan 430060, Hubei Province, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin south road No. 30, Shiyan 442000, Hubei Province, China.
| | - Ting-Ting Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang road No. 238, Wuhan 430060, Hubei Province, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin south road No. 30, Shiyan 442000, Hubei Province, China.
| | - Wei-Xing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang road No. 238, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
33
|
Plewa N, Poncette L, Blankenstein T. Generation of TGFβR2(-1) neoantigen-specific HLA-DR4-restricted T cell receptors for cancer therapy. J Immunother Cancer 2023; 11:jitc-2022-006001. [PMID: 36822673 PMCID: PMC9950979 DOI: 10.1136/jitc-2022-006001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Adoptive transfer of patient's T cells, engineered to express a T cell receptor (TCR) with defined novel antigen specificity, is a convenient form of cancer therapy. In most cases, major histocompatibility complex (MHC) I-restricted TCRs are expressed in CD8+ T cells and the development of CD4+ T cells engineered to express an MHC II-restricted TCR lacks behind. Critical is the choice of the target antigen, whether the epitope is efficiently processed and binds with high affinity to MHC molecules. A mutation in the transforming growth factor β receptor 2 (TGFβR2(-1)) gene creates a frameshift peptide caused by the deletion of one adenine (-1) within a microsatellite sequence. This somatic mutation is recurrent in microsatellite instable colorectal and gastric cancers and, therefore, is a truly tumor-specific antigen detected in many patients. METHODS ABabDR4 mice, which express a diverse human TCR repertoire restricted to human MHC II molecule HLA-DRA/DRB1*0401 (HLA-DR4), were immunized with the TGFβR2(-1) peptide and TGFβR2(-1)-specific TCRs were isolated from responding CD4+ T cells. The TGFβR2(-1)-specific TCRs were expressed in human CD4+ T cells and their potency and safety profile were assessed by co-cultures and other functional assays. RESULTS We demonstrated that TGFβR2(-1) neoantigen is immunogenic and elicited CD4+ T cell responses in ABabDR4 mice. When expressed in human CD4+ T cells, the HLA-DR4 restricted TGFβR2(-1)-specific TCRs induced IFNy expression at low TGFβR2(-1) peptide amounts. The TGFβR2(-1)-specific TCRs recognized HLA-DR4+ lymphoblastoid cells, which endogenously processed and presented the neoantigen, and colorectal cancer cell lines SW48 and HCT116 naturally expressing the TGFβR2(-1) mutation. No MHC II alloreactivity or cross-reactivity to peptides with a similar TCR-recognition motif were observed, indicating the safety of the TCRs. CONCLUSIONS The data suggest that HLA-DR4-restricted TCRs specific for the TGFβR2(-1) recurrent neoantigen can be valuable candidates for adoptive T cell therapy of a sizeable number of patients with cancer.
Collapse
Affiliation(s)
- Natalia Plewa
- Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| | - Lucia Poncette
- Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
34
|
Wang HL, Ye ZM, He ZY, Huang L, Liu ZH. m6A-related lncRNA-based immune infiltration characteristic analysis and prognostic model for colonic adenocarcinoma. Hereditas 2023; 160:6. [PMID: 36755298 PMCID: PMC9909974 DOI: 10.1186/s41065-023-00267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Colonic adenocarcinoma (COAD) is a common gastrointestinal tract tumor, and its occurrence and progression are typically associated with genomic instability, tumor-suppressor gene and oncogene mutations, and tumor mutational load. N6-methyladenosine (m6A) modification of RNAs and long non-coding RNA (lncRNA) expression are important in tumorigenesis and progression. However, the regulatory roles of m6A-associated lncRNAs in the tumor microenvironment, stratification of prognosis, and immunotherapy are unclear. METHODS We screened 43 prognostic lncRNAs linked to m6A and performed consistent molecular typing of COAD using consensus clustering. The single-sample Gene Set Enrichment Analysis and ESTIMATE algorithms were used to assess the immune characteristics of different subgroups. Covariation between methylation-related prognostic lncRNAs was eliminated by least absolute shrinkage and selection operator Cox regression. A nomogram was created and evaluated by combining the methylation-related prognostic lncRNA model with other clinical factors. The relationship between the prognostic model grouping and microsatellite instability, immunophenotype score, and tumor mutation burden was validated using R scripts. Finally, we used a linkage map to filter sensitive medicines to suppress the expression of high-risk genes. Three m6A-associated lncRNA modes were identified in 446 COAD specimens with different clinical endpoints and biological statuses. Risk scores were constructed based on the m6A-associated lncRNA signature genes. Patients with lower risk scores showed superior immunotherapy responses and clinical benefits compared to those with higher risk scores. Lower risk scores were also correlated with higher immunophenotype scores, tumor mutation burden, and mutation rates in significantly mutated genes (e.g., FAT4 and MUC16). Piperidolate, quinostatin, and mecamylamin were screened for their abilities to suppress the expression of high-risk genes in the model. CONCLUSIONS Quantitative assessment of m6A-associated lncRNAs in single tumors can enhance the understanding of tumor microenvironment profiles. The prognostic model constructed using m6A-associated lncRNAs may facilitate prognosis and immunotherapy stratification of patients with COAD; finally, three drugs with potential therapeutic value were screened based on the model.
Collapse
Affiliation(s)
- Hao-lun Wang
- grid.256607.00000 0004 1798 2653Graduate School of Guangxi Medical University, Nanning, 530021 China
| | - Zhuo-miao Ye
- grid.452223.00000 0004 1757 7615Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Zi-yun He
- grid.256607.00000 0004 1798 2653Graduate School of Guangxi Medical University, Nanning, 530021 China
| | - Lu Huang
- grid.413431.0Day-Care Unit, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, 530021 China
| | - Zhi-hui Liu
- grid.413431.0Day-Care Unit, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, 530021 China
| |
Collapse
|
35
|
A systematic review and meta-analysis of immune checkpoint therapy in relapsed or refractory non-Hodgkin lymphoma; a friend or foe? Transl Oncol 2023; 30:101636. [PMID: 36773442 PMCID: PMC9941575 DOI: 10.1016/j.tranon.2023.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Over the last decades, a revolution has occurred in oncology with the development of immune checkpoint inhibitors (ICIs). Following tremendous successes in solid tumors, interest has risen to explore these inhibitors in hematologic malignancies; while Hodgkin's lymphoma (HL) has shown overwhelming achievements, available data on different types of non-Hodgkin's lymphoma (NHL) vary considerably. To the best of our knowledge, no meta-analysis has assessed the efficacy and safety of ICI therapy in relapsed or refractory NHL patients. Meta-analysis of the included studies (n = 29) indicated PD-1 may probably be the more attractive ICI target rather than PD-L1 and CTLA-4 in NHL patients. Also, there is a plausible correlation between NHL subtypes and response to ICI therapy. While MF, ENKTL, RT, and PMBCL showed promising responses to ICI monotherapy, neither FL nor DLBCL had satisfactory responses; further necessitating novel strategies such as the application of ICIs in combination with other treatment strategies. Notably, among different combinations, BTK inhibitors showed an obvious improvement as compared to ICI monotherapy in both FL and DLBCL, however, the best results were obtained when ICI was combined with anti-CD20 monoclonal antibodies. Finally, while most NHL patients who received ICI treatment have experienced mild AEs, larger trials with long-term follow-up are required to confirm the safety, as well as the efficacy, of ICI therapy in NHL patients.
Collapse
|
36
|
Wang Q, Xu J, Wang A, Chen Y, Wang T, Chen D, Zhang J, Brismar TB. Systematic review of machine learning-based radiomics approach for predicting microsatellite instability status in colorectal cancer. LA RADIOLOGIA MEDICA 2023; 128:136-148. [PMID: 36648615 PMCID: PMC9938810 DOI: 10.1007/s11547-023-01593-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
This study aimed to systematically summarize the performance of the machine learning-based radiomics models in the prediction of microsatellite instability (MSI) in patients with colorectal cancer (CRC). It was conducted according to the preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guideline and was registered at the PROSPERO website with an identifier CRD42022295787. Systematic literature searching was conducted in databases of PubMed, Embase, Web of Science, and Cochrane Library up to November 10, 2022. Research which applied radiomics analysis on preoperative CT/MRI/PET-CT images for predicting the MSI status in CRC patients with no history of anti-tumor therapies was eligible. The radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) were applied to evaluate the research quality (full score 100%). Twelve studies with 4,320 patients were included. All studies were retrospective, and only four had an external validation cohort. The median incidence of MSI was 19% (range 8-34%). The area under the receiver operator curve of the models ranged from 0.78 to 0.96 (median 0.83) in the external validation cohort. The median sensitivity was 0.76 (range 0.32-1.00), and the median specificity was 0.87 (range 0.69-1.00). The median RQS score was 38% (range 14-50%), and half of the studies showed high risk in patient selection as evaluated by QUADAS-2. In conclusion, while radiomics based on pretreatment imaging modalities had a high performance in the prediction of MSI status in CRC, so far it does not appear to be ready for clinical use due to insufficient methodological quality.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden. .,Department of Radiology, Karolinska University Hospital Huddinge, Room 601, Novum PI 6, Hiss F, Hälsovägen 7, 141 86, Huddinge, Stockholm, Sweden.
| | - Jianhua Xu
- Department of General Surgery, Songshan Hospital, Chongqing, China
| | - Anrong Wang
- grid.452206.70000 0004 1758 417XDepartment of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,Department of Interventional Therapy, People’s Hospital of Dianjiang County, Chongqing, China
| | - Yi Chen
- grid.4714.60000 0004 1937 0626Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tian Wang
- grid.517910.bDepartment of Gastroenterology, Chongqing General Hospital, Chongqing, China
| | - Danyu Chen
- grid.412536.70000 0004 1791 7851Department of Gastroenterology and Hepatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaxing Zhang
- grid.459540.90000 0004 1791 4503Department of Pharmacy, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Torkel B. Brismar
- grid.4714.60000 0004 1937 0626Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Radiology, Karolinska University Hospital Huddinge, Room 601, Novum PI 6, Hiss F, Hälsovägen 7, 141 86 Huddinge, Stockholm, Sweden
| |
Collapse
|
37
|
Høye E, Dagenborg VJ, Torgunrud A, Lund-Andersen C, Fretland ÅA, Lorenz S, Edwin B, Hovig E, Fromm B, Inderberg EM, Greiff V, Ree AH, Flatmark K. T cell receptor repertoire sequencing reveals chemotherapy-driven clonal expansion in colorectal liver metastases. Gigascience 2022; 12:giad032. [PMID: 37161965 PMCID: PMC10170408 DOI: 10.1093/gigascience/giad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Colorectal liver metastasis (CLM) is a leading cause of colorectal cancer mortality, and the response to immune checkpoint inhibition (ICI) in microsatellite-stable CRC has been disappointing. Administration of cytotoxic chemotherapy may cause increased density of tumor-infiltrating T cells, which has been associated with improved response to ICI. This study aimed to quantify and characterize T-cell infiltration in CLM using T-cell receptor (TCR) repertoire sequencing. Eighty-five resected CLMs from patients included in the Oslo CoMet study were subjected to TCR repertoire sequencing. Thirty-five and 15 patients had received neoadjuvant chemotherapy (NACT) within a short or long interval, respectively, prior to resection, while 35 patients had not been exposed to NACT. T-cell fractions were calculated, repertoire clonality was analyzed based on Hill evenness curves, and TCR sequence convergence was assessed using network analysis. RESULTS Increased T-cell fractions (10.6% vs. 6.3%) were detected in CLMs exposed to NACT within a short interval prior to resection, while modestly increased clonality was observed in NACT-exposed tumors independently of the timing of NACT administration and surgery. While private clones made up >90% of detected clones, network connectivity analysis revealed that public clones contributed the majority of TCR sequence convergence. CONCLUSIONS TCR repertoire sequencing can be used to quantify T-cell infiltration and clonality in clinical samples. This study provides evidence to support chemotherapy-driven T-cell clonal expansion in CLM in a clinical context.
Collapse
Affiliation(s)
- Eirik Høye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
| | - Vegar J Dagenborg
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Department of Gastroenterological Surgery, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Annette Torgunrud
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Christin Lund-Andersen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
| | - Åsmund A Fretland
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
| | - Susanne Lorenz
- Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Bjørn Edwin
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway
| | - Eivind Hovig
- Center for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
| | - Else M Inderberg
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Anne H Ree
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Institute of Clinical Medicine, Medical Faculty, University of Oslo, 0318 Oslo, Norway
- Department of Gastroenterological Surgery, The Norwegian Radium Hospital, 0379 Oslo, Norway
| |
Collapse
|
38
|
Arai H, Minami Y, Chi S, Utsu Y, Masuda S, Aotsuka N. Molecular-Targeted Therapy for Tumor-Agnostic Mutations in Acute Myeloid Leukemia. Biomedicines 2022; 10:3008. [PMID: 36551764 PMCID: PMC9775249 DOI: 10.3390/biomedicines10123008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Comprehensive genomic profiling examinations (CGPs) have recently been developed, and a variety of tumor-agnostic mutations have been detected, leading to the development of new molecular-targetable therapies across solid tumors. In addition, the elucidation of hereditary tumors, such as breast and ovarian cancer, has pioneered a new age marked by the development of new treatments and lifetime management strategies required for patients with potential or presented hereditary cancers. In acute myeloid leukemia (AML), however, few tumor-agnostic or hereditary mutations have been the focus of investigation, with associated molecular-targeted therapies remaining poorly developed. We focused on representative tumor-agnostic mutations such as the TP53, KIT, KRAS, BRCA1, ATM, JAK2, NTRK3, FGFR3 and EGFR genes, referring to a CGP study conducted in Japan, and we considered the possibility of developing molecular-targeted therapies for AML with tumor-agnostic mutations. We summarized the frequency, the prognosis, the structure and the function of these mutations as well as the current treatment strategies in solid tumors, revealed the genetical relationships between solid tumors and AML and developed tumor-agnostic molecular-targeted therapies and lifetime management strategies in AML.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| |
Collapse
|
39
|
Hu X, Zhang Y, Yu H, Zhao Y, Sun X, Li Q, Wang Y. The role of YAP1 in survival prediction, immune modulation, and drug response: A pan-cancer perspective. Front Immunol 2022; 13:1012173. [PMID: 36479120 PMCID: PMC9719955 DOI: 10.3389/fimmu.2022.1012173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Dysregulation of the Hippo signaling pathway has been implicated in multiple pathologies, including cancer, and YAP1 is the major effector of the pathway. In this study, we assessed the role of YAP1 in prognostic value, immunomodulation, and drug response from a pan-cancer perspective. Methods We compared YAP1 expression between normal and cancerous tissues and among different pathologic stages survival analysis and gene set enrichment analysis were performed. Additionally, we performed correlation analyses of YAP1 expression with RNA modification-related gene expression, tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint regulator expression, and infiltration of immune cells. Correlations between YAP1 expression and IC50s (half-maximal inhibitory concentrations) of drugs in the CellMiner database were calculated. Results We found that YAP1 was aberrantly expressed in various cancer types and regulated by its DNA methylation and post-transcriptional modifications, particularly m6A methylation. High expression of YAP1 was associated with poor survival outcomes in ACC, BLCA, LGG, LUAD, and PAAD. YAP1 expression was negatively correlated with the infiltration of CD8+ T lymphocytes, CD4+ Th1 cells, T follicular helper cells, NKT cells, and activated NK cells, and positively correlated with the infiltration of myeloid-derived suppressor cells (MDSCs) and cancer-associated fibroblasts (CAFs) in pan-cancer. Higher YAP1 expression showed upregulation of TGF-β signaling, Hedgehog signaling, and KRAS signaling. IC50s of FDA-approved chemotherapeutic drugs capable of inhibiting DNA synthesis, including teniposide, dacarbazine, and doxorubicin, as well as inhibitors of hypoxia-inducible factor, MCL-1, ribonucleotide reductase, and FASN in clinical trials were negatively correlated with YAP1 expression. Discussion In conclusion, YAP1 is aberrantly expressed in various cancer types and regulated by its DNA methylation and post-transcriptional modifications. High expression of YAP1 is associated with poor survival outcomes in certain cancer types. YAP1 may promote tumor progression through immunosuppression, particularly by suppressing the infiltration of CD8+ T lymphocytes, CD4+ Th1 cells, T follicular helper cells, NKT cells, and activated NK cells, as well as recruiting MDSCs and CAFs in pan-cancer. The tumor-promoting activity of YAP1 is attributed to the activation of TGF-β, Hedgehog, and KRAS signaling pathways. AZD2858 and varlitinib might be effective in cancer patients with high YAP1 expression.
Collapse
Affiliation(s)
- Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Yu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
40
|
Zhang C, Zeng C, Xiong S, Zhao Z, Wu G. A mitophagy-related gene signature associated with prognosis and immune microenvironment in colorectal cancer. Sci Rep 2022; 12:18688. [PMID: 36333388 PMCID: PMC9636133 DOI: 10.1038/s41598-022-23463-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease and one of the most prevalent malignancies worldwide. Previous research has demonstrated that mitophagy is crucial to developing colorectal cancer. This study aims to examine the association between mitophagy-related genes and the prognosis of CRC patients. Gene expression profiles and clinical information of CRC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression analysis were applied to establish a prognostic signature using mitophagy related genes. Kaplan-Meier and receiver operating characteristic (ROC) curves were used to analyze patient survival and predictive accuracy. Meanwhile, we also used the Genomics of Drug Sensitivity in Cancer (GDSC) database and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to estimate the sensitivity of chemotherapy, targeted therapy and immunotherapy. ATG14 overexpression plasmid was used to regulate the ATG14 expression level in HCT116 and SW480 cell lines, and cell counting kit-8, colony formation and transwell migration assay were performed to validate the function of ATG14 in CRC cells. A total of 22 mitophagy-driven genes connected with CRC survival were identified, and then a novel prognostic signature was established based on 10 of them (AMBRA1, ATG14, MAP1LC3A, MAP1LC3B, OPTN, VDAC1, ATG5, CSNK2A2, MFN1, TOMM22). Patients were divided into high-risk and low-risk groups based on the median risk score, and the survival of patients in the high-risk group was significantly shorter in both the training cohort and two independent cohorts. ROC curve showed that the area under the curves (AUC) of 1-, 3- and 5-year survival were 0.66, 0.66 and 0.64, respectively. Multivariate Cox regression analysis confirmed the independent prognostic value of the signature. Then we constructed a Nomogram combining the risk score, age and M stage, which had a concordance index of survival prediction of 0.77 (95% CI 0.71-0.83) and more robust predictive accuracy. Results showed that CD8+ T cells, regulatory T cells and activated NK cells were significantly more enriched in the high-risk group. Furthermore, patients in the high-risk group are more sensitive to targeted therapy or chemotherapy, including bosutinib, elesclomol, lenalidomide, midostaurin, pazopanib and sunitinib, while the low-risk group is more likely to benefit from immunotherapy. Finally, in vitro study confirmed the oncogenic significance of ATG14 in both HCT116 and SW480 cells, whose overexpression increased CRC cell proliferation, colony formation, and migration. In conclusion, we developed a novel mitophagy-related gene signature that can be utilized not only as an independent predictive biomarker but also as a tool for tailoring personalizing treatment for CRC patients, and we confirmed ATG14 as a novel oncogene in CRC.
Collapse
Affiliation(s)
- Cong Zhang
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Cailing Zeng
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Shaoquan Xiong
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Zewei Zhao
- grid.411304.30000 0001 0376 205XChengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Guoyu Wu
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| |
Collapse
|
41
|
Pan-Cancer Analysis of the Prognostic and Immunotherapeutic Value of MITD1. Cells 2022; 11:cells11203308. [PMID: 36291174 PMCID: PMC9600621 DOI: 10.3390/cells11203308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Microtubule-interacting and trafficking domain containing 1 (MITD1) is associated with abscission during cytokinesis. However, systematic investigation into its role in cancer is lacking. Therefore, we explored the pan-cancer role of MITD1 using multiple databases. Expression and clinical survival, immunological, and enrichment analyses were performed using R packages and online tools. For breast cancer, single-cell level analysis, immunochemistry, and in vitro experiments were performed to explore the mechanism of MITD1. A nomogram was established to predict the prognosis of patients with breast cancer and evaluate the immunotherapy biomarker based on two datasets. In some cancers, high MITD1 expression was associated with a more favorable prognosis. For instance, it inhibited tumor cell proliferation and migration in breast cancer. MITD1 may regulate cancer development by altering the tumor microenvironment, and MITD1 expression may predict the response to immune checkpoint blockade, platinum, and poly ADP-ribose polymerase inhibitor therapies. Our nomogram was used to determine the prognosis of patients with breast cancer. MITD1 can also predict the response to immunotherapy. Our first pan-cancer study of MITD1 has shown that it plays different roles in cancer development and therapy. In breast cancer, MITD1 inhibited cell proliferation and migration and serves as a new biomarker.
Collapse
|
42
|
Rationale Efficacy and Safety Evidence of Lenvatinib and Pembrolizumab Association in Anaplastic Thyroid Carcinoma. Curr Oncol 2022; 29:7718-7731. [PMID: 36290887 PMCID: PMC9601195 DOI: 10.3390/curroncol29100610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) are highly aggressive malignant tumors with poor overall prognosis despite multimodal therapy. As ATC are extremely rare, no randomized controlled study has been published for metastatic disease. Thyrosine kinase inhibitors, especially lenvatinib and immune checkpoint inhibitors such as pembrolizumab, are emerging drugs for ATC. Few studies have reported the efficacity of pembrolizumab and lenvatinib association, resulting in its frequent off-label use. In this review, we discuss rationale efficacy and safety evidence for the association of lenvatinib and pembrolizumab in ATC. First, we discuss preclinical rationale for pembrolizumab monotherapy, lenvatinib monotherapy and synergistic action of pembrolizumab and lenvatinib in the metastatic setting. We also discuss clinical evidence for immunotherapy and pembrolizumab in ATC through the analysis of studies evaluating immunotherapy, lenvatinib and pembrolizumab lenvatinib association in ATC. In addition, we discuss the safety of this association and potential predictive biomarkers of efficiency.
Collapse
|
43
|
Hu C, Cai D, Zhong ME, Fan D, Li CH, Lv MY, Huang ZP, Wang W, Wu XJ, Gao F. Predicting prognosis and immunotherapy response among colorectal cancer patients based on a tumor immune microenvironment-related lncRNA signature. Front Genet 2022; 13:993714. [PMID: 36159987 PMCID: PMC9489948 DOI: 10.3389/fgene.2022.993714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) remodel the tumor immune microenvironment (TIME) by regulating the functions of tumor-infiltrating immune cells. It remains uncertain the way that TIME-related lncRNAs (TRLs) influence the prognosis and immunotherapy response of colorectal cancer (CRC). Aiming at providing survival and immunotherapy response predictions, a CRC TIME-related lncRNA signature (TRLs signature) was developed and the related potential regulatory mechanisms were explored with a comprehensive analysis on gene expression profiles from 97 immune cell lines, 61 CRC cell lines and 1807 CRC patients. Stratifying CRC patients with the TRLs signature, prolonged survival was observed in the low-risk group, while the patients in the high-risk group had significantly higher pro-tumor immune cells infiltration and higher immunotherapy response rate. Through the complex TRLs-mRNA regulation network, immunoregulation pathways and immunotherapy response pathways were found to be differently activated between the groups. In conclusion, the CRC TRLs signature is capable of making prognosis and immunotherapy response predictions, which may find application in stratifying patients for immunotherapy in the bedside.
Collapse
Affiliation(s)
- Chuling Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Du Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min-Er Zhong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dejun Fan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng-Hang Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min-Yi Lv
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Ping Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiao-Jian Wu, ; Feng Gao,
| | - Feng Gao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiao-Jian Wu, ; Feng Gao,
| |
Collapse
|
44
|
Zhao G, Song D, Wu J, Yang S, Shi S, Cui X, Ren H, Zhang B. Identification of OTUD6B as a new biomarker for prognosis and immunotherapy by pan-cancer analysis. Front Immunol 2022; 13:955091. [PMID: 36052059 PMCID: PMC9425067 DOI: 10.3389/fimmu.2022.955091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background Ovarian-tumor (OTU) domain-containing protein 6B (OTUD6B), one of newly identified OTU deubiquitylating enzyme families, is proved to be associated with tumor progression. However, whether it plays a key role in pan-cancer still remains unknown. Methods The profiles of OTUD6B expression in multiple cancers were analyzed using The Cancer Genome Atlas (TCGA) database. Information of protein expression was performed based on the HPA, GeneCards, and String databases. K-M plotter and survival data analysis were used to analyze the prognostic value of OTUD6B expression, including overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI). R package “clusterProfiler” was used for enrichment analysis of OTUD6B. Furthermore, we analyzed the correlation between the expression of OTUD6B, immune infiltration, and immune-related genes. Additionally, we preliminarily validated its tumorigenic effect in lung cancer cell lines. Findings OTUD6B expression was upregulated in most cancers, such as COAD, CHOL, and LUAD, and predicted poor prognosis in most cancers in TCGA. Results showed that OTUD6B expression was positively correlated with memory CD4+ T cells, Th1 CD4+ T cells, and CD8+ T cells. In terms of the immune-related genes, OTUD6B was found to be associated with most types of genes, such as immunostimulatory genes KDR, TGFBR1, and IL-10. Moreover, for most types of tumors, the immune score was found to be negatively correlated with OTUD6B expression. In addition, lung cancer cell lines with OTUD6B knockdown significantly inhibited proliferation and invasion ability of lung cancer cells. Conclusions The study indicated that OTUD6B is an oncogene and may serve as a new potential biomarker in various tumors. OTUD6B may play a part in TIME, which could be applied as a new target for cancer therapy.
Collapse
Affiliation(s)
- Guang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dingli Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Sanhu Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Sien Shi
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaohai Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hong Ren, ; Boxiang Zhang,
| | - Boxiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hong Ren, ; Boxiang Zhang,
| |
Collapse
|
45
|
Wu CWK, Reid M, Leedham S, Lui RN. The emerging era of personalized medicine in advanced colorectal cancer. J Gastroenterol Hepatol 2022; 37:1411-1425. [PMID: 35815339 PMCID: PMC7617119 DOI: 10.1111/jgh.15937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/09/2022]
Abstract
Colorectal cancer (CRC) is a genetically heterogeneous disease with its pathogenesis often driven by varying genetic or epigenetic alterations. This has led to a substantial number of patients developing chemoresistance and treatment failure, resulting in a high mortality rate for advanced disease. Deep molecular analysis has allowed for the discovery of key intestinal signaling pathways which impacts colonic epithelial cell fate, and the integral role of the tumor microenvironment on cancer growth and dissemination. Through transitioning pre-clinical knowledge in research into clinical practice, many potential druggable targets within these pathways have been discovered in the hopes of overcoming the roadblocks encountered by conventional therapies. A personalized approach tailoring treatment according to the histopathological and molecular features of individual tumors can hopefully translate to better patient outcomes, and reduce the rate of recurrence in patients with advanced CRC. Herein, the latest understanding on the molecular science behind CRC tumorigenesis, and the potential treatment targets currently at the forefront of research are summarized.
Collapse
Affiliation(s)
- Claudia WK Wu
- Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Madeleine Reid
- Translational Gastroenterology Unit, John Radcliffe hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Leedham
- Translational Gastroenterology Unit, John Radcliffe hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rashid N Lui
- Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Ren Y, Miao JM, Wang YY, Fan Z, Kong XB, Yang L, Cheng G. Oncolytic viruses combined with immune checkpoint therapy for colorectal cancer is a promising treatment option. Front Immunol 2022; 13:961796. [PMID: 35911673 PMCID: PMC9334725 DOI: 10.3389/fimmu.2022.961796] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy is one of the promising strategies in the treatment of oncology. Immune checkpoint inhibitors, as a type of immunotherapy, have no significant efficacy in the clinical treatment of patients with pMMR/MSS/MSI-L mCRC alone. Therefore, there is an urgent need to find combination therapies that can improve the response rate of immune checkpoint inhibitors. Oncolytic viruses are a new class of cancer drugs that, in addition to directly lysing tumor cells, can facilitate the action of immune checkpoint inhibitors by modulating the tumor microenvironment and transforming “cold” tumors into “hot” ones. The combination of oncolytic viruses and immune checkpoint inhibitors is currently being used in several primary and clinical studies to treat tumors with exciting results. The combination of genetically modified “armed” OV with ICIs is expected to be one of the treatment options for pMMR/MSS/MSI-L mCRC. In this paper, we will analyze the current status of oncolytic viruses and ICIs available for the treatment of CRC. The feasibility of OV in combination with ICI for CRC will be discussed in terms of the mechanism of action of OV in treating tumors.
Collapse
Affiliation(s)
- Yi Ren
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia-Meng Miao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Yuan Wang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Fan
- Department of Critical Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Xian-Bin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| |
Collapse
|
47
|
Targeting interleukin-17 enhances tumor response to immune checkpoint inhibitors in colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188758. [PMID: 35809762 DOI: 10.1016/j.bbcan.2022.188758] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022]
Abstract
Although immune checkpoint inhibitors (ICIs) have gained much attention in managing cancer, only a minority of patients, especially those with tumors that have been classified as immunologically "cold" such as microsatellite stable (MSS) colorectal cancers (CRC), experience clinical benefit from ICIs. Surprisingly, interleukin-17 (IL-17) and its primary source Th17 are enriched in CRC and inversely associated with patient outcome. Our previous study revealed that IL-17A could upregulate programmed death-ligand 1 (PD-L1) expression and impede the efficacy of immunotherapy. IL-17, therefore, can be a possible target to sensitize tumor cells to ICIs. The detailed clinical results from our trial, which is the first to show the benefits of the combination of anti-PD-1 with anti-IL-17 therapy for MSS CRC, have also been presented. In this review, we highlight the role of IL-17 in ICIs resistance and summarize the current clinical evidence for the use of combination therapy. Directions for future strategies to warm up immunologically "cold" MSS CRCs have also been proposed.
Collapse
|
48
|
Crisafulli G, Sartore-Bianchi A, Lazzari L, Pietrantonio F, Amatu A, Macagno M, Barault L, Cassingena A, Bartolini A, Luraghi P, Mauri G, Battuello P, Personeni N, Zampino MG, Pessei V, Vitiello PP, Tosi F, Idotta L, Morano F, Valtorta E, Bonoldi E, Germano G, Di Nicolantonio F, Marsoni S, Siena S, Bardelli A. Temozolomide Treatment Alters Mismatch Repair and Boosts Mutational Burden in Tumor and Blood of Colorectal Cancer Patients. Cancer Discov 2022; 12:1656-1675. [PMID: 35522273 PMCID: PMC9394384 DOI: 10.1158/2159-8290.cd-21-1434] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 01/07/2023]
Abstract
The majority of metastatic colorectal cancers (mCRC) are mismatch repair (MMR) proficient and unresponsive to immunotherapy, whereas MMR-deficient (MMRd) tumors often respond to immune-checkpoint blockade. We previously reported that the treatment of colorectal cancer preclinical models with temozolomide (TMZ) leads to MMR deficiency, increased tumor mutational burden (TMB), and sensitization to immunotherapy. To clinically translate these findings, we designed the ARETHUSA clinical trial whereby O6-methylguanine-DNA-methyltransferase (MGMT)-deficient, MMR-proficient, RAS-mutant mCRC patients received priming therapy with TMZ. Analysis of tissue biopsies and circulating tumor DNA (ctDNA) revealed the emergence of a distinct mutational signature and increased TMB after TMZ treatment. Multiple alterations in the nucleotide context favored by the TMZ signature emerged in MMR genes, and the p.T1219I MSH6 variant was detected in ctDNA and tissue of 94% (16/17) of the cases. A subset of patients whose tumors displayed the MSH6 mutation, the TMZ mutational signature, and increased TMB achieved disease stabilization upon pembrolizumab treatment. SIGNIFICANCE MMR-proficient mCRCs are unresponsive to immunotherapy. We provide the proof of concept that inactivation of MMR genes can be achieved pharmacologically with TMZ and molecularly monitored in the tissue and blood of patients with mCRC. This strategy deserves additional evaluation in mCRC patients whose tumors are no longer responsive to standard-of-care treatments. See related commentary by Willis and Overman, p. 1612. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Giovanni Crisafulli
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Lazzari
- The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marco Macagno
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Ludovic Barault
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Andrea Cassingena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Paolo Luraghi
- The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Gianluca Mauri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.,The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Battuello
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Nicola Personeni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria Giulia Zampino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Pietro Paolo Vitiello
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Federica Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Idotta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Valtorta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Emanuela Bonoldi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovanni Germano
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | | | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.,Corresponding Author: Alberto Bardelli, University of Turin, Department of Oncology, Candiolo Cancer Institute, FPO - IRCCS, Str.Prov.le 142, km 3.95, 10060, Candiolo, Torino, Italy. Phone/Fax: 39-011-993-3235; E-mail:
| |
Collapse
|
49
|
Currais P, Rosa I, Claro I. Colorectal cancer carcinogenesis: From bench to bedside. World J Gastrointest Oncol 2022; 14:654-663. [PMID: 35321283 PMCID: PMC8919024 DOI: 10.4251/wjgo.v14.i3.654] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the main causes of cancer death in developed countries. Yet, it is potentially preventable, by removing the precursor lesions - adenomas or serrated lesions. Several studies proved that this intervention reduces CRC mortality and that the first colonoscopy’s results can guide surveillance strategies. More recently, it became clear that several carcinogenesis pathways may lead to sporadic CRC. CRC is a heterogeneous disease, characterized by multiple molecular subtypes. Three main pathways have been implicated in the development of CRC: Chromosomal instability, microsatellite instability, and the “serrated” pathways, with overlapping features between them. This and other molecular and genetic based CRC classifications are known to have clinical implications, spanning from familial risk assessment to therapy choices. The authors review basic science data and provide insight on current implications for the management of patients with CRC.
Collapse
Affiliation(s)
- Pedro Currais
- Department of Gastroenterology, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Lisboa 1099-023, Portugal
| | - Isadora Rosa
- Department of Gastroenterology, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Lisboa 1099-023, Portugal
| | - Isabel Claro
- Department of Gastroenterology, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Lisboa 1099-023, Portugal
| |
Collapse
|
50
|
Gorzo A, Galos D, Volovat SR, Lungulescu CV, Burz C, Sur D. Landscape of Immunotherapy Options for Colorectal Cancer: Current Knowledge and Future Perspectives beyond Immune Checkpoint Blockade. Life (Basel) 2022; 12:229. [PMID: 35207516 PMCID: PMC8878674 DOI: 10.3390/life12020229] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer is the third most prevalent malignancy in Western countries and a major cause of death despite recent improvements in screening programs and early detection methods. In the last decade, a growing effort has been put into better understanding how the immune system interacts with cancer cells. Even if treatments with immune checkpoint inhibitors (anti-PD1, anti-PD-L1, anti-CTLA4) were proven effective for several cancer types, the benefit for colorectal cancer patients is still limited. However, a subset of patients with deficient mismatch repair (dMMR)/microsatellite-instability-high (MSI-H) metastatic colorectal cancer has been observed to have a prolonged benefit to immune checkpoint inhibitors. As a result, pembrolizumab and nivolumab +/- ipilimumab recently obtained the Food and Drug Administration approval. This review aims to highlight the body of knowledge on immunotherapy in the colorectal cancer setting, discussing the potential mechanisms of resistance and future strategies to extend its use.
Collapse
Affiliation(s)
- Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Diana Galos
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Simona Ruxandra Volovat
- Department of Medical Oncology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | | | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Allergology and Immunology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| |
Collapse
|