1
|
Senk A, Fazzari J, Djonov V. Vascular mimicry in zebrafish fin regeneration: how macrophages build new blood vessels. Angiogenesis 2024; 27:397-410. [PMID: 38546923 PMCID: PMC11303510 DOI: 10.1007/s10456-024-09914-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/10/2024] [Indexed: 08/07/2024]
Abstract
Vascular mimicry has been thoroughly investigated in tumor angiogenesis. In this study, we demonstrate for the first time that a process closely resembling tumor vascular mimicry is present during physiological blood vessel formation in tissue regeneration using the zebrafish fin regeneration assay. At the fin-regenerating front, vasculature is formed by mosaic blood vessels with endothelial-like cells possessing the morphological phenotype of a macrophage and co-expressing both endothelial and macrophage markers within single cells. Our data demonstrate that the vascular segments of the regenerating tissue expand, in part, through the transformation of adjacent macrophages into endothelial-like cells, forming functional, perfused channels and contributing to the de novo formation of microvasculature. Inhibiting the formation of tubular vascular-like structures by CVM-1118 prevents vascular mimicry and network formation resulting in a 70% shorter regeneration area with 60% reduced vessel growth and a complete absence of any signs of regeneration in half of the fin area. Additionally, this is associated with a significant reduction in macrophages. Furthermore, depleting macrophages using macrophage inhibitor PLX-3397, results in impaired tissue regeneration and blood vessel formation, namely a reduction in the regeneration area and vessel network by 75% in comparison to controls.
Collapse
Affiliation(s)
- Anita Senk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Lai Q, Wan Y, Zhang Y, Huang Y, Tang Q, Chen M, Li Q, Ma K, Xiao P, Luo C, Zhuang X. Hypomethylation-associated LINC00987 downregulation induced lung adenocarcinoma progression by inhibiting the phosphorylation-mediated degradation of SND1. Mol Carcinog 2024; 63:1260-1274. [PMID: 38607240 DOI: 10.1002/mc.23722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
DNA methylation, an epigenetic regulatory mechanism dictating gene transcription, plays a critical role in the occurrence and development of cancer. However, the molecular underpinnings of LINC00987 methylation in the regulation of lung adenocarcinoma (LUAD) remain elusive. This study investigated LINC00987 expression in LUAD patients through analysis of The Cancer Genome Atlas data sets. Quantitative real-time polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization assays were used to assess LINC00987 expression in LUAD. The bisulfite genomic sequence PCR (BSP) assay was used to determine the methylation levels of the LINC00987 promoter. The interaction between LINC00987 and SND1 was elucidated via immunoprecipitation and RNA pull-down assays. The functional significance of LINC00987 and SND1 in Calu-3 and NCI-H1688 cells was evaluated in vitro through CCK-8, EdU, Transwell, flow cytometry, and vasculogenic mimicry (VM) tube formation assays. LINC00987 expression decreased in LUAD concomitant with hypermethylation of the promoter region, while hypomethylation of the LINC00987 promoter in LUAD tissues correlated with tumor progression. Treatment with 5-Aza-CdR augmented LINC00987 expression and inhibited tumor growth. Mechanistically, LINC00987 overexpression impeded LUAD progression and VM through direct binding with SND1, thereby facilitating its phosphorylation and subsequent degradation. Additionally, overexpression of SND1 counteracted the adverse effects of LINC00987 downregulation on cell proliferation, apoptosis, cell migration, invasion, and VM in LUAD in vitro. In conclusion, this pioneering study focuses on the expression and function of LINC00987 and reveals that hypermethylation of the LINC00987 gene may contribute to LUAD progression. LINC00987 has emerged as a potential tumor suppressor gene in tumorigenesis through its binding with SND1 to facilitate its phosphorylation and subsequent degradation.
Collapse
Affiliation(s)
- Qi Lai
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yulin Wan
- Medical Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yingqian Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yingzhao Huang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qiuyue Tang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Chen
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Li
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ke Ma
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Xiao
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Zhuang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Salinas-Vera YM, Gallardo-Rincón D, Ruíz-García E, Marchat LA, Valdés J, Vázquez-Calzada C, López-Camarillo C. A Three-Dimensional Culture-Based Assay to Detect Early Stages of Vasculogenic Mimicry in Ovarian Cancer Cells. Methods Mol Biol 2022; 2514:53-60. [PMID: 35771418 DOI: 10.1007/978-1-0716-2403-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vasculogenic mimicry is a cellular mechanism in which tumor cells grow and align forming complex three-dimensional (3D) channel-like structures in a hypoxic microenvironment. This phenomenon represents a novel oxygen, nutrient, and blood supply, in a similar way as occurs in classic angiogenesis. Vasculogenic mimicry has been described in numerous clinical tumors including breast, prostate, lung, and ovarian cancers where it is associated with poor prognosis; thus, it is considered as a hallmark of highly aggressive and metastatic tumors. Here, we describe a simple method to model the in vitro formation of three-dimensional cellular networks over Matrigel in SKOV3 ovarian cancer cells representing the early stages of vasculogenic mimicry.
Collapse
Affiliation(s)
| | - Dolores Gallardo-Rincón
- Laboratory of Translational Medicine and Department of Gastrointestinal Tumors, National Cancer Institute, Ciudad de México, Mexico
| | - Erika Ruíz-García
- Laboratory of Translational Medicine and Department of Gastrointestinal Tumors, National Cancer Institute, Ciudad de México, Mexico
| | - Laurence A Marchat
- Program in Molecular Biomedicine and Biotechnology Network, National Polytechnic Institute, Ciudad de México, Mexico
| | - Jesús Valdés
- Department of Biochemistry, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Carlos Vázquez-Calzada
- Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, Ciudad de México, Mexico
| | | |
Collapse
|
4
|
Tao X, Yin Y, Lian D, Gu H, Chen W, Yang L, Yin G, Liu P, Li L, Wei Y, Xie Z, Liu F, Sui H, Yan D, Tao W. Puerarin 6″-O-xyloside suppresses growth, self-renewal and invasion of lung cancer stem-like cells derived from A549 cells via regulating Akt/c-Myc signalling. Clin Exp Pharmacol Physiol 2020; 47:1311-1319. [PMID: 32124474 DOI: 10.1111/1440-1681.13294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 01/21/2023]
Abstract
Cancer stem cells have been identified as the major cause of cancer initiation and progression. To investigate the effects of puerarin 6″-O-xyloside (PXY), derived from Pueraria lobata (Willd.) Ohwi, on lung cancer stem cells, we enriched and identified a subpopulation of lung cancer stem-like cells (LCSLCs) derived from lung adenocarcinoma A549 cells with traits including high self-renewal and invasive capability in vitro, elevated tumourigenicity in vivo, and high expression of stem cell markers CD44, CD133 and aldehyde dehydrogenase 1 (ALDH1). We found that PXY could impair cell viability, suppress self-renewal and invasive capability, and decrease CD133, CD44 and ALDH1 mRNA expression in LCSLCs in a dose-dependent manner. Furthermore, we showed that PXY suppressed the self-renewal and invasive capability of LCSLCs at least in part through suppressing the activation of Akt/c-Myc signalling. In conclusion, PXY can block the traits of LCSLCs, indicating that PXY may be a candidate compound for lung adenocarcinoma therapy via eliminating LCSLCs.
Collapse
Affiliation(s)
- Xiaomei Tao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
- International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Yefeng Yin
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dongbo Lian
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongyan Gu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen Chen
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Yang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Gang Yin
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Pengfei Liu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lili Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Wei
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhengzheng Xie
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Fei Liu
- Department of Clinical Nutrition, Chengdu Fifth People's Hospital, Chengdu, China
| | - Hangshuo Sui
- Department of Clinical Nutrition, Chengde Central Hospital, Chengde, China
| | - Dan Yan
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
- International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Weiwei Tao
- College of Nursing, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Hayashi S, Osada Y, Miura K, Simizu S. Cell-dependent regulation of vasculogenic mimicry by carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1). Biochem Biophys Rep 2020; 21:100734. [PMID: 32025578 PMCID: PMC6997815 DOI: 10.1016/j.bbrep.2020.100734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Vasculogenic mimicry (VM) promotes tumor migration, metastasis, and invasion in various types of cancer, but the relationship between VM and these phenotypes remains undefined. In this study, we examined carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) as a novel target of VM. We found that ectopic expression of CEACAM1 in HT1080 human fibrosarcoma cells suppressed the formation of a VM-like network. Further, cell migration and proliferation were abated by the introduction of CEACAM1 into HT1080 cells. Conversely, knockout (KO) of the CEACAM1 gene in SK-MEL-28 melanoma cells, which normally express high levels of CEACAM1, inhibited formation of a VM-like network, which was covered on reintroduction of CEACAM1. These results suggest that CEACAM1 differentially regulates formation of the VM-like network between cancer cell types and implicate CEACAM1 as a novel therapeutic target in malignant cancer. CEACAM1 is not expressed in HT1080 cells, and overexpression of CEACAM1 in HT1080 cells suppresses vasculogenic mimicry. CEACAM1 is highly expressed in SK-MEL-28 cells, and deletion of CEACAM1 in SK-MEL-28 cells abolishes vasculogenic mimicry. CEACAM1 regulates vasculogenic mimicry in a cell-dependent manner.
Collapse
Affiliation(s)
- Soichiro Hayashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yoshiyuki Osada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kazuki Miura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
6
|
Mitra D, Bhattacharyya S, Alam N, Sen S, Mitra S, Mandal S, Vignesh S, Majumder B, Murmu N. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast. Breast Cancer Res Treat 2019; 179:359-370. [PMID: 31686261 DOI: 10.1007/s10549-019-05482-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE The occurrence of vasculogenic mimicry (VM) and EphA2-mediated tumour progression are associated with poor prognosis in various solid tumours. Here, we aimed to investigate the prognostic implications of VM and its association with phosphorylated EphA2 receptor in invasive carcinoma of the breast. METHODS The patients were stratified based on CD-31/PAS dual staining and subsequently the expression status of phospho-EphA2 (S897), FAK, phospho-ERK1/2 and Laminin 5Ƴ2 was analysed by immunohistochemistry. Survival of patients was correlated within the stratified cohort. RESULTS The pathologically defined VM phenotype and phospho-EphA2 (S897) expression status were significantly associated with lower disease-free survival (DFS) and overall survival (OS). Both the features were also found to be significantly associated with higher nodal status, poor Nottingham Prognostic Index (NPI) and were more prevalent in the triple-negative breast cancer (TNBC) group. Incidentally, there were no significant association between age of the patient, grade and size of the tumour with VM and phospho-EphA2 (S897). The effector molecules of phospho-EphA2 (S897) viz., Focal Adhesion Kinase (FAK), phospho-ERK1/2 and Laminin 5Ƴ2 were significantly upregulated in the VM-positive cohort. Survival analysis revealed that the VM and phospho-EphA2 (S897) dual-positive cohort had poorest DFS [mean time = 48.313 (39.992-56.633) months] and OS [mean time = 56.692 (49.055-64.328) months]. Individually, VM-positive [Hazard Ratio (HR) 6.005; 95% confidence interval (CI) 2.002-18.018; P = 0.001 for DFS and HR 11.654; 95% CI 3.195-42.508; P < 0.0001 for OS] and phospho-EphA2 (S897)-positive (HR 4.342; 95% CI 1.717-10.983; P = 0.002 for DFS and HR 5.853; 95% CI 1.663-20.602; P = 0.006 for OS) expression proved to be independent indicators of prognosis. CONCLUSION This study evaluated tumour dependency on oncogenic EphA2 receptor regulation and VM in invasive carcinoma of the breast and their prognostic significance. Significant correlations between VM, phospho-EphA2 and several clinicopathologic parameters of breast cancer were found. Subsequently, the occurrence of VM or phospho-EphA2 expression proved to be major contributors for poor prognosis in patients with breast cancer but their simultaneous expression failed to be an independent risk factor.
Collapse
Affiliation(s)
- Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sayantan Bhattacharyya
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sagar Sen
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Saunak Mitra
- Department of Pathology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Syamsundar Mandal
- Department of Epidemiology and Biostatistics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Shivani Vignesh
- Department of Cancer Biology, Mitra Biotech, 7- Service Road, Pragathi Nagar, Electronic City, Bengaluru, 560100, India
| | - Biswanath Majumder
- Department of Molecular Pathology, Mitra Biotech, 7- Service Road, Pragathi Nagar, Electronic City, Bengaluru, 560100, India
- Department of Cancer Biology, Mitra Biotech, 7- Service Road, Pragathi Nagar, Electronic City, Bengaluru, 560100, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
7
|
López-Urrutia E, Bustamante Montes LP, Ladrón de Guevara Cervantes D, Pérez-Plasencia C, Campos-Parra AD. Crosstalk Between Long Non-coding RNAs, Micro-RNAs and mRNAs: Deciphering Molecular Mechanisms of Master Regulators in Cancer. Front Oncol 2019; 9:669. [PMID: 31404273 PMCID: PMC6670781 DOI: 10.3389/fonc.2019.00669] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex disease, and its study requires deep understanding of several biological processes and their regulation. It is an accepted fact that non-coding RNAs are vital components of the regulation and cross-talk among cancer-related signaling pathways that favor tumor aggressiveness and metastasis, such as neovascularization, angiogenesis, and vasculogenic mimicry. Both long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) have been described as master regulators of cancer on their own; yet there is accumulating evidence that, besides regulating mRNA expression through independent mechanisms, these classes of non-coding RNAs interact with each other directly, fine-tuning the effects of their regulation. While still relatively scant, research on the lncRNA-miRNA-mRNA axis regulation is growing at a fast rate, it is only in the last 5 years, that lncRNA-miRNA interactions have been identified in tumor-related vascular processes. In this review, we summarize the current progress of research on the cross-talk between lncRNAs and miRNAs in the regulation of neovascularization, angiogenesis and vasculogenic mimicry.
Collapse
Affiliation(s)
- Eduardo López-Urrutia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | | | | | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico.,Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Alma D Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
8
|
Maiti A, Qi Q, Peng X, Yan L, Takabe K, Hait NC. Class I histone deacetylase inhibitor suppresses vasculogenic mimicry by enhancing the expression of tumor suppressor and anti-angiogenesis genes in aggressive human TNBC cells. Int J Oncol 2019; 55:116-130. [PMID: 31059004 PMCID: PMC6561627 DOI: 10.3892/ijo.2019.4796] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) cells form angiogenesis-independent vessel-like structures to survive, known as vasculogenic mimicry (VM), contributing to a poor prognosis for cancer patients. Nuclear localized class I histone deacetylases (HDACs) enzymes, particularly HDACs 1, 2, 3 deacetylate chromatin histones, are overexpressed in cancers and epigenetically regulate the expression of genes involved in cancer initiation and progression. The specific HDAC inhibitor, entinostat, has been shown to attenuate tumor progression and metastasis in TNBC. In this study, we hypothesized that entinostat would enhance the expression of anti-angiogenic and tumor suppressor genes and would thus suppress VM structures in TNBC cells in a 3D Matrigel cell culture preclinical model. Our data indicated that invasive triple-negative MDA-MB-231, LM2-4 and BT-549 breast cancer cells, but not poorly invasive luminal MCF-7 cells, efficiently underwent matrix-associated VM formation. Approximately 80% of TNBC cells with the stem cell phenotype potential formed vessel-like structures when mixed with Matrigel and cultured in the low attachment tissue culture plate. The molecular mechanisms of VM formation are rather complex, while angiogenesis inhibitor genes are downregulated and pro-angiogenesis genes are upregulated in VM-forming cells. Our data revealed that treatment of the TNBC VM phenotype cells with entinostat epigenetically led to the re-expression of the anti-angiogenic genes, serpin family F member 1 (SERPINF1) and thrombospondin 2 (THBS2), and to that of the tumor suppressor genes, phosphatase and tensin homolog (PTEN) and p21, and reduced VM structures. We also found that treatment of the TNBC VM phenotype cells with entinostat downregulated the expression of vascular endothelial growth factor A (VEGF-A), and that of the epithelial-mesenchymal transition (EMT)-related genes, Vimentin and β-catenin. METABIRC and TCGA breast cancer cohort mRNA expression data analysis revealed that a high expression of the anti-angiogenesis-associated genes, THBS2, SERPINF1 and serpin family B member 5 (SERPINB5), and of the tumor suppressor gene, PTEN, was associated with a better overall survival (OS) of breast cancer patients. Taken together, the findings of this study demonstrate that HDACs 1, 2, 3 partly contribute to VM formation in TNBC cells; thus, HDACs may be an important therapeutic target for TNBC.
Collapse
Affiliation(s)
- Aparna Maiti
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xuan Peng
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kazuaki Takabe
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Nitai C Hait
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
9
|
Zhang C, Li J, Sun M, Li S, Li J, Li Q, Zhu Z. Peripheral vessel and air bronchograms for detecting the pathologic patterns of subsolid nodules. Clin Imaging 2019; 56:63-68. [PMID: 30933847 DOI: 10.1016/j.clinimag.2019.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the relationships of subsolid nodules (SSNs) with peripheral vessels and aerated bronchi using computed tomography (CT), and to correlate the imaging features with the benign/malignant pathological diagnoses. METHODS This study retrospectively analyzed data from 83 patients with a solitary SSN (January 2008 to December 2016). SSNs were imaged (LightSpeed 64-slice spiral CT, General Electric, USA), their mean diameter determined, and the relationship with peripheral vessels (types I-IV) and aerated bronchi (types I-V) were classified. Pathologic diagnoses were obtained from the surgical specimens. RESULTS SSNs were diagnosed as benign (n = 29), pre-invasive (n = 9), micro-invasive adenocarcinoma (n = 7) and invasive adenocarcinoma (n = 38). SSN size, peripheral vessel class and aerated bronchus class differed between pathologic types (P < 0.05). For benign SSNs, peripheral vessel type II (58.6%) was most common, followed by III (20.7%) and IV (6.9%). Aerated bronchus type V (65.5%) was most frequent, followed by IV (27.6%); type I aerated bronchus was not observed. No cases of micro-invasive or invasive adenocarcinoma were peripheral vessel type I or aerated bronchus type V. For invasive adenocarcinoma, 92.1% were peripheral vessel types III + IV while 71.8% were aerated bronchus types I + II. CONCLUSIONS SSN pathologic types differ with regard to peripheral vessel and aerated bronchus types. Type I peripheral vessel and type V aerated bronchus (both least involved) suggest a benign lesion, whereas type III/IV peripheral vessel and type I/II aerated bronchus (both most involved) suggest malignancy.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Radiology, the First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Jianke Li
- Department of Thoracic Surgery, the First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Mengyue Sun
- Department of Radiology, the First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Shujing Li
- Department of Radiology, the First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China.
| | - Jingyu Li
- Department of Radiology, the First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Quanhai Li
- Department of Cell Therapy Laboratory, the First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Zhenlong Zhu
- Department of Pathology, the First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| |
Collapse
|
10
|
Wang D, Zheng J, Liu X, Xue Y, Liu L, Ma J, He Q, Li Z, Cai H, Liu Y. Knockdown of USF1 Inhibits the Vasculogenic Mimicry of Glioma Cells via Stimulating SNHG16/miR-212-3p and linc00667/miR-429 Axis. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 14:465-482. [PMID: 30743215 PMCID: PMC6369224 DOI: 10.1016/j.omtn.2018.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
The anti-angiogenic treatment of malignant glioma cells is an effective method to treat high-grade gliomas. However, due to the presence of vasculogenic mimicry (VM), the anti-angiogenic treatment of gliomas is not significantly effective in improving overall patient median survival. Therefore, this study investigated the mechanism of mimic formation of angiogenesis in gliomas. The results of this experiment indicate that the expression of upstream transcription factor 1 (USF1) is upregulated in glioma tissues and cells. USF1 knockdown inhibits the proliferation, migration, invasion, VM, and expression of VM-associated proteins in glioma cells by stimulating SNHG16 and linc00667. These two long non-coding RNAs (lncRNAs) regulate ALHD1A1 through the competing endogenous RNA (ceRNA) mechanism influencing the VM of glioma. This study is the first to demonstrate that the USF1/SNHG16/miR-212-3p/ALDH1A1 (aldehyde dehydrogenase-1) and USF1/linc00667/miR-429/ALDH1A1 axis regulates the VM of glioma cells, and these findings might provide a novel strategy for glioma treatment.
Collapse
Affiliation(s)
- Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qianru He
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
11
|
Salinas-Vera YM, Marchat LA, García-Vázquez R, González de la Rosa CH, Castañeda-Saucedo E, Tito NN, Flores CP, Pérez-Plasencia C, Cruz-Colin JL, Carlos-Reyes Á, López-González JS, Álvarez-Sánchez ME, López-Camarillo C. Cooperative multi-targeting of signaling networks by angiomiR-204 inhibits vasculogenic mimicry in breast cancer cells. Cancer Lett 2018; 432:17-27. [PMID: 29885516 DOI: 10.1016/j.canlet.2018.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
RNA-based multi-target therapies focused in the blocking of signaling pathways represent an attractive approach in cancer. Here, we uncovered a miR-204 cooperative targeting of multiple signaling transducers involved in vasculogenic mimicry (VM). Our data showed that invasive triple negative MDA-MB-231 and Hs-578T breast cancer cells, but not poorly invasive MCF-7 cells, efficiently undergoes matrix-associated VM under hypoxia. Ectopic restoration of miR-204 in MDA-MB-231 cells leads to a potent inhibition of VM and reduction of number of branch points and patterned 3D channels. Further analysis of activation state of multiple signaling pathways using Phosphorylation Antibody Arrays revealed that miR-204 reduced the expression and phosphorylation levels of 13 proteins involved in PI3K/AKT, RAF1/MAPK, VEGF, and FAK/SRC signaling. In agreement with phospho-proteomic profiling, VM was impaired following pharmacological administration of PI3K and SRC inhibitors. Mechanistic studies confirmed that miR-204 exerts a negative post-transcriptional regulation of PI3K-α and c-SRC proto-oncogenes. Moreover, overall survival analysis of a large cohort of breast cancer patients indicates that low miR-204 and high FAK/SRC levels were associated with worst outcomes. In conclusion, our study provides novel lines of evidence indicating that miR-204 may exerts a fine-tuning regulation of the synergistic transduction of PI3K/AKT/FAK mediators critical in VM formation.
Collapse
Affiliation(s)
- Yarely M Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de La Ciudad de México, CDMX, Mexico
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, CDMX, Mexico
| | - Raúl García-Vázquez
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, CDMX, Mexico
| | | | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular Del Cáncer. Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Napoleón Navarro Tito
- Laboratorio de Biología Celular Del Cáncer. Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | | | | - José L Cruz-Colin
- Subdirección de Investigación Básica, Instituto Nacional de Medicina Genómica, CDMX, Mexico
| | - Ángeles Carlos-Reyes
- Laboratorio de Cáncer de Pulmón. Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", CDMX, Mexico
| | - José Sullivan López-González
- Laboratorio de Cáncer de Pulmón. Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", CDMX, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de La Ciudad de México, CDMX, Mexico.
| |
Collapse
|
12
|
Ge H, Luo H. Overview of advances in vasculogenic mimicry - a potential target for tumor therapy. Cancer Manag Res 2018; 10:2429-2437. [PMID: 30122992 PMCID: PMC6080880 DOI: 10.2147/cmar.s164675] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vasculogenic mimicry (VM) describes the process utilized by highly aggressive cancer cells to generate vascular-like structures without the presence of endothelial cells. VM has been vividly described in various tumors and participates in cancer progression dissemination and metastasis. Diverse molecular mechanisms and signaling pathways are involved in VM formation. Furthermore, the patterning characteristics of VM, detected with molecular imaging, are being investigated for use as a tool to aid clinical practice. This review explores the most recent studies investigating the role of VM in tumor induction. Indeed, the recognition of these advances will increasingly affect the development of novel therapeutic target strategies for VM in human cancer.
Collapse
Affiliation(s)
- Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China,
| | - Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China, .,Division of Graduate, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
13
|
Kawahara R, Niwa Y, Simizu S. Integrin β1 is an essential factor in vasculogenic mimicry of human cancer cells. Cancer Sci 2018; 109:2490-2496. [PMID: 29900640 PMCID: PMC6113431 DOI: 10.1111/cas.13693] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Vasculogenic mimicry (VM) formation by cancer cells is known to play a crucial role in tumor progression, but its detailed mechanism is unclear. In the present study, we focused on integrin β1 (ITGB1) and assessed the role of ITGB1 in VM formation. We used in vitro methods to seed cancer cells on Matrigel to evaluate the capability of VM formation. We carried out ITGB1 gene deletion using the CRISPR/Cas9 system, and these ITGB1‐knockout cells did not show a VM‐like network formation. Further, reintroduction of ITGB1 rescued VM‐like network formation in ITGB1‐knockout cells. In conclusion, ITGB1 is a critical factor in VM of human cancer cells, and inhibition of ITGB1 may be a novel therapeutic approach for malignant cancer.
Collapse
Affiliation(s)
- Ryota Kawahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
14
|
Yang J, Zhu DM, Zhou XG, Yin N, Zhang Y, Zhang ZX, Li DC, Zhou J. HIF-2α promotes the formation of vasculogenic mimicry in pancreatic cancer by regulating the binding of Twist1 to the VE-cadherin promoter. Oncotarget 2018; 8:47801-47815. [PMID: 28599281 PMCID: PMC5564606 DOI: 10.18632/oncotarget.17999] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/02/2017] [Indexed: 11/25/2022] Open
Abstract
Vasculogenic mimicry (VM) is a blood supply modality that occurs independently of endothelial cell angiogenesis. Hypoxia and the epithelial-mesenchymal transition (EMT) induce VM formation by remodeling the extracellular matrix. Our previous study demonstrated that hypoxia-inducible factor-2 alpha (HIF-2α) promotes the progress of EMT in pancreatic cancer; however, whether HIF-2α promotes VM formation in pancreatic cancer remains unknown. In this study, we investigated HIF-2α expression and VM by immunohistochemistry in 70 pancreatic cancer patients as well as the role of Twist1and Twist2 in HIF-2α-induced VM in vitro and in vivo. We found that the overexpression of HIF-2α and VM were correlated with poor tumor differentiation, late clinical stage and lymph node metastasis, and a poor prognosis in pancreatic cancer. Moreover, the upregulation of HIF-2α in SW1990 cells induced VM formation, whereas the opposite results were found after silencing HIF-2α in AsPC-1 cells. A mechanistic study indicated that HIF-2α might regulate the binding of twist1 to vascular endothelial cadherin (VE-cadherin) to promote VM formation in pancreatic cancer cells, and that the P1 (-421bp) and P4 (-2110bp) regions of the Twist1 binding sequences are positive regulatory elements for VE-cadherin. In addition, we confirmed that the overexpression of HIF-2α increased Twist1 expression and promoted tumor growth and VM formation in pancreatic cancer xenografts in nude mice. These findings indicated that HIF-2α might play a critical role in VM and that HIF-2α and the pathway of HIF-2α inducing VM formation are potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Jian Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.,Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Dong-Ming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.,Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiao-Gang Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Ni Yin
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yi Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.,Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zi-Xiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.,Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - De-Chun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.,Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.,Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
15
|
Zhang F, Zhang CM, Li S, Wang KK, Guo BB, Fu Y, Liu LY, Zhang Y, Jiang HY, Wu CJ. Low dosage of arsenic trioxide inhibits vasculogenic mimicry in hepatoblastoma without cell apoptosis. Mol Med Rep 2017; 17:1573-1582. [PMID: 29138840 PMCID: PMC5780096 DOI: 10.3892/mmr.2017.8046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/12/2017] [Indexed: 01/03/2023] Open
Abstract
Hepatoblastoma (HB) is the most common type of pediatric liver malignancy, which predominantly occurs in young children (aged <5 years), and continues to be a therapeutic challenge in terms of metastasis and drug resistance. As a new pattern of tumor blood supply, vasculogenic mimicry (VM) is a channel structure lined by tumor cells rather than endothelial cells, which contribute to angiogenesis. VM occurs in a variety of solid tumor types, including liver cancer, such as hepatocellular carcinoma. The aim of the present study was to elucidate the effect of arsenic trioxide (As2O3) on VM. In vitro experiments identified that HB cell line HepG2 cells form typical VM structures on Matrigel, and the structures were markedly damaged by As2O3 at a low concentration before the cell viability significantly decreased. The western blot results indicated that As2O3 downregulated the expression level of VM-associated proteins prior to the appearance of apoptotic proteins. In vivo, VM has been observed in xenografts of HB mouse models and identified by periodic acid-Schiff+/CD105− channels lined by HepG2 cells without necrotic cells. As2O3 (2 mg/kg) markedly depresses tumor growth without causing serious adverse reactions by decreasing the number of VM channels via inhibiting the expression level of VM-associated proteins. Thus, the present data strongly indicate that low dosage As2O3 reduces the formation of VM in HB cell line HepG2 cells, independent of cell apoptosis in vivo and in vitro, and may represent as a candidate drug for HB targeting VM.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chun-Mei Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shu Li
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kun-Kun Wang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bin-Bin Guo
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yao Fu
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lu-Yang Liu
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hai-Yu Jiang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chang-Jun Wu
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
16
|
Liu W, Lv C, Zhang B, Zhou Q, Cao Z. MicroRNA-27b functions as a new inhibitor of ovarian cancer-mediated vasculogenic mimicry through suppression of VE-cadherin expression. RNA (NEW YORK, N.Y.) 2017; 23:1019-1027. [PMID: 28396577 PMCID: PMC5473136 DOI: 10.1261/rna.059592.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
Aggressive cancer cells gain robust tumor vascular mimicry (VM) capability that promotes tumor growth and metastasis. VE-cadherin is aberrantly overexpressed in vasculogenic cancer cells and regarded as a master gene of tumor VM. Although microRNAs (miRNAs) play an important role in modulating tumor angiogenesis and cancer metastasis, the miRNA that targets VE-cadherin expression in cancer cells to inhibit tumor cell-mediated VM is enigmatic. In this study, we found that miR-27b levels are negatively co-related to VE-cadherin expression in ovarian cancer cells and tumor cell-mediated VM, and demonstrated that miR-27b could bind to the 3'-untranslated region (3'UTR) of VE-cadherin mRNA. Overexpression of miR-27b in aggressive ovarian cancer cell lines Hey1B and ES2 significantly diminished intracellular VE-cadherin expression; convincingly, the inhibitory effect of miR-27b could be reversed by miR-27b specific inhibitor. Intriguingly, miR-27b not only effectively suppressed ovarian cancer cell migration and invasion, but also markedly inhibited formation of ovarian cancer cell-mediated capillary-like structures in vitro and suppressed generation of functional tumor blood vessels in mice. Together, our study suggests that miR-27b functions as a new inhibitor of ovarian cancer cell-mediated VM through suppression of VE-cadherin expression, providing a new potential drug candidate for antitumor VM and anti-ovarian cancer therapy.
Collapse
Affiliation(s)
- Wenming Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Chunping Lv
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
17
|
Zhu H, Mao Q, Liu W, Yang Z, Jian X, Qu L, He C. Maspin suppresses growth, proliferation and invasion in cutaneous squamous cell carcinoma cells. Oncol Rep 2017; 37:2875-2882. [PMID: 28405681 DOI: 10.3892/or.2017.5574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/07/2017] [Indexed: 12/14/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common malignant tumor. Mammary serine protease inhibitor (Maspin), a member of serpin family, has been reported as a tumor suppressor in various carcinomas. In this study, we detected the expression level of Maspin in cSCC tissues by real-time PCR and western blotting, and found that Maspin was downregulated in the cSCC tissues compared with the adjacent normal tissues. Moreover, Maspin was stably overexpressed in A431 cells, and CCK-8 assay, colony formation assay, Transwell assay, Hoechst staining and western blotting were carried out to detect the growth, proliferation, invasion, cell cycle and apoptosis of A431 cells. The results revealed that overexpression of Maspin inhibited growth, proliferation, invasion and cell cycle G1/S/G2 transition and enhanced apoptosis of A431 cells. The pro-apoptotic protein cleaved caspase-3, poly(ADP-ribose) polymerase (PARP) and Bax increased, and the anti-apoptotic protein Bcl-2 decreased after Maspin overexpression. Therefore, we demonstrated that Maspin suppressed growth, proliferation and invasion by delaying cell cycle transition and promoting apoptosis in cSCC cells, which may provide new insights for the clinical diagnosis and therapy of cSCC.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qing Mao
- Department of Dermatology, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Weiwei Liu
- Department of Dermatology, Chaoyang Second Hospital, Chaoyang, Liaoning 122000, P.R. China
| | - Zhenhai Yang
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaoqing Jian
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Le Qu
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chundi He
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
18
|
Tumor vasculogenic mimicry formation as an unfavorable prognostic indicator in patients with breast cancer. Oncotarget 2017; 8:56408-56416. [PMID: 28915600 PMCID: PMC5593571 DOI: 10.18632/oncotarget.16919] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/17/2017] [Indexed: 11/25/2022] Open
Abstract
Vasculogenic mimicry (VM), a newly defined pattern of tumor blood perfusion, describes the functional plasticity of aggressive tumor cells forming de novo vascular networks and is associated with the cancer progression and metastasis. However, the VM-positive rate and the impact of VM status on breast cancer patients' clinicopathological parameters and prognosis remain unclear. Thus, we performed a meta-analysis by incorporating all available evidence to clarify these issues. Eight studies that involved 1,238 breast cancer patients were eligible for inclusion in our study. We found the VM-positive rate was 24% (pooled proportion was 0.24, 95% CI= 0.13-0.34), and VM was significantly associated with larger tumor size (>2 cm) (OR=0.49, 95% CI=0.26-0.90, P=0.02) and lymph node metastasis (OR=0.27, 95% CI=0.13-0.57, P=0.0005). A boardline correlation was also identified between VM and poorer differentiation (Grade II-III) (OR=0.07, 95% CI=0.00-1.24, P=0.07). Nevertheless, no statistically significant associations were observed between VM and hormone receptor and human epidermal growth factor receptor 2 status. Moreover, the results showed that breast cancer patients with VM-positive have a shorter overall survival than those with VM-negative (HR=0.23, 95% CI=0.08-0.38,P=0.003). In summary, VM was associated with more aggressive tumor phenotype and poor prognosis in patients with breast cancer. Developing strategies against the VM formation would be a promising therapeutic approach to breast cancer.
Collapse
|
19
|
A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget 2016; 6:37695-705. [PMID: 26462177 PMCID: PMC4741958 DOI: 10.18632/oncotarget.6070] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/26/2015] [Indexed: 12/31/2022] Open
Abstract
A tumor microenvironment may promote tumor metastasis and progression through the dynamic interplay between neoplastic cells and stromal cells. In this work, the most representative and significant stromal cells, fibroblasts, endothelial cells, and macrophages were used as vital component elements and combined with bladder cancer cells to construct a bladder cancer microenvironment simulation system. This is the first report to explore bladder cancer microenvironments based on 4 types of cells co-cultured simultaneously. This simulation system comprises perfusion equipment, matrigel channel units, a medium channel and four indirect contact culture chambers, allowing four types of cells to simultaneously interact through soluble biological factors and metabolites. With this system, bladder cancer cells (T24) with a tendency to form a ‘reticular’ structure under 3 dimensional culture conditions were observed in real time. The microenvironment characteristics of paracrine interactions and cell motility were successfully simulated in this system. The phenotype change process in stromal cells was successfully reproduced in this system by testing the macrophage effector molecule Arg-1. Arg-1 was highly expressed in the simulated tumor microenvironment group. To develop “precision medicine” in bladder cancer therapy, bladder cancer cells were treated with different clinical ‘neo-adjuvant’ chemotherapy schemes in this system, and their sensitivity differences were fully reflected. This work provides a preliminary foundation for neo-adjuvant chemotherapy in bladder cancer, a theoretical foundation for tumor microenvironment simulation and promotes individual therapy in bladder cancer patients.
Collapse
|
20
|
Tumor vasculogenic mimicry predicts poor prognosis in cancer patients: a meta-analysis. Angiogenesis 2016; 19:191-200. [DOI: 10.1007/s10456-016-9500-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/11/2016] [Indexed: 01/10/2023]
|
21
|
Feng X, Yao J, Gao X, Jing Y, Kang T, Jiang D, Jiang T, Feng J, Zhu Q, Jiang X, Chen J. Multi-targeting Peptide-Functionalized Nanoparticles Recognized Vasculogenic Mimicry, Tumor Neovasculature, and Glioma Cells for Enhanced Anti-glioma Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27885-27899. [PMID: 26619329 DOI: 10.1021/acsami.5b09934] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chemotherapy failure of glioma, the most aggressive and devastating cancer, might be ascribed to the physiologic barriers of the tumor mainly including heterogeneous tumor perfusion and vascular permeability, which result in a limited penetration of chemotherapeutics. Besides, the vasculogenic mimicry (VM) channels, which are highly resistant to anti-angiogenic therapy and serve as a complement of angiogenesis, were abound in glioma and always associated with tumor recurrence. In order to enhance the therapy effect of anti-glioma, we developed a PEG-PLA-based nanodrug delivery system (nanoparticles, NP) in this study and modified its surface with CK peptide, which was composed of a human sonic hedgehog (SHH) targeting peptide (CVNHPAFAC) and a KDR targeting peptide (K237) through a GYG linker, for facilitating efficient VM channels, tumor neovasculature, and glioma cells multi-targeting delivery of paclitaxel. In vitro cellular assay showed that CK-NP-PTX not only exhibited the strongest antiproliferation effect on U87MG cells and HUVEC cells but also resulted in the most efficient destruction of VM channels when compared with CVNHPAFAC-NP, K237-NP, and the unmodified ones. Besides, CK-NP accumulated more selectively at the glioma site as demonstrated by in vivo and ex vivo imaging. As expected, the glioma-bearing mice treated with CK-NP-PTX achieved the longest median survival time compared to those treated with CVNHPAFAC-NP-PTX and K237-NP-PTX. These findings indicated that the multi-targeting therapy mediated by CK peptide might provide a promising way for glioblastoma therapy.
Collapse
Affiliation(s)
- Xingye Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Jianhui Yao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine , 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Yixian Jing
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Di Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Tianze Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Jingxian Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Qianqian Zhu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xinguo Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
22
|
Linder M, Tschernig T. Vasculogenic mimicry: Possible role of effector caspase-3, caspase-6 and caspase-7. Ann Anat 2015; 204:114-7. [PMID: 26704356 DOI: 10.1016/j.aanat.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 11/24/2022]
Abstract
Vasculogenic mimicry (VM) describes the process by which aggressive cancer cells form extracellular matrix-rich, vessel-like mesh works, which supply nutrients and oxygen. Furthermore, it offers a new route for tumor cell invasion and metastasis and thus a correspondingly poor prognosis and survival rate for affected patients. Effector caspases are well known for their apoptotic function, whereas a non-apoptotic function in tumor progression is highly disputed. Caspase-3, -6 and -7 are expressed in aggressive tumor cells in a non-mutated form, indicating an active function independent of apoptosis. This review summarizes the possible functions of the above-mentioned caspases in VM. We also discuss the possible involvement of caspases in potential mechanisms towards the formation of vessel-like structures. Furthermore, this review illustrates the importance of new studies in the ongoing investigation into the role of effector caspases in VM, invasion, and migration of aggressive tumor cells.
Collapse
Affiliation(s)
- Manuel Linder
- Center of Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany.
| |
Collapse
|
23
|
Li Y, Sun B, Zhao X, Zhang D, Wang X, Zhu D, Yang Z, Qiu Z, Ban X. Subpopulations of uPAR+ contribute to vasculogenic mimicry and metastasis in large cell lung cancer. Exp Mol Pathol 2015; 98:136-44. [PMID: 25661888 DOI: 10.1016/j.yexmp.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/03/2015] [Indexed: 01/29/2023]
Abstract
The urokinase plasminogen activator receptor (uPAR) is closely associated with poor prognosis in various aggressive cancers including large-cell lung cancer (LCLC). Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks involving the blood supply in early tumor formation. We demonstrate the statistically positive correlation of uPAR expression with VM formation, metastasis, and poor prognosis of LCLC patients. uPAR(+) cells sorted from the LCLC H460 cell line show higher invasion, migration capacity, and tube structure formation capability on Matrigel compared with uPAR(-) cells. uPAR(+) tumor cells highly expressed vimentin and VE-cadherin; the epithelial marker E-cadherin was low expressed. Higher EMT-regulated protein twist and snail expressions were also observed in these cells. uPAR(+) cells injected subcutaneously into nude mice markedly increased tumor growth, induced VM formation and liver metastasis; by contrast, uPAR(-) cells did not. The data suggest that uPAR expression may predict VM formation, tumor metastasis and poorer prognosis of LCLC patients. The uPAR gene may be used as a novel therapeutic target for inhibiting angiogenesis and metastasis in LCLC.
Collapse
Affiliation(s)
- Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China; Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Xudong Wang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China.
| | - Dongwang Zhu
- Stomatology Hospital of Tianjin Medical University, Tianjin, China.
| | - Zhihong Yang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.
| | - Zhiqiang Qiu
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China.
| | - Xinchao Ban
- Department of Pathology, Tianjin Hospital, Tianjin, China.
| |
Collapse
|
24
|
Qiao L, Liang N, Zhang J, Xie J, Liu F, Xu D, Yu X, Tian Y. Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med 2015; 19:315-26. [PMID: 25598425 PMCID: PMC4407602 DOI: 10.1111/jcmm.12496] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022] Open
Abstract
Vasculogenic mimicry (VM) is a brand-new tumour vascular paradigm independent of angiogenesis that describes the specific capacity of aggressive cancer cells to form vessel-like networks that provide adequate blood supply for tumour growth. A variety of molecule mechanisms and signal pathways participate in VM induction. Additionally, cancer stem cell and epithelial-mesenchymal transitions are also shown to be implicated in VM formation. As a unique perfusion way, VM is associated with tumour invasion, metastasis and poor cancer patient prognosis. Due to VM's important effects on tumour progression, more VM-related strategies are being utilized for anticancer treatment. Here, with regard to the above aspects, we make a review of advanced research on VM in cancer.
Collapse
Affiliation(s)
- Lili Qiao
- Department of Oncology, Shandong University School of Medicine, Jinan, Shandong Pro, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Berardi R, Morgese F, Savini A, Onofri A, Cascinu S. Maspin Staining and Its Use as Biomarker in Lung Cancer. BIOMARKERS IN CANCER 2015. [DOI: 10.1007/978-94-007-7681-4_36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Cao Z, Shang B, Zhang G, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1836:273-286. [PMID: 23933263 DOI: 10.1016/j.bbcan.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell-EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.
Collapse
Affiliation(s)
- Zhifei Cao
- Cyrus Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer 2013; 49:3914-3923. [PMID: 23992642 DOI: 10.1016/j.ejca.2013.07.148] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/05/2013] [Accepted: 07/20/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND Vasculogenic mimicry (VM) has been reported in various malignant tumours and is known to play an important role in cancer progression and metastasis. However, the impact of VM on the overall survival of human cancer patients remains controversial. The goal of this study was to evaluate whether VM is associated with 5-year survival of human cancer patients. METHODS Twenty-two eligible clinical studies with data on both tumour cell-dominant VM and the 5-year survival of 3062 patients involved in 15 types of cancers were pooled in the meta-analysis. RESULTS The 5-year overall survival of VM-positive and -negative cancer patients was 31% and 56%, respectively. The relative risk (RR) of the 5-year survival of VM-positive patients was significantly higher than that of VM-negative cases (RR=1.531; 95% confidence interval (CI): 1.357-1.726; P<0.001). Notably, metastatic melanoma patients demonstrated a higher VM rate (45.3%) than patients with primary melanoma (23.1%) and showed worse 5-year survival, suggesting that VM contributes to tumour metastasis and poor prognosis in cancer patients. Subgroup analysis indicated that a poor 5-year survival was significantly associated with eight types of VM-positive malignant tumours, such as lung, colon, liver cancers, sarcomas and melanoma; but was not associated with the seven other types of cancers, such as prostate cancer. Heterogeneity and publication biases were found among the 22 studies, mainly due to the divergent characteristics of cancers and extremely low survival rate in six types of malignant tumours. CONCLUSION VM-positive cancer patients show a poor 5-year overall survival compared with VM-negative malignant tumour cases, particularly in metastatic cancer.
Collapse
Affiliation(s)
- Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu 215123, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Cao Z, Yu D, Fu S, Zhang G, Pan Y, Bao M, Tu J, Shang B, Guo P, Yang P, Zhou Q. Lycorine hydrochloride selectively inhibits human ovarian cancer cell proliferation and tumor neovascularization with very low toxicity. Toxicol Lett 2013; 218:174-185. [PMID: 23376478 DOI: 10.1016/j.toxlet.2013.01.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/02/2023]
Abstract
Uncontrolled tumor cell proliferation and robust neovascularization are prominent features of aggressive ovarian cancers. Although great efforts in anti-ovarian cancer therapy have been made in the past 4 decades, the 5-year survival rates for ovarian cancer patients are still poor, and effective drugs to cure ovarian cancer patients are absent. In this study, we evaluated the anti-cancer effects of lycorine hydrochloride (LH), a novel anti-ovarian cancer agent, using the highly-invasive ovarian cancer cell line, Hey1B, as a model. Our data showed that LH effectively inhibited mitotic proliferation of Hey1B cells (half maximal inhibitory concentration=1.2μM) with very low toxicity, resulting in cell cycle arrest at the G2/M transition through enhanced expression of the cell cycle inhibitor p21 and marked down-regulation of cyclin D3 expression. Moreover, LH suppressed both the formation of capillary-like tubes by Hey1B cells cultured in vitro and the ovarian cancer cell-dominant neovascularization in vivo when administered to Hey1B-xenotransplanted mice. LH also suppressed the expression of several key angiogenic genes, including VE-cadherin, vascular endothelial growth factor, and Sema4D, and reduced Akt phosphorylation in Hey1B cells. These results suggest that LH selectively inhibits ovarian cancer cell proliferation and neovascularization and is a potential drug candidate for anti-ovarian cancer therapy.
Collapse
Affiliation(s)
- Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Berardi R, Morgese F, Onofri A, Mazzanti P, Pistelli M, Ballatore Z, Savini A, De Lisa M, Caramanti M, Rinaldi S, Pagliaretta S, Santoni M, Pierantoni C, Cascinu S. Role of maspin in cancer. Clin Transl Med 2013; 2:8. [PMID: 23497644 PMCID: PMC3602294 DOI: 10.1186/2001-1326-2-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/28/2013] [Indexed: 02/08/2023] Open
Abstract
Maspin (mammary serine protease inhibitor), is a member of the serine protease inhibitor/non-inhibitor superfamily. Its expression is down-regulated in breast, prostate, gastric and melanoma cancers but over-expressed in pancreatic, gallbladder, colorectal, and thyroid cancers suggesting that maspin may play different activities in different cell types. However, maspin expression seems to be correlated with better prognosis in prostate, bladder, lung, gastric, colorectal, head and neck, thyroid and melanoma cancer. In breast and ovarian cancer maspin significance is associated with its subcellular localization: nucleus maspin expression correlates with a good prognosis, whilst in pancreatic cancer it predicts a poor prognosis. Since tumor metastasis requires the detachment and invasion of tumor cells through the basement membrane and stroma, a selectively increased adhesion by the presence of maspin may contribute to the inhibition of tumor metastasis. Furthermore the different position of maspin inside the cell or its epigenetic modifications may explain the different behavior of the expression of maspin between tumors. The expression of maspin might be useful as a prognostic and possibly predictive factor for patients with particular types of cancer and data can guide physicians in selecting therapy. Its expression in circulating tumor cells especially in breast cancer, could be also useful in clinical practice along with other factors, such as age, comorbidities, blood examinations in order to select the best therapy to be carried out. Focusing on the malignancies in which maspin showed a positive prognostic value, therapeutic approaches studied so far aimed to re-activate a dormant tumor suppressor gene by designed transcription factors, to hit the system that inhibits the expression of maspin, to identify natural substances that can determine the activation and the expression of maspin or possible "molecules binds" to introduce maspin in cancer cell and gene therapy capable of up-regulating the maspin in an attempt to reduce primarily the risk of metastasis.Further studies in these directions are necessary to better define the therapeutic implication of maspin.
Collapse
Affiliation(s)
- Rossana Berardi
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Francesca Morgese
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Azzurra Onofri
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Paola Mazzanti
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Mirco Pistelli
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Zelmira Ballatore
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Agnese Savini
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Mariagrazia De Lisa
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Miriam Caramanti
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Silvia Rinaldi
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Silvia Pagliaretta
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Chiara Pierantoni
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Stefano Cascinu
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| |
Collapse
|
30
|
Bao M, Cao Z, Yu D, Fu S, Zhang G, Yang P, Pan Y, Yang B, Han H, Zhou Q. Columbamine suppresses the proliferation and neovascularization of metastatic osteosarcoma U2OS cells with low cytotoxicity. Toxicol Lett 2012; 215:174-180. [PMID: 23124089 DOI: 10.1016/j.toxlet.2012.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/18/2012] [Accepted: 10/23/2012] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is one of the most common malignant bone tumors in children and adolescents. Although extensive efforts have been made in anti-osteosarcoma therapy in recent decades, there are no effective low-toxicity drugs for treating patients with metastatic osteosarcoma. Hence, potent anti-metastatic osteosarcoma drugs are highly desired. In this study, we explored novel small molecular anti-metastatic osteosarcoma agents and found that columbamine (COL), an active component of the herb Coptis chinensis, inhibited the proliferation and neovascularization of metastatic osteosarcoma U2OS cells. COL effectively suppressed U2OS cell proliferation in vitro with an IC(50) of 21.31±0.38μM, with low cytotoxicity. Mechanistic studies revealed that COL induces cell cycle arrest at the G2/M transition, which is associated with attenuating CDK6 gene expression and diminishing STAT3 phosphorylation. COL did not significantly promote U2OS cell apoptosis at any of the dosages tested. Additionally, COL inhibited U2OS cell-mediated neovascularization, which was accompanied by the down-regulation of matrix metalloproteinase (MMP) 2 expression and reduction of cell migration, adhesion, and invasion. Taken together, our data show that COL exerts anti-proliferative and anti-vasculogenic effects on metastatic human osteosarcoma U2OS cells with low toxicity. These results warrant further investigation of COL as a potential anti-osteosarcoma and anti-cancer drug.
Collapse
Affiliation(s)
- Meimei Bao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215123, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|