1
|
Trace A, Wankell M, McFarlane C, Hebbard L. The challenges of using fish cells for cultivated seafood production. Food Sci Biotechnol 2025; 34:1565-1579. [PMID: 40129714 PMCID: PMC11929651 DOI: 10.1007/s10068-024-01786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 03/26/2025] Open
Abstract
Continuing population growth is increasing nutritional demand and applying pressure to the world's finite resources. The current food systems struggle with sustainability, especially regarding protein sources. To address this, organisations have invested in developing novel sources of protein, such as lab-grown cultivated foods. Most of these efforts have focussed on the cultivated meat industry but neglect the emerging cultivated seafood industry. Arguably, seafood has a greater impact on protein availability and sustainability and should be a priority. Nonetheless, several technical barriers exist to produce cultivated seafood, and include a lack of established cell lines and specialised cell growth medium, that is affordable and sustainable. In addition, the application of this technology is difficult, due to public perception, ethical considerations, taste and food safety hurdles. Herein, we review the barriers that must be overcome by research institutions, companies, and stakeholders so that products can be introduced to the mainstream consumer market.
Collapse
Affiliation(s)
- Angela Trace
- Department of Biomedical Science and Molecular Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Drive, Townsville, QLD 4811 Australia
| | - Miriam Wankell
- Department of Biomedical Science and Molecular Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Drive, Townsville, QLD 4811 Australia
| | - Craig McFarlane
- Department of Biomedical Science and Molecular Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Drive, Townsville, QLD 4811 Australia
| | - Lionel Hebbard
- Department of Biomedical Science and Molecular Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Drive, Townsville, QLD 4811 Australia
| |
Collapse
|
2
|
Reid RM, Turkmen S, Cleveland BM, Biga PR. Direct actions of growth hormone in rainbow trout, Oncorhynchus mykiss, skeletal muscle cells in vitro. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111725. [PMID: 39122107 DOI: 10.1016/j.cbpa.2024.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The growth hormone (GH)-insulin-like growth factor-1 (IGF-1) system regulates skeletal muscle growth and function. GH has a major function of targeting the liver to regulate IGF-1 production and release, and IGF-1 mediates the primary anabolic action of GH on growth. However, skeletal muscle is a target tissue of GH as evidenced by dynamic GH receptor expression, but it is unclear if GH elicits any direct actions on extrahepatic tissues as it is difficult to distinguish the effects of IGF-1 from GH. Fish growth regulation is complex compared to mammals, as genome duplication events have resulted in multiple isoforms of GHs, GHRs, IGFs, and IGFRs expressed in most fish tissues. This study investigated the potential for GH direct actions on fish skeletal muscle using an in vitro system, where rainbow trout myogenic precursor cells (MPCs) were cultured in normal and serum-deprived media, to mimic in vivo fasting conditions. Fasting reduces IGF-1 signaling in the muscle, which is critical for disentangling the roles of GH from IGF-1. The direct effects of GH were analyzed by measuring changes in myogenic proliferation and differentiation genes, as well as genes regulating muscle growth and proteolysis. This study provides the first in-depth analysis of the direct actions of GH on serum-deprived fish muscle cells in vitro. Data suggest that GH induces the expression of markers for proliferation and muscle growth in the presence of serum, but all observed GH action was blocked in serum-deprived conditions. Additionally, serum deprivation alone reduced the expression of several proliferation and differentiation markers, while increasing growth and proteolysis markers. Results also demonstrate dynamic gene expression response in the presence of GH and a JAK inhibitor in serum-provided but not serum-deprived conditions. These data provide a better understanding of GH signaling in relation to serum in trout muscle cells in vitro.
Collapse
Affiliation(s)
- Ross M Reid
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Serhat Turkmen
- Department of Cell Development and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (ARS-USDA), Kearneysville, WV 25430, USA
| | - Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Perez ÉS, de Paula TG, Zanella BTT, de Moraes LN, da Silva Duran BO, Dal-Pai-Silva M. Short communication: Differential expression of piwi1 and piwi2 genes in tissues of tambacu and zebrafish: A possible relationship with the indeterminate muscle growth. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111730. [PMID: 39179021 DOI: 10.1016/j.cbpa.2024.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Fish skeletal muscle is a component of the human diet, and understanding the mechanisms that control muscle growth can contribute to improving production in this sector and benefits the human health. In this sense, fish such as tambacu can represent a valuable source for exploring muscle growth regulators due to the indeterminate muscle growth pattern. In this context, the genes responsible for the indeterminate and determinate muscle growth pattern of fish are little explored, with piwi genes being possible candidates involved with these growth patterns. Piwi genes are associated with the proliferation and self-renewal of germ cells, and there are descriptions of these same functions in somatic cells from different tissues. However, little is known about the function of these genes in fish somatic cells. Considering this, our objective was to analyze the expression pattern of piwi 1 and 2 genes in cardiac muscle, skeletal muscle, liver, and gonad of zebrafish (species with determinate growth) and tambacu (species with indeterminate growth). We observed a distinct expression of piwi1 and piwi2 between tambacu and zebrafish, with both genes more expressed in tambacu in all tissues evaluated. Piwi genes can represent potential candidates involved with indeterminate muscle growth control.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil.
| | - Tassiana Gutierrez de Paula
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Leonardo Nazário de Moraes
- Molecular Laboratory of Clinical Hospital of Botucatu, Medical School, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| |
Collapse
|
4
|
Tönißen K, Franz GP, Albrecht E, Lutze P, Bochert R, Grunow B. Pikeperch muscle tissues: a comparative study of structure, enzymes, genes, and proteins in wild and farmed fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1527-1544. [PMID: 38733450 PMCID: PMC11286731 DOI: 10.1007/s10695-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Pikeperch (Sander lucioperca) is a freshwater species and an internationally highly demanded fish in aquaculture. Despite intensive research efforts on this species, fundamental knowledge of skeletal muscle biology and structural characteristics is missing. Therefore, we conducted a comprehensive analysis of skeletal muscle parameters in adult pikeperch from two different origins, wild-caught specimens from a lake and those reared in a recirculating aquaculture system. The analyses comprised the biochemical characteristics (nucleic acid, protein content), enzyme activities (creatine kinase, lactate dehydrogenase, NADP-dependent isocitrate dehydrogenase), muscle-specific gene and protein expression (related to myofibre formation, regeneration and permanent growth, muscle structure), and muscle fibre structure. The findings reveal distinct differences between the skeletal muscle of wild and farmed pikeperch. Specifically, nucleic acid content, enzyme activity, and protein expression varied significantly. The higher enzyme activity observed in wild pikeperch suggests greater metabolically activity in their muscles. Conversely, farmed pikeperch indicated a potential for pronounced muscle growth. As the data on pikeperch skeletal muscle characteristics is sparse, the purpose of our study is to gain fundamental insights into the characteristics of adult pikeperch muscle. The presented data serve as a foundation for further research on percids' muscle biology and have the potential to contribute to advancements and adaptations in aquaculture practices.
Collapse
Affiliation(s)
- Katrin Tönißen
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - George P Franz
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Working Group Muscle-Fat Crosstalk, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Philipp Lutze
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ralf Bochert
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Institute of Fisheries, Research Station Aquaculture, Born, Germany
| | - Bianka Grunow
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
5
|
Rallière C, Jagot S, Sabin N, Gabillard JC. Dynamics of pax7 expression during development, muscle regeneration, and in vitro differentiation of satellite cells in rainbow trout (Oncorhynchus mykiss). PLoS One 2024; 19:e0300850. [PMID: 38718005 PMCID: PMC11078358 DOI: 10.1371/journal.pone.0300850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 05/12/2024] Open
Abstract
Essential for muscle fiber formation and hypertrophy, muscle stem cells, also called satellite cells, reside beneath the basal lamina of the muscle fiber. Satellite cells have been commonly identified by the expression of the Paired box 7 (Pax7) due to its specificity and the availability of antibodies in tetrapods. In fish, the identification of satellite cells remains difficult due to the lack of specific antibodies in most species. Based on the development of a highly sensitive in situ hybridization (RNAScope®) for pax7, we showed that pax7+ cells were detected in the undifferentiated myogenic epithelium corresponding to the dermomyotome at day 14 post-fertilization in rainbow trout. Then, from day 24, pax7+ cells gradually migrated into the deep myotome and were localized along the muscle fibers and reach their niche in satellite position of the fibres after hatching. Our results showed that 18 days after muscle injury, a large number of pax7+ cells accumulated at the wound site compared to the uninjured area. During the in vitro differentiation of satellite cells, the percentage of pax7+ cells decreased from 44% to 18% on day 7, and some differentiated cells still expressed pax7. Taken together, these results show the dynamic expression of pax7 genes and the follow-up of these muscle stem cells during the different situations of muscle fiber formation in trout.
Collapse
Affiliation(s)
| | - Sabrina Jagot
- INRAE, LPGP, Rennes, France
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, Nantes, France
| | | | | |
Collapse
|
6
|
Perez ÉS, Duran BOS, Zanella BTT, Dal-Pai-Silva M. Review: Understanding fish muscle biology in the indeterminate growth species pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111502. [PMID: 37572733 DOI: 10.1016/j.cbpa.2023.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The muscle phenotype of fish is regulated by numerous factors that, although widely explored, still need to be fully understood. In this context, several studies aimed to unravel how internal and external stimuli affect the muscle growth of these vertebrates. The pacu (Piaractus mesopotamicus) is a species of indeterminate muscular growth that quickly reaches high body weight. For this reason, it adds great importance to the productive sector, along with other round fish. In this context, we aimed to compile studies on fish biology and skeletal muscle growth, focusing on studies by our research group that used pacu as an experimental model along with other species. Based on these studies, new muscle phenotype regulators were identified and explored in vivo, in vitro, and in silico studies, which strongly contribute to advances in understanding muscle growth mechanisms with future applications in the productive sector.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
7
|
Otero-Tarrazón A, Perelló-Amorós M, Jorge-Pedraza V, Moshayedi F, Sánchez-Moya A, García-Pérez I, Fernández-Borràs J, García de la serrana D, Navarro I, Blasco J, Capilla E, Gutierrez J. Muscle regeneration in gilthead sea bream: Implications of endocrine and local regulatory factors and the crosstalk with bone. Front Endocrinol (Lausanne) 2023; 14:1101356. [PMID: 36755925 PMCID: PMC9899866 DOI: 10.3389/fendo.2023.1101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Joaquin Gutierrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Sinha S, Elbaz‐Alon Y, Avinoam O. Ca 2+ as a coordinator of skeletal muscle differentiation, fusion and contraction. FEBS J 2022; 289:6531-6542. [PMID: 35689496 PMCID: PMC9795905 DOI: 10.1111/febs.16552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Muscle regeneration is essential for vertebrate muscle homeostasis and recovery after injury. During regeneration, muscle stem cells differentiate into myocytes, which then fuse with pre-existing muscle fibres. Hence, differentiation, fusion and contraction must be tightly regulated during regeneration to avoid the disastrous consequences of premature fusion of myocytes to actively contracting fibres. Cytosolic calcium (Ca2+ ), which is coupled to both induction of myogenic differentiation and contraction, has more recently been implicated in the regulation of myocyte-to-myotube fusion. In this viewpoint, we propose that Ca2+ -mediated coordination of differentiation, fusion and contraction is a feature selected in the amniotes to facilitate muscle regeneration.
Collapse
Affiliation(s)
- Sansrity Sinha
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Yael Elbaz‐Alon
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ori Avinoam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
9
|
Amino Acids and IGF1 Regulation of Fish Muscle Growth Revealed by Transcriptome and microRNAome Integrative Analyses of Pacu ( Piaractus mesopotamicus) Myotubes. Int J Mol Sci 2022; 23:ijms23031180. [PMID: 35163102 PMCID: PMC8835699 DOI: 10.3390/ijms23031180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Amino acids (AA) and IGF1 have been demonstrated to play essential roles in protein synthesis and fish muscle growth. The myoblast cell culture is useful for studying muscle regulation, and omics data have contributed enormously to understanding its molecular biology. However, to our knowledge, no study has performed the large-scale sequencing of fish-cultured muscle cells stimulated with pro-growth signals. In this work, we obtained the transcriptome and microRNAome of pacu (Piaractus mesopotamicus)-cultured myotubes treated with AA or IGF1. We identified 1228 and 534 genes differentially expressed by AA and IGF1. An enrichment analysis showed that AA treatment induced chromosomal changes, mitosis, and muscle differentiation, while IGF1 modulated IGF/PI3K signaling, metabolic alteration, and matrix structure. In addition, potential molecular markers were similarly modulated by both treatments. Muscle-miRNAs (miR-1, -133, -206 and -499) were up-regulated, especially in AA samples, and we identified molecular networks with omics integration. Two pairs of genes and miRNAs demonstrated a high-level relationship, and involvement in myogenesis and muscle growth: marcksb and miR-29b in AA, and mmp14b and miR-338-5p in IGF1. Our work helps to elucidate fish muscle physiology and metabolism, highlights potential molecular markers, and creates a perspective for improvements in aquaculture and in in vitro meat production.
Collapse
|
10
|
Histological and biochemical evaluation of skeletal muscle in the two salmonid species Coregonus maraena and Oncorhynchus mykiss. PLoS One 2021; 16:e0255062. [PMID: 34383783 PMCID: PMC8360549 DOI: 10.1371/journal.pone.0255062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/08/2021] [Indexed: 12/03/2022] Open
Abstract
The growth of fishes and their metabolism is highly variable in fish species and is an indicator for fish fitness. Therefore, somatic growth, as a main biological process, is ecologically and economically significant. The growth differences of two closely related salmonids, rainbow trout (Oncorhynchus mykiss) and maraena whitefsh (Coregonus maraena), have not been adequately studied as a comparative study and are therefore insufficiently understood. For this reason, our aim was to examine muscle growth in more detail and provide a first complex insight into the growth and muscle metabolism of these two fish species at slaughter size. In addition to skeletal muscle composition (including nuclear counting and staining of stem and progenitor cells), biochemical characteristics, and enzyme activity (creatine kinase, lactate dehydrogenase, isocitrate dehydrogenase) of rainbow trout and maraena whitefish were determined. Our results indicate that red muscle contains cells with a smaller diameter compared to white muscle and those fibres had more stem and progenitor cells as a proportion of total nuclei. Interestingly, numerous interspecies differences were identified; in rainbow trout muscle RNA content, intermediate fibres and fibre diameter and in whitefish red muscle cross-sectional area, creatine kinase activity were higher compared to the other species at slaughter weight. The proportional reduction in red muscle area, accompanied by an increase in DNA content and a lower activity of creatine kinase, exhibited a higher degree of hypertrophic growth in rainbow trout compared to maraena whitefish, which makes this species particularly successful as an aquaculture species.
Collapse
|
11
|
Duran BOS, Garcia de la serrana D, Zanella BTT, Perez ES, Mareco EA, Santos VB, Carvalho RF, Dal-Pai-Silva M. An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth. PLoS One 2021; 16:e0255006. [PMID: 34293047 PMCID: PMC8297816 DOI: 10.1371/journal.pone.0255006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Fish muscle growth is a complex process regulated by multiple pathways, resulting on the net accumulation of proteins and the activation of myogenic progenitor cells. Around 350–320 million years ago, teleost fish went through a specific whole genome duplication (WGD) that expanded the existent gene repertoire. Duplicated genes can be retained by different molecular mechanisms such as subfunctionalization, neofunctionalization or redundancy, each one with different functional implications. While the great majority of ohnolog genes have been identified in the teleost genomes, the effect of gene duplication in the fish physiology is still not well characterized. In the present study we studied the effect of WGD on the transcription of the duplicated components controlling muscle growth. We compared the expression of lineage-specific ohnologs related to myogenesis and protein balance in the fast-skeletal muscle of pacus (Piaractus mesopotamicus—Ostariophysi) and Nile tilapias (Oreochromis niloticus—Acanthopterygii) fasted for 4 days and refed for 3 days. We studied the expression of 20 ohnologs and found that in the great majority of cases, duplicated genes had similar expression profiles in response to fasting and refeeding, indicating that their functions during growth have been conserved during the period after the WGD. Our results suggest that redundancy might play a more important role in the retention of ohnologs of regulatory pathways than initially thought. Also, comparison to non-duplicated orthologs showed that it might not be uncommon for the duplicated genes to gain or loss new regulatory elements simultaneously. Overall, several of duplicated ohnologs have similar transcription profiles in response to pro-growth signals suggesting that evolution tends to conserve ohnolog regulation during muscle development and that in the majority of ohnologs related to muscle growth their functions might be very similar.
Collapse
Affiliation(s)
- Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Erika Stefani Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
12
|
Koganti P, Yao J, Cleveland BM. Molecular Mechanisms Regulating Muscle Plasticity in Fish. Animals (Basel) 2020; 11:ani11010061. [PMID: 33396941 PMCID: PMC7824542 DOI: 10.3390/ani11010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Growth rates in fish are largely dependent on genetic and environmental factors, of which the latter can be highly variable throughout development. For this reason, muscle growth in fish is particularly dynamic as muscle structure and function can be altered by environmental conditions, a concept referred to as muscle plasticity. Myogenic regulatory factors (MRFs) like Myogenin, MyoD, and Pax7 control the myogenic mechanisms regulating quiescent muscle cell maintenance, proliferation, and differentiation, critical processes central for muscle plasticity. This review focuses on recent advancements in molecular mechanisms involving microRNAs (miRNAs) and DNA methylation that regulate the expression and activity of MRFs in fish. Findings provide overwhelming support that these mechanisms are significant regulators of muscle plasticity, particularly in response to environmental factors like temperature and nutritional challenges. Genetic variation in DNA methylation and miRNA expression also correlate with variation in body weight and growth, suggesting that genetic markers related to these mechanisms may be useful for genomic selection strategies. Collectively, this knowledge improves the understanding of mechanisms regulating muscle plasticity and can contribute to the development of husbandry and breeding strategies that improve growth performance and the ability of the fish to respond to environmental challenges.
Collapse
Affiliation(s)
- Prasanthi Koganti
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, USA; (P.K.); (J.Y.)
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, USA; (P.K.); (J.Y.)
| | - Beth M. Cleveland
- USDA ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
- Correspondence: ; Tel.: +1-304-724-8340 (ext. 2133)
| |
Collapse
|
13
|
Vélez EJ, Perelló-Amorós M, Lutfi E, Azizi S, Capilla E, Navarro I, Pérez-Sánchez J, Calduch-Giner JA, Blasco J, Fernández-Borràs J, Gutiérrez J. A long-term growth hormone treatment stimulates growth and lipolysis in gilthead sea bream juveniles. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:67-78. [PMID: 30885833 DOI: 10.1016/j.cbpa.2019.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
The enhancement of the endocrine growth hormone (GH)/insulin-like growth factor I (IGF-I) system by the treatment with a sustained release formulation of a recombinant bovine GH (rBGH), is a good strategy to investigate growth optimization in aquaculture fish species. To further deepen into the knowledge of rBGH effects in fish and to estimate the growth potential of juveniles of gilthead sea bream, the present work evaluated rBGH injection on growth, GH/IGF-I axis and lipid metabolism modulation, and explored the conservation of GH effects provoked by the in vivo treatment using in vitro models of different tissues. The rBGH treatment increased body weight and specific growth rate (SGR) in juveniles and potentiated hyperplastic muscle growth while reducing circulating triglyceride levels. Moreover, the results demonstrated that the in vivo treatment enhanced also lipolysis in both isolated hepatocytes and adipocytes, as well as in day 4 cultured myocytes. Furthermore, these cultured myocytes extracted from rBGH-injected fish presented higher gene expression of GH/IGF-I axis-related molecules and myogenic regulatory factors, as well as stimulated myogenesis (i.e. increased protein expression of a proliferation and a differentiation marker) compared to Control fish-derived cells. These data, suggested that cells in vitro can retain some of the pathways activated by in vivo treatments in fish, what can be considered an interesting line of applied research. Overall, the results showed that rBGH stimulates somatic growth, including specifically muscle hyperplasia, as well as lipolytic activity in gilthead sea bream juveniles.
Collapse
Affiliation(s)
- Emilio J Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Sheida Azizi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
14
|
Rescan PY. Development of myofibres and associated connective tissues in fish axial muscle: Recent insights and future perspectives. Differentiation 2019; 106:35-41. [PMID: 30852471 DOI: 10.1016/j.diff.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/18/2023]
Abstract
Fish axial muscle consists of a series of W-shaped muscle blocks, called myomeres, that are composed primarily of multinucleated contractile muscle cells (myofibres) gathered together by an intricate network of connective tissue that transmits forces generated by myofibre contraction to the axial skeleton. This review summarises current knowledge on the successive and overlapping myogenic waves contributing to axial musculature formation and growth in fish. Additionally, this review presents recent insights into muscle connective tissue development in fish, focusing on the early formation of collagenous myosepta separating adjacent myomeres and the late formation of intramuscular connective sheaths (i.e. endomysium and perimysium) that is completed only at the fry stage when connective fibroblasts expressing collagens arise inside myomeres. Finally, this review considers the possibility that somites produce not only myogenic, chondrogenic and myoseptal progenitor cells as previously reported, but also mesenchymal cells giving rise to muscle resident fibroblasts.
Collapse
Affiliation(s)
- Pierre-Yves Rescan
- Inra, UR1037 - Laboratoire de Physiologie et Génomique des Poissons, Campus de Beaulieu - Bât 16A, 35042 Rennes Cedex, France.
| |
Collapse
|
15
|
Multiple transcription factors mediating the expressional regulation of myosin heavy chain gene involved in the indeterminate muscle growth of fish. Gene 2019; 687:308-318. [PMID: 30453072 DOI: 10.1016/j.gene.2018.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Torafugu myosin heavy chain gene, MYHM2528-1, is specifically expressed in neonatal slow and fast muscle fibers, suggesting its functional role in indeterminate muscle growth in fish. However, the transcriptional regulatory mechanisms of MYHM2528-1 involved in indeterminate muscle growth in fish remained unknown. We previously isolated a 2100 bp 5'- flanking sequence of torafugu MYHM2528-1 that showed sufficient promoter activity to allow specific gene expression in neonatal muscle fibers of zebrafish. Here, we examined the cis-regulatory mechanism of 2100 bp 5'-flanking region of torafugu MYHM2528-1 using deletion-mutation analysis in zebrafish embryo. We discovered that myoblast determining factor (MyoD) binding elements play a key role and participate in the transcriptional regulation of MYHM2528-1 expression in zebrafish embryos. We further discovered that paired box protein (Pax3) are required for promoting MYHM2528-1 expression and myocyte enhancer factor-2 (MEF2) binding sites participate in the transcriptional regulation of MYHM2528-1 expression in slow/fast skeletal muscles. Our study also confirmed that the nuclear factor of activated T-cell (NFAT) binding sites take part in the transcriptional regulation of MYHM2528-1 expression in slow and fast muscles fiber in relation to indeterminate muscle growth. These results obviously confirmed that multiple cis-elements in the 5'-flanking region of MYHM2528-1 function in the transcriptional regulation of its expression.
Collapse
|
16
|
Ascorbic acid stimulates the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). Sci Rep 2019; 9:2229. [PMID: 30778153 PMCID: PMC6379551 DOI: 10.1038/s41598-019-38536-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
The postembryonic growth of skeletal muscle in teleost fish involves myoblast proliferation, migration and differentiation, encompassing the main events of embryonic myogenesis. Ascorbic acid plays important cellular and biochemical roles as an antioxidant and contributes to the proper collagen biosynthesis necessary for the structure of connective and bone tissues. However, whether ascorbic acid can directly influence the mechanisms of fish myogenesis and skeletal muscle growth remains unclear. The aim of our work was to evaluate the effects of ascorbic acid supplementation on the in vitro myoblast proliferation and migration of pacu (Piaractus mesopotamicus). To provide insight into the potential antioxidant role of ascorbic acid, we also treated myoblasts in vitro with menadione, which is a powerful oxidant. Our results show that ascorbic acid-supplemented myoblasts exhibit increased proliferation and migration and are protected against the oxidative stress caused by menadione. In addition, ascorbic acid increased the activity of the antioxidant enzyme superoxide dismutase and the expression of myog and mtor, which are molecular markers related to skeletal muscle myogenesis and protein synthesis, respectively. This work reveals a direct influence of ascorbic acid on the mechanisms of pacu myogenesis and highlights the potential use of ascorbic acid for stimulating fish skeletal muscle growth.
Collapse
|
17
|
Vélez EJ, Balbuena-Pecino S, Capilla E, Navarro I, Gutiérrez J, Riera-Codina M. Effects of β2-adrenoceptor agonists on gilthead sea bream (Sparus aurata) cultured muscle cells. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:179-193. [DOI: 10.1016/j.cbpa.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/15/2023]
|
18
|
Proteolytic systems' expression during myogenesis and transcriptional regulation by amino acids in gilthead sea bream cultured muscle cells. PLoS One 2017; 12:e0187339. [PMID: 29261652 PMCID: PMC5737955 DOI: 10.1371/journal.pone.0187339] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022] Open
Abstract
Proteolytic systems exert an important role in vertebrate muscle controlling protein turnover, recycling of amino acids (AA) or its use for energy production, as well as other functions like myogenesis. In fish, proteolytic systems are crucial for the relatively high muscle somatic index they possess, and because protein is the most important dietary component. Thus in this study, the molecular profile of proteolytic markers (calpains, cathepsins and ubiquitin-proteasome system (UbP) members) were analyzed during gilthead sea bream (Sparus aurata) myogenesis in vitro and under different AA treatments. The gene expression of calpains (capn1, capn3 and capns1b) decreased progressively during myogenesis together with the proteasome member n3; whereas capn2, capns1a, capns1b and ubiquitin (ub) remained stable. Contrarily, the cathepsin D (ctsd) paralogs and E3 ubiquitin ligases mafbx and murf1, showed a significant peak in gene expression at day 8 of culture that slightly decreased afterwards. Moreover, the protein expression analyzed for selected molecules presented in general the same profile of the mRNA levels, which was confirmed by correlation analysis. These data suggest that calpains seem to be more important during proliferation, while cathepsins and the UbP system appear to be required for myogenic differentiation. Concerning the transcriptional regulation by AA, the recovery of their levels after a short starvation period did not show effects on cathepsins expression, whereas it down-regulated the expression of capn3, capns1b, mafbx, murf1 and up-regulated n3. With regards to AA deficiencies, the major changes occurred at day 2, when leucine limitation suppressed ctsb and ctsl expression. Besides at the same time, both leucine and lysine deficiencies increased the expression of mafbx and murf1 and decreased that of n3. Overall, the opposite nutritional regulation observed, especially for the UbP members, points out an efficient and complementary role of these factors that could be useful in gilthead sea bream diets optimization.
Collapse
|
19
|
Biga PR, Latimer MN, Froehlich JM, Gabillard JC, Seiliez I. Distribution of H3K27me3, H3K9me3, and H3K4me3 along autophagy-related genes highly expressed in starved zebrafish myotubes. Biol Open 2017; 6:1720-1725. [PMID: 29025701 PMCID: PMC5703616 DOI: 10.1242/bio.029090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022] Open
Abstract
The zebrafish (Danio rerio) remains the teleost fish of choice for biological investigations due to the vast array of molecular tools and resources available. To better understand the epigenetic regulation of autophagy, we utilized a primary myotube culture system generated from isolated myogenic precursor cells (MPCs) from zebrafish grown under starvation conditions using a media devoid of serum and amino acids. Here, we report starvation-induced regulation of several autophagy-related genes (atg) expression and profile the distribution of H3K27me3, H3K9me3, and H3K4me3 marks along lc3b, atg4b and p62/sqstm1 loci. These data support epigenetic regulation of autophagy in response to starvation that suggests a level of regulation that can be sustained for chronic conditions via chromatin modification.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mary N Latimer
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Jean-Charles Gabillard
- INRA, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, F-35042 Rennes, France
| | - Iban Seiliez
- INRA-UPPA, UMR1419 Nutrition Metabolisme Aquaculture, F-64310 St-Pée-sur-Nivelle, France
| |
Collapse
|
20
|
Comprehensive analysis of lncRNAs and mRNAs in skeletal muscle of rainbow trout (Oncorhynchus mykiss) exposed to estradiol. Sci Rep 2017; 7:11780. [PMID: 28924252 PMCID: PMC5603547 DOI: 10.1038/s41598-017-12136-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023] Open
Abstract
Estradiol (E2) is a steroid hormone that negatively affects muscle growth in rainbow trout (Oncorhynchus mykiss), but the mechanisms directing with this response are not fully understood. To better characterize the effects of E2 in muscle, we identified differentially regulated mRNAs and lncRNAs in juvenile rainbow trout exposed to E2. Here, we performed next-generation RNA sequencing and comprehensive bioinformatics analyses to characterize the transcriptome profiles, including mRNAs and long noncoding RNAs (lncRNAs), in skeletal muscle of rainbow trout injected with E2. A total of 226 lncRNAs and 253 mRNAs were identified as differentially regulated. We identified crucial pathways, including several signal transduction pathways, hormone response, oxidative response and protein, carbon and fatty acid metabolism pathways. Subsequently, a functional lncRNA-mRNA co-expression network was constructed, which consisted of 681 co-expression relationships between 164 lncRNAs and 201 mRNAs. Moreover, a lncRNA-pathway network was constructed. A total of 65 key lncRNAs were identified that regulate 20 significantly enriched pathways. Overall, our analysis provides insights into mRNA and lncRNA networks in rainbow trout skeletal muscle and their regulation by E2 while understanding the molecular mechanism of lncRNAs.
Collapse
|
21
|
Koganti PP, Wang J, Cleveland B, Ma H, Weber GM, Yao J. Estradiol regulates expression of miRNAs associated with myogenesis in rainbow trout. Mol Cell Endocrinol 2017; 443:1-14. [PMID: 28011237 DOI: 10.1016/j.mce.2016.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/14/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
17β-Estradiol (E2) is a steroid hormone that negatively affects muscle growth in rainbow trout, but the mechanism associated with this response is not fully understood. To better characterize the effects of E2 on muscle, we identified differentially regulated microRNAs (miRNAs) and muscle atrophy-related transcripts in juvenile rainbow trout exposed to E2. Small RNA-Seq analysis of E2-treated vs. control muscle identified 36 differentially expressed miRNAs including those known to be involved in myogenesis, cell cycle, apoptosis, and cell death. Some important myogenic miRNAs, such as miR-133 and miR-206, are upregulated while others like miR-145 and miR-499, are downregulated. Gene Ontology analysis of the target genes regulated by the miRNAs involved in atrophy and cell cycle indicates that E2 influence leads to expansion of quiescent myogenic precursor cell population to address atrophying mature muscle in rainbow trout during sexual development.
Collapse
Affiliation(s)
- Prasanthi P Koganti
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States
| | - Jian Wang
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States
| | - Beth Cleveland
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Hao Ma
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Gregory M Weber
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Jianbo Yao
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
22
|
Vélez EJ, Azizi S, Lutfi E, Capilla E, Moya A, Navarro I, Fernández-Borràs J, Blasco J, Gutiérrez J. Moderate and sustained exercise modulates muscle proteolytic and myogenic markers in gilthead sea bream ( Sparus aurata). Am J Physiol Regul Integr Comp Physiol 2017; 312:R643-R653. [PMID: 28228414 DOI: 10.1152/ajpregu.00308.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Swimming activity primarily accelerates growth in fish by increasing protein synthesis and energy efficiency. The role of muscle in this process is remarkable and especially important in teleosts, where muscle represents a high percentage of body weight and because many fish species present continuous growth. The aim of this work was to characterize the effects of 5 wk of moderate and sustained swimming in gene and protein expression of myogenic regulatory factors, proliferation markers, and proteolytic molecules in two muscle regions (anterior and caudal) of gilthead sea bream fingerlings. Western blot results showed an increase in the proliferation marker proliferating cell nuclear antigen (PCNA), proteolytic system members calpain 1 and cathepsin D, as well as vascular endothelial growth factor protein expression. Moreover, quantitative real-time PCR data showed that exercise increased the gene expression of proteases (calpains, cathepsins, and members of the ubiquitin-proteasome system in the anterior muscle region) and the gene expression of the proliferation marker PCNA and the myogenic factor MyoD in the caudal area compared with control fish. Overall, these data suggest a differential response of the two muscle regions during swimming adaptation, with tissue remodeling and new vessel formation occurring in the anterior muscle and enhanced cell proliferation and differentiation occurring in the caudal area. In summary, the present study contributes to improving the knowledge of the role of proteolytic molecules and other myogenic factors in the adaptation of muscle to moderate sustained swimming in gilthead sea bream.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Prathibha Y, Senthilkumaran B. Involvement of pax2 in ovarian development and recrudescence of catfish: a role in steroidogenesis. J Endocrinol 2016; 231:181-195. [PMID: 27756766 DOI: 10.1530/joe-16-0103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
Abstract
PAX2, a member of paired box family, is an essential transcription factor for the organ development in vertebrates including teleosts, yet no evidence has been shown for its involvement in reproduction. To study this, partial- and/or full-length cDNA of pax2 was isolated from the ovary of catfish, Clarias batrachus, along with its other Pax family members, pax1 and pax9 Tissue distribution and ontogeny expression analysis indicated the prevalence of pax2 but not pax1 and pax9 in ovary. Varied phase-wise expression during ovarian cycle and elevation of pax2 after human chorionic gonadotropin induction showed probable regulation by gonadotropins. Pax2 could be localized in various stages of oocytes and in follicular layer of vitellogenic and post-vitellogenic oocytes. To assess the functional significance of pax2, transient RNA silencing was performed using primary catfish ovarian follicle culture, in vitro, and in catfish, in vivo, through ovary-targeted injection of PEI-esiRNA. Pax2 siRNA treatment reduced the expression of various transcripts related to ovarian development like signaling molecules such as wnt4 and wnt5, estrogen receptors, several steroidogenic enzymes and transcription factors. These transitions in transcript levels might have been mediated by Pax2 acting upstream of wnt4/5 that may play a role in steroidogenesis and/or ovarian development along with ad4bp/sf-1 or by direct or indirect interaction with steroidogenic enzyme genes, which is evident from the change in the levels of serum estradiol-17β but not 17α,20β-dihydroxy-4-pregnen-3-one. Taken together, it seems that pax2 has a plausible role during ovarian development and/or recrudescence of catfish either directly or indirectly through Wnt signaling pathway.
Collapse
Affiliation(s)
- Yarikipati Prathibha
- Department of Animal BiologySchool of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal BiologySchool of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, Telangana, India
| |
Collapse
|
24
|
Cleveland BM, Weber GM. Effects of steroid treatment on growth, nutrient partitioning, and expression of genes related to growth and nutrient metabolism in adult triploid rainbow trout (Oncorhynchus mykiss). Domest Anim Endocrinol 2016; 56:1-12. [PMID: 26905215 DOI: 10.1016/j.domaniend.2016.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 12/16/2022]
Abstract
The contribution of sex steroids to nutrient partitioning and energy balance during gonad development was studied in rainbow trout. Specifically, 19-mo old triploid (3N) female rainbow trout were fed treatment diets supplemented with estradiol-17β (E2), testosterone (T), or dihydrotestosterone at 30-mg steroid/kg diet for a 1-mo period. Growth performance, nutrient partitioning, and expression of genes central to growth and nutrient metabolism were compared with 3N and age-matched diploid (2N) female fish consuming a control diet not supplemented with steroids. Only 2 N fish exhibited active gonad development, with gonad weights increasing from 3.7% to 5.5% of body weight throughout the study, whereas gonad weights in 3N fish remained at 0.03%. Triploid fish consuming dihydrotestosterone exhibited faster specific growth rates than 3N-controls (P < 0.05). Consumption of E2 in 3N fish reduced fillet growth and caused lower fillet yield compared with all other treatment groups (P < 0.05). In contrast, viscera fat gain was not affected by steroid consumption (P > 0.05). Gene transcripts associated with physiological pathways were identified in maturing 2N and E2-treated 3N fish that differed in abundance from 3N-control fish (P < 0.05). In liver these mechanisms included the growth hormone/insulin-like growth factor (IGF) axis (igf1, igf2), IGF binding proteins (igfbp1b1, igfbp2b1, igfbp5b1, igfbp6b1), and genes associated with lipid binding and transport (fabp3, fabp4, lpl, cd36), fatty acid oxidation (cpt1a), and the pparg transcription factor. In muscle, these mechanisms included reductions in myogenic gene expression (fst, myog) and the proteolysis-related gene, cathepsin-L, suggesting an E2-induced reduction in the capacity for muscle growth. These findings suggest that increased E2 signaling in the sexually maturing female rainbow trout alters physiological pathways in liver, particularly those related to IGF signaling and lipid metabolism, to partition nutrients away from muscle growth toward support of maturation-related processes. In contrast, the mobilization of viscera lipid stores appear to be mediated less by E2 and more by energy demands associated with gonad development. These findings improve the understanding of how steroids regulate nutrient metabolism to meet the high energy demands associated with gonad development during sexual maturation.
Collapse
Affiliation(s)
- B M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV 25430, USA.
| | - G M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV 25430, USA
| |
Collapse
|
25
|
Robledo D, Fernández C, Hermida M, Sciara A, Álvarez-Dios JA, Cabaleiro S, Caamaño R, Martínez P, Bouza C. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot. Int J Mol Sci 2016; 17:243. [PMID: 26901189 PMCID: PMC4783974 DOI: 10.3390/ijms17020243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
Abstract
Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species.
Collapse
Affiliation(s)
- Diego Robledo
- Departamento de Xenética, Facultade de Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Carlos Fernández
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Miguel Hermida
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Andrés Sciara
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario S2002LRK, Argentina.
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Santiago Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Rubén Caamaño
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Paulino Martínez
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Carmen Bouza
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
26
|
Vélez EJ, Lutfi E, Azizi S, Montserrat N, Riera-Codina M, Capilla E, Navarro I, Gutiérrez J. Contribution of in vitro myocytes studies to understanding fish muscle physiology. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:67-73. [PMID: 26688542 DOI: 10.1016/j.cbpb.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 11/25/2022]
Abstract
Research on the regulation of fish muscle physiology and growth was addressed originally by classical in vivo approaches; however, systemic interactions resulted in many questions that could be better considered through in vitro myocyte studies. The first paper published by our group in this field was with Tom Moon on brown trout cardiomyocytes, where the insulin and IGF-I receptors were characterized and the down-regulatory effects of an excess of peptides demonstrated. We followed the research on cultured skeletal muscle cells through the collaboration with INRA focused on the characterization of IGF-I receptors and its signaling pathways through in vitro development. Later on, we showed the important metabolic role of IGFs, although these studies were only the first stage of a prolific area of work that has offered a useful tool to advance in our knowledge of the endocrine and nutritional regulation of fish growth and metabolism. Obviously, the findings obtained in vitro serve the purpose to propose the scenario that will need confirmation in vivo, but this technique has made possible many different, easy, fast and better controlled studies. In this review, we have summarized the main advances that the use of cultured muscle cells has permitted, focusing mainly in the role of IGFs regulating fish metabolism and growth. Although many articles have already appeared using this model system in salmonids, gilthead sea bream or zebrafish, it is reasonable to expect new studies with cultured cells using innovative approaches that will help to understand fish physiology and its regulation.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Esmail Lutfi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sheida Azizi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Núria Montserrat
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Miquel Riera-Codina
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
27
|
Duran BODS, Fernandez GJ, Mareco EA, Moraes LN, Salomão RAS, Gutierrez de Paula T, Santos VB, Carvalho RF, Dal-Pai-Silvca M. Differential microRNA Expression in Fast- and Slow-Twitch Skeletal Muscle of Piaractus mesopotamicus during Growth. PLoS One 2015; 10:e0141967. [PMID: 26529415 PMCID: PMC4631509 DOI: 10.1371/journal.pone.0141967] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/15/2015] [Indexed: 11/26/2022] Open
Abstract
Pacu (Piaractus mesopotamicus) is a Brazilian fish with a high economic value in pisciculture due to its rusticity and fast growth. Postnatal growth of skeletal muscle in fish occurs by hyperplasia and/or hypertrophy, processes that are dependent on the proliferation and differentiation of myoblasts. A class of small noncoding RNAs, known as microRNAs (miRNAs), represses the expression of target mRNAs, and many studies have demonstrated that miR-1, miR-133, miR-206 and miR-499 regulate different processes in skeletal muscle through the mRNA silencing of hdac4 (histone deacetylase 4), srf (serum response factor), pax7 (paired box 7) and sox6 ((sex determining region Y)-box 6), respectively. The aim of our work was to evaluate the expression of these miRNAs and their putative target mRNAs in fast- and slow-twitch skeletal muscle of pacu during growth. We used pacus in three different development stages: larval (aged 30 days), juvenile (aged 90 days and 150 days) and adult (aged 2 years). To complement our study, we also performed a pacu myoblast cell culture, which allowed us to investigate miRNA expression in the progression from myoblast proliferation to differentiation. Our results revealed an inverse correlation between the expression of the miRNAs and their target mRNAs, and there was evidence that miR-1 and miR-206 may regulate the differentiation of myoblasts, whereas miR-133 may regulate the proliferation of these cells. miR-499 was highly expressed in slow-twitch muscle, which suggests its involvement in the specification of the slow phenotype in muscle fibers. The expression of these miRNAs exhibited variations between different development stages and between distinct muscle twitch phenotypes. This work provides the first identification of miRNA expression profiles in pacu skeletal muscle and suggests an important role of these molecules in muscle growth and in the maintenance of the muscle phenotype.
Collapse
Affiliation(s)
- Bruno Oliveira da Silva Duran
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Geysson Javier Fernandez
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Edson Assunção Mareco
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Leonardo Nazario Moraes
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | - Tassiana Gutierrez de Paula
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Vander Bruno Santos
- São Paulo Agency for Agribusiness Technology, Presidente Prudente, São Paulo, Brazil
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silvca
- Department of Morphology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
28
|
Knappe S, Zammit PS, Knight RD. A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent. Front Aging Neurosci 2015; 7:161. [PMID: 26379543 PMCID: PMC4548158 DOI: 10.3389/fnagi.2015.00161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/06/2015] [Indexed: 02/03/2023] Open
Abstract
Skeletal muscle regeneration in vertebrates occurs by the activation of quiescent progenitor cells that express pax7 to repair and replace damaged myofibers. We have developed a mechanical injury paradigm in zebrafish to determine whether developmental stage and injury size affect the regeneration dynamics of skeletal muscle. We found that both small focal injuries, and large injuries affecting the entire myotome, lead to expression of myf5 and myogenin, which was prolonged in older larvae, indicating a slower process of regeneration. We characterized the endogenous behavior of a population of muscle-resident Pax7-expressing cells using a pax7a:eGFP transgenic line and found that GFP+ cell migration in the myotome dramatically declined between 5 and 7 days post-fertilization (dpf). Following a small single myotome injury, GFP+ cells responded by extending processes, before migrating to the injured myofibers. Furthermore, these cells responded more rapidly to injury in 4 dpf larvae compared to 7 dpf. Interestingly, we did not see GFP+ myofibers after repair of small injuries, indicating that pax7a-expressing cells did not contribute to myofiber formation in this injury context. On the contrary, numerous GFP+ myofibers could be observed after an extensive single myotome injury. Both injury models were accompanied by an increased number of proliferating GFP+ cells, which was more pronounced in larvae injured at 4 dpf than 7 dpf. This indicates intriguing developmental differences, at these early ages. Our data also suggests an interesting disparity in the role that pax7a-expressing muscle progenitor cells play during skeletal muscle regeneration, which may reflect the extent of muscle damage.
Collapse
Affiliation(s)
- Stefanie Knappe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London London, UK
| | - Robert D Knight
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London London, UK
| |
Collapse
|
29
|
Ahammad AS, Asaduzzaman M, Asakawa S, Watabe S, Kinoshita S. Regulation of gene expression mediating indeterminate muscle growth in teleosts. Mech Dev 2015; 137:53-65. [DOI: 10.1016/j.mod.2015.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 01/13/2023]
|
30
|
Oncorhynchus mykiss pax7 sequence variations with comparative analyses against other teleost species. SPRINGERPLUS 2015; 4:263. [PMID: 26090310 PMCID: PMC4469688 DOI: 10.1186/s40064-015-1030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 05/12/2015] [Indexed: 12/24/2022]
Abstract
The paired box-7 (pax7) transcription factor expressed in satellite cells (SCs) is an essential regulator of skeletal muscle growth and regeneration in vertebrates including fish. Characterization of rainbow trout (Oncorhynchus mykiss) pax7 gene/s may offer novel insights into skeletal myogenesis by SCs in this indeterminate growth species. Further, evaluation of promoters for cis-regulatory regions may shed light on the evolutionary fate of the duplicated genes. Employing standard PCR, cloning and computational approach, we identified and report complete coding sequences of two pax7 paralogs of rainbow trout (rt); rtpax7α and rtpax7β. Both genes show significant identity in the nucleotide (97%) and the predicted amino acid (98%) sequences, and bear the characteristic paired domain (PD), octapeptide (OP) and homeodomain (HD) motifs. We further report several splice variants of each gene and nucleotide differences in coding sequence that predicts six putative amino acid changes between the two genes. Additionally, we noted a trinucleotide deletion in rtpax7β that results in putative serine elimination at the N-terminus and a single nucleotide polymorphism (SNP) in majority of the rtpax7β variants (6/10) that predicts an arginine substitution for a lysine. We also deciphered the genomic organization up to the first three exons and the upstream putative promoter regions of both genes. Comparative in silico analysis of both the trout pax7 promoters with that of zebrafish pax7 duplicates; zfpax7a and zfpax7b; predicts several important cis-elements/transcription factor binding sites (TFBS) in these teleost pax7 promoter regions.
Collapse
|
31
|
Cleveland BM, Weber GM. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2015; 216:103-15. [PMID: 25482545 DOI: 10.1016/j.ygcen.2014.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022]
Abstract
Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA
| |
Collapse
|
32
|
Cleveland BM, Manor ML. Effects of phytoestrogens on growth-related and lipogenic genes in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2015; 170:28-37. [PMID: 25668741 DOI: 10.1016/j.cbpc.2015.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 11/24/2022]
Abstract
This study determined whether estradiol (E2) or the phytoestrogens genistein and daidzein regulate expression of growth-related and lipogenic genes in rainbow trout. Juvenile fish (5 mon, 65.8±1.8 g) received intraperitoneal injections of E2, genistein, or daidzein (5 μg/g body weight) or a higher dose of genistein (50 μg/g body weight). Liver and white muscle were harvested 24h post-injection. In liver, expression of vitellogenin (vtg) and estrogen receptor alpha (era1) increased in all treatments and reflected treatment estrogenicity (E2>genistein (50 μg/g)>genistein (5 μg/g)=daidzein (5 μg/g)). Estradiol and genistein (50 μg/g) reduced components of the growth hormone (GH)/insulin-like growth factor (IGF) axis in liver, including increased expression of IGF binding protein-2b1 (igfbp2b1) and reduced igfbp5b1. In liver E2 and genistein (50 μg/g) affected expression of components of the transforming growth factor beta signaling mechanism, reduced expression of ppar and rxr transcription factors, and increased expression of fatty acid synthesis genes srebp1, acly, fas, scd1, and gpat and lipid binding proteins fabp3 and lpl. In muscle E2 and genistein (50 μg/g) increased era1 and erb1 expression and decreased erb2 expression. Other genes responded to phytoestrogens in a manner that suggested regulation by estrogen receptor-independent mechanisms, including increased ghr2, igfbp2a, igfbp4, and igfbp5b1. Expression of muscle regulatory factors pax7 and myod was increased by E2 and genistein. These data indicate that genistein and daidzein affect expression of genes in rainbow trout that regulate physiological mechanisms central to growth and nutrient retention.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV, USA.
| | - Meghan L Manor
- Department of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
33
|
Seiliez I, Froehlich JM, Marandel L, Gabillard JC, Biga PR. Evolutionary history and epigenetic regulation of the three paralogous pax7 genes in rainbow trout. Cell Tissue Res 2014; 359:715-27. [PMID: 25487404 DOI: 10.1007/s00441-014-2060-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/06/2014] [Indexed: 01/24/2023]
Abstract
The extraordinary muscle growth potential of teleost fish, particular those of the Salmoninae clade, elicits questions about the regulation of the relatively highly conserved transcription factors of the myogenic program. The pseudotetraploid nature of the salmonid genome adds another layer of regulatory complexity that must be reconciled with epigenetic data to improve our understanding of the achievement of lifelong muscle growth in these fish. We identify three paralogous pax7 genes (pax7a1, pax7a2 and pax7b) in the rainbow trout genome. During in vitro myogenesis, pax7a1 transcripts remain stable, whereas pax7a2 and pax7b mRNAs increase in abundance, similarly to myogenin mRNAs but in contrast to the expression pattern of the mammalian ortholog. We also profile the distribution of repressive H3K27me3 and H3K9me3 and permissive H3K4me3 marks during in vitro myogenesis across these loci and find that pax7a2 expression is associated with decreased H3K27 trimethylation, whereas pax7b expression is correlated with decreased H3K9me3 and H3K27me3. These data link the unique differential expression of pax7 paralogs with epigenetic histone modifications in a vertebrate species displaying growth divergent from that of mammals and highlight an important divergence in the regulatory mechanisms of pax7 expression among vertebrates. The system described here provides a more comprehensive picture of the combinatorial control mechanisms orchestrating skeletal muscle growth in a salmonid, leading to a better understanding of myogenesis in this species and across Vertebrata more generally.
Collapse
Affiliation(s)
- Iban Seiliez
- INRA, UR1067 Nutrition Métabolisme Aquaculture, F-64310, St-Pée-sur-Nivelle, France
| | | | | | | | | |
Collapse
|
34
|
McCluskey BM, Postlethwait JH. Phylogeny of zebrafish, a "model species," within Danio, a "model genus". Mol Biol Evol 2014; 32:635-52. [PMID: 25415969 DOI: 10.1093/molbev/msu325] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Zebrafish (Danio rerio) is an important model for vertebrate development, genomics, physiology, behavior, toxicology, and disease. Additionally, work on numerous Danio species is elucidating evolutionary mechanisms for morphological development. Yet, the relationships of zebrafish and its closest relatives remain unclear possibly due to incomplete lineage sorting, speciation with gene flow, and interspecies hybridization. To clarify these relationships, we first constructed phylogenomic data sets from 30,801 restriction-associated DNA (RAD)-tag loci (483,026 variable positions) with clear orthology to a single location in the sequenced zebrafish genome. We then inferred a well-supported species tree for Danio and tested for gene flow during the diversification of the genus. An approach independent of the sequenced zebrafish genome verified all inferred relationships. Although identification of the sister taxon to zebrafish has been contentious, multiple RAD-tag data sets and several analytical methods provided strong evidence for Danio aesculapii as the most closely related extant zebrafish relative studied to date. Data also displayed patterns consistent with gene flow during speciation and postspeciation introgression in the lineage leading to zebrafish. The incorporation of biogeographic data with phylogenomic analyses put these relationships in a phylogeographic context and supplied additional support for D. aesculapii as the sister species to D. rerio. The clear resolution of this study establishes a framework for investigating the evolutionary biology of Danio and the heterogeneity of genome evolution in the recent history of a model organism within an emerging model genus for genetics, development, and evolution.
Collapse
|
35
|
Vélez EJ, Lutfi E, Jiménez-Amilburu V, Riera-Codina M, Capilla E, Navarro I, Gutiérrez J. IGF-I and amino acids effects through TOR signaling on proliferation and differentiation of gilthead sea bream cultured myocytes. Gen Comp Endocrinol 2014; 205:296-304. [PMID: 24882593 DOI: 10.1016/j.ygcen.2014.05.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/30/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Skeletal muscle growth and development is controlled by nutritional (amino acids, AA) as well as hormonal factors (insulin-like growth factor, IGF-I); however, how its interaction modulates muscle mass in fish is not clearly elucidated. The purpose of this study was to analyze the development of gilthead sea bream cultured myocytes to describe the effects of AA and IGF-I on proliferating cell nuclear antigen (PCNA) and myogenic regulatory factors (MRFs) expression, as well as on the transduction pathways involved in its signaling (TOR/AKT). Our results showed that AA and IGF-I separately increased the number of PCNA-positive cells and, together produced a synergistic effect. Furthermore, AA and IGF-I, combined or separately, increased significantly Myogenin protein expression, whereas MyoD was not affected. These results indicate a role for these factors in myocyte proliferation and differentiation. At the mRNA level, AA significantly enhanced PCNA expression, but no effects were observed on the expression of the MRFs or AKT2 and FOXO3 upon treatment. Nonetheless, we demonstrated for the first time in gilthead sea bream that AA significantly increased the gene expression of TOR and its downstream effectors 4EBP1 and 70S6K, with IGF-I having a supporting role on 4EBP1 up-regulation. Moreover, AA and IGF-I also activated TOR and AKT by phosphorylation, respectively, being this activation decreased by specific inhibitors. In summary, the present study demonstrates the importance of TOR signaling on the stimulatory role of AA and IGF-I in gilthead sea bream myogenesis and contributes to better understand the potential regulation of muscle growth and development in fish.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esmail Lutfi
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Vanesa Jiménez-Amilburu
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miquel Riera-Codina
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
36
|
Froehlich JM, Seiliez I, Gabillard JC, Biga PR. Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages. J Vis Exp 2014. [PMID: 24835774 DOI: 10.3791/51354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystoma mexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream(1-4).
Collapse
Affiliation(s)
| | | | | | - Peggy R Biga
- Department of Biology, University of Alabama at Birmingham;
| |
Collapse
|
37
|
Rossi G, Messina G. Comparative myogenesis in teleosts and mammals. Cell Mol Life Sci 2014; 71:3081-99. [PMID: 24664432 PMCID: PMC4111864 DOI: 10.1007/s00018-014-1604-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 01/02/2023]
Abstract
Skeletal myogenesis has been and is currently under extensive study in both mammals and teleosts, with the latter providing a good model for skeletal myogenesis because of their flexible and conserved genome. Parallel investigations of muscle studies using both these models have strongly accelerated the advances in the field. However, when transferring the knowledge from one model to the other, it is important to take into account both their similarities and differences. The main difficulties in comparing mammals and teleosts arise from their different temporal development. Conserved aspects can be seen for muscle developmental origin and segmentation, and for the presence of multiple myogenic waves. Among the divergences, many fish have an indeterminate growth capacity throughout their entire life span, which is absent in mammals, thus implying different post-natal growth mechanisms. This review covers the current state of the art on myogenesis, with a focus on the most conserved and divergent aspects between mammals and teleosts.
Collapse
Affiliation(s)
- Giuliana Rossi
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | |
Collapse
|
38
|
Characterisation and expression of myogenesis regulatory factors during in vitro myoblast development and in vivo fasting in the gilthead sea bream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2013; 167:90-9. [PMID: 24157945 DOI: 10.1016/j.cbpa.2013.10.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022]
Abstract
The aim of this study was to characterise a primary cell culture isolated from fast skeletal muscle of the gilthead sea bream. Gene expression profiles during culture maturation were compared with those obtained from a fasting-refeeding model which is widely used to modulate myogenesis in vivo. Myogenesis is controlled by numerous extracellular signals together with intracellular transcriptional factors whose coordinated expression is critical for the appropriate development of muscle fibres. Full-length cDNAs for the transcription factors Myf5, Mrf4, Pax7 and Sox8 were cloned and sequenced for gilthead sea bream. Pax7, sox8, myod2 and myf5 levels were up-regulated during the proliferating phase of the myogenic cultures coincident with the highest expression of proliferating cell nuclear antigen (PCNA). In contrast, myogenin and mrf4 transcript abundance was highest during the differentiation phase of the culture when myotubes were present, and was correlated with increased myosin heavy chain (mhc) and desmin expression. In vivo, 30days of fasting resulted in muscle fibre atrophy, a reduction in myod2, myf5 and igf1 expression, lower number of Myod-positive cells, and decreased PCNA protein expression, whereas myogenin expression was not significantly affected. Myostatin1 (mstn1) and pax7 expression were up-regulated in fasted relative to well-fed individuals, consistent with a role for Pax7 in the reduction of myogenic cell activity with fasting. The primary cell cultures and fasting-feeding experiments described provide a foundation for the future investigations on the regulation of muscle growth in gilthead sea bream.
Collapse
|
39
|
Froehlich JM, Fowler ZG, Galt NJ, Smith DL, Biga PR. Sarcopenia and piscines: the case for indeterminate-growing fish as unique genetic model organisms in aging and longevity research. Front Genet 2013; 4:159. [PMID: 23967015 PMCID: PMC3743216 DOI: 10.3389/fgene.2013.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023] Open
Abstract
Sarcopenia and dynapenia pose significant problems for the aged, especially as life expectancy rises in developed countries. Current therapies are marginally efficacious at best, and barriers to breakthroughs in treatment may result from currently employed model organisms. Here, we argue that the use of indeterminate-growing teleost fish in skeletal muscle aging research may lead to therapeutic advancements not possible with current mammalian models. Evidence from a comparative approach utilizing the subfamily Danioninae suggests that the indeterminate growth paradigm of many teleosts arises from adult muscle stem cells with greater proliferative capacity, even in spite of smaller progenitor populations. We hypothesize that paired-box transcription factors, Pax3/7, are involved with this enhanced self-renewal and that prolonged expression of these factors may allow some fish species to escape, or at least forestall, sarcopenia/dynapenia. Future research efforts should focus on the experimental validation of these genes as key factors in indeterminate growth, both in the context of muscle stem cell proliferation and in prevention of skeletal muscle senescence.
Collapse
Affiliation(s)
- Jacob M Froehlich
- Department of Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | |
Collapse
|