1
|
Otsuki K, Nomizo A, Zhang M, Li D, Kikuchi T, Li W. Identification of Marker Peptides in Gelatins from Sika Deer ( Cervus nippon) Using Ultra-High-Performance Liquid Chromatography-Quadrupole-Exactive-Orbitrap Mass Spectrometry. Molecules 2025; 30:1528. [PMID: 40286131 PMCID: PMC11990231 DOI: 10.3390/molecules30071528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Gelatin from deer has garnered attention as a high-value health-promoting resource given its history of usage as a traditional Chinese medicine and recent studies demonstrating its biological activities. Mass spectrometry-based methods have increasingly been employed for species identification in collagen-based materials, effectively addressing challenges in quality control and authenticity verification. This study aims to identify characteristic marker peptides in gelatins from sika deer (Cervus nippon) to support their effective use as a health-promoting resource. Gelatin samples were enzymatically digested, and the resulting peptide mixtures were analyzed using ultra-high-performance liquid chromatography coupled with quadrupole Q-Exactive-Orbitrap mass spectrometry (UHPLC-Q-Exactive-Orbitrap MS). Marker peptide candidates were selected based on their high detection intensity and a literature review. Among the 28 selected marker peptide candidates, four peptides (P11, R2, R3, and R4) were defined as characteristic of sika deer gelatin. Comparative analyses with gelatins derived from donkey hide, bovine, porcine, and fish samples further confirmed the specificity of these peptides. These findings establish a robust analytical method for verifying the authenticity of sika deer gelatin, contributing to its safe and effective use as a health-promoting resource.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan (T.K.)
| | - Aya Nomizo
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan (T.K.)
| | - Mi Zhang
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan (T.K.)
| | - Dongxia Li
- Department of Medical Laboratory, Medical College of Dalian University, Dalian 116622, China
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan (T.K.)
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan (T.K.)
| |
Collapse
|
2
|
Kang A, Lee J, Eor JY, Kwak MJ, Kim YA, Oh S, Kim Y. A comprehensive assessment of immunomodulatory potentials of Korean antler velvet extract in mouse and neurodegenerative Caenorhabditis elegans models. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:421-438. [PMID: 40264537 PMCID: PMC12010219 DOI: 10.5187/jast.2024.e22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 04/24/2025]
Abstract
This study conducts a comprehensive analysis of deer antler velvet's impact, with a specific emphasis on mouse models and in vitro experiments. The study navigates the intricacies of antler velvet's variability, encompassing considerations of drying methods, extraction techniques, and anatomical regions of antlers. Employing a diverse array of processing methods, this study prioritizes both food safety and the consistent intake of deer antler velvet extracts. The study scrupulously evaluates toxicity and immune-boosting properties through exhaustive assessments, utilizing Caenorhabditis elegans, immunosuppressive mouse models, and immune cells. The study unfolds the repercussions of deer antler velvet extract on the lifespan, neuromuscular functions, and cognitive abilities of C. elegans. Additionally, this study explores the extract's potential to alleviate toxicity induced by cyclophosphamide (CPA) in a mouse model, with a focus on inflammation, metabolic disorders, and gut microbiota composition. The antler velvet extract prevents immune dysregulation caused by CPA treatment by ameliorating systemic inflammation and restoring energy metabolism. Furthermore, antler velvet extract treatment significantly transforms the gut microbiota of an immunosuppressive mouse model by fostering the proliferation of commensal bacteria such as Lactobacillus, Akkermansia, and Lachnospiraceae at the genus level. Moreover, antler velvet treatment enhances the activity of natural killer cells against YAC-1 lymphoma while tempering overactivity among immune cells to baseline levels. In conclusion, this study provides nuanced insights into the diverse benefits of antler velvet extract, encouraging sustained research to unveil its complete potential in the realms of mouse models and in vitro experiments.
Collapse
Affiliation(s)
- Anna Kang
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Junbeom Lee
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | | | - Sangnam Oh
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
3
|
Wang M, Zhou Z, Wei Y, He R, Yang J, Zhang X, Li X, Zhao D, Li Z, Leng X, Dong H. Dissecting the mechanisms of velvet antler extract against diabetic osteoporosis via network pharmacology and proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119334. [PMID: 39800246 DOI: 10.1016/j.jep.2025.119334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Velvet antler (VAE) is a famous traditional Chinese medicine (TCM), which has been used for thousands of years to treat bone-related diseases. Nonetheless, whether VAE has anti-diabetic osteoporosis (DOP) properties remains to be elucidated. AIM OF THE STUDY The therapeutic mechanism of VAE on DOP is based on integrated proteomics of network pharmacology strategies to study related targets and pathways. MATERIALS AND METHODS Liquid chromatography-mass spectrometry (LC/MS) was used to analyze the main molecular components present in the VAE. The DOP mouse model was created by combining a high-fat diet with streptozotocin (STZ). High glucose (HG) induced MC3T3-E1 cells were used as a cell model to evaluate the therapeutic effect of VAE. The mechanisms of VAE in treating DOP were predicted through proteomics. Molecular docking, molecular dynamics simulations, DARTS and functional experiments were employed to further verify its mechanisms. RESULTS Altogether 30 components were identified by LC-MS. In vitro and in vivo results were confirmed that VAE had a protective effect on DOP. Combined with network pharmacology, proteomics and functional experiments revealed that TNF/PI3K-AKT signaling pathway may be the potential biochemical pathway for VAE in treating DOP. CONCLUSIONS The innovation of this study was investigating the effectiveness of VAE in treating DOP in vivo and in vitro and suggested that VAE might exert anti-DOP effects through the TNF/PI3K-AKT signaling pathway by network pharmacology and proteomics and found that ATK1 was the core target of VAE, which provided valuable insights for the clinical application of VAE in DOP.
Collapse
Affiliation(s)
- Mingyue Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zhenwei Zhou
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Rong He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Xudong Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China.
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| |
Collapse
|
4
|
Liu K, Zhao C, Zhang K, Yang X, Feng R, Zong Y, He Z, Zhao Y, Du R. Pilose Antler Protein Relieves UVB-Induced HaCaT Cells and Skin Damage. Molecules 2024; 29:4060. [PMID: 39274908 PMCID: PMC11397021 DOI: 10.3390/molecules29174060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Extended exposure to UVB (280-315 nm) radiation results in oxidative damage and inflammation of the skin. Previous research has demonstrated that pilose antler extracts have strong anti-inflammatory properties and possess antioxidant effects. This study aimed to elucidate the mechanism of pilose antler protein in repairing photodamage caused by UVB radiation in HaCaT cells and ICR mice. Pilose antler protein (PAP) was found to increase the expression of type I collagen and hyaluronic acid in HaCaT cells under UVB irradiation while also inhibiting reactive oxygen species (ROS) production and oxidative stress in vitro. In vivo, the topical application of pilose antler protein effectively attenuated UVB-induced skin damage in ICR mice by reducing interleukin-1β (IL-β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and inhibiting skin inflammation while alleviating UVB-induced oxidative stress. It was shown that pilose antler protein repaired UVB-induced photodamage through the MAPK and TGF-β/Smad pathways.
Collapse
Affiliation(s)
- Kaiyue Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chenxu Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ke Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyue Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ruyi Feng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Pan D, Zhong J, Zhang J, Dong H, Zhao D, Zhang H, Yao B. Function and regulation of nuclear factor 1 X-type on chondrocyte proliferation and differentiation. Gene 2023; 881:147620. [PMID: 37433356 DOI: 10.1016/j.gene.2023.147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Nuclear factor 1 X-type (Nfix) is a transcription factor related to mental and physical development. However, very few studies have reported the effects of Nfix on cartilage. This study aims to reveal the influence of Nfix on the proliferation and differentiation of chondrocytes, and to explore its potential action mechanism. We isolated primary chondrocytes from the costal cartilage of newborn C57BL/6 mice and with Nfix overexpression or silencing treatment. We used Alcian blue staining and found that Nfix overexpression significantly promoted ECM synthesis in chondrocytes while silencing inhibited ECM synthesis. Using RNA-seq technology to study the expression pattern of Nfix in primary chondrocytes. We found that Nfix overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. Nfix silencing, however, significantly up-regulated genes associated with cartilage catabolism and significantly down-regulated genes associated with cartilage growth promotion. Furthermore, Nfix exerted a positive regulatory effect on Sox9, and we propose that Nfix may promote chondrocyte proliferation and inhibit differentiation by stimulating Sox9 and its downstream genes. Our findings suggest that Nfix may be a potential target for the regulation of chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jinghong Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jingcheng Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Baojin Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
6
|
Pan D, Zhong J, Zhang J, Dong H, Zhao D, Zhang H, Yao B. Function and regulation of nuclear factor 1 X-type on chondrocyte proliferation and differentiation. Gene 2023; 881:147620. [DOI: org/10.1016/j.gene.2023.147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
7
|
Xue F, Wang B, Guo DX, Jiao Y, Cui WL, Cheng XL, Wang ZB, Yin X, Ma SC, Lin YQ. Discovery of species-specific peptide markers and development of quality-evaluation strategies for deer horn gelatin using liquid chromatography-tandem mass spectrometry and a label-free methodology. J Chromatogr A 2023; 1705:464153. [PMID: 37329653 DOI: 10.1016/j.chroma.2023.464153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Deer horn gelatin (DHG) is a valuable nutritional dietary supplement. Due to the significant variation in the price of DHG from different sources, it is important to assess its quality and to clarify the species of its raw material. However, due to the similarity in appearance and physicochemical properties, as well as the destruction of genetic material during the manufacturing process, it is difficult to distinguish DHG from gelatin derived from other sources. Furthermore, current methods are unable to evaluate the overall quality of DHG. Using Nano LC-Orbitrap MS and data analysis software, DHG samples from five deer species were analyzed to identify peptide markers specific to alpha-2-HS-glycoprotein (AHSG) and collagen. The peptide markers were validated using HPLC-Triple Quadrupole MS, and strategies for assessing the quality of DHG were developed. Eighteen peptide markers were discovered, comprising peptides with differing specificities. Three strategies for the identification, characteristic mapping, and content determination of DHG were developed. These strategies can be used to assess the quality of deer gelatin.
Collapse
Affiliation(s)
- Fei Xue
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shandong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Bing Wang
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shandong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Dong-Xiao Guo
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shandong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Yang Jiao
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shandong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Wei-Liang Cui
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shandong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Xian-Long Cheng
- National Institutes for Food and Drug Control, Beijing 100000, PR China
| | - Zhi-Bin Wang
- Scientific Research Institute of Beijing Tongrentang Corporation, Beijing 100000, PR China
| | - Xue Yin
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shandong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, Beijing 100000, PR China.
| | - Yong-Qiang Lin
- Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of TCM, Shandong Engineering Research Center for Generic Technologies of Traditional Chinese Medicine Formula Granules, NMPA Key Laboratory for Quality Evaluation of Gelatin Products, Shandong Institute for Food and Drug Control, Jinan 250101, PR China.
| |
Collapse
|
8
|
Wu Y, Zhu Y, Guo X, Wang X, Yuan W, Ma C, Chen X, Xu C, Wang K. Methionine Supplementation Affects Fecal Bacterial Community and Production Performance in Sika Deer ( Cervus nippon). Animals (Basel) 2023; 13:2606. [PMID: 37627397 PMCID: PMC10451487 DOI: 10.3390/ani13162606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Amino acid balance is central to improving the efficiency of feed protein utilization and for reducing environmental pollution caused by intensive farming. In previous studies, supplementation with limiting amino acids has been shown to be an effective means of improving animal nutrient utilization and performance. In this experiment, the effects of methionine on the apparent digestibility of nutrients, antler nutrient composition, rumen fluid amino acid composition, fecal volatile fatty acids and intestinal bacteria in antler-growing sika deer were investigated by randomly adding different levels of methionine to the diets of three groups of four deer at 0 g/day (CON), 4 g/day (LMet) and 6 g/day (HMet). Methionine supplementation significantly increased the apparent digestibility of organic matter, neutral detergent fiber (NDF) and acid detergent fiber (ADF) in the LMet group (p < 0.05). The crude protein and collagen protein of antlers were significantly higher in the LMet and HMet groups compared to the CON group and also significantly higher in the HMet group compared to the LMet group, while the calcium content of antlers was significantly lower in the HMet group (p < 0.05). Ruminal fluid free amino acid composition was altered in the three groups of sika deer, with significant changes in aspartic acid, citrulline, valine, cysteine, methionine, histidine and proline. At the phylum level, Firmicutes and Bacteroidetes were highest in the rectal microflora. Unidentified bacterial abundance was significantly decreased in the HMet group compared to the CON group. Based on the results of principal coordinate analysis (PCoA) and Adonis analysis, there was a significant difference in the composition of the intestinal flora between the CON and HMet groups (p < 0.05). At the genus level, compared with the CON group, the abundance of Rikenellaceae_RC9_gut_group and Lachnospiraceae_UCG-010 in the LMet group increased significantly (p < 0.05), the abundance of dgA-11_gut_group in the HMet group decreased significantly (p < 0.05) and the abundance of Lachnospiraceae_UCG-010, Saccharofermentans and Lachnospiraceae_NK3A20_group increased significantly. Taken together, the results showed that methionine supplementation was beneficial in increasing the feed utilization efficiency and improving antler quality in sika deer, while affecting the composition of fecal bacteria.
Collapse
Affiliation(s)
- Yan Wu
- Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
- Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| | - Yongzhen Zhu
- Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| | - Xiaolan Guo
- Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
- Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| | - Xiaoxu Wang
- Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| | - Weitao Yuan
- Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| | - Cuiliu Ma
- Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| | - Xiaoli Chen
- Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| | - Chao Xu
- Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
- Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| | - Kaiying Wang
- Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
- Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130000, China
| |
Collapse
|
9
|
Liu L, Jiao Y, Yang M, Wu L, Long G, Hu W. Network Pharmacology, Molecular Docking and Molecular Dynamics to Explore the Potential Immunomodulatory Mechanisms of Deer Antler. Int J Mol Sci 2023; 24:10370. [PMID: 37373516 DOI: 10.3390/ijms241210370] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The use of deer antlers dates back thousands of years in Chinese history. Deer antlers have antitumor, anti-inflammatory, and immunomodulatory properties and can be used in treating neurological diseases. However, only a few studies have reported the immunomodulatory mechanism of deer antler active compounds. Using network pharmacology, molecular docking, and molecular dynamics simulation techniques, we analyzed the underlying mechanism by which deer antlers regulate the immune response. We identified 4 substances and 130 core targets that may play immunomodulatory roles, and the beneficial and non-beneficial effects in the process of immune regulation were analyzed. The targets were enriched in pathways related to cancer, human cytomegalovirus infection, the PI3K-Akt signaling pathway, human T cell leukemia virus 1 infection, and lipids and atherosclerosis. Molecular docking showed that AKT1, MAPK3, and SRC have good binding activity with 17 beta estradiol and estrone. Additionally, the molecular dynamics simulation of the molecular docking result using GROMACS software (version: 2021.2) was performed and we found that the AKT1-estrone complex, 17 beta estradiol-AKT1 complex, estrone-MAPK3 complex, and 17 beta estradiol-MAPK3 complex had relatively good binding stability. Our research sheds light on the immunomodulatory mechanism of deer antlers and provides a theoretical foundation for further exploration of their active compounds.
Collapse
Affiliation(s)
- Lingyu Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yu Jiao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Mei Yang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Lei Wu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Guohui Long
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Wei Hu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Sun S, Zhang K, Wang Y, Zhou Z, Wang L, Zhao H, Zhang Y. Pharmacodynamic structure of deer antler base protein and its mammary gland hyperplasia inhibition mechanism by mediating Raf-1/MEK/ERK signaling pathway activation. Food Funct 2023; 14:3319-3331. [PMID: 36939833 DOI: 10.1039/d2fo03568e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mammary gland hyperplasia (MGH) is a common mammary disease whose main pathogenesis is the disruption of estradiol (E2) and progesterone (P) secretion, thereby causing overproliferation of mammary epithelial cells and mammary gland tissue hyperplasia. Deer antler base is a traditional Chinese medicine that has been used for many years to treat MGH. However, its pharmacological mechanism and pharmacodynamic material basis are unclear. In this study, we for the first time used the graded salting method to classify deer antler base protein (CNCP) as CNCP-A, CNCP-B, and CNCP-C and explored the pharmacological mechanism of the anti-MGH properties of CNCP. We found that CNCP could regulate the hormonal levels of E2, P, and follicle stimulating hormone (FSH) and improve the histopathological condition. The potential mechanism might be related to the recombinant C-Raf proto oncogene serine/threonine protein kinase/mitogen-activated protein/extracellular regulated protein kinase (Raf-1/MEK/ERK) signaling pathway. By upregulating the protein expression of the follicle stimulating hormone receptor (FSHR), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) inhibited the activation of the downstream Raf-1/MEK/ERK signaling pathway, which in turn inhibited the proliferation of mammary epithelial cells. We analyzed the physicochemical properties of CNCP-A, CNCP-B, and CNCP-C and obtained CNCP-C-I by column chromatographic purification of the best pharmacophore protein CNCP. Using high-performance liquid gel filtration chromatography (HPGFC), we determined the molecular weight of CNCP-C-I and identified it by high-performance liquid tandem mass spectrometry (LC-MS/MS) to obtain the first match for a high confidence protein KRT1. This study provides a theoretical basis for the development of effective traditional Chinese medicines with low toxicity levels for the prevention and treatment of mammary gland diseases.
Collapse
Affiliation(s)
- Shiqing Sun
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Kai Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Zijun Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Lihong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007 Heilongjiang, P. R. China.
| |
Collapse
|
11
|
Zhou Z, Zhong J, Zhang J, Yang J, Leng X, Yao B, Wang X, Dong H. Comparative transcriptome analysis provides insight into the molecular targets and signaling pathways of deer TGF-1 regulating chondrocytes proliferation and differentiation. Mol Biol Rep 2023; 50:3155-3166. [PMID: 36696024 DOI: 10.1007/s11033-023-08265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Chondrocytes are the only cell components in the cartilage, which has the poor regeneration ability. Thus, repairing damaged cartilage remains a huge challenge. Sika deer antlers are mainly composed of cartilaginous tissues that have an astonishing capacity for repair and renewal. Our previous study has demonstrated the transforming growth factor β (TGF-β1) is considered to be a key molecule involved in rapid growth, with the strongest expression in the cartilage layer. However, it remains to be clarified whether deer TGF-β1 has significantly different function from other species such as mouse, and what is the molecular mechanism of regulating cartilage growth. METHODS Primary chondrocytes was collected from new born mouse rib cartilage. The effect of TGF-β1 on primary chondrocytes viability was elucidated by RNA sequencing (RNA-seq) technology combined with validation methods such as quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence assay (IFA). Differential expression genes were identified using the DEGseq package. RESULTS Our results demonstrated that the overexpression of deer TGF-β1 possibly promoted chondrocyte proliferation and extracellular matrix (ECM) synthesis, while simultaneously suppressing chondrocyte differentiation through regulating transcription factors, growth factors, ECM related genes, proliferation and differentiation marker genes, such as Comp, Fgfr3, Atf4, Stat1 etc., and signaling pathways such as the MAPK signaling pathway, inflammatory mediator regulation of TRP channels etc. In addition, by comparing the amino acid sequence and structures between the deer TGF-β1 and mouse TGF-β1, we found that deer TGF-β1 and mouse TGF-β1 proteins are mainly structurally different in arm domains, which is the main functional domain. Phenotypic identification results showed that deer TGF-β1 may has stronger function than mouse TGF-β1. CONCLUSION These results suggested that deer TGF-β1 has the ability to promote chondrogenesis by regulating chondrocyte proliferation, differentiation and ECM synthesis. This study provides insights into the molecular mechanisms underlying the effects of deer TGF-β1 on chondrocyte viability.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Jinghong Zhong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Jingcheng Zhang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Jie Yang
- College of traditional Chinese medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Xiangyang Leng
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Baojin Yao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China
| | - Xukai Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China.
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, Jilin, China.
| |
Collapse
|
12
|
Zhong J, Zhang J, Zhou Z, Pan D, Zhao D, Dong H, Yao B. Novel insights into the effect of deer IGF-1 on chondrocyte viability and IL-1β-induced inflammation response. J Biochem Mol Toxicol 2023; 37:e23227. [PMID: 36177510 DOI: 10.1002/jbt.23227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/23/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Clinical treatment of Osteoarthritis (OA) remains a challenge due to the poor self-regeneration ability of cartilage. Deer antler is the only cartilage tissue that can completely regenerate each year. Insulin-like growth factor 1 (IGF-1) is one of the major active components in the deer antler that participate in regulating the rapid regeneration of deer antler cartilage. This has led us to speculate that deer IGF-1 might potentially become a candidate drug for reducing damage and inflammation of OA. Thus, we aimed to explore the underlying mechanism of deer IGF-1 in chondrocyte proliferation, differentiation, and inflammation response. Deer, mouse, and human IGF-1 amino acid sequences and protein structures were aligned using CLUSTAL and PSIPRED. The underlying molecular mechanism of deer IGF-1 on primary chondrocytes was investigated by RNA-sequencing (RNA-seq) technology combined with various experiments. Cytokine interleukin-1β (IL-1β) was used to induce the inflammation response of primary chondrocytes. We found that deer IGF-1 was more similar to human IGF-1 than mouse IGF-1. qRT-PCR and immunofluorescence assay indicated that deer IGF-1 had stronger effects than mouse IGF-1. We also found that the deer IGF-1 enhanced the expression of cell proliferation, differentiation, and extracellular matrix (ECM)-related genes, but decreased the expression of ECM-degrading genes. Deer IGF-1 also attenuated the IL-1β-induced inflammatory and ECM degradation in chondrocytes. This study provides insight into the molecular mechanisms of deer IGF-1 on primary chondrocyte viability and presents a candidate for combatting inflammatory responses in OA development.
Collapse
Affiliation(s)
- Jinghong Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingcheng Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daian Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Haisi Dong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
13
|
Song-xin L, Zhi-man L, Zi-jun S, Yun-shi X, Li-juan Z, Duo-duo R, Yin-shi S. Effect of velvet antler on the immune activity of cyclophosphamide-induced immunosuppressed mice. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2128070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Liu Song-xin
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
- State Key Laboratory of Generic Manufacture Technology of Traditional Chinese Medicine of Lunan Pharmaceutical Group Co., Ltd., Linyi, People’s Republic of China
| | - Li Zhi-man
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Shao Zi-jun
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Xia Yun-shi
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Zhao Li-juan
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Ren Duo-duo
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Sun Yin-shi
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| |
Collapse
|
14
|
Wang J, Wei Y, Zhou Z, Yang J, Jia Y, Wu H, Dong H, Leng X. Deer antler extract promotes tibia fracture healing in mice by activating BMP-2/SMAD4 signaling pathway. J Orthop Surg Res 2022; 17:468. [PMID: 36307889 PMCID: PMC9617435 DOI: 10.1186/s13018-022-03364-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deer antler is a traditional Chinese medicine with the function of tonifying kidney and strengthening bone, which is often used to treat orthopedic diseases. METHODS Eight-week-old C57BL/6 mice were used as the fixation model of open tibial fracture with intramedullary nail. The mice were treated with deer antler extract (DAE) or PBS by oral gavage once daily. The tibial fracture samples were collected and performed to the tissue analysis, including X-ray, micro-CT, histology, qRT-PCR, immunohistochemistry. MC3T3-E1 cells were used to detect the effect of deer antler extract on ability of cell proliferation and migration by CCK-8 assay and cell scratch test. RESULTS Imaging and micro-CT showed that DAE could promote the healing of tibial fracture in mice, and histological analysis showed that DAE could promote the transformation of cartilage callus to bone callus in fracture area. The results of qRT-PCR and immunohistochemistry showed that DAE could promote intrachondral ossification in fracture zone and the mechanism of promoting fracture healing may be related to the activation of BMP-2/SMAD4 signaling pathway. In the cytological experiment of DAE, it can be found that DAE promoted the proliferation of MC3T3-E1 cells and the migration of MC3T3-E1 cells at a certain concentration, which is also related to the promotion of fracture healing by DAE. CONCLUSION DAE can promote fracture healing by activating BMP-2/SMAD4 signaling pathway. DAE has the potential to be used in clinic as an important means of promoting fracture healing.
Collapse
Affiliation(s)
- Jianyu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yuchi Wei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yuyan Jia
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Hailong Wu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Haisi Dong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| |
Collapse
|
15
|
Health Effects of Peptides Extracted from Deer Antler. Nutrients 2022; 14:nu14194183. [PMID: 36235835 PMCID: PMC9572057 DOI: 10.3390/nu14194183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Deer antler is widely used as a nutraceutical in Asian countries. In the past decades, deer antler peptides (DAPs) have received considerable attention because of their various biological properties such as antioxidant, anti-inflammatory, anti-bone damage, anti-neurological disease, anti-tumor and immunomodulatory properties. This review describes the production methods of DAPs and the recent progress of research on DAPs, focusing on the physiological functions and their regulatory mechanisms.
Collapse
|
16
|
Mechanisms of Intervertebral Disc Degeneration Treatment with Deer Antlers Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8092848. [PMID: 36110184 PMCID: PMC9470325 DOI: 10.1155/2022/8092848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022]
Abstract
Background With the aging of the population, the prevalence of IVDD increases preoperatively. How to better treat IVDD has become an important clinical issue. Deer antlers proved to have a great effect on the treatment of IVDD in many studies, but the molecular mechanism has not been clarified. Objective To investigate the molecular mechanism and target of deer antlers in the treatment of IVDD. Methods Compounds from deer antlers were collected and targets were predicted using HERB, TCMSP, TCMID, SwissADME, and SwissTargetPrediction. Collection of disease targets for IVDD was done using GeneCards, TTD, DrugBank, DisGeNET, and OMIM. Cytoscape 3.7.2, AutoDock Vina (v1.1.2), and R software were used for data analysis and the construction of network diagrams. Results A total of 5 active compounds from deer antlers were screened and 104 therapeutic targets were predicted. A total of 1023 IVDD disease targets were collected. Subsequently, PPI network prediction analysis was performed for disease and treatment targets, and 112 core targets were collected after screening. After obtaining the core target, we used the clusterProfiler software package of R software to carry out GO and KEGG enrichment analyses for the core target and plot the bubble maps. According to the GO enrichment results, the main biological processes of IVDD treatment by deer antlers lie in the rhythmic process, mRNA catabolic process, and G1/S transition of the mitotic cell cycle. KEGG results were mainly related to the PI3K-Akt signaling pathway, thyroid hormone signaling pathway, and Notch signaling pathway. Molecular docking results showed that estrone had the best docking results on ESR1. Conclusion Deer antlers are rich in various compounds that can prevent the development of IVDD by upregulating the PI3K-Akt signaling pathway and Notch signaling pathway. Its key compounds estradiol and estrone can reduce the inflammatory response and oxidative stress in tissues and organs, thus slowing down the progression of IVDD. Estrone, the active compound in deer antlers, was found by molecular docking to have good results against ESR1, the target of the disease, which may be a potential site for drug therapy.
Collapse
|
17
|
Integrated RNA-Seq Analysis Uncovers the Potential Mechanism of the “Kidney Governing Bones” Theory of TCM. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7044775. [PMID: 35399624 PMCID: PMC8986393 DOI: 10.1155/2022/7044775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
Abstract
Background. As in philosophy of traditional Chinese medicine (TCM), the theory of “kidney governing bones” has been demonstrated by a series of scientific studies. Furthermore, many groups including ours have explored the molecular mechanisms related to bone development, growth, and regeneration using modern biology technologies, such as RNA sequencing (RNA-Seq) and isobaric tags for relative and absolute quantification (ITRAQ), and have demonstrated that the underlying molecular mechanisms were highly consistent with the “kidney governing bones” theory. Objective. Kidney-yang deficiency (YD), as a pathological condition, has a passive effect on the skeleton growth; more specifically, it is a state of skeletal metabolic disorder. However, the exact molecular mechanisms related to the “kidney governing bones” theory under the control of multiple organs and systems are still unknown. Methods. In this study, we performed RNA-Seq analysis to investigate and compare the gene expression patterns of six types of tissue (bone, cartilage, kidney, testicle, thyroid gland, and adrenal gland) from YD rats and normal rats and analyzed the interaction effects controlled by multiple functional genes and signaling pathways between those tissues. Results. Our results showed that, in the state of YD, the functions of bone and cartilage were inhibited. Furthermore, multiple organs involving the reproductive, endocrine, and urinary systems were also investigated, and our results showed that YD could cause dysfunctions of these systems by downregulating multiple functional genes and signaling pathways that positively regulate the homeostasis of these tissues. Conclusion. We ensure that “kidney governing bones” was not a simple change in a single gene but the changes in complex biological networks caused by functional changes in multiple genes. This also coincides with the holistic view of TCM, which holds that the human body itself is an organic whole and the functional activities of each organ coordinate with each other.
Collapse
|
18
|
Use of Network Pharmacology and Molecular Docking Technology to Analyze the Mechanism of Action of Velvet Antler in the Treatment of Postmenopausal Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7144529. [PMID: 34671409 PMCID: PMC8523247 DOI: 10.1155/2021/7144529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Deer velvet antlers are the young horns of male deer that are not ossified and densely overgrown. Velvet antler and its preparations have been widely used in the treatment of postmenopausal osteoporosis (PMOP) in recent years, although its mechanism of action in the human body remains unclear. To screen the effective ingredients and targets of velvet antler in the treatment of PMOP using network pharmacology and to explore the potential mechanisms of velvet antler action in such treatments, we screened the active ingredients and targets of velvet antler in the BATMAN-TCM database. We also screened the relevant targets of PMOP in the GeneCards and OMIM databases and then compared the targets at the intersection of both velvet antler and PMOP. We used Cytoscape 3.7.2 software to construct a network diagram of "disease-drug-components-targets" and a protein-protein interaction (PPI) network through the STRING database and screened out the core targets; the R language was then used to analyze the shared targets between antler and PMOP for GO-enrichment analysis and KEGG pathway-annotation analysis. Furthermore, we used the professional software Maestro 11.1 to verify the predictive analysis based on network pharmacology. Hematoxylin-eosin (H&E) staining and micro-CT were used to observe the changes in trabecular bone tissue, further confirming the results of network pharmacological analysis. The potentially effective components of velvet antler principally include 17β-E2, adenosine triphosphate, and oestrone. These components act on key target genes such as AKT1, IL6, MAPK3, TP53, EGFR, SRC, and TNF and regulate the PI3K/Akt-signaling and MAPK-signaling pathways. These molecules participate in a series of processes such as cellular differentiation, apoptosis, metabolism, and inflammation and can ultimately be used to treat PMOP; they reflect the overall regulation, network regulation, and protein interactions.
Collapse
|
19
|
Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein Cell 2021; 13:220-226. [PMID: 34342820 PMCID: PMC8901817 DOI: 10.1007/s13238-021-00860-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
|
20
|
Xu Y, Qu X, Zhou J, Lv G, Han D, Liu J, Liu Y, Chen Y, Qu P, Huang X. Pilose Antler Peptide-3.2KD Ameliorates Adriamycin-Induced Myocardial Injury Through TGF-β/SMAD Signaling Pathway. Front Cardiovasc Med 2021; 8:659643. [PMID: 34124197 PMCID: PMC8194399 DOI: 10.3389/fcvm.2021.659643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Adriamycin (ADR)-based combination chemotherapy is the standard treatment for some patients with tumors in clinical, however, long-term application can cause dose-dependent cardiotoxicity. Pilose Antler, as a traditional Chinese medicine, first appeared in the Han Dynasty and has been used to treat heart disease for nearly a thousand years. Previous data revealed pilose antler polypeptide (PAP, 3.2KD) was one of its main active components with multiple biological activities for cardiomyopathy. PAP-3.2KD exerts protective effects againt myocardial fibrosis. The present study demonstrated the protective mechanism of PAP-3.2KD against Adriamycin (ADR)-induced myocardial injury through using animal model with ADR-induced myocardial injury. PAP-3.2KD markedly improved the weight increase and decreased the HW/BW index, heart rate, and ST height in ADR-induced groups. Additionally, PAP-3.2KD reversed histopathological changes (such as disordered muscle bundles, myocardial fibrosis and diffuse myocardial cellular edema) and scores of the heart tissue, ameliorated the myocardial fibrosis and collagen volume fraction through pathological examination, significantly increased the protein level of Bcl-2, and decreased the expression levels of Bax and caspase-3 in myocardial tissue by ELISA, compared to those in ADR-induced group. Furthermore, ADR stimulation induced the increased protein levels of TGF-β1 and SMAD2/3/4, the increased phosphorylation levels of SMAD2/3 and the reduced protein levels of SMAD7. The expression levels of protein above in ADR-induced group were remarkably reversed in PAP-3.2KD-treated groups. PAP-3.2KD ameliorated ADR-induced myocardial injury by regulating the TGF-β/SMAD signaling pathway. Thus, these results provide a strong rationale for the protective effects of PAP against ADR-induced myocardial injury, when ADR is used to treat cancer.
Collapse
Affiliation(s)
- Yan Xu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaobo Qu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Zhou
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Guangfu Lv
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Jinlong Liu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Yuexin Liu
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Chen
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China.,Department of Cardiovascular Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Peng Qu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Xiaowei Huang
- School of Pharmaceutical, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
21
|
Dong Z, Coates D. Bioactive Molecular Discovery Using Deer Antlers as a Model of Mammalian Regeneration. J Proteome Res 2021; 20:2167-2181. [PMID: 33769828 DOI: 10.1021/acs.jproteome.1c00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability to activate and regulate stem cells during wound healing and tissue regeneration is a promising field that is resulting in innovative approaches in the field of regenerative medicine. The regenerative capacity of invertebrates has been well documented; however, in mammals, stem cells that drive organ regeneration are rare. Deer antlers are the only known mammalian structure that can annually regenerate to produce a tissue containing dermis, blood vessels, nerves, cartilage, and bone. The neural crest derived stem cells that drive this process result in antlers growing at up to 2 cm/day. Deer antlers thus provide superior attributes compared to lower-order animal models, when investigating the regulation of stem cell-based regeneration. Antler stem cells can therefore be used as a model to investigate the bioactive molecules, biological processes, and pathways involved in the maintenance of a stem cell niche, and their activation and differentiation during organ formation. This review examines stem cell-based regeneration with a focus on deer antlers, a neural crest stem cell-based mammalian regenerative structure. It then discusses the omics technical platforms highlighting the proteomics approaches used for investigating the molecular mechanisms underlying stem cell regulation in antler tissues.
Collapse
Affiliation(s)
- Zhen Dong
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
22
|
Guan M, Pan D, Zhang M, Leng X, Yao B. Deer antler extract potentially facilitates xiphoid cartilage growth and regeneration and prevents inflammatory susceptibility by regulating multiple functional genes. J Orthop Surg Res 2021; 16:208. [PMID: 33752715 PMCID: PMC7983396 DOI: 10.1186/s13018-021-02350-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deer antler is a zoological exception due to its fantastic characteristics, including amazing growth rate and repeatable regeneration. Deer antler has been used as a key ingredient in traditional Chinese medicine relating to kidney and bone health for centuries. The aim of this study was to dissect the molecular regulation of deer antler extract (DAE) on xiphoid cartilage (XC). METHODS The DAE used in this experiment was same as the one that was prepared as previously described. The specific pathogen-free (SPF) grade Sprague-Dawley (SD) rats were randomly divided into blank group (n =10) and DAE group (n =10) after 1-week adaptive feeding. The DAE used in this experiment was same as the one that was prepared as previously described. The rats in DAE group were fed with DAE for 3 weeks at a dose of 0.2 g/kg per day according to the body surface area normalization method, and the rats in blank group were fed with drinking water. Total RNA was extracted from XC located in the most distal edge of the sternum. Illumina RNA sequencing (RNA-seq) in combination with quantitative real-time polymerase chain reaction (qRT-PCR) validation assay was carried out to dissect the molecular regulation of DAE on XC. RESULTS We demonstrated that DAE significantly increased the expression levels of DEGs involved in cartilage growth and regeneration, but decreased the expression levels of DEGs involved in inflammation, and mildly increased the expression levels of DEGs involved in chondrogenesis and chondrocyte proliferation. CONCLUSIONS Our findings suggest that DAE might serve as a complementary therapeutic regent for cartilage growth and regeneration to treat cartilage degenerative disease, such as osteoarthritis.
Collapse
Affiliation(s)
- Mengqi Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Daian Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, Jilin, 130117 China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
23
|
Yao B, Zhou Z, Zhang M, Leng X, Zhao D. Investigating the molecular control of deer antler extract on articular cartilage. J Orthop Surg Res 2021; 16:8. [PMID: 33407721 PMCID: PMC7788833 DOI: 10.1186/s13018-020-02148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deer antler is considered as a precious traditional Chinese medicinal material and has been widely used to reinforce kidney's yang, nourish essence, and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage. METHODS DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks, and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay was carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage. RESULTS We demonstrated that DAE significantly increased the expression levels of functional genes involved in cartilage formation, growth, and repair and decreased the expression levels of susceptibility genes involved in the pathophysiology of osteoarthritis. CONCLUSIONS DAE might serve as a candidate supplement for maintaining cartilage homeostasis and preventing cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation, and differentiation and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of cartilage-related diseases.
Collapse
Affiliation(s)
- Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
24
|
Processed velvet antler: nutritional profile, in vitro antioxidant capacities, and alleviating symptoms of kidney-yang deficiency in mice. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Choi SY, Eom Y, Kim JY, Jang DH, Song JS, Kim HM. Effect of natural extract eye drops in dry eye disease rats. Int J Ophthalmol 2020; 13:1023-1030. [PMID: 32685387 DOI: 10.18240/ijo.2020.07.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/24/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the therapeutic effect of natural extract eye drops containing bee venom, musk, and deer antlers in dry eye disease (DED) animal models. METHODS Scopolamine-injected DED rats and lacrimal gland-excised rats were allocated into control, saline, and natural extract groups respectively and a normal group (lacrimal gland excision was not performed) in lacrimal gland-excised rats. After eye drop instillation 4 times a day for 5d, corneal fluorescein staining (CFS) scores, tear MUC5AC levels, and tear lactic dehydrogenase (LDH) levels were measured. RESULTS In scopolamine-injected rats, the natural extract-treated group had significantly lower CFS scores (1.7±0.5, 4.7±1.4, 3.8±1.9, P=0.006) and tear LDH levels (0.10±0.01, 0.19±0.01, 0.16±0.08 OD, P=0.014) but higher tear MUC5AC levels (12.9±3.7, 7.9±2.0, 9.7±3.6 ng/mL, P=0.041) compared with the control and saline-treated groups. There were no significant differences between the control and saline-treated groups. In lacrimal gland-excised rats, the natural extract-treated group also had lower CFS scores (4.3±1.2, 11.5±2.3, 9.0±1.9, P<0.001, P=0.001) and tear LDH levels (0.30±0.08, 0.48±0.12, 0.39±0.05 OD, P<0.05) but higher tear volume (4.3±0.9, 1.9±0.7, 2.8±1.1 mm, P=0.005, P=0.124) and tear MUC5AC levels (8.2±2.0, 2.9±1.2, 5.4±2.2 ng/mL, P<0.001, P=0.047) compared with the control and saline-treated groups. There were no significant differences in the CFS scores, tear MUC5AC level, and tear LDH level between the normal and natural extract-treated groups. CONCLUSION The natural extract consisting of bee venom, musk, and deer antlers may have effectiveness in DED treatment by restoring the damaged ocular surface, increasing tear volume, and recovering the tear mucin layer in DED rats.
Collapse
Affiliation(s)
- Soo Youn Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul 02841, Republic of Korea.,BGN World Tower Eye Clinic, Seoul 05551, Republic of Korea
| | - Youngsub Eom
- Department of Ophthalmology, Korea University College of Medicine, Seoul 02841, Republic of Korea.,Department of Ophthalmology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do 15355, Republic of Korea
| | - Jee Yong Kim
- Medical O Co., Ltd., Seoul 06025, Republic of Korea
| | | | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyo Myung Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
26
|
Zhou Z, Yao B, Zhao D. Runx3 regulates chondrocyte phenotype by controlling multiple genes involved in chondrocyte proliferation and differentiation. Mol Biol Rep 2020; 47:5773-5792. [PMID: 32661874 DOI: 10.1007/s11033-020-05646-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Chondrocytes are the sole cell type present within cartilage, and play pivotal roles in controlling the formation and composition of health cartilage. Chondrocytes maintain cartilage homeostasis through proliferating, differentiating and synthesizing different types of extracellular matrices. Thus, the coordinated proliferation and differentiation of chondrocytes are essential for cartilage growth, repair and the conversion from cartilage to bone during the processes of bone formation and fracture healing. Runx3, a transcription factor that belongs to the Runx family, is significantly upregulated at the onset of cartilage mineralization and regulates both early and late markers of chondrocyte maturation. Therefore, Runx3 may serve as an accelerator of chondrocyte differentiation and maturation. However, the underlying molecular mechanism of Runx3 in regulating chondrocyte proliferation and differentiation remains largely to be elucidated. In the present study, we used state-of-the-art RNA-seq technology combined with validation methods to investigate the effect of Runx3 overexpression or silencing on primary chondrocyte proliferation and differentiation, and demonstrated that Runx3 overexpression possibly inhibited chondrocyte proliferation but accelerated differentiation, whereas Runx3 silencing possibly promoted chondrocyte proliferation but suppressed differentiation. Furthermore, Runx3 overexpression possibly decreased the expression levels of Sox9 and its downstream genes via Sox9 cartilage-specific enhancers, and vice versa for Runx3 silencing.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
27
|
Identification of potential therapeutic targets of deer antler extract on bone regulation based on serum proteomic analysis. Mol Biol Rep 2019; 46:4861-4872. [DOI: 10.1007/s11033-019-04934-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/20/2019] [Indexed: 12/23/2022]
|
28
|
Yao B, Zhang M, Leng X, Zhao D. Proteomic analysis of the effects of antler extract on chondrocyte proliferation, differentiation and apoptosis. Mol Biol Rep 2019; 46:1635-1648. [DOI: 10.1007/s11033-019-04612-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/17/2019] [Indexed: 01/09/2023]
|
29
|
Yao B, Zhang M, Liu M, Liu Y, Hu Y, Zhao Y. Transcriptomic characterization elucidates a signaling network that controls antler growth. Genome 2018; 61:829-841. [DOI: 10.1139/gen-2017-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deer antlers are amazing appendages with the fastest growth rate among mammalian organs. Antler growth is driven by the growth center through a modified endochondral ossification process. Thus, identification of signaling pathways functioning in antler growth center would help us to uncover the underlying molecular mechanism of rapid antler growth. Furthermore, exploring and dissecting the molecular mechanism that regulates antler growth is extremely important and helpful for identifying methods to enhance long bone growth and treat cartilage- and bone-related diseases. In this study, we build a comprehensive intercellular signaling network in antler growth centers from both the slow growth stage and rapid growth stage using a state-of-art RNA-Seq approach. This network includes differentially expressed genes that regulate the activation of multiple signaling pathways, including the regulation of actin cytoskeleton, calcium signaling, and adherens junction. These signaling pathways coordinately control multiple biological processes, including chondrocyte proliferation and differentiation, matrix homeostasis, mechanobiology, and aging processes, during antler growth in a comprehensive and efficient manner. Therefore, our study provides novel insights into the molecular mechanisms regulating antler growth and provides valuable and powerful insight for medical research on therapeutic strategies targeting skeletal disorders and related cartilage and bone diseases.
Collapse
Affiliation(s)
- Baojin Yao
- Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meixin Liu
- Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuxin Liu
- Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yaozhong Hu
- Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Zhao
- Chinese Medicine and Bioengineering Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
30
|
Guzhi Zengsheng Zhitongwan, a Traditional Chinese Medicinal Formulation, Stimulates Chondrocyte Proliferation through Control of Multiple Genes Involved in Chondrocyte Proliferation and Differentiation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7265939. [PMID: 30275866 PMCID: PMC6157105 DOI: 10.1155/2018/7265939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/07/2018] [Accepted: 08/19/2018] [Indexed: 11/30/2022]
Abstract
Chinese materia medica (CMM) are essential components of traditional Chinese medicine, and Chinese medicinal formulas consisting of 2 or more types of CMM are widely used. These formulations have played a pivotal role in health protection and disease control for thousands of years. Guzhi Zengsheng Zhitongwan (GZZSZTW), which represents one of the Chinese medicinal formulations, has been used for several decades to treat joint diseases. However, the exact molecular mechanism underlying its efficacy in treating osteoarthritis remains to be elucidated. In the present study, we investigated the effects of GZZSZTW on primary chondrocytes. We demonstrated that GZZSZTW significantly promoted chondrocyte viability, maintained chondrocytes in a continuous proliferative state, and prevented their further differentiation. These effects were achieved by the synergistic interactions of various herbs and their active components in GZZSZTW through an increase in the expression levels of functional genes participating in chondrocyte commitment and proliferation and a decrease in the expression levels of genes involved in chondrocyte differentiation. GZZSZTW treatment also decreased the expression levels of genes that inhibited chondrocyte proliferation. Thus, this study has greatly deepened the current knowledge about the molecular effects of GZZSZTW on chondrocytes. It has also shed new light on possible strategies to further prevent and treat cartilage-related diseases by using traditional Chinese medicinal formulations.
Collapse
|