1
|
Grasset L, Bis JC, Frenzel S, Kojis D, Simino J, Yaqub A, Beiser A, Berr C, Bressler J, Bülow R, DeCarli CS, Fohner AE, Harrington LB, Helmer C, Ikram MA, Lemaitre RN, Lopez OL, Longstreth WT, Neitzel J, Odden MC, Palta P, Schmidt CO, Talluri R, Vernooij MW, Völzke H, Voortman T, Whalen Q, Wittfeld K, Grabe HJ, Mosley TH, Psaty BM, Wolters FJ, Seshadri S, Dufouil C. Selected social and lifestyle correlates of brain health markers: the Cross-Cohort Collaboration Consortium. Alzheimers Dement 2025; 21:e70148. [PMID: 40207408 PMCID: PMC11982914 DOI: 10.1002/alz.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/20/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
INTRODUCTION To investigate the associations of education level, marital status, and physical activity with dementia risk and brain MRI markers. METHODS Data from six community-based samples from the Cross-Cohort Collaboration Consortium were analyzed. Self-reported education level, marital status, and physical activity at age 60 to 75 years were harmonized. Subsamples of participants with brain MRI markers at time of exposure were selected. Associations with dementia risk and cross-sectional MRI markers were meta-analyzed. RESULTS Higher education level was associated with lower dementia risk (hazard ratio [HR] = 0.65, 95% confidence interval [CI] = 0.59; 0.72 vs low level) but not significantly with brain MRI markers. Compared with being unmarried, being married was only associated with higher total brain and hippocampal volumes. Being physically active was associated with lower dementia risk (HR = 0.73, 95% CI = 0.52; 1.04), as well as larger total brain volume and smaller white matter hyperintensity volume. DISCUSSION This study provides further evidence regarding the contribution of education level and physical activity to dementia resilience. HIGHLIGHTS Education level, marital status, and physical activity are thought to contribute to resilience against ADRD. We used random-effects meta-analysis to summarize results from six community-based samples from the CCC. In this cross-cohort meta-analysis, higher education level and being physically active were associated with lower risk of dementia. In cross-sectional analyses, being married was associated with larger TBV and HV, while being physically active was associated with larger TBV and lower WMHV.
Collapse
|
2
|
Wang D, Li X, Dang M, Zhao S, Sang F, Zhang Z. Frontotemporal structure preservation underlies the protective effect of lifetime intellectual cognitive reserve on cognition in the elderly. Alzheimers Res Ther 2024; 16:255. [PMID: 39580450 PMCID: PMC11585141 DOI: 10.1186/s13195-024-01613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Cognitive decline with age has heterogeneous, which might be related to the accumulation of protective factors called cognitive reserve, especially intellectual engagement factors over the life course. However, how lifetime intellectual cognitive reserve (LICR) protects cognitive function in the elderly remains unclear. We aimed to examine the relationship between LICR and cognition and the mild cognitive impairment (MCI) risk, as well as the neural mechanism of LICR on cognition. METHODS A total of 5126 participants completed extensive neuropsychological tests, with LICR indicator encompassing early education, midlife occupational complexity, and mental leisure activities after retirement. Confirmatory factor analysis was performed to derive LICR score and cognitive function scores, then the hierarchical regression analysis was used to explore the relationship between LICR and cognitive functions and the risk of MCI. We further explored the macro- and micro-structural preservation underly LICR in 1117 participants. Multiple regressions and tract-based spatial statistics were used to explore the relationship between LICR and gray matter volume and white matter microstructure (FA value). Finally, using the mediation model to explore the relationship of "LICR-brain-cognition". RESULT The new LICR index, which was more protective than its single indexes, could protect widespread cognitive functions and was associated with a reduction in MCI risk (Odds Ratio, 0.52; 95% CI, 0.47-0.57). For the structure basis of LICR, the higher LICR score was associated with the greater gray matter volume in right fusiform gyrus (t = 4.62, FDR corrected, p < 0.05) and left orbital superior frontal gyrus (t = 4.56, FDR corrected, p < 0.05), and the higher FA values in the frontotemporal related white matter fiber tracts. Furthermore, the right fusiform gyrus partially mediated the relationship between LICR and executive processing ability (β = 0.01, p = 0.02) and general cognitive ability (β = 0.01, p = 0.03). CONCLUSIONS The new comprehensive cognitive reserve index could promote the temporal macro-structural preservation and thus contribute to maintain better cognitive function. These findings highlight the importance of intellectual CR accumulation over the life course in successful cognitive aging and MCI prevention, thereby contributing to improve the quality of life in the elderly.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Faculty of Education, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China
| | - Mingxi Dang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China
| | - Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China
| | - Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Schlicht JA, Wingood M, Heled Y, Weitzel K, Rogers ME, Seffens PR. The Physical Activity Vital Sign for Older Adults: Time for an Update. J Am Med Dir Assoc 2024; 25:105020. [PMID: 39068013 DOI: 10.1016/j.jamda.2024.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Jeff A Schlicht
- Department of Health Promotion and Exercise Sciences, Western Connecticut State University, Danbury, CT, USA.
| | - Mariana Wingood
- Department of Implementation Science, Wake Forest University, Winston-Salem, NC, USA
| | - Yuval Heled
- The Kibbutzim College, Tel Aviv & the Hebrew University, Jerusalem, Israel
| | - Kelsey Weitzel
- Department of Health Sciences, University of Missouri Extension, Columbia, MO, USA
| | - Michael E Rogers
- Department of Human Performance Studies, Wichita State University, Wichita, KS, USA
| | - Paula R Seffens
- Department of Kinesiology, University of North Georgia, Oakwood, GA, USA
| |
Collapse
|
4
|
Di Tella S, Isernia S, Cabinio M, Rossetto F, Borgnis F, Pagliari C, Cazzoli M, Navarro J, Silveri MC, Baglio F. Cognitive Reserve proxies can modulate motor and non-motor basal ganglia circuits in early Parkinson's Disease. Brain Imaging Behav 2024; 18:220-230. [PMID: 37993754 PMCID: PMC10844415 DOI: 10.1007/s11682-023-00829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Parkinson's Disease (PD) is hallmarked by dysfunctional circuitry between the basal ganglia and dorsolateral-prefrontal cortex. Recently progress has been made in understanding factors contributing to differential susceptibility to pathology mitigating disease-related cognitive decline. Cognitive reserve, the brain processing resources accumulated throughout life while engaged in mentally stimulating activities, can play an important protective role in cognitive performance. We tested the hypothesis that Cognitive Reserve proxies may exert an impact on the basal ganglia and dorsolateral-prefrontal atrophy in early PD. Forty-five early patients with PD and 20 age-gender-matched healthy controls (HC) completed the Cognitive Reserve Index questionnaire to quantify Cognitive Reserve proxies by three indexes (CRI-Education, CRI-Working Activity, CRI-Leisure Time) and a structural MRI examination (3T). Morphometrical indexes for basal ganglia (bilateral putamen, caudate, pallidum volume) and dorsolateral-prefrontal cortex (cortical thickness) were computed. Significant differences between HC and PD were tested by direct comparisons in demographics, cognitive level, and cognitive reserve proxies indexes. Then two multiple regression analyses were performed to identify predictors of the basal ganglia and dorsolateral-prefrontal cortex structural integrity. Regression analysis revealed that basal ganglia volume was significantly predicted by CRI-Education (pFDR = 0.029), sex (pFDR = 0.029), and Total Intracranial Volume (pFDR < 0.001). Instead, the dorsolateral-prefrontal thickness was predicted by CRI-Leisure Time (pFDR = 0.030) and age (pFDR = 0.010). Cognitive Reserve proxies, especially education and leisure-time activities, can play a protective role on the structural integrity of the basal ganglia and dorsolateral-prefrontal cortex, respectively, critical regions hallmarking brain status of early phases of PD.
Collapse
Affiliation(s)
- Sonia Di Tella
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Sara Isernia
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Monia Cabinio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | | | | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | |
Collapse
|
5
|
Mellow ML, Dumuid D, Olds T, Stanford T, Dorrian J, Wade AT, Fripp J, Xia Y, Goldsworthy MR, Karayanidis F, Breakspear MJ, Smith AE. Cross-sectional associations between 24-hour time-use composition, grey matter volume and cognitive function in healthy older adults. Int J Behav Nutr Phys Act 2024; 21:11. [PMID: 38291446 PMCID: PMC10829181 DOI: 10.1186/s12966-023-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Increasing physical activity (PA) is an effective strategy to slow reductions in cortical volume and maintain cognitive function in older adulthood. However, PA does not exist in isolation, but coexists with sleep and sedentary behaviour to make up the 24-hour day. We investigated how the balance of all three behaviours (24-hour time-use composition) is associated with grey matter volume in healthy older adults, and whether grey matter volume influences the relationship between 24-hour time-use composition and cognitive function. METHODS This cross-sectional study included 378 older adults (65.6 ± 3.0 years old, 123 male) from the ACTIVate study across two Australian sites (Adelaide and Newcastle). Time-use composition was captured using 7-day accelerometry, and T1-weighted magnetic resonance imaging was used to measure grey matter volume both globally and across regions of interest (ROI: frontal lobe, temporal lobe, hippocampi, and lateral ventricles). Pairwise correlations were used to explore univariate associations between time-use variables, grey matter volumes and cognitive outcomes. Compositional data analysis linear regression models were used to quantify associations between ROI volumes and time-use composition, and explore potential associations between the interaction between ROI volumes and time-use composition with cognitive outcomes. RESULTS After adjusting for covariates (age, sex, education), there were no significant associations between time-use composition and any volumetric outcomes. There were significant interactions between time-use composition and frontal lobe volume for long-term memory (p = 0.018) and executive function (p = 0.018), and between time-use composition and total grey matter volume for executive function (p = 0.028). Spending more time in moderate-vigorous PA was associated with better long-term memory scores, but only for those with smaller frontal lobe volume (below the sample mean). Conversely, spending more time in sleep and less time in sedentary behaviour was associated with better executive function in those with smaller total grey matter volume. CONCLUSIONS Although 24-hour time use was not associated with total or regional grey matter independently, total grey matter and frontal lobe grey matter volume moderated the relationship between time-use composition and several cognitive outcomes. Future studies should investigate these relationships longitudinally to assess whether changes in time-use composition correspond to changes in grey matter volume and cognition.
Collapse
Affiliation(s)
- Maddison L Mellow
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia.
| | - Dorothea Dumuid
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Timothy Olds
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Ty Stanford
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Jillian Dorrian
- Behaviour-Brain-Body Research Centre, Justice and Society, University of South Australia, Adelaide, Australia
| | - Alexandra T Wade
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Jurgen Fripp
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Ying Xia
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Mitchell R Goldsworthy
- Behaviour-Brain-Body Research Centre, Justice and Society, University of South Australia, Adelaide, Australia
- School of Biomedicine, University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Frini Karayanidis
- Functional Neuroimaging Laboratory, School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, Australia
| | - Michael J Breakspear
- Functional Neuroimaging Laboratory, School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, Australia
- Discipline of Psychiatry, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| |
Collapse
|
6
|
Pucci V, Guerra C, Barsi A, Nucci M, Mondini S. How long have you exercised in your life? The effect of motor reserve and current physical activity on cognitive performance. J Int Neuropsychol Soc 2024; 30:11-17. [PMID: 37066835 DOI: 10.1017/s135561772300022x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
OBJECTIVES Aging of the population encourages research on how to preserve cognition and quality of life. Many studies have shown that Physical Activity (PA) positively affects cognition in older adults. However, PA carried out throughout the individual's lifespan may also have an impact on cognition in old age. We hypothesize the existence of Motor Reserve (MR), a flexible and dynamic construct that increases over time and compensates for age-related motor and cognitive loss. METHODS Two questionnaires were developed and validated to estimate MR (Physical Activity carried out throughout the individual's lifespan) and Current Physical Activity (CPA, PA carried out in the previous 12 months). They were administered to 75 healthy individuals over 50 to verify the relation with cognition. MR and CPA include physical exercise (i.e., structured activities to improve or maintain physical fitness) and incidental PA, which we consider as any movement that leads to a metabolic cost above baseline (e.g., housekeeping, walking). In addition, the Cognitive Reserve Index questionnaire (CRI), a reliable predictor of cognitive performance, was used to measure each participant's Cognitive Reserve. RESULTS The factors that most influenced performance are Age and Cognitive Reserve, but also MR and CPA together and MR when it is the only factor. CONCLUSIONS Cognitive variability in adult and elderly populations is explained by both MR and CPA. PA training could profitably be included in new preventive and existing interventions.
Collapse
Affiliation(s)
- Veronica Pucci
- Department of Philosophy, Sociology, Education and Applied Psychology, FISPPA, University of Padova, Padova, Italy
- Human Inspired Technology Research-Centre, University of Padova, Padova, Italy
| | - Carolina Guerra
- Department of Philosophy, Sociology, Education and Applied Psychology, FISPPA, University of Padova, Padova, Italy
| | - Amanda Barsi
- Department of Philosophy, Sociology, Education and Applied Psychology, FISPPA, University of Padova, Padova, Italy
| | - Massimo Nucci
- Department of General Psychology, University of Padova, Padova, Italy
| | - Sara Mondini
- Department of Philosophy, Sociology, Education and Applied Psychology, FISPPA, University of Padova, Padova, Italy
- Human Inspired Technology Research-Centre, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Li X, Zhang Y, Ding X, Jin Y, Wei C, Xu J. Mass Spectrometry Chromatography-Based Metabolomics: The Effect of Long-Term Aerobic Exercise on Learning Ability and the Metabolism of Intestinal Contents in Mice with Alzheimer's Disease. Metabolites 2023; 13:1150. [PMID: 37999246 PMCID: PMC10673277 DOI: 10.3390/metabo13111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to investigate the effect of long-term aerobic exercise on the metabolism of intestinal contents in APP/PS1 mice was studied using a non-targeted metabolomics technique based on high-performance liquid chromatography-mass spectrometry (HPLC-MS) coupling, providing a theoretical basis for exercise to regulate the metabolism of Alzheimer's disease (AD) organisms. Three-month-old male C57BL/6JNju mice, six wild-type (NC, n = 6); 12 APP/PS1 double transgenic species in total, were randomly divided into AD model (AM, n = 6) and AD model exercise (AE, n = 6) groups. The mice in the NC group were fed naturally, the mice in the AM group were statically placed on a running platform, and the mice in the AE group received a 20-week long-term moderate intensity running platform exercise intervention. Following the exercise intervention, the cecum contents of the mice in each group were collected and analyzed using the HPLC-MS technique, with those meeting both variable important in projection (VIP)> 1.5 and p < 0.05 being screened as differential metabolites. A total of 32 different metabolites were detected between the AM and NC groups, with 19 up-regulated in the AM group such as phosphatidic acid (PA) (18:4(6Z,9Z,12Z,15Z)/21:0) and 13 down-regulated in the AM group, such as 4,8-dimethylnonanoyl, compared to the NC group; 98 different metabolites were found between the AM and AE groups, 41 of which were upregulated such as Lyso phosphatidylcholine (LysoPC) and 57 of which were downregulated compared to the AM group such as Phosphatidylinositol (PI). The regulation of linoleic acid metabolism, glycerophospholipid metabolism, bile secretion, phenylalanine metabolism, and other pathways was predominantly regulated by nine metabolites, which were subsequently identified as indicators of exercise intervention to enhance metabolism in AD mice. The metabolomic technique can identify the metabolic problems of intestinal contents in AD mice and initially screen the biomarkers of exercise to improve the metabolic disorders in AD. These findings can help us better understand the impact of aerobic exercise on AD metabolism.
Collapse
Affiliation(s)
- Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China; (Y.Z.); (X.D.); (Y.J.); (C.W.); (J.X.)
| | | | | | | | | | | |
Collapse
|
8
|
Miró-Padilla A, Adrián-Ventura J, Cherednichenko A, Monzonís-Carda I, Beltran-Valls MR, MolinerUrdiales D, Ávila C. Relevance of the anterior cingulate cortex volume and personality in motivated physical activity behaviors. Commun Biol 2023; 6:1106. [PMID: 37907751 PMCID: PMC10618534 DOI: 10.1038/s42003-023-05423-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023] Open
Abstract
Some recent theories about the origins and maintenance of regular physical activity focus on the rewards of the properties of practicing this activity. Animal and human studies have demonstrated that mesolimbic dopamine plays a crucial role in the involvement in voluntary physical activity. Here, we test this possible role in a sample of 66 right-handed healthy young adults by studying the influence of personality and the volume of reward-related brain areas on individual differences in voluntary physical activity, objectively measured by accelerometer and subjectively self-reported by questionnaire. Our results show that a smaller volume of the right anterior cingulate cortex and lower scores on reward sensitivity contributed to explaining low levels of daily physical activity. Moreover, the volume of the right anterior cingulate cortex correlates positively with self-reported total physical activity. Results are discussed by highlighting the need to use objective measures of daily physical activity, as well as the important role of the anterior cingulate cortex and personality in promoting effortful and invigorating actions to obtain rewards.
Collapse
Affiliation(s)
- Anna Miró-Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain.
| | - Jesús Adrián-Ventura
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
- Department of Psychology and Sociology, University of Zaragoza, 44003, Teruel, Spain
| | - Anastasia Cherednichenko
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
| | - Irene Monzonís-Carda
- LIFE Research Group, Department of Education, Universitat Jaume I, 12071, Castellon, Spain
| | | | - Diego MolinerUrdiales
- LIFE Research Group, Department of Education, Universitat Jaume I, 12071, Castellon, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
9
|
Vujic A, Mowszowski L, Meares S, Batchelor J, Naismith SL. Not all mentally stimulating activities are alike: insights from a 4-factor model and implications for late-life cognition. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2023; 30:822-836. [PMID: 35775824 DOI: 10.1080/13825585.2022.2094878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
It is not yet known which specific qualities of cognitively stimulating activities are most likely to enhance cognitive reserve in older adults. Taking an inductive approach to this problem, we asked 504 older adults with subjective and/or cognitive impairment to complete the Cognitively Stimulating Activities Questionnaire (CSA-Q). Exploratory factor analysis identified a 4-factor structure within a split-half sample, after which confirmatory factor analysis cross-validated the model. Retaining 12 CSA-Q items, the 4 factors were dubbed CSA-Processing, CSA-Challenging, CSA-Connecting and CSA-Socializing. Resulting factor weights were analyzed relative to cognitive reserve proxies and neuropsychological domains. All factors except CSA-Challenging were positively linked to cognitive reserve. Neuropsychologically, CSA-Challenging was modestly and positively correlated with processing speed and executive function, while CSA-Processing was positively correlated with executive function. CSA-Socializing had a small positive correlation with processing speed. Our findings offer new insights into late-life stimulating activities, laying the groundwork for longitudinal and intervention studies.
Collapse
Affiliation(s)
- Adam Vujic
- Department of Psychology, Faculty of Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Loren Mowszowski
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Susanne Meares
- Department of Psychology, Faculty of Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer Batchelor
- Department of Psychology, Faculty of Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Di Tella S, De Marco M, Baglio F, Silveri MC, Venneri A. Resting-state functional connectivity is modulated by cognitive reserve in early Parkinson's disease. Front Psychol 2023; 14:1207988. [PMID: 37691780 PMCID: PMC10485267 DOI: 10.3389/fpsyg.2023.1207988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Fronto-striatal disconnection is thought to be at the basis of dysexecutive symptoms in patients with Parkinson's disease (PD). Multiple reserve-related processes may offer resilience against functional decline. Among these, cognitive reserve (CR) refers to the adaptability of cognitive processes. Objective To test the hypothesis that functional connectivity of pathways associated with executive dysfunction in PD is modulated by CR. Methods Twenty-six PD patients and 24 controls underwent resting-state functional magnetic resonance imaging. Functional connectivity was explored with independent component analysis and seed-based approaches. The following networks were selected from the outcome of the independent component analysis: default-mode (DMN), left and right fronto-parietal (l/rFPN), salience (SalN), sensorimotor (SMN), and occipital visual (OVN). Seed regions were selected in the substantia nigra and in the dorsolateral and ventromedial prefrontal cortex for the assessment of seed-based functional connectivity maps. Educational and occupational attainments were used as CR proxies. Results Compared with their counterparts with high CR, PD individuals with low CR had reduced posterior DMN functional connectivity in the anterior cingulate and basal ganglia, and bilaterally reduced connectivity in fronto-parietal regions within the networks defined by the dorsolateral and ventrolateral prefrontal seeds. Hyper-connectivity was detected within medial prefrontal regions when comparing low-CR PD with low-CR controls. Conclusion CR may exert a modulatory effect on functional connectivity in basal ganglia and executive-attentional fronto-parietal networks. In PD patients with low CR, attentional control networks seem to be downregulated, whereas higher recruitment of medial frontal regions suggests compensation via an upregulation mechanism. This upregulation might contribute to maintaining efficient cognitive functioning when posterior cortical function is progressively reduced.
Collapse
Affiliation(s)
- Sonia Di Tella
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | | | - Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
11
|
Duffner LA, DeJong NR, Jansen JFA, Backes WH, de Vugt M, Deckers K, Köhler S. Associations between social health factors, cognitive activity and neurostructural markers for brain health - A systematic literature review and meta-analysis. Ageing Res Rev 2023; 89:101986. [PMID: 37356551 DOI: 10.1016/j.arr.2023.101986] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Social health factors (e.g., social activities or social support) and cognitive activity engagement have been associated with dementia risk, but their neural substrates have not been well established. This systematic review and meta-analysis summarizes the available evidence regarding the association between these factors and cerebral macro- and micro-structure. A comprehensive literature search was conducted in various databases, following predefined criteria. Heterogeneity, risk of publication bias and overall certainty of evidence were assessed using standardized scales and, whenever appropriate, random effects meta-analysis was conducted. Of 6715 identified articles, 43 were included. Overall, consistency of findings was low and methodological heterogeneity high for all outcomes. However, in some studies cognitive and social activities were positively associated with total brain, global and cortical grey matter and hippocampal volume as well as white matter microstructural integrity. Furthermore, structural social network characteristics (e.g., social network size) were associated with regional grey matter volumes, while functional social network characteristics (e.g., social support) were additionally associated with total brain volume. Meta-analyses revealed small but significant partial correlations between cognitive and social activities and hippocampal (three studies; n = 892; rz =0.07) and white matter hyperintensity volume (three studies; n = 2934; rz =-0.04). More prospective studies are needed to assess temporal associations.
Collapse
Affiliation(s)
- Lukas A Duffner
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Nathan R DeJong
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Marjolein de Vugt
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Kay Deckers
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Sebastian Köhler
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
12
|
Intzandt B, Sanami S, Huck J, Villeneuve S, Bherer L, Gauthier CJ. Sex-specific relationships between obesity, physical activity, and gray and white matter volume in cognitively unimpaired older adults. GeroScience 2023; 45:1869-1888. [PMID: 36781598 PMCID: PMC10400512 DOI: 10.1007/s11357-023-00734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Independently, obesity and physical activity (PA) influence cerebral structure in aging, yet their interaction has not been investigated. We examined sex differences in the relationships among PA, obesity, and cerebral structure in aging with 340 participants who completed magnetic resonance imaging (MRI) acquisition to quantify grey matter volume (GMV) and white matter volume (WMV). Height and weight were measured to calculate body mass index (BMI). A PA questionnaire was used to estimate weekly Metabolic Equivalents. The relationships between BMI, PA, and their interaction on GMV Regions of Interest (ROIs) and WMV ROIs were examined. Increased BMI was associated with higher GMV in females, an inverse U relationship was found between PA and GMV in females, and the interaction indicated that regardless of BMI greater PA was associated with enhanced GMV. Males demonstrated an inverse U shape between BMI and GMV, and in males with high PA and had normal weight demonstrated greater GMV than normal weight low PA revealed by the interaction. WMV ROIs had a linear relationship with moderate PA in females, whereas in males, increased BMI was associated with lower WMV as well as a positive relationship with moderate PA and WMV. Males and females have unique relationships among GMV, PA and BMI, suggesting sex-aggregated analyses may lead to biased or non-significant results. These results suggest higher BMI, and PA are associated with increased GMV in females, uniquely different from males, highlighting the importance of sex-disaggregated models. Future work should include other imaging parameters, such as perfusion, to identify if these differences co-occur in the same regions as GMV.
Collapse
Affiliation(s)
- Brittany Intzandt
- School of Graduate Studies, Concordia University, Montreal, H3G 1N1 Canada
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, H3W 1W6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
| | - Safa Sanami
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
| | - Julia Huck
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montreal, H4H 1R3 Canada
- STOP-AD Centre, Montreal Canada, Montreal, H4H 1R3 Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, H3A 1Y2 Montreal Canada, Montreal, Canada
| | - Louis Bherer
- Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, H3W 1W6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Département de Médecine, Université de Montréal, Montreal, H3T 1J4 Canada
| | - Claudine J. Gauthier
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
- Département de Médecine, Université de Montréal, Montreal, H3T 1J4 Canada
- Department of Physics, Concordia University, Montreal, H3G 1M8 Canada
| |
Collapse
|
13
|
Abellaneda-Pérez K, Cattaneo G, Cabello-Toscano M, Solana-Sánchez J, Mulet-Pons L, Vaqué-Alcázar L, Perellón-Alfonso R, Solé-Padullés C, Bargalló N, Tormos JM, Pascual-Leone A, Bartrés-Faz D. Purpose in life promotes resilience to age-related brain burden in middle-aged adults. Alzheimers Res Ther 2023; 15:49. [PMID: 36915148 PMCID: PMC10009845 DOI: 10.1186/s13195-023-01198-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Disease-modifying agents to counteract cognitive impairment in older age remain elusive. Hence, identifying modifiable factors promoting resilience, as the capacity of the brain to maintain cognition and function with aging and disease, is paramount. In Alzheimer's disease (AD), education and occupation are typical cognitive reserve proxies. However, the importance of psychological factors is being increasingly recognized, as their operating biological mechanisms are elucidated. Purpose in life (PiL), one of the pillars of psychological well-being, has previously been found to reduce the deleterious effects of AD-related pathological changes on cognition. However, whether PiL operates as a resilience factor in middle-aged individuals and what are the underlying neural mechanisms remain unknown. METHODS Data was obtained from 624 middle-aged adults (mean age 53.71 ± 6.9; 303 women) from the Barcelona Brain Health Initiative cohort. Individuals with lower (LP; N = 146) and higher (HP; N = 100) PiL rates, according to the division of this variable into quintiles, were compared in terms of cognitive status, a measure reflecting brain burden (white matter lesions; WMLs), and resting-state functional connectivity, examining system segregation (SyS) parameters using 14 common brain circuits. RESULTS Neuropsychological status and WMLs burden did not differ between the PiL groups. However, in the LP group, greater WMLs entailed a negative impact on executive functions. Subjects in the HP group showed lower SyS of the dorsal default-mode network (dDMN), indicating lesser segregation of this network from other brain circuits. Specifically, HP individuals had greater inter-network connectivity between specific dDMN nodes, including the frontal cortex, the hippocampal formation, the midcingulate region, and the rest of the brain. Greater functional connectivity in some of these nodes positively correlated with cognitive performance. CONCLUSION Expanding previous findings on AD pathology and advanced age, the present results suggest that higher rates of PiL may promote resilience against brain changes already observable in middle age. Furthermore, having a purposeful life implies larger functional integration of the dDMN, which may potentially reflect greater brain reserve associated to better cognitive function.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain. .,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain. .,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain.
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - María Cabello-Toscano
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Lídia Mulet-Pons
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Neuroradiology Section, Radiology Department, Diagnostic Image Center, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep M Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.
| |
Collapse
|
14
|
Grasset L, Proust-Lima C, Mangin JF, Habert MO, Dubois B, Paquet C, Hanon O, Gabelle A, Ceccaldi M, Annweiler C, David R, Jonveaux T, Belin C, Julian A, Rouch-Leroyer I, Pariente J, Locatelli M, Chupin M, Chêne G, Dufouil C, on behalf of the Memento Cohort Study group. Explaining the association between social and lifestyle factors and cognitive functions: a pathway analysis in the Memento cohort. Alzheimers Res Ther 2022; 14:68. [PMID: 35585559 PMCID: PMC9115948 DOI: 10.1186/s13195-022-01013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
This work aimed to investigate the potential pathways involved in the association between social and lifestyle factors, biomarkers of Alzheimer’s disease and related dementia (ADRD), and cognition.
Methods
The authors studied 2323 participants from the Memento study, a French nationwide clinical cohort. Social and lifestyle factors were education level, current household incomes, physical activity, leisure activities, and social network from which two continuous latent variables were computed: an early to midlife (EML) and a latelife (LL) indicator. Brain magnetic resonance imaging (MRI), lumbar puncture, and amyloid-positron emission tomography (PET) were used to define three latent variables: neurodegeneration, small vessel disease (SVD), and AD pathology. Cognitive function was defined as the underlying factor of a latent variable with four cognitive tests. Structural equation models were used to evaluate cross-sectional pathways between social and lifestyle factors and cognition.
Results
Participants’ mean age was 70.9 years old, 62% were women, 28% were apolipoprotein-ε4 carriers, and 59% had a Clinical Dementia Rating (CDR) score of 0.5. Higher early to midlife social indicator was only directly associated with better cognitive function (direct β = 0.364 (0.322; 0.405), with no indirect pathway through ADRD biomarkers (total β = 0.392 (0.351; 0.429)). In addition to a direct effect on cognition (direct β = 0.076 (0.033; 0.118)), the association between latelife lifestyle indicator and cognition was also mostly mediated by an indirect effect through lower neurodegeneration (indirect β = 0.066 (0.042; 0.090) and direct β = − 0.116 (− 0.153; − 0.079)), but not through AD pathology nor SVD.
Conclusions
Early to midlife social factors are directly associated with higher cognitive functions. Latelife lifestyle factors may help preserve cognitive functions through lower neurodegeneration.
Collapse
|
15
|
Felisatti F, Gonneaud J, Palix C, Garnier-Crussard A, Mézenge F, Landeau B, Chocat A, Quillard A, Ferrand-Devouge E, de La Sayette V, Vivien D, Chételat G, Poisnel G. Role of Cardiovascular Risk Factors on the Association Between Physical Activity and Brain Integrity Markers in Older Adults. Neurology 2022; 98:e2023-e2035. [PMID: 35418459 PMCID: PMC9162049 DOI: 10.1212/wnl.0000000000200270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Physical activity has been associated with a decreased risk for dementia, but the mechanisms underlying this association remain to be determined. Our objective was to assess whether cardiovascular risk factors mediate the association between physical activity and brain integrity markers in older adults. METHODS At baseline, participants from the Age-Well study completed a physical activity questionnaire and underwent cardiovascular risk factors collection (systolic blood pressure, body mass index [BMI], current smoker status, and high-density lipoprotein cholesterol, total cholesterol, and insulin levels) and multimodal neuroimaging (structural MRI, diffusion MRI, FDG-PET, and florbetapir PET). Multiple regressions were conducted to assess the association among physical activity, cardiovascular risk factors, and neuroimaging. Mediation analyses were performed to test whether cardiovascular risk factors mediated the associations between physical activity and neuroimaging. RESULTS A total of 134 cognitively unimpaired older adults (≥65 years) were included. Higher physical activity was associated with higher gray matter (GM) volume (β = 0.174, p = 0.030) and cerebral glucose metabolism (β = 0.247, p = 0.019) but not with amyloid deposition or white matter integrity. Higher physical activity was associated with lower insulin level and BMI but not with the other cardiovascular risk factors. Lower insulin level and BMI were related to higher GM volume but not to cerebral glucose metabolism. When controlling for insulin level and BMI, the association between physical activity and cerebral glucose metabolism remained unchanged, while the association with GM volume was lost. When insulin level and BMI were entered in the same model, only BMI remained a significant predictor of GM volume. Mediation analyses confirmed that insulin level and BMI mediated the association between physical activity and GM volume. Analyses were replicated within Alzheimer disease-sensitive regions and results remained overall similar. DISCUSSION The association between physical activity and GM volume is mediated by changes in insulin level and BMI. In contrast, the association with cerebral glucose metabolism seems to be independent from cardiovascular risk factors. Older adults engaging in physical activity experience cardiovascular benefits through the maintenance of a lower BMI and insulin level, resulting in greater structural brain integrity. This study has implications for understanding how physical activity affects brain health and may help in developing strategies to prevent or delay age-related decline. TRIAL REGISTRATION INFORMATION EudraCT: 2016-002,441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.
Collapse
Affiliation(s)
- Francesca Felisatti
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Julie Gonneaud
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Cassandre Palix
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Antoine Garnier-Crussard
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Florence Mézenge
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Brigitte Landeau
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Anne Chocat
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Anne Quillard
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Eglantine Ferrand-Devouge
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Vincent de La Sayette
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Denis Vivien
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Gaël Chételat
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Géraldine Poisnel
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| |
Collapse
|
16
|
Domingos C, Picó-Pérez M, Magalhães R, Moreira M, Sousa N, Pêgo JM, Santos NC. Free-Living Physical Activity Measured With a Wearable Device Is Associated With Larger Hippocampus Volume and Greater Functional Connectivity in Healthy Older Adults: An Observational, Cross-Sectional Study in Northern Portugal. Front Aging Neurosci 2021; 13:729060. [PMID: 34916921 PMCID: PMC8670087 DOI: 10.3389/fnagi.2021.729060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023] Open
Abstract
Several studies using neuroimaging techniques have established a positive relationship between physical activity (PA) and brain structure and function in older populations. However, the use of subjective measures of PA and the lack of multimodal neuroimaging approaches have limited the understanding of this association. This study aims to explore the associations between PA and brain structure and function by objectively evaluating PA. Community-dwelling cognitively healthy older adults (without diagnosed cognitive, neurological or degenerative disease) were recruited from local health centers and local gyms. In a cross-sectional design, participants were evaluated regarding cognitive, clinical, anthropometric, physical performance, and lifestyle characteristics. A 3 T magnetic resonance imaging (MRI) was performed for structural and functional brain measures. PA time and level was assessed via a Xiaomi Mi Band 2® worn for 15 consecutive days. Participants (n = 110, after inclusion/exclusion criteria and completion of all evaluations) were 58 females (56%), with an average age of 68.42 years old (SD = 3.12), most were active. Multiple regression analysis revealed that higher time spent in vigorous PA associated with larger left parahippocampal gyrus and right hippocampus volumes. Furthermore, the analysis of the functional connectome indicated a greater functional connectivity (FC) between the frontal gyrus, cingulate gyrus, occipital inferior lobe for light, moderate, and total PA time, and sedentary time associated with lower FC in the same networks. Overall, the structural and functional findings may provide evidence on the relevant association between PA and brain health in aging.
Collapse
Affiliation(s)
- Célia Domingos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal.,iCognitus4ALL - IT Solutions, Braga, Portugal.,Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Ricardo Magalhães
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Mariana Moreira
- ENCONTRAR+SE-Association for the Promotion of Mental Health, Porto, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal.,Associação Centro de Medicina P5 (P5), School of Medicine, University of Minho, Braga, Portugal
| | - José Miguel Pêgo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal.,iCognitus4ALL - IT Solutions, Braga, Portugal.,Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga (2CA-B), Braga, Portugal.,Associação Centro de Medicina P5 (P5), School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
17
|
Anatürk M, Suri S, Smith SM, Ebmeier KP, Sexton CE. Leisure Activities and Their Relationship With MRI Measures of Brain Structure, Functional Connectivity, and Cognition in the UK Biobank Cohort. Front Aging Neurosci 2021; 13:734866. [PMID: 34867271 PMCID: PMC8635062 DOI: 10.3389/fnagi.2021.734866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
Introduction: This study aimed to evaluate whether engagement in leisure activities is linked to measures of brain structure, functional connectivity, and cognition in early old age. Methods: We examined data collected from 7,152 participants of the United Kingdom Biobank (UK Biobank) study. Weekly participation in six leisure activities was assessed twice and a cognitive battery and 3T MRI brain scan were administered at the second visit. Based on responses collected at two time points, individuals were split into one of four trajectory groups: (1) stable low engagement, (2) stable weekly engagement, (3) low to weekly engagement, and (4) weekly to low engagement. Results: Consistent weekly attendance at a sports club or gym was associated with connectivity of the sensorimotor functional network with the lateral visual (β = 0.12, 95%CI = [0.07, 0.18], FDR q = 2.48 × 10-3) and cerebellar (β = 0.12, 95%CI = [0.07, 0.18], FDR q = 1.23 × 10-4) networks. Visiting friends and family across the two timepoints was also associated with larger volumes of the occipital lobe (β = 0.15, 95%CI = [0.08, 0.21], FDR q = 0.03). Additionally, stable and weekly computer use was associated with global cognition (β = 0.62, 95%CI = [0.35, 0.89], FDR q = 1.16 × 10-4). No other associations were significant (FDR q > 0.05). Discussion: This study demonstrates that not all leisure activities contribute to cognitive health equally, nor is there one unifying neural signature across diverse leisure activities.
Collapse
Affiliation(s)
- Melis Anatürk
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Stephen M. Smith
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Klaus P. Ebmeier
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Claire E. Sexton
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Ourry V, Marchant NL, Schild AK, Coll-Padros N, Klimecki OM, Krolak-Salmon P, Goldet K, Reyrolle L, Bachelet R, Sannemann L, Meiberth D, Demnitz-King H, Whitfield T, Botton M, Lebahar J, Gonneaud J, de Flores R, Molinuevo JL, Jessen F, Vivien D, de la Sayette V, Valenzuela MJ, Rauchs G, Wirth M, Chételat G, Arenaza-Urquijo EM. Harmonisation and Between-Country Differences of the Lifetime of Experiences Questionnaire in Older Adults. Front Aging Neurosci 2021; 13:740005. [PMID: 34720992 PMCID: PMC8551756 DOI: 10.3389/fnagi.2021.740005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The Lifetime of Experiences Questionnaire (LEQ) assesses complex mental activity across the life-course and has been associated with brain and cognitive health. The different education systems and occupation classifications across countries represent a challenge for international comparisons. The objectives of this study were four-fold: to adapt and harmonise the LEQ across four European countries, assess its validity across countries, explore its association with brain and cognition and begin to investigate between-country differences in life-course mental activities. Method: The LEQ was administered to 359 cognitively unimpaired older adults (mean age and education: 71.2, 13.2 years) from IMAP and EU-funded Medit-Ageing projects. Education systems, classification of occupations and scoring guidelines were adapted to allow comparisons between France, Germany, Spain and United Kingdom. We assessed the LEQ's (i) concurrent validity with a similar instrument (cognitive activities questionnaire - CAQ) and its structural validity by testing the factors' structure across countries, (ii) we investigated its association with cognition and neuroimaging, and (iii) compared its scores between countries. Results: The LEQ showed moderate to strong positive associations with the CAQ and revealed a stable multidimensional structure across countries that was similar to the original LEQ. The LEQ was positively associated with global cognition. Between-country differences were observed in leisure activities across the life-course. Conclusions: The LEQ is a promising tool for assessing the multidimensional construct of cognitive reserve and can be used to measure socio-behavioural determinants of cognitive reserve in older adults across countries. Longitudinal studies are warranted to test further its clinical utility.
Collapse
Affiliation(s)
- Valentin Ourry
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen, France.,Normandie University, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH, Caen, France
| | - Natalie L Marchant
- Division of Psychiatry, University College London, London, United Kingdom
| | - Ann-Katrin Schild
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nina Coll-Padros
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Olga M Klimecki
- Clinical Psychology and Behavioural Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Pierre Krolak-Salmon
- Clinical and Research Memory Center, Hospices Civils de Lyon, Université de Lyon, INSERM, Lyon, France
| | - Karine Goldet
- Hospices Civils de Lyon, Institut du Vieillissement, CRC Vieillissement-Cerveau-Fragilite, Lyon, France
| | - Leslie Reyrolle
- Hospices Civils de Lyon, Institut du Vieillissement, CRC Vieillissement-Cerveau-Fragilite, Lyon, France
| | - Romain Bachelet
- Hospices Civils de Lyon, Institut du Vieillissement, CRC Vieillissement-Cerveau-Fragilite, Lyon, France
| | - Lena Sannemann
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Dix Meiberth
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Tim Whitfield
- Division of Psychiatry, University College London, London, United Kingdom
| | - Maëlle Botton
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen, France
| | - Julie Lebahar
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen, France
| | - Julie Gonneaud
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen, France
| | - Robin de Flores
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen, France
| | - José Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Frank Jessen
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen, France.,Département de Recherche Clinique, CHU Caen-Normandie, Caen, France
| | - Vincent de la Sayette
- Normandie University, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH, Caen, France.,Service de Neurologie, CHU de Caen, Caen, France
| | - Michael J Valenzuela
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Skin2Neuron Pty Ltd., Sydney, NSW, Australia
| | - Géraldine Rauchs
- Normandie University, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH, Caen, France
| | - Miranka Wirth
- German Centre for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Gaël Chételat
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen, France
| | - Eider M Arenaza-Urquijo
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen, France.,Barcelonabeta Brain Research Center, Fundación Pasqual Maragall, Barcelona, Spain
| | | |
Collapse
|
19
|
Vujic A, Mowszowski L, Meares S, Duffy S, Batchelor J, Naismith SL. Engagement in cognitively stimulating activities in individuals with Mild Cognitive Impairment: relationships with neuropsychological domains and hippocampal volume. AGING NEUROPSYCHOLOGY AND COGNITION 2021; 29:1000-1021. [PMID: 34330189 DOI: 10.1080/13825585.2021.1955822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Late-life participation in cognitively stimulating activities is thought to contribute to an individual's cognitive reserve and thus protect against cognitive decline, yet its association with clinical markers of neurodegeneration is not well established. To investigate, we developed a 13-item self-report "cognitively stimulating activities" questionnaire (CSA-Q), which was completed by a community sample of 269 older adults (>50 years) at risk of dementia. Participants met criteria for Mild Cognitive Impairment (MCI) and were classified as amnestic (aMCI; n = 93) or non-amnestic (naMCI; n = 176). Weighted CSA-Q dimensions were calculated for activity intensity, mental engagement and social engagement via a panel of 23 inter-raters. The CSA-Q mean and its dimensions were examined in relation to: (a) demographics (age, sex), (b) cognitive reserve proxies (years of education, premorbid IQ), (c) neuropsychological markers across cognitive domains of executive function, processing speed, learning, and memory storage, and (d) neuroimaging markers (left and right hippocampal volume). Analyses were conducted for all MCI, as well as for aMCI and naMCI sub-types. The CSA-Q was found to have concurrent validity with cognitive reserve proxies. Among all MCI, the CSA-Q dimensions of intensity and mental engagement had moderate associations with left hippocampal volume, but not with neuropsychological performance. For naMCI, the CSA-Q had moderate associations with left hippocampal volume, and small associations with aspects of executive functioning and processing speed. No equivalent associations emerged for the aMCI subtype. Our findings show that the CSA-Q may be particularly useful for older adults with non-amnestic cognitive deficits.
Collapse
Affiliation(s)
- Adam Vujic
- Department of Psychology, Faculty of Human Sciences, Macquarie University, Sydney, Australia.,Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Australia
| | - Loren Mowszowski
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Australia.,Department of Science, School of Psychology, University of Sydney, Sydney, Australia
| | - Susanne Meares
- Department of Psychology, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| | - Shantel Duffy
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Australia.,Charles Perkins Centre, University of Sydney, Australia.,Faculty of Health Sciences, Discipline of Exercise and Sport Science, University of Sydney, Sydney, Australia
| | - Jennifer Batchelor
- Department of Psychology, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Australia.,Department of Science, School of Psychology, University of Sydney, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Australia
| |
Collapse
|
20
|
Kokubun K, Pineda JCD, Yamakawa Y. Unhealthy lifestyles and brain condition: Examining the relations of BMI, living alone, alcohol intake, short sleep, smoking, and lack of exercise with gray matter volume. PLoS One 2021; 16:e0255285. [PMID: 34329345 PMCID: PMC8323871 DOI: 10.1371/journal.pone.0255285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Unhealthy lifestyles are damaging to the brain. Previous studies have indicated that body mass index (BMI), alcohol intake, short sleep, smoking, and lack of exercise are negatively associated with gray matter volume (GMV). Living alone has also been found to be related to GMV through lowered subjective happiness. However, to our knowledge, no GMV study has dealt with these unhealthy lifestyles simultaneously. By our analyses based on 142 healthy Japanese participants, BMI, alcohol intake, living alone, and short sleep were negatively associated with the gray-matter brain healthcare quotient (GM-BHQ), an MRI-based normalized GMV, after controlling for age, sex, and facility, not only individually but also when they were entered into a single regression model. Moreover, there were small but significant differences in the proportion of the variance for GM-BHQ explained by variables in a regression model (measured by R squared) between when these unhealthy variables were entered in an equation at the same time and when they were entered separately, with the former larger than the latter. However, smoking and lack of exercise were not significantly associated with GM-BHQ. Results indicate that some kinds of unhealthy lifestyles are somewhat harmful on their own, but may become more noxious to brain condition if practiced simultaneously, although its difference may not be large. To our knowledge, this study is the first to show that overlapping unhealthy lifestyles affects the brains of healthy adults.
Collapse
Affiliation(s)
- Keisuke Kokubun
- Open Innovation Institute, Kyoto University, Kyoto, Japan
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| | | | - Yoshinori Yamakawa
- Open Innovation Institute, Kyoto University, Kyoto, Japan
- ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan
- Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan
- Brain Impact, Kyoto, Japan
| |
Collapse
|
21
|
Boyle R, Knight SP, De Looze C, Carey D, Scarlett S, Stern Y, Robertson IH, Kenny RA, Whelan R. Verbal intelligence is a more robust cross-sectional measure of cognitive reserve than level of education in healthy older adults. Alzheimers Res Ther 2021; 13:128. [PMID: 34253231 PMCID: PMC8276413 DOI: 10.1186/s13195-021-00870-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cognitive reserve is most commonly measured using socio-behavioural proxy variables. These variables are easy to collect, have a straightforward interpretation, and are widely associated with reduced risk of dementia and cognitive decline in epidemiological studies. However, the specific proxies vary across studies and have rarely been assessed in complete models of cognitive reserve (i.e. alongside both a measure of cognitive outcome and a measure of brain structure). Complete models can test independent associations between proxies and cognitive function in addition to the moderation effect of proxies on the brain-cognition relationship. Consequently, there is insufficient empirical evidence guiding the choice of proxy measures of cognitive reserve and poor comparability across studies. METHOD In a cross-sectional study, we assessed the validity of 5 common proxies (education, occupational complexity, verbal intelligence, leisure activities, and exercise) and all possible combinations of these proxies in 2 separate community-dwelling older adult cohorts: The Irish Longitudinal Study on Ageing (TILDA; N = 313, mean age = 68.9 years, range = 54-88) and the Cognitive Reserve/Reference Ability Neural Network Study (CR/RANN; N = 234, mean age = 64.49 years, range = 50-80). Fifteen models were created with 3 brain structure variables (grey matter volume, hippocampal volume, and mean cortical thickness) and 5 cognitive variables (verbal fluency, processing speed, executive function, episodic memory, and global cognition). RESULTS No moderation effects were observed. There were robust positive associations with cognitive function, independent of brain structure, for 2 individual proxies (verbal intelligence and education) and 16 composites (i.e. combinations of proxies). Verbal intelligence was statistically significant in all models. Education was significant only in models with executive function as the cognitive outcome variable. Three robust composites were observed in more than two-thirds of brain-cognition models: the composites of (1) occupational complexity and verbal intelligence, (2) education and verbal intelligence, and (3) education, occupational complexity, and verbal intelligence. However, no composite had larger average effects nor was more robust than verbal intelligence alone. CONCLUSION These results support the use of verbal intelligence as a proxy measure of CR in cross-sectional studies of cognitively healthy older adults.
Collapse
Affiliation(s)
- R Boyle
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - S P Knight
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - C De Looze
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - D Carey
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - S Scarlett
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Y Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York City, USA
| | - I H Robertson
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - R A Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- Mercer's Institute for Successful Ageing, St. James's Hospital, Dublin, Ireland
| | - R Whelan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
22
|
Seven-Day Pedometer-Assessed Step Counts and Brain Volume: A Population-Based Observational Study. J Phys Act Health 2021; 18:157-164. [PMID: 33429361 DOI: 10.1123/jpah.2019-0659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/05/2020] [Accepted: 10/20/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND To investigate the association between step counts and brain volumes (BVs)-global and 6 a priori selected cognition-related regions of interest-in Japanese men aged 40-79 years. METHODS The authors analyzed data from 680 cognitively intact participants of the Shiga Epidemiological Study of Subclinical Atherosclerosis-a population-based observational study. Using multivariable linear regression, the authors assessed cross-sectional associations between 7-day step counts at baseline (2006-2008) and BVs at follow-up (2012-2015) for age-stratified groups (<60 y and ≥60 y). RESULTS In the older adults ≥60 years, step counts at baseline (per 1000 steps) were associated with total BV at follow-up (β = 1.42, P = .022) while adjusted for potential covariates. Regions of interest-based analyses yielded an association of step counts with both prefrontal cortexes (P < .05) in older adults, while the left entorhinal cortex showed marginally significant association (P = .05). No association was observed with hippocampus, parahippocampal, cingulum, and cerebellum. No association was observed in younger adults (<60 y). CONCLUSIONS The authors found a positive association between 7-day step counts and BVs, including prefrontal cortexes, and left entorhinal cortex in apparently healthy Japanese men.
Collapse
|
23
|
Domingos C, Pêgo JM, Santos NC. Effects of physical activity on brain function and structure in older adults: A systematic review. Behav Brain Res 2020; 402:113061. [PMID: 33359570 DOI: 10.1016/j.bbr.2020.113061] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023]
Abstract
Despite increasing evidence that physical activity (PA) contributes to brain health in older individuals, both at the level of brain structure and function, this relationship is not yet well established. To explore this potential association, a systematic literature search was performed using PubMed, Scopus, and Web of Science, adhering to PRISMA guidelines. A total of 32 studies met the eligibility criteria: 24 cross-sectional and 8 longitudinal. Results from structural Magnetic Resonance Imaging (MRI) showed that PA associated with larger brain volumes (less brain atrophy) specifically in brain regions vulnerable to dementia, comprising the hippocampus, temporal, and frontal regions. Furthermore, functional MRI (fMRI) showed greater task-relevant activity in brain areas recruited in executive function and memory tasks. However, the dose-response relationship is unclear due to the high variability in PA measures. Further research using objective measures is needed to better understand which PA type, intensity, frequency, and duration, has the greatest protective effect on brain health. Findings highlight the importance of PA in both cognitive decline and dementia prevention.
Collapse
Affiliation(s)
- C Domingos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal; iCognitus4ALL - IT Solutions, Braga, Portugal; Clinical Academic Center-Braga (2CA-B), Braga, Portugal
| | - J M Pêgo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal; iCognitus4ALL - IT Solutions, Braga, Portugal; Clinical Academic Center-Braga (2CA-B), Braga, Portugal
| | - N C Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal; Clinical Academic Center-Braga (2CA-B), Braga, Portugal; Associação Centro de Medicina Digital P5 (ACMP5), Braga, Portugal.
| |
Collapse
|
24
|
Leisman G, Moustafa AA, Biswas S. Editorial: The Neurology of Global Lifestyle Change. Front Public Health 2020; 8:614598. [PMID: 33330347 PMCID: PMC7710802 DOI: 10.3389/fpubh.2020.614598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gerry Leisman
- Faculty of Health Sciences, University of Haifa, Haifa, Israel
- Facultad ‘Manuel Fajardo' Instituto de Neurología y Neurocirugía, Neurofisiología Clínica, Universidad de Ciencias Médicas, Ciudad de la Habana, Cuba
- *Correspondence: Gerry Leisman
| | - Ahmed A. Moustafa
- School of Social Sciences and Psychology, The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, NSW, Australia
| | - Seema Biswas
- British Medical Journal of Case Reports, London, United Kingdom
| |
Collapse
|
25
|
Zakharov VV, Novikova MS, Vakhnina NV. [Prevention of dementia in patients with mild cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:167-174. [PMID: 32929941 DOI: 10.17116/jnevro2020120081167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cognitive impairment is one of the most common consequences of brain dysfunction. Nowadays, there is an increasing interest in the diagnosis and treatment of cognitive impairment without dementia, as a stage of cognitive deficit spectrum that could be controlled. The article discusses the current approaches to the management of patients with mild cognitive impairment including non-pharmacological strategies as well as medical antioxidant treatment.
Collapse
Affiliation(s)
- V V Zakharov
- Sechenov First Moscow State Medical University, Moscow,Russia
| | - M S Novikova
- Sechenov First Moscow State Medical University, Moscow,Russia
| | - N V Vakhnina
- Sechenov First Moscow State Medical University, Moscow,Russia
| |
Collapse
|
26
|
Cardiometabolic determinants of early and advanced brain alterations: Insights from conventional and novel MRI techniques. Neurosci Biobehav Rev 2020; 115:308-320. [DOI: 10.1016/j.neubiorev.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
|
27
|
Pettigrew C, Soldan A, Zhu Y, Cai Q, Wang MC, Moghekar A, Miller MI, Singh B, Martinez O, Fletcher E, DeCarli C, Albert M. Cognitive reserve and rate of change in Alzheimer's and cerebrovascular disease biomarkers among cognitively normal individuals. Neurobiol Aging 2019; 88:33-41. [PMID: 31932050 DOI: 10.1016/j.neurobiolaging.2019.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 12/06/2019] [Indexed: 01/03/2023]
Abstract
We examined whether cognitive reserve (CR) impacts level of, or rate of change in, biomarkers of Alzheimer's disease (AD) and small-vessel cerebrovascular disease in >250 individuals who were cognitively normal and middle-aged and older at the baseline. The four primary biomarker categories commonly examined in studies of AD were measured longitudinally: cerebrospinal fluid measures of amyloid (A) and tau (T); cerebrospinal fluid and neuroimaging measures of neuronal injury (N); and neuroimaging measures of white matter hyperintensities (WMHs) to assess cerebrovascular pathology (V). CR was indexed by a composite score including years of education, reading, and vocabulary test performance. Higher CR was associated with lower levels of WMHs, particularly among those who subsequently progressed from normal cognition to MCI. CR was not associated with WMH trajectories. In addition, CR was not associated with either levels of, or rate of change in, A/T/N biomarkers. This may suggest that higher CR is associated with lifestyle factors that reduce levels of cerebrovascular disease, allowing individuals with higher CR to better tolerate other types of pathology.
Collapse
Affiliation(s)
- Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuxin Zhu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Qing Cai
- Lyft, Inc., San Francisco, CA, USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Baljeet Singh
- Department of Neurology, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Oliver Martinez
- Department of Neurology, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Evan Fletcher
- Department of Neurology, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Fleck JI, Arnold M, Dykstra B, Casario K, Douglas E, Morris O. Distinct Functional Connectivity Patterns Are Associated With Social and Cognitive Lifestyle Factors: Pathways to Cognitive Reserve. Front Aging Neurosci 2019; 11:310. [PMID: 31798441 PMCID: PMC6863775 DOI: 10.3389/fnagi.2019.00310] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of diverse lifestyle factors in sustaining cognition during aging and delaying the onset of decline in Alzheimer's disease and related dementias cannot be overstated. We explored the influence of cognitive, social, and physical lifestyle factors on resting-state lagged linear connectivity (LLC) in high-density electroencephalography (EEG) in adults, ages 35-75 years. Diverse lifestyle factors build cognitive reserve (CR), protecting cognition in the presence of physical brain decline. Differences in LLC were examined between high- and low-CR groups formed using cognitive, social, and exercise lifestyle factors. LLC is a measure of lagged coherence that excludes zero phase contributions and limits the effects of volume conduction on connectivity estimates. Significant differences in LLC were identified for cognitive and social factors, but not exercise. Participants high in social CR possessed greater local and long-range connectivity in theta and low alpha for eyes-open and eyes-closed recording conditions. In contrast, participants high in cognitive CR exhibited greater eyes-closed long-range connectivity between the occipital lobe and other cortical regions in low alpha. Greater eyes-closed local LLC in delta was also present in men high in cognitive CR. Cognitive factor scores correlated with sustained attention, whereas social factors scores correlated with spatial working memory. Gender was a significant covariate in our analyses, with women displaying higher local and long-range LLC in low beta. Our findings support distinct relationships between CR and LLC, as well as CR and cognitive function for cognitive and social subcomponents. These patterns reflect the importance of diverse lifestyle factors in building CR.
Collapse
Affiliation(s)
- Jessica I. Fleck
- School of Social and Behavioral Sciences, Stockton University, Galloway, NJ, United States
| | | | | | | | | | | |
Collapse
|
29
|
Marcori AJ, Okazaki VHA. Motor repertoire and gray matter plasticity: Is there a link? Med Hypotheses 2019; 130:109261. [PMID: 31383345 DOI: 10.1016/j.mehy.2019.109261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 01/25/2023]
Abstract
There is a considerable amount of evidence sustaining that aerobic exercise causes positive modifications in gray matter density (GMD), especially in the hippocampus and anterior cingulate cortex. However, recent experimental researches with motor learning paradigms are consistently showing that increasing cardiorespiratory capacity is not the only mechanism able to promote positive outcomes in GMD with exercise. In the present study, we present a theoretical suggestion that expanding one's motor repertoire is another primary mechanism related to the increases in GMD. Motor repertoire can be understood as the number of movement possibilities and motor skills that can be performed by a person. Supporting our suggestion, professional athletes present higher GMD than controls, and experimental protocols repeatedly observes positive changes in GMD following motor learning. The relationship between physical inactivity, amputation, and lower GMD values also gives further support for the hypothesis. Follow-up studies monitoring GMD before and after training programs that stimulate new motor skill learning are essential to confirm this proposition. The brain regions related to sensory processing of the motor tasks and the cortical areas related to motor control (e.g., primary motor cortex, supplementary motor area) are probably the ones most affected by plastic changes. If the hypothesis turns out to be reliable, dancing, gymnastics, and other movement-rich activities are thoroughly encouraged for this purpose. Therefore, this approach might be used to attenuate GMD loss related to aging or another condition, such as Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Alexandre Jehan Marcori
- Motor Neuroscience Research Group, Londrina State University, Rodovia Celso Garcia Cid, PR445, Km 380, Brazil.
| | - Victor Hugo Alves Okazaki
- Motor Neuroscience Research Group, Londrina State University, Rodovia Celso Garcia Cid, PR445, Km 380, Brazil
| |
Collapse
|
30
|
Jiménez-Pavón D, Carbonell-Baeza A, Lavie CJ. Promoting the Assessment of Physical Activity and Cardiorespiratory Fitness in Assessing the Role of Vascular Risk on Cognitive Decline in Older Adults. Front Physiol 2019; 10:670. [PMID: 31214046 PMCID: PMC6554421 DOI: 10.3389/fphys.2019.00670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/13/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- David Jiménez-Pavón
- MOVE-IT Research Group and Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Ana Carbonell-Baeza
- MOVE-IT Research Group and Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain.,Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Carl J Lavie
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School - The University of Queensland's School of Medicine, New Orleans, LA, United States
| |
Collapse
|
31
|
Chételat G. Multimodal Neuroimaging in Alzheimer's Disease: Early Diagnosis, Physiopathological Mechanisms, and Impact of Lifestyle. J Alzheimers Dis 2019; 64:S199-S211. [PMID: 29504542 PMCID: PMC6004909 DOI: 10.3233/jad-179920] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last ten years, we have conducted research in Alzheimer's disease (AD) using multimodal neuroimaging techniques to improve diagnosis, further our understanding of the pathological mechanisms underlying the disease, and support the development of innovative non-pharmacological preventive strategies. Our works emphasized the interest of hippocampal subfield volumetry in early diagnosis and the need for further development in this field including optimization, standardization, and automatization of the techniques. Also, we conducted several studies in cognitively intact at-risk elderly (e.g., subjective cognitive decline patients and APOE4 carriers) to better identify biomarkers associated with increased risk of developing AD. Regarding the physiopathological mechanisms, specific multimodal neuroimaging techniques allowed us to highlight the relevance of diaschisis, the mismatch between neurodegeneration and local Aβ deposition and the regional variation in the mechanisms underlying structural or functional alterations. Further works integrating other biomarkers known to play a role in the physiopathology of AD (tau, TDP-43, inflammation, etc.) in a longitudinal design would be useful to get a comprehensive understanding of their relative role, sequence, and causal relationships. Our works also highlighted the relevance of functional connectivity in further understanding the specificity of cognitive deficits in AD and how connectivity differentially influences the propagation of the different AD biomarkers. Finally, we conducted several studies on the links between lifestyle factors and neuroimaging biomarkers to unravel mechanisms of reserve. Further efforts are needed to better understand which lifestyle factor, or combination of factors, impact on AD pathology, and when, to help translating our knowledge to training programs that might prevent or delay brain and cognitive changes leading to AD dementia.
Collapse
Affiliation(s)
- Gaël Chételat
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| |
Collapse
|
32
|
Lee S, Kim EY, Shin C. Longitudinal association between brain volume change and gait speed in a general population. Exp Gerontol 2019; 118:26-30. [PMID: 30611726 DOI: 10.1016/j.exger.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/11/2018] [Accepted: 01/03/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine the association between brain structural changes and gait speed in a four-year longitudinal prospective cohort study. MEASUREMENTS A total of 767 well-functioning community-dwelling participants, free of arthritis, silent infarct, stroke, dementia, head injury, and cancer, completed baseline brain magnetic resonance imaging scan and gait speed tests between 2011 and 2014, and follow-up tests between 2015 and 2017. The gait test consisted of measuring the elapsed time to walk four meters at usual speed. To estimate whether brain volume changes predict gait speed decline at follow-up, a generalized linear regression model was used after adjusting for potential confounding factors including gait speed at baseline. RESULTS Participants who experienced ≥0.05 m/s gait speed decline, previously defined as a clinically meaningful decline, were more likely to be women, less likely to be smokers, and had lower physical activity scores (p = 0.003, p = 0.025, and p = 0.006, respectively), as compared to those who did not experience the decline. Also, they demonstrated smaller volumes of hippocampus, total gray matter, parietal gray matter, temporal gray matter, and temporal white matter (p = 0.004, p = 0.042, p = 0.021, p = 0.001, and p = 0.004, respectively). Even after correcting the significance level due to multiple comparisons, overall gray matter and overall white matter volume changes during four-year follow-up period showed significant associations with gait speed at follow-up (p < 0.001 and p = 0.002). Regarding region-specific volumes, frontal white matter and parietal gray matter volume changes demonstrated significant associations with gait speed (p = 0.002, p = 0.004, respectively). CONCLUSION In a four-year longitudinal study among 767 well-functioning community-dwelling healthy participants from a general population, we observed a significant association between brain volume changes and gait speed.
Collapse
Affiliation(s)
- Sunghee Lee
- Department of Food and Nutrition, College of Health Science, Kangwon National University, Samcheok, Republic of Korea
| | - Eun Young Kim
- Institute of Human Genomic Study, School of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Chol Shin
- Institute of Human Genomic Study, School of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea; Division of Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University, Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
33
|
Okonkwo OC, Vemuri P. Stemming the Alzheimer tsunami: introduction to the special issue on reserve and resilience in Alzheimer's disease. Brain Imaging Behav 2018; 11:301-303. [PMID: 28116651 DOI: 10.1007/s11682-017-9677-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ozioma C Okonkwo
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792, USA. .,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA. .,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
34
|
Anatürk M, Demnitz N, Ebmeier KP, Sexton CE. A systematic review and meta-analysis of structural magnetic resonance imaging studies investigating cognitive and social activity levels in older adults. Neurosci Biobehav Rev 2018; 93:71-84. [PMID: 29940239 PMCID: PMC6562200 DOI: 10.1016/j.neubiorev.2018.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/29/2022]
Abstract
Population aging has prompted considerable interest in identifying modifiable factors that may help protect the brain and its functions. Collectively, epidemiological studies show that leisure activities with high mental and social demands are linked with better cognition in old age. The extent to which socio-intellectual activities relate to the brain's structure is, however, not yet fully understood. This systematic review and meta-analysis summarizes magnetic resonance imaging studies that have investigated whether cognitive and social activities correlate with measures of gray and white matter volume, white matter microstructure and white matter lesions. Across eighteen included studies (total n = 8429), activity levels were associated with whole-brain white matter volume, white matter lesions and regional gray matter volume, although effect sizes were small. No associations were found for global gray matter volume and the evidence concerning white matter microstructure was inconclusive. While the causality of the reviewed associations needs to be established, our findings implicate socio-intellectual activity levels as promising targets for interventions aimed at promoting healthy brain aging.
Collapse
Affiliation(s)
- M Anatürk
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, United Kingdom
| | - N Demnitz
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, United Kingdom
| | - K P Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, United Kingdom
| | - C E Sexton
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychaitry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, United Kingdom; Global Brain Health Institute, Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
35
|
Vemuri P. "Exceptional brain aging" without Alzheimer's disease: triggers, accelerators, and the net sum game. ALZHEIMERS RESEARCH & THERAPY 2018; 10:53. [PMID: 29859131 PMCID: PMC5984828 DOI: 10.1186/s13195-018-0373-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background As human longevity increases and Alzheimer’s disease (AD) increasingly becomes a significant societal burden, finding pathways or protective factors that facilitate exceptional brain aging without AD pathophysiologies (ADP) will be critical. The goal of this viewpoint is two-fold: 1) to present evidence for “exceptional brain aging” without ADP; and 2) to bring together ideas and observations from the literature and present them as testable hypotheses for biomarker studies to discover protective factors for “exceptional brain aging” without ADP and AD dementia. Discovering pathways to exceptional aging There are three testable hypotheses. First, discovering and quantifying links between risk factor(s) and early ADP changes in midlife using longitudinal biomarker studies will be fundamental to understanding why the majority of individuals deviate from normal aging to the AD pathway. Second, a risk factor may have quantifiably greater impact as a trigger and/or accelerator on a specific component of the biomarker cascade (amyloid, tau, neurodegeneration). Finally, and most importantly, while each risk factor may have a different mechanism of action on AD biomarkers, “exceptional aging” and protection against AD dementia will come from “net sum” protection against all components of the biomarker cascade. The knowledge of the mechanism of action of risk factor(s) from hypotheses 1 and 2 will aid in better characterization of their effect on outcomes, identification of subpopulations that would benefit, and the timing at which the risk factor(s) would have the maximal impact. Additionally, hypothesis 3 highlights the importance of multifactorial or multi-domain approaches to “exceptional aging” as well as prevention of AD dementia. Conclusion While important strides have been made in identifying risk factors for AD dementia incidence, further efforts are needed to translate these into effective preventive strategies. Using biomarker studies for understanding the mechanism of action, effect size estimation, selection of appropriate end-points, and better subject recruitment based on subpopulation effects are fundamental for better design and success of prevention trials.
Collapse
Affiliation(s)
- Prashanthi Vemuri
- Department of Radiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
36
|
Bartrés-Faz D, Cattaneo G, Solana J, Tormos JM, Pascual-Leone A. Meaning in life: resilience beyond reserve. ALZHEIMERS RESEARCH & THERAPY 2018; 10:47. [PMID: 29793549 PMCID: PMC5968537 DOI: 10.1186/s13195-018-0381-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
Background The contribution of psychological factors to brain health and resilience remains poorly investigated. Furthermore, their possible interaction with ‘classical’ cognitive reserve (CR) estimates in predicting perceived mental health and cognitive status has not been specifically addressed. Methods We obtained data from 1081 adults responding to questionnaires on the three meaning in life (MiL) dimensions: purpose in life (PiL), sense of coherence (SoC), and engagement with life (EwL). A questionnaire on CR variables was also administered. The outcome measures were self-reported cognitive function and affective status (depression, stress, and anxiety). Multiple linear regression analyses were used to evaluate the association between sociodemographic variables, MiL dimensions, and CR with the two selected outcomes. Mediation analyses, adjusted for age and gender, were applied to determine whether the MiL dimensions mediated the putative effects of CR on self-reported mental and cognitive health. Results All three MiL components, but not CR estimates, correlated with the self-reported affective status of the participants. Higher CR, PiL, and SoC (but not EwL) scores significantly correlated with higher perceived cognitive function. Notably, the observed association between the CR measures and self-reported cognitive function was mediated by PiL and SoC. Conclusions Psychological MiL dimensions mediate the association between classic CR estimates and self-perceived cognitive function. Further studies on CR could consider including formal measures of such psychological factors to better understand their unique or synergistic contributions, as well as investigate the associated mechanisms maintaining brain function at older ages. Electronic supplementary material The online version of this article (10.1186/s13195-018-0381-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain. .,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain.
| | - Gabriele Cattaneo
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
| | - Javier Solana
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Josep M Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain.,Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Reduced age-associated brain changes in expert meditators: a multimodal neuroimaging pilot study. Sci Rep 2017; 7:10160. [PMID: 28860449 PMCID: PMC5578985 DOI: 10.1038/s41598-017-07764-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with progressive cerebral volume and glucose metabolism decreases. Conditions such as stress and sleep difficulties exacerbate these changes and are risk factors for Alzheimer's disease. Meditation practice, aiming towards stress reduction and emotion regulation, can downregulate these adverse factors. In this pilot study, we explored the possibility that lifelong meditation practice might reduce age-related brain changes by comparing structural MRI and FDG-PET data in 6 elderly expert meditators versus 67 elderly controls. We found increased gray matter volume and/or FDG metabolism in elderly expert meditators compared to controls in the bilateral ventromedial prefrontal and anterior cingulate cortex, insula, temporo-parietal junction, and posterior cingulate cortex /precuneus. Most of these regions were also those exhibiting the strongest effects of age when assessed in a cohort of 186 controls aged 20 to 87 years. Moreover, complementary analyses showed that these changes were still observed when adjusting for lifestyle factors or using a smaller group of controls matched for education. Pending replication in a larger cohort of elderly expert meditators and longitudinal studies, these findings suggest that meditation practice could reduce age-associated structural and functional brain changes.
Collapse
|