1
|
Paolini F, Marrone S, Scalia G, Gerardi RM, Bonosi L, Benigno UE, Musso S, Scerrati A, Iacopino DG, Signorelli F, Maugeri R, Visocchi M. Diffusion Tensor Imaging as Neurologic Predictor in Patients Affected by Traumatic Brain Injury: Scoping Review. Brain Sci 2025; 15:70. [PMID: 39851437 PMCID: PMC11763886 DOI: 10.3390/brainsci15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Background: Diffusion tensor imaging (DTI), a variant of Diffusion Weighted Imaging (DWI), enables a neuroanatomical microscopic-like examination of the brain, which can detect brain damage using physical parameters. DTI's application to traumatic brain injury (TBI) has the potential to reveal radiological features that can assist in predicting the clinical outcomes of these patients. What is the ongoing role of DTI in detecting brain alterations and predicting neurological outcomes in patients with moderate to severe traumatic brain injury and/or diffuse axonal injury? Methods: A scoping review of the PubMed, Scopus, EMBASE, and Cochrane databases was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The aim was to identify all potentially relevant studies concerning the role of DTI in TBI. From an initial pool of 3527 publications, 26 articles were selected based on relevance. These studies included a total of 729 patients with moderate to severe TBI and/or diffuse axonal injury. DTI parameters were analyzed to determine their relationship with neurological outcomes post-TBI, with assessments of several brain functions and regions. Results: The studies included various DTI parameters, identifying significant relationships between DTI variations and neurological outcomes following TBI. Multiple brain functions and regions were evaluated, demonstrating the capability of DTI to detect brain alterations with higher accuracy, sensitivity, and specificity than MRI alone. Conclusions: DTI is a valuable tool for detecting brain alterations in TBI patients, offering enhanced accuracy, sensitivity, and specificity compared to MRI alone. Recent studies confirm its effectiveness in identifying neurological impairments and predicting outcomes in patients following brain trauma, underscoring its utility in clinical settings for managing TBI.
Collapse
Affiliation(s)
- Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Salvatore Marrone
- Unit of Neurosurgery, Sant’Elia Hospital, 93100 Caltanissetta, Italy;
| | - Gianluca Scalia
- Neurosurgery Unit, Department of Head and Neck Surgery, ARNAS Garibaldi, 95124 Catania, Italy;
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Alba Scerrati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Department of Neurosurgery, Sant’Anna University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Francesco Signorelli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (R.M.G.); (L.B.); (U.E.B.); (S.M.); (D.G.I.); (R.M.)
| | - Massimiliano Visocchi
- CVJ Operative Unit, CVJ Research Center Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
2
|
Michalettos G, Clausen F, Rostami E, Marklund N. Post-injury treatment with 7,8-dihydroxyflavone attenuates white matter pathology in aged mice following focal traumatic brain injury. Neurotherapeutics 2025; 22:e00472. [PMID: 39428261 PMCID: PMC11742853 DOI: 10.1016/j.neurot.2024.e00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality, not least in the elderly. The incidence of aged TBI patients has increased dramatically during the last decades. High age is a highly negative prognostic factor in TBI, and pharmacological treatment options are lacking. We used the controlled cortical impact (CCI) TBI model in 23-month-old male and female mice and analyzed the effect of post-injury treatment with 7,8 dihydroxyflavone (7,8-DHF), a brain-derived neurotrophic factor (BDNF)-mimetic compound, on white matter pathology. Following CCI or sham injury, mice received subcutaneous 7,8-DHF injections (5 mg/kg) 30 min post-injury and were sacrificed on 2, 7 or 14 days post-injury (dpi) for histological and immunofluorescence analyses. Histological assessment with Luxol Fast Blue (LFB)/Cresyl Violet stain showed that administration of 7,8-DHF resulted in preserved white matter tissue at 2 and 7 dpi with no difference in cortical tissue loss at all investigated time points. Treatment with 7,8-DHF led to reduced axonal swellings at 2 and 7 dpi, as visualized by SMI-31 (Neurofilament Heavy Chain) immunofluorescence, and reduced number of TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labelling)/CC1-positive mature oligodendrocytes at 2 dpi in the perilesional white matter. Post-injury proliferation of Platelet-derived Growth Factor Receptor (PDGFRα)-positive oligodendodrocyte progenitor cells was not altered by 7,8-DHF. Our results suggest that 7,8-DHF can attenuate white matter pathology by mitigating axonal injury and oligodendrocyte death in the aged mouse brain following TBI. These data argue that further exploration of 7,8-DHF towards clinical use is warranted.
Collapse
Affiliation(s)
- Georgios Michalettos
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden
| | - Fredrik Clausen
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University and Lund University Hospital, Lund, Sweden.
| |
Collapse
|
3
|
Clough S, Brown-Schmidt S, Cho SJ, Duff MC. Reduced on-line speech gesture integration during multimodal language processing in adults with moderate-severe traumatic brain injury: Evidence from eye-tracking. Cortex 2024; 181:26-46. [PMID: 39488986 DOI: 10.1016/j.cortex.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Language is multimodal and situated in rich visual contexts. Language is also incremental, unfolding moment-to-moment in real time, yet few studies have examined how spoken language interacts with gesture and visual context during multimodal language processing. Gesture is a rich communication cue that is integrally related to speech and often depicts concrete referents from the visual world. Using eye-tracking in an adapted visual world paradigm, we examined how participants with and without moderate-severe traumatic brain injury (TBI) use gesture to resolve temporary referential ambiguity. METHODS Participants viewed a screen with four objects and one video. The speaker in the video produced sentences (e.g., "The girl will eat the very good sandwich"), paired with either a meaningful gesture (e.g., sandwich-holding gesture) or a meaningless grooming movement (e.g., arm scratch) at the verb "will eat." We measured participants' gaze to the target object (e.g., sandwich), a semantic competitor (e.g., apple), and two unrelated distractors (e.g., piano, guitar) during the critical window between movement onset in the gesture modality and onset of the spoken referent in speech. RESULTS Both participants with and without TBI were more likely to fixate the target when the speaker produced a gesture compared to a grooming movement; however, relative to non-injured participants, the effect was significantly attenuated in the TBI group. DISCUSSION We demonstrated evidence of reduced speech-gesture integration in participants with TBI relative to non-injured peers. This study advances our understanding of the communicative abilities of adults with TBI and could lead to a more mechanistic account of the communication difficulties adults with TBI experience in rich communication contexts that require the processing and integration of multiple co-occurring cues. This work has the potential to increase the ecological validity of language assessment and provide insights into the cognitive and neural mechanisms that support multimodal language processing.
Collapse
Affiliation(s)
- Sharice Clough
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Multimodal Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - Sarah Brown-Schmidt
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, USA
| | - Sun-Joo Cho
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, USA
| | - Melissa C Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Zhao Y, Zhou YG, Chen JF. Targeting the adenosine A 2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson's disease. Chin J Traumatol 2024; 27:125-133. [PMID: 37679245 PMCID: PMC11138351 DOI: 10.1016/j.cjtee.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors, called A1 and A2A receptors. The adenosine A2A receptor (A2AR) antagonists have been clinically pursued for the last 2 decades, leading to final approval of the istradefylline, an A2AR antagonist, for the treatment of OFF-Parkinson's disease (PD) patients. The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury (TBI), namely neuroprotection or improving cognition. In this review, we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment. We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity, and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation. Moreover, we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients. Collectively, the convergence of clinical, epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
5
|
Corley E, Gleeson C, Godfrey E, Cowman M, Patlola SR, Cannon DM, McKernan DP, Kelly JP, Hallahan B, McDonald C, Morris DW, Burke T, Donohoe G. Corpus callosum microstructural organization mediates the effects of physical neglect on social cognition in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110875. [PMID: 37844774 DOI: 10.1016/j.pnpbp.2023.110875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Exposure to early life adversity is associated with both increased risk of developing schizophrenia and poorer performance on measures of social cognitive functioning. In this study, we examined whether interleukin-6 (IL-6) and Corpus Callosum (CC) microstructure mediated the association between childhood physical neglect and social cognition. Fifty-eight patients with a diagnosis of schizophrenia were included. The CANTAB emotion recognition task (unbiased hit rate) was used to assess social cognition. We found that the microstructural organization of the CC significantly mediated the association between physical neglect and emotion recognition. Furthermore, in a sequential mediation analysis that also considered the role of inflammatory response, the association between physical neglect, and lower emotion recognition performance was sequentially mediated by higher IL-6 and lower fractional anisotropy of the CC. This mediating effect of IL-6 was only present when simultaneously considering the effects of CC microstructural organization and remained significant while controlling for the effects of sex, BMI and medication dosage (but not age). Overall, the findings suggest that the association between physical neglect and poorer emotion recognition in schizophrenia occurs, at least in part, via its association with white matter microstructure.
Collapse
Affiliation(s)
- Emma Corley
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Christina Gleeson
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Emmet Godfrey
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Megan Cowman
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | | | - Dara M Cannon
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Ireland
| | - Declan P McKernan
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Ireland
| | - John P Kelly
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Ireland
| | - Brian Hallahan
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; Department of Psychiatry, Clinical Science Institute, University of Galway, Ireland
| | - Colm McDonald
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; Department of Psychiatry, Clinical Science Institute, University of Galway, Ireland
| | - Derek W Morris
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Tom Burke
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Gary Donohoe
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland.
| |
Collapse
|
6
|
Park JY, Park J, Baek J, Chang JW, Kim YG, Chang WS. Long-term results on the suppression of secondary brain injury by early administered low-dose baclofen in a traumatic brain injury mouse model. Sci Rep 2023; 13:18563. [PMID: 37903976 PMCID: PMC10616194 DOI: 10.1038/s41598-023-45600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/21/2023] [Indexed: 11/01/2023] Open
Abstract
Secondary injury from traumatic brain injury (TBI) perpetuates cerebral damages through varied ways. Attenuating neuroinflammation, which is a key feature of TBI, is important for long-term prognosis of its patients. Baclofen, a muscle relaxant, has shown promise in reducing excessive inflammation in other neurologic disorders. However, its effectiveness in TBI remains ambiguous. Thus, our study aimed to investigate whether early administration of baclofen could elicit potential therapeutic effects by diminishing exaggerated neuroinflammation in TBI mice. In this study, 80 C57BL/6 mice were used, of which 69 mice received controlled cortical impact. The mice were divided into six groups (11-16 mice each). Baclofen, administered at dose of 0.05, 0.2 and 1 mg/kg, was injected intraperitoneally a day after TBI for 3 consecutive weeks. 3 weeks after completing the treatments, the mice were assessed histologically. The results showed that mice treated with baclofen exhibited a significantly lower volume of lesion tissue than TBI mice with normal saline. Baclofen also reduced activated glial cells with neurotoxic immune molecules and inhibited apoptotic cells. Significant recovery was observed and sustained for 6 weeks at the 0.2 mg/kg dose in the modified neurological severity score. Furthermore, memory impairment was recovered with low-doses of baclofen in the Y-maze. Our findings demonstrate that early administration of low dose baclofen can regulate neuroinflammation, prevent cell death, and improve TBI motor and cognitive abnormalities.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junwon Park
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiwon Baek
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Goo Kim
- Department of Neurosurgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Mok 5-dong, Yangcheon-gu, Seoul, 07985, Republic of Korea.
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Clough S, Padilla VG, Brown-Schmidt S, Duff MC. Intact speech-gesture integration in narrative recall by adults with moderate-severe traumatic brain injury. Neuropsychologia 2023; 189:108665. [PMID: 37619936 PMCID: PMC10592037 DOI: 10.1016/j.neuropsychologia.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Real-world communication is situated in rich multimodal contexts, containing speech and gesture. Speakers often convey unique information in gesture that is not present in the speech signal (e.g., saying "He searched for a new recipe" while making a typing gesture). We examine the narrative retellings of participants with and without moderate-severe traumatic brain injury across three timepoints over two online Zoom sessions to investigate whether people with TBI can integrate information from co-occurring speech and gesture and if information from gesture persists across delays. METHODS 60 participants with TBI and 60 non-injured peers watched videos of a narrator telling four short stories. On key details, the narrator produced complementary gestures that conveyed unique information. Participants retold the stories at three timepoints: immediately after, 20-min later, and one-week later. We examined the words participants used when retelling these key details, coding them as a Speech Match (e.g., "He searched for a new recipe"), a Gesture Match (e.g., "He searched for a new recipe online), or Other ("He looked for a new recipe"). We also examined whether participants produced representative gestures themselves when retelling these details. RESULTS Despite recalling fewer story details, participants with TBI were as likely as non-injured peers to report information from gesture in their narrative retellings. All participants were more likely to report information from gesture and produce representative gestures themselves one-week later compared to immediately after hearing the story. CONCLUSION We demonstrated that speech-gesture integration is intact after TBI in narrative retellings. This finding has exciting implications for the utility of gesture to support comprehension and memory after TBI and expands our understanding of naturalistic multimodal language processing in this population.
Collapse
Affiliation(s)
- Sharice Clough
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, United States.
| | - Victoria-Grace Padilla
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, United States
| | - Sarah Brown-Schmidt
- Department of Psychology and Human Development, Vanderbilt University, United States
| | - Melissa C Duff
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, United States
| |
Collapse
|
8
|
Zhao Y, Ning YL, Zhou YG. A 2AR and traumatic brain injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:225-265. [PMID: 37741693 DOI: 10.1016/bs.irn.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Accumulating evidence has revealed the adenosine 2A receptor is a key tuner for neuropathological and neurobehavioral changes following traumatic brain injury by experimental animal models and a few clinical trials. Here, we highlight recent data involving acute/sub-acute and chronic alterations of adenosine and adenosine 2A receptor-associated signaling in pathological conditions after trauma, with an emphasis of traumatic brain injury, including neuroinflammation, cognitive and psychiatric disorders, and other severe consequences. We expect this would lead to the development of therapeutic strategies for trauma-related disorders with novel mechanisms of action.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
9
|
Torregrossa W, Torrisi M, De Luca R, Casella C, Rifici C, Bonanno M, Calabrò RS. Neuropsychological Assessment in Patients with Traumatic Brain Injury: A Comprehensive Review with Clinical Recommendations. Biomedicines 2023; 11:1991. [PMID: 37509630 PMCID: PMC10376996 DOI: 10.3390/biomedicines11071991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Traumatic brain injury is damage to the brain occurring after birth, often resulting in the deterioration of cognitive, behavioural, and emotional functions. Neuropsychological evaluation can assist clinicians to better assess the patient's clinical condition, reach differential diagnoses, and develop interventional strategies. However, considering the multiple rating scales available, it is not easy to establish which tool is most suitable for the different brain injury conditions. The aim of this review is to investigate and describe the most used neurocognitive assessment tools in patients with traumatic brain injury to provide clinicians with clear indications on their use in clinical practice. Indeed, during the acute phase, after the head trauma, alertness and wakefulness of the patients affected by a disorder of consciousness can be assessed using different scales, such as the Coma Recovery Scale-Revised. In both postacute and chronic phases after traumatic brain injury, general cognitive assessment tools (such as the Mini Mental State Examination) or more specific cognitive tests (e.g., Wisconsin Card Sorting Test and Trail Making Test) could be administered according to the patient's functional status. In this way, clinicians may be aware of the patient's neuropsychological and cognitive level, so they can guarantee a personalized and tailored rehabilitation approach in this frail patient population.
Collapse
Affiliation(s)
- William Torregrossa
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Palermo Cda Casazza, SS113, 98124 Messina, Italy
| | - Michele Torrisi
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Palermo Cda Casazza, SS113, 98124 Messina, Italy
| | - Rosaria De Luca
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Palermo Cda Casazza, SS113, 98124 Messina, Italy
| | - Carmela Casella
- Department of Clinical and Experimental Medicine "AOU Policlinico G. Martino", University Hospital "G. Martino", 98124 Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Palermo Cda Casazza, SS113, 98124 Messina, Italy
| | - Mirjam Bonanno
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Palermo Cda Casazza, SS113, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Palermo Cda Casazza, SS113, 98124 Messina, Italy
| |
Collapse
|
10
|
Abstract
OBJECTIVE Disorders of social cognition, such as difficulties with emotion perception, alexithymia, Theory of Mind (ToM), empathy and disorders of emotion regulation, are prevalent and pervasive problems across many neurological, neurodevelopmental and neuropsychiatric conditions. Clinicians are familiar with how these difficulties present but assessment and treatment has lagged behind other traditional cognitive domains, such as memory, language and executive functioning. METHOD In this paper, we review the prevalence and degree of impairment associated with disorders of social cognition and emotion regulation across a range of clinical conditions, with particular emphasis on their relationship to cognitive deficits and also real-world functioning. We reported effects sizes from published meta-analyses for a range of clinical disorders and also review test usage and available tests. RESULTS In general, many clinical conditions are associated with impairments in social cognition and emotion regulation. Effect sizes range from small to very large and are comparable to effect sizes for impairments in nonsocial cognition. Socio-emotional impairments are also associated with social and adaptive functioning. In reviewing prior research, it is apparent that the standardized assessment of social cognition, in particular, is not routine in clinical practice. This is despite the fact that there are a range of tools available and accruing evidence for the efficacy of interventions for social cognitive impairments. CONCLUSION We are using this information to urge and call for clinicians to factor social cognition into their clinical assessments and treatment planning, as to provide rigorous, holistic and comprehensive person-centred care.
Collapse
Affiliation(s)
- Skye McDonald
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Travis Wearne
- School of Psychology, University of Western Sydney, Penrith South, Australia
| | - Michelle Kelly
- School of Psychological Sciences, University of Newcastle, Callaghan, Australia
| |
Collapse
|
11
|
Raizman R, Itzhaki N, Sirkin J, Meningher I, Tsarfaty G, Keren O, Zibli Z, Silberg T, Pick CG, Livny A. Decreased homotopic functional connectivity in traumatic brain injury. Cereb Cortex 2023; 33:1207-1216. [PMID: 35353131 DOI: 10.1093/cercor/bhac130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Homotopic functional connectivity (HoFC), the synchrony in activity patterns between homologous brain regions, is a fundamental characteristic of resting-state functional connectivity (RsFC). METHODS We examined the difference in HoFC, computed as the correlation between atlas-based regions and their counterpart on the opposite hemisphere, in 16 moderate-severe traumatic brain injury patients (msTBI) and 36 healthy controls. Regions of decreased HoFC in msTBI patients were further used as seeds for examining differences between groups in correlations with other brain regions. Finally, we computed logistic regression models of regional HoFC and fractional anisotropy (FA) of the corpus callosum (CC). RESULTS TBI patients exhibited decreased HoFC in the middle and posterior cingulate cortex, thalamus, superior temporal pole, and cerebellum III. Furthermore, decreased RsFC was found between left cerebellum III and right parahippocampal cortex and vermis, between superior temporal pole and left caudate and medial left and right frontal orbital gyri. Thalamic HoFC and FA of the CC discriminate patients as msTBI with a high accuracy of 96%. CONCLUSION TBI is associated with regionally decreased HoFC. Moreover, a multimodality model of interhemispheric connectivity allowed for a high degree of accuracy in disease discrimination and enabled a deeper understanding of TBI effects on brain interhemispheric reorganization post-TBI.
Collapse
Affiliation(s)
- Reut Raizman
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel
| | - Nofar Itzhaki
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel
| | - Johanna Sirkin
- Department of Psychology, Reichman University, Herzelia, Israel
| | - Inbar Meningher
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel
| | - Galia Tsarfaty
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel.,Department of imaging, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel
| | - Ofer Keren
- Department of Brain Injury Rehabilitation, Sheba Medical Center, 5262000 Tel-Hashomer, Israel
| | - Zion Zibli
- Department of Neurosurgery, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, 69979 Ramat Gan, Israel
| | - Tamar Silberg
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Department of Psychology, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69979 Tel Aviv, Israel.,The Dr. Miriam and Sheldon G. Adelson, Chair and Center for the Biology of Addictive Diseases, Tel-Aviv University, 69979 Tel-Aviv, Israel.,Sylvan Adams Sports Institute, Tel Aviv University, 69979 Tel Aviv, Israel
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel.,Department of imaging, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69979 Tel Aviv, Israel
| |
Collapse
|
12
|
Braga MFM, Juranek J, Eiden LE, Li Z, Figueiredo TH, de Araujo Furtado M, Marini AM. GABAergic circuits of the basolateral amygdala and generation of anxiety after traumatic brain injury. Amino Acids 2022; 54:1229-1249. [PMID: 35798984 DOI: 10.1007/s00726-022-03184-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions around the world and is a major public health concern in the United States. Approximately 2.8 million individuals sustain a traumatic brain injury and are treated in an Emergency Department yearly in the U.S., and about 50,000 of them die. Persistent symptoms develop in 10-15% of the cases including neuropsychiatric disorders. Anxiety is the second most common neuropsychiatric disorder that develops in those with persistent neuropsychiatric symptoms after TBI. Abnormalities or atrophy in the temporal lobe has been shown in the overwhelming number of TBI cases. The basolateral amygdala (BLA), a temporal lobe structure that consolidates, stores and generates fear and anxiety-based behavioral outputs, is a critical brain region in the anxiety circuitry. In this review, we sought to capture studies that characterized the relationship between human post-traumatic anxiety and structural/functional alterations in the amygdala. We compared the human findings with results obtained with a reproducible mild TBI animal model that demonstrated a direct relationship between the alterations in the BLA and an anxiety-like phenotype. From this analysis, both preliminary insights, and gaps in knowledge, have emerged which may open new directions for the development of rational and more efficacious treatments.
Collapse
Affiliation(s)
- Maria F M Braga
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Jenifer Juranek
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, MD, 20814, USA
| | - Zheng Li
- Section On Synapse Development and Plasticity, National Institute of Mental Health, Intramural Research Program, Bethesda, MD, 20814, USA
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Marcio de Araujo Furtado
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Ann M Marini
- Department of Neurology and Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
13
|
Doroshin A, Jillings S, Jeurissen B, Tomilovskaya E, Pechenkova E, Nosikova I, Rumshiskaya A, Litvinova L, Rukavishnikov I, De Laet C, Schoenmaekers C, Sijbers J, Laureys S, Petrovichev V, Van Ombergen A, Annen J, Sunaert S, Parizel PM, Sinitsyn V, zu Eulenburg P, Osipowicz K, Wuyts FL. Brain Connectometry Changes in Space Travelers After Long-Duration Spaceflight. Front Neural Circuits 2022; 16:815838. [PMID: 35250494 PMCID: PMC8894205 DOI: 10.3389/fncir.2022.815838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Humans undergo extreme physiological changes when subjected to long periods of weightlessness, and as we continue to become a space-faring species, it is imperative that we fully understand the physiological changes that occur in the human body, including the brain. In this study, we present findings of brain structural changes associated with long-duration spaceflight based on diffusion magnetic resonance imaging (dMRI) data. Twelve cosmonauts who spent an average of six months aboard the International Space Station (ISS) were scanned in an MRI scanner pre-flight, ten days after flight, and at a follow-up time point seven months after flight. We performed differential tractography, a technique that confines white matter fiber tracking to voxels showing microstructural changes. We found significant microstructural changes in several large white matter tracts, such as the corpus callosum, arcuate fasciculus, corticospinal, corticostriatal, and cerebellar tracts. This is the first paper to use fiber tractography to investigate which specific tracts exhibit structural changes after long-duration spaceflight and may direct future research to investigate brain functional and behavioral changes associated with these white matter pathways.
Collapse
Affiliation(s)
- Andrei Doroshin
- Drexel University Neuroimaging Laboratory (DUN), Drexel University, Philadelphia, PA, United States
| | - Steven Jillings
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
| | - Ben Jeurissen
- Imec-Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Elena Tomilovskaya
- State Scientific Center of the Russian Federation – Institute for Biomedical Problem, Russian Academy of Sciences, Moscow, Russia
| | | | - Inna Nosikova
- State Scientific Center of the Russian Federation – Institute for Biomedical Problem, Russian Academy of Sciences, Moscow, Russia
| | - Alena Rumshiskaya
- Radiology Department, National Medical Research Treatment and Rehabilitation Centre of the Ministry of Health of Russia, Moscow, Russia
| | - Liudmila Litvinova
- Radiology Department, National Medical Research Treatment and Rehabilitation Centre of the Ministry of Health of Russia, Moscow, Russia
| | - Ilya Rukavishnikov
- State Scientific Center of the Russian Federation – Institute for Biomedical Problem, Russian Academy of Sciences, Moscow, Russia
| | - Chloë De Laet
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
| | - Catho Schoenmaekers
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- Imec-Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Victor Petrovichev
- Radiology Department, National Medical Research Treatment and Rehabilitation Centre of the Ministry of Health of Russia, Moscow, Russia
| | - Angelique Van Ombergen
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
- Department of Translational Neurosciences-ENT, University of Antwerp, Antwerp, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Stefan Sunaert
- Department of Imaging & Pathology, Translational MRI, KU Leuven – University of Leuven, Leuven, Belgium
| | - Paul M. Parizel
- Department of Radiology, Royal Perth Hospital, University of Western Australia Medical School, Perth, WA, Australia
| | - Valentin Sinitsyn
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Peter zu Eulenburg
- Institute for Neuroradiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karol Osipowicz
- Drexel University Neuroimaging Laboratory (DUN), Drexel University, Philadelphia, PA, United States
| | - Floris L. Wuyts
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Antwerp, Belgium
- *Correspondence: Floris L. Wuyts,
| |
Collapse
|
14
|
Wei P, Wang K, Luo C, Huang Y, Misilimu D, Wen H, Jin P, Li C, Gong Y, Gao Y. Cordycepin confers long-term neuroprotection via inhibiting neutrophil infiltration and neuroinflammation after traumatic brain injury. J Neuroinflammation 2021; 18:137. [PMID: 34130727 PMCID: PMC8207641 DOI: 10.1186/s12974-021-02188-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
Background The secondary injury caused by traumatic brain injury (TBI), especially white matter injury (WMI), is highly sensitive to neuroinflammation, which further leads to unfavored long-term outcomes. Although the cross-talk between the three active events, immune cell infiltration, BBB breakdown, and proinflammatory microglial/macrophage polarization, plays a role in the vicious cycle, its mechanisms are not fully understood. It has been reported that cordycepin, an extract from Cordyceps militaris, can inhibit TBI-induced neuroinflammation although the long-term effects of cordycepin remain unknown. Here, we report our investigation of cordycepin’s long-term neuroprotective function and its underlying immunological mechanism. Methods TBI mice model was established with a controlled cortical impact (CCI) method. Cordycepin was intraperitoneally administered twice daily for a week. Neurological outcomes were assessed by behavioral tests, including grid walking test, cylinder test, wire hang test, and rotarod test. Immunofluorescence staining, transmission electron microscopy, and electrophysiology recording were employed to assess histological and functional lesions. Quantitative-PCR and flow cytometry were used to detect neuroinflammation. The tracers of Sulfo-NHS-biotin and Evans blue were assessed for the blood-brain barrier (BBB) leakage. Western blot and gelatin zymography were used to analyze protein activity or expression. Neutrophil depletion in vivo was performed via using Ly6G antibody intraperitoneal injection. Results Cordycepin administration ameliorated long-term neurological deficits and reduced neuronal tissue loss in TBI mice. Meanwhile, the long-term integrity of white matter was also preserved, which was revealed in multiple dimensions, such as morphology, histology, ultrastructure, and electrical conductivity. Cordycepin administration inhibited microglia/macrophage pro-inflammatory polarization and promoted anti-inflammatory polarization after TBI. BBB breach was attenuated by cordycepin administration at 3 days after TBI. Cordycepin suppressed the activities of MMP-2 and MMP-9 and the neutrophil infiltration at 3 days after TBI. Moreover, neutrophil depletion provided a cordycepin-like effect, and cordycepin administration united with neutrophil depletion did not show a benefit of superposition. Conclusions The long-term neuroprotective function of cordycepin via suppressing neutrophil infiltration after TBI, thereby preserving BBB integrity and changing microglia/macrophage polarization. These findings provide significant clinical potentials to improve the quality of life for TBI patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02188-x.
Collapse
Affiliation(s)
- Pengju Wei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ke Wang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Chen Luo
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yichen Huang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Dilidaer Misilimu
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Huimei Wen
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Peng Jin
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Chuhua Li
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Yanqin Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Relationship between post-traumatic amnesia and white matter integrity in traumatic brain injury using tract-based spatial statistics. Sci Rep 2021; 11:6898. [PMID: 33767378 PMCID: PMC7994646 DOI: 10.1038/s41598-021-86439-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
This study used tract-based spatial statistics to examine the relationship between post-traumatic amnesia (PTA) and white matter integrity in patients with a traumatic brain injury (TBI). Forty-seven patients with TBI in the chronic stage and 47 age- and sex-matched normal control subjects were recruited to the study. Correlation coefficients were calculated to observe the relationships among the PTA duration, white matter fractional anisotropy (FA) values, and mini-mental state examination (MMSE) results in the patient group. Both before and after Benjamini–Hochberg (BH) corrections, FA values of 46 of the 48 regions of interests of the patient group were lower than those of the control group. The FA values of column and body of fornix, left crus of fornix, left uncinate fasciculus, right hippocampus part of cingulum, left medial lemniscus, right superior cerebellar peduncle, left superior cerebellar peduncle, and left posterior thalamic radiation (after BH correction: the uncinate fasciculus and right hippocampus part of cingulum) in the patient group were negatively correlated with PTA duration. PTA duration was related to the injury severity of eight neural structures, each of which is involved in the cognitive functioning of patients with TBI. Therefore, PTA duration can indicate injury severity of the above neural structures in TBI patients.
Collapse
|
16
|
Li SS, Xie LL, Li ZZ, Fan YJ, Qi MM, Xi YG. Androgen is responsible for enhanced susceptibility of melatonin against traumatic brain injury in females. Neurosci Lett 2021; 752:135842. [PMID: 33766734 DOI: 10.1016/j.neulet.2021.135842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/06/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Numerous publications have demonstrated that melatonin administration is associated with mortality reduction and improvement in neurological outcomes after traumatic brain injury (TBI). However, there are significant sex differences in several diseases associated with melatonin. We aimed to determine whether androgen was responsible for enhanced susceptibility of melatonin against TBI in females, as well as potential molecular mechanisms. METHODS Weight-drop was used to establish a rodent model of TBI. Melatonin (10 mg/kg) and testosterone (1 mg/kg) were administered three times every day for three days after TBI using subcutaneous injection, respectively. Seven days after TBI, an open field assay was used to evaluate locomotor and exploratory activities. Neuronal amount, neuronal apoptosis, and expression of phosphorylated extracellularly regulated protein kinases 1/2 (ERK1/2), c-jun N-terminal kinase 1/2 (JNK1/2), and p38 mitogen-activated protein kinase (p38MAPK) in neurons were assessed using immunofluorescence assay seven days after TBI. The expression of caspase-3, Bax, and Bcl-2 in the frontal cortex was detected using western blot. RESULTS Compared with female rats, melatonin administration exhibited more neuroprotective effects (including improved locomotor and exploratory activities, elevated neuronal amount, and reduced neuronal apoptosis) in male rats exposed to TBI. Moreover, testosterone significantly improved locomotor and exploratory activities, elevated neuronal amount, decreased neuronal apoptosis, downregulated phosphorylation of JNK1/2- and p38MAPK-positive neurons, but upregulated phosphorylation of ERK1/2-positive neurons in the frontal cortex, and reduced the expressions of cleaved caspase-3, Bax, but increased Bcl-2 expressions in female rats exposed to TBI. CONCLUSIONS Androgen was responsible for the enhanced susceptibility to TBI under melatonin supplementation in females through a mechanism that may be associated with MAPK pathway regulation.
Collapse
Affiliation(s)
- Shan-Shan Li
- Clinical Lab, Cangzhou Central Hospital, Cangzhou, China.
| | - Ling-Ling Xie
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, China.
| | - Zhuang-Zhuang Li
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, China.
| | - Yong-Jian Fan
- Department of Ultrasonography, Cangzhou Central Hospital, Cangzhou, China.
| | - Man-Man Qi
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Yan-Guo Xi
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, China.
| |
Collapse
|
17
|
Magnetoencephalography in the Detection and Characterization of Brain Abnormalities Associated with Traumatic Brain Injury: A Comprehensive Review. Med Sci (Basel) 2021; 9:medsci9010007. [PMID: 33557219 PMCID: PMC7930962 DOI: 10.3390/medsci9010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 01/18/2023] Open
Abstract
Magnetoencephalography (MEG) is a functional brain imaging technique with high temporal resolution compared with techniques that rely on metabolic coupling. MEG has an important role in traumatic brain injury (TBI) research, especially in mild TBI, which may not have detectable features in conventional, anatomical imaging techniques. This review addresses the original research articles to date that have reported on the use of MEG in TBI. Specifically, the included studies have demonstrated the utility of MEG in the detection of TBI, characterization of brain connectivity abnormalities associated with TBI, correlation of brain signals with post-concussive symptoms, differentiation of TBI from post-traumatic stress disorder, and monitoring the response to TBI treatments. Although presently the utility of MEG is mostly limited to research in TBI, a clinical role for MEG in TBI may become evident with further investigation.
Collapse
|
18
|
McDonald S, Genova H. The effect of severe traumatic brain injury on social cognition, emotion regulation, and mood. HANDBOOK OF CLINICAL NEUROLOGY 2021; 183:235-260. [PMID: 34389120 DOI: 10.1016/b978-0-12-822290-4.00011-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This chapter provides a review of the emotional and psychosocial consequences of moderate to severe traumatic brain injury (TBI). Many of the disorders affecting socioemotional function arise from damage to frontotemporal systems, exacerbated by white matter injury. They include disorders of social cognition, such as the ability to recognize emotions in others, the ability to attribute mental states to others, and the ability to experience empathy. Patients with TBI also often have disorders of emotion regulation. Disorders of drive or apathy can manifest across cognitive, emotional, and behavioral domains. Likewise, disorders of control can lead to dysregulated emotions and behavior. Other disorders, such as loss of self-awareness, are also implicated in poor psychosocial recovery. Finally, this chapter overviews psychiatric disorders associated with TBI, especially anxiety and depression. For each kind of disorder, the nature of the disorder and its prevalence, as well as theoretical considerations and impact on every day functions, are reviewed.
Collapse
Affiliation(s)
- Skye McDonald
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.
| | - Helen Genova
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, United States
| |
Collapse
|
19
|
Lin X, Zhang X, Liu Q, Zhao P, Zhang H, Wang H, Yi Z. Theory of mind in adults with traumatic brain injury: A meta-analysis. Neurosci Biobehav Rev 2020; 121:106-118. [PMID: 33359093 DOI: 10.1016/j.neubiorev.2020.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 01/11/2023]
Abstract
Studies of abnormal theory of mind (ToM) performance in adult patients with traumatic brain injury (TBI) have reported inconsistent results. Therefore, we conducted a meta-analysis to characterize ToM performance in adult patients with TBI. Random-effects models were employed to estimate the overall effect size and the differential effect sizes across different ToM aspects. Based on a sample of 28 studies (1031 patients and 865 healthy controls), the meta-analytic findings revealed that ToM was significantly impaired in adult patients with TBI compared to healthy controls (g = -1.13). Besides, patients with TBI showed significant impairments in individual ToM tasks, as well as for different stimulus modes and contents involved in these ToM tasks. A meta-regression indicated a positive association between ToM performance and Glasgow Coma Scale score. The results of the current meta-analysis suggest that the performance in ToM tasks may be a good predictor of functional outcomes in adults with TBI, which is important for the identification of targets for cognitive interventions and the development of useful training intervention programs.
Collapse
Affiliation(s)
- XiaoGuang Lin
- Department of Neurology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - XueLing Zhang
- Department of Neurology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - QinQin Liu
- Department of Neurology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - PanWen Zhao
- Department of Central Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Hui Zhang
- Department of Central Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - HongSheng Wang
- Department of Neurosurgery, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China.
| | - ZhongQuan Yi
- Department of Central Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China.
| |
Collapse
|
20
|
Kosaraju J, Seegobin M, Gouveia A, Syal C, Sarma SN, Lu KJ, Ilin J, He L, Wondisford FE, Lagace D, De Repentigny Y, Kothary R, Wang J. Metformin promotes CNS remyelination and improves social interaction following focal demyelination through CBP Ser436 phosphorylation. Exp Neurol 2020; 334:113454. [PMID: 32877653 DOI: 10.1016/j.expneurol.2020.113454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023]
Abstract
Individuals with demyelinating diseases often experience difficulties during social interactions that are not well studied in preclinical models. Here, we describe a novel juvenile focal corpus callosum demyelination murine model exhibiting a social interaction deficit. Using this preclinical murine demyelination model, we discover that application of metformin, an FDA-approved drug, in this model promotes oligodendrocyte regeneration and remyelination and improves the social interaction. This beneficial effect of metformin acts through stimulating Ser436 phosphorylation in CBP, a histone acetyltransferase. In addition, we found that metformin acts through two distinct molecular pathways to enhance oligodendrocyte precursor (OPC) proliferation and differentiation, respectively. Metformin enhances OPC proliferation through early-stage autophagy inhibition, while metformin promotes OPC differentiation into mature oligodendrocytes through activating CBP Ser436 phosphorylation. In summary, we identify that metformin is a promising remyelinating agent to improve juvenile demyelination-associated social interaction deficits by promoting oligodendrocyte regeneration and remyelination.
Collapse
Affiliation(s)
- Jayasankar Kosaraju
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Matthew Seegobin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ayden Gouveia
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sailendra Nath Sarma
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kevin Jiaqi Lu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Julius Ilin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Diane Lagace
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON K1G 5Z3, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON K1G 5Z3, Canada.
| |
Collapse
|
21
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Abstract
Humans are highly social animals whose survival and well-being depend on their capacity to cooperate in complex social settings. Advances in anthropology and psychology have demonstrated the importance of cooperation for enhancing social cohesion and minimizing conflict. The understanding of social behavior is informed by the notion of social cognition, a set of mental operations including emotion perception, mentalizing, and empathy. The social brain hypothesis posits that the mammalian brain has enlarged over evolution to meet the challenges of social life, culminating in a large human brain well adapted for social cognition. The structures subserving social cognition are mainly located in the frontal and temporal lobes, and although gray matter is critical, social cognition also requires white matter. Whereas the social brain hypothesis assumes that brain enlargement has been driven by neocortical expansion, cerebral white matter has expanded even more robustly than the neocortex, coinciding with the emergence of social cognition. White matter expansion is most evident in the frontal and temporal lobes, where it enhances connectivity between regions critical for social cognition. Myelination has, in turn, conferred adaptive social advantages by enabling prompt empathic concern for offspring and by strengthening networks that support cooperation and the related capacities of altruism and morality. Social cognition deficits related to myelinated tract involvement occur in many disorders, including stroke, Binswanger disease, traumatic brain injury, multiple sclerosis, glioma, and behavioral variant frontotemporal dementia. The contribution of white matter to social cognition can be conceptualized as the enhancement of cooperation through brain connectivity.
Collapse
|
23
|
Rushby JA, De Blasio FM, Logan JA, Wearne T, Kornfeld E, Wilson EJ, Loo C, Martin D, McDonald S. tDCS effects on task-related activation and working memory performance in traumatic brain injury: A within group randomized controlled trial. Neuropsychol Rehabil 2020; 31:814-836. [PMID: 32114899 DOI: 10.1080/09602011.2020.1733620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-invasive transcranial direct current stimulation (tDCS) has been reported to facilitate working memory in normal adults. There is some evidence in people with Traumatic Brain Injury (TBI) but overall evidence is mixed. This study aimed to address shortcomings of prior study designs in TBI to examine whether a single dose of tDCS would lead to benefits in working memory. Thirty people with severe, chronic TBI were administered a single session of either anodal tDCS (2 mA for 20 min) or sham tDCS (2 mA for 30 s), in a counterbalanced order, over the left parietal cortex while performing 1-back and 2-back working memory tasks. Skin conductance levels were examined as a measure of task activated arousal, a possible functional analogue of cortical excitability. We found that tDCS led to no improvements in accuracy on the working memory tasks. A slight increase in variability and reaction time with tDCS was related to decreased task activated arousal. Overall, this study yielded no evidence that a single session of tDCS can facilitate working memory for people with TBI.
Collapse
Affiliation(s)
| | | | - Jodie A Logan
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Travis Wearne
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Emma Kornfeld
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Emily Jane Wilson
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Colleen Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Donel Martin
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Skye McDonald
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
24
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
25
|
Lancaster K, Venkatesan UM, Lengenfelder J, Genova HM. Default Mode Network Connectivity Predicts Emotion Recognition and Social Integration After Traumatic Brain Injury. Front Neurol 2019; 10:825. [PMID: 31447760 PMCID: PMC6696510 DOI: 10.3389/fneur.2019.00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Moderate-severe traumatic brain injury (TBI) may result in difficulty with emotion recognition, which has negative implications for social functioning. As aspects of social cognition have been linked to resting-state functional connectivity (RSFC) in the default mode network (DMN), we sought to determine whether DMN connectivity strength predicts emotion recognition and level of social integration in TBI. To this end, we examined emotion recognition ability of 21 individuals with TBI and 27 healthy controls in relation to RSFC between DMN regions. Across all participants, decreased emotion recognition ability was related to increased connectivity between dorsomedial prefrontal cortex (dmPFC) and temporal regions (temporal pole and parahippocampal gyrus). Furthermore, within the TBI group, connectivity between dmPFC and parahippocampal gyrus predicted level of social integration on the Community Integration Questionnaire, an important index of post-injury social functioning in TBI. This finding was not explained by emotion recognition ability, indicating that DMN connectivity predicts social functioning independent of emotion recognition. These results advance our understanding of the neural underpinnings of emotional and social processes in both healthy and injured brains, and suggest that RSFC may be an important marker of social outcomes in individuals with TBI.
Collapse
Affiliation(s)
- Katie Lancaster
- Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | | | - Jean Lengenfelder
- Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Helen M Genova
- Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
26
|
Eddy CM. What Do You Have in Mind? Measures to Assess Mental State Reasoning in Neuropsychiatric Populations. Front Psychiatry 2019; 10:425. [PMID: 31354534 PMCID: PMC6636467 DOI: 10.3389/fpsyt.2019.00425] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Social interaction is closely associated with both functional capacity and well-being. Previous research has not only revealed evidence of social dysfunction in individuals with a wide range of psychiatric and neurological disorders but also generated an abundance of potential measures for assessing social cognition. This review explores the most popular measures used within neuropsychiatric populations to investigate the ability to recognize or reason about the mental states of others. Measures are also critically analyzed in terms of strengths and limitations to aid task selection in future clinical studies. The most frequently applied assessment tools use verbal, visual or audiovisual forms of presentation and assess recognition of mental states from facial features, self-rated empathy, the understanding of other's cognitive mental states such as beliefs and intentions, or the ability to combine knowledge of other's thoughts and emotions in order to understand subtle communications or socially inappropriate behavior. Key weaknesses of previous research include limited investigation of relationships with clinical symptoms, and underutilization of measures of everyday social functioning that offer a useful counterpart to traditional "lab" tasks. Future studies should aim to carefully select measures not only based on the range of skills to be assessed but also taking into account potential difficulties with interpretation and the need to gain insight into the application of social cognitive skills as well as ability per se. Some of the best measures include those with well-matched control trials (e.g., Yoni Task) or those that restrict the influence of verbal deficits (e.g., intentions comic strip task), elicit spontaneous mentalizing (e.g., Animations Task), and possess greater ecological validity (e.g., Movie for the Assessment of Social Cognition). Social cognitive research within psychiatric populations will be further enhanced through the development of more closely matched control tasks, and the exploration of relationships between task performance, medication, strategy use, and broader emotional and motor functions.
Collapse
Affiliation(s)
- Clare M. Eddy
- Research and Innovation, BSMHFT National Centre for Mental Health, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Chierto E, Simon A, Castoldi F, Meffre D, Cristinziano G, Sapone F, Carrete A, Borderie D, Etienne F, Rannou F, Morrison B, Massaad C, Jafarian-Tehrani M. Mechanical Stretch of High Magnitude Provokes Axonal Injury, Elongation of Paranodal Junctions, and Signaling Alterations in Oligodendrocytes. Mol Neurobiol 2019; 56:4231-4248. [PMID: 30298339 PMCID: PMC6505516 DOI: 10.1007/s12035-018-1372-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
Increasing findings suggest that demyelination may play an important role in the pathophysiology of brain injury, but the exact mechanisms underlying such damage are not well known. Mechanical tensile strain of brain tissue occurs during traumatic brain injury. Several studies have investigated the cellular and molecular events following a static tensile strain of physiological magnitude on individual cells such as oligodendrocytes. However, the pathobiological impact of high-magnitude mechanical strain on oligodendrocytes and myelinated fibers remains under investigated. In this study, we reported that an applied mechanical tensile strain of 30% on mouse organotypic culture of cerebellar slices induced axonal injury and elongation of paranodal junctions, two hallmarks of brain trauma. It was also able to activate MAPK-ERK1/2 signaling, a stretch-induced responsive pathway. The same tensile strain applied to mouse oligodendrocytes in primary culture induced a profound damage to cell morphology, partial cell loss, and a decrease of myelin protein expression. The lower tensile strain of 20% also caused cell loss and the remaining oligodendrocytes appeared retracted with decreased myelin protein expression. Finally, high-magnitude tensile strain applied to 158N oligodendroglial cells altered myelin protein expression, dampened MAPK-ERK1/2 and MAPK-p38 signaling, and enhanced the production of reactive oxygen species. The latter was accompanied by increased protein oxidation and an alteration of anti-oxidant defense that was strain magnitude-dependent. In conclusion, mechanical stretch of high magnitude provokes axonal injury with significant alterations in oligodendrocyte biology that could initiate demyelination.
Collapse
Affiliation(s)
- Elena Chierto
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Anne Simon
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Francesca Castoldi
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Delphine Meffre
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Giulia Cristinziano
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Francesca Sapone
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Alex Carrete
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Didier Borderie
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
- Service de Diagnostic Biologique Automatisé, Hôpitaux Universitaires Paris Centre - Groupe Hospitalier Cochin (AP-HP), 27 rue du faubourg saint Jacques, 75679, Paris Cedex 14, France
| | - François Etienne
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
- Plateforme de mécanobiologie, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - François Rannou
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
- Plateforme de mécanobiologie, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
- Service de Rééducation et de Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Hôpitaux Universitaires Paris Centre - Groupe Hospitalier Cochin (AP-HP), 27 rue du faubourg saint Jacques, 75679, Paris Cedex 14, France
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, 351 Engineering Terrace, MC8904, New York, NY, 10027, USA
| | - Charbel Massaad
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Mehrnaz Jafarian-Tehrani
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France.
| |
Collapse
|