1
|
Yang Z, Kirschke CP, Huang L. Lack of maternal exposure to somatostatin leads to diet-induced insulin and leptin resistance in mouse male offspring. J Mol Endocrinol 2025; 74:e240102. [PMID: 40066865 PMCID: PMC11964479 DOI: 10.1530/jme-24-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/14/2025]
Abstract
Somatostatin (Sst) is an inhibitory regulator of many hormones. The prenatal environment impacts an offspring's risk to type 2 diabetes in adulthood. However, the effect of maternal Sst deficiency on glucose and insulin metabolism in offspring and metabolic disease risk in their adult life has been poorly understood. The study was to investigate the impact of a lack of maternal Sst exposure in mouse male and female offspring on diet-induced changes in glucose metabolism and adiposity. Sst knockout offspring, SstKO born to the Sst-heterozygous dams or SstKO-MSD born to the Sst-homozygous dams were fed either a regular diet (CD) or a high-fat diet (HFD) at 3-week-old for 15 weeks. Body weight and blood glucose levels were monitored. Glucose and insulin tolerance tests were performed. Plasma hormone levels and gene expression in the hypothalamus were investigated. The results demonstrated that only male SstKO-MSD offspring developed obesity accompanied by severe insulin and leptin resistance after HFD challenge. Insulin secretion was reduced in both basal and oral glucose-challenged conditions in the CD-fed male SstKO-MSD mice. A reduced ratio of islet area to pancreas area was noted in SstKO-MSD mice in both sexes. Plasma levels of glucagon, Glp1 and Pyy were elevated in both male and female SstKO and SstKO-MSD mice. mRNA expression of leptin receptor, FoxO1, Npy and Agrp was downregulated in male SstKO-MSD mice. These results demonstrate that a lack of fetal somatostatin exposure impairs the islet development in offspring and increases risk of obesity, insulin resistance and leptin resistance later in life.
Collapse
Affiliation(s)
- Zhongyue Yang
- Department of Nutrition, University of California at Davis, Davis, California, USA
| | | | - Liping Huang
- Department of Nutrition, University of California at Davis, Davis, California, USA
- USDA/ARS/Western Human Nutrition Research Center, Davis, California, USA
- Integrative Genetics and Genomics, University of California at Davis, Davis, California, USA
| |
Collapse
|
2
|
Sharma V, Unjum Saqib BZ, Aran KR. Leptin as a potential neuroprotective target in Parkinson's Disease: Exploring its role in Neuroinflammation, oxidative Stress, and dopaminergic neurodegeneration. Neuroscience 2025; 572:134-144. [PMID: 40064367 DOI: 10.1016/j.neuroscience.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Parkinson's disease (PD) is the second most commonneurodegenerative disease, characterized bybradykinesia, resting tremor, stiffness, and postural instabilityresulting due to the progressive loss ofdopaminergic neurons in the substantia nigra (SN). The pathophysiology of PDis extremely complex and involves mitochondrial dysfunction, oxidative stress, neuroinflammation, and disruption of protein homeostasis. Its progression is affected by both environmental and genetic factors, including mutations in the alpha-synuclein (SNCA), PTEN-induced kinase 1 (PINK1), and leucine-rich repeat kinase 2 (LRRK2) genes. Leptin, primarily secreted by the adipose tissue, has garnered significant interest for its involvement in neuroprotective mechanisms and potential role in the progression of PD. Its receptors located in the SN and hippocampus region indicate its role in neuronal survival and function. The role of leptin in the central nervous system (CNS) highlights its impact on neuroinflammation, oxidative stress, and synaptic plasticity. Recent studies indicate that through activation of Janus kinase/signal transducer and activator of transcription (JAK2/STAT3) and the phosphoinositide 3 kinase (PI3 K)/Akt pathways, leptin may exert a neuroprotective effect by preventing the degeneration of dopaminergic neurons, which marked as the hallmark in the pathophysiology of PD. Additionally, leptin's interaction with neurotrophic factors and its ability to enhance synaptic plasticity highlight its vital role in preserving neuronal health. This review summarizes the role of leptin as a neuroprotective mechanism in PD and explores its potential role as a therapeutic target for treatment to enhance neuroprotection and clinical outcome, by addressing the neurodegenerative characteristics associated with PD.
Collapse
Affiliation(s)
- Vipul Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001 Punjab, India
| | - Bhat Zada Unjum Saqib
- Research Scholar, Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001 Punjab, India.
| |
Collapse
|
3
|
Ashenef B, Yimenu BW, Osman EE, Sinamaw D, Baye G, Teffera ZH, Engida MG, Adugna A, Mengistu EF, Baylie T, Jemal M. Excessive body weight and its contributing factors in visually impaired patients in northwest Ethiopia, 2024. Front Endocrinol (Lausanne) 2025; 16:1514308. [PMID: 40182627 PMCID: PMC11965139 DOI: 10.3389/fendo.2025.1514308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Background Excessive body weight are global health challenge affecting individuals across all age groups. They result from an imbalance between calorie intake and expenditure. Individuals with visual impairment are particularly vulnerable due to reduced physical activity, leading to higher rates of excessive body weight. This study assessed the prevalence and determinants of excessive body weight among visually impaired patients in northwest Ethiopia in 2024. Method A multi-centered institution-based cross-sectional study was done with 384 visually impaired patients selected using a simple random sample technique. An interviewer-administered structured questionnaire and physical assessments were used to gather data. The crude and adjusted odds ratios, as well as the 95% confidence intervals, were calculated. Bivariate and multivariate logistic regression analyses were performed. Variables having a p-value < 0.05 were considered substantially associated with excessive body weight. Results The prevalence of excessive body weight was 27.9% (95% CI: 23.2-32.8). Factors significantly associated with excessive body weight included being aged 65 or older (AOR = 5.43, 95% CI: 1.22-24.1), urban residency (AOR = 4.84, 95% CI: 2.95-7.95), and having visual impairment for five or more years (AOR = 3.33, 95% CI: 1.88-5.89). Conclusion Excessive body weight affects nearly one-third of visually impaired patients in northwest Ethiopia, with significant associations found for older age, urban residence, and long-term visual impairment. Integrating weight management programs, physical activity promotion, nutritional education, and community support is essential to improve health outcomes. Future studies using prospective cohort designs are recommended to explore causal relationships.
Collapse
Affiliation(s)
- Baye Ashenef
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Bayu Wondimneh Yimenu
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enatnesh Essa Osman
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Derese Sinamaw
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gelagey Baye
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet Engida
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Enyew Fenta Mengistu
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
4
|
Mittal R, Prasad K, Lemos JRN, Arevalo G, Hirani K. Unveiling Gestational Diabetes: An Overview of Pathophysiology and Management. Int J Mol Sci 2025; 26:2320. [PMID: 40076938 PMCID: PMC11900321 DOI: 10.3390/ijms26052320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by an inadequate pancreatic β-cell response to pregnancy-induced insulin resistance, resulting in hyperglycemia. The pathophysiology involves reduced incretin hormone secretion and signaling, specifically decreased glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), impairing insulinotropic effects. Pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), impair insulin receptor substrate-1 (IRS-1) phosphorylation, disrupting insulin-mediated glucose uptake. β-cell dysfunction in GDM is associated with decreased pancreatic duodenal homeobox 1 (PDX1) expression, increased endoplasmic reticulum stress markers (CHOP, GRP78), and mitochondrial dysfunction leading to impaired ATP production and reduced glucose-stimulated insulin secretion. Excessive gestational weight gain exacerbates insulin resistance through hyperleptinemia, which downregulates insulin receptor expression via JAK/STAT signaling. Additionally, hypoadiponectinemia decreases AMP-activated protein kinase (AMPK) activation in skeletal muscle, impairing GLUT4 translocation. Placental hormones such as human placental lactogen (hPL) induce lipolysis, increasing circulating free fatty acids which activate protein kinase C, inhibiting insulin signaling. Placental 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) overactivity elevates cortisol levels, which activate glucocorticoid receptors to further reduce insulin sensitivity. GDM diagnostic thresholds (≥92 mg/dL fasting, ≥153 mg/dL post-load) are lower than type 2 diabetes to prevent fetal hyperinsulinemia and macrosomia. Management strategies focus on lifestyle modifications, including dietary carbohydrate restriction and exercise. Pharmacological interventions, such as insulin or metformin, aim to restore AMPK signaling and reduce hepatic glucose output. Emerging therapies, such as glucagon-like peptide-1 receptor (GLP-1R) agonists, show potential in improving glycemic control and reducing inflammation. A mechanistic understanding of GDM pathophysiology is essential for developing targeted therapeutic strategies to prevent both adverse pregnancy outcomes and the progression to overt diabetes in affected women.
Collapse
Affiliation(s)
| | | | | | | | - Khemraj Hirani
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (K.P.); (J.R.N.L.); (G.A.)
| |
Collapse
|
5
|
Shin MK, Kim LJ, Davaanyam D, Amorim MR, Lee SM, Tang WY, Polotsky VY. Leptin receptor downregulation in the carotid body treats obesity-induced hypertension. J Neurophysiol 2025; 133:892-903. [PMID: 39903168 DOI: 10.1152/jn.00133.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025] Open
Abstract
Obesity and comorbid sleep disordered breathing (SDB) lead to high cardiovascular morbidity and mortality via multiple mechanisms including hypertension. Obesity also leads to high levels of leptin, which is produced in adipocytes. Increased leptin levels have also been implicated in increased sympathetic activity and the pathogenesis of hypertension in obesity. However, mechanisms for the effects of leptin on blood pressure are unclear. The carotid bodies (CB) express leptin receptor (Leprb), and diet-induced obesity (DIO) increases Leprb expression levels, but the mechanisms and consequences of leptin action in CB are poorly understood. We hypothesize that leptin signaling in CB in obesity leads to hypertension, which can be treated by Leprb knockdown specifically in CB. DIO male and female mice and lean male C57BL/6J mice were implanted with telemetry in the left femoral artery for continuous blood pressure monitoring. The adenoviral vectors carrying antisense RNA, Ad-LepR shRNA or Ad-scrambled control shRNA, were administered locally to the CB region. Blood pressure measurements were performed at baseline and 9-11 days after CB infection with the adenoviral vector. DIO male mice showed increased blood pressure compared with lean males and DIO females. Ad-LepR shRNA induced a twofold decrease in Leprb mRNA level in CB and abolished obesity-induced hypertension. Leprb knockdown was particularly effective during the light phase, when animals were predominantly asleep, decreasing mean arterial pressure by 8.5 mmHg. Control shRNA had no effect on DIO-induced hypertension. We conclude that inhibition of Leprb in the carotid bodies abolished obesity-induced hypertension.NEW & NOTEWORTHY Obesity and comorbid sleep apnea are key predisposing factors to hypertension. Obesity increases circulating leptin levels and hyperleptinemia may contribute to hypertension but mechanisms are not clear. Here, we have shown that knockdown of the leptin receptor LepRb in the carotid body decreased blood pressure and treated hypertension in diet-induced obese mice. Thus, we identified a novel mechanism of obesity hypertension and a novel drug target, LepRb in the carotid body.
Collapse
Affiliation(s)
- Mi-Kyung Shin
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Lenise J Kim
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Dashdulam Davaanyam
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Mateus R Amorim
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Sean M Lee
- Office of Clinical Research, George Washington University, Washington, District of Columbia, United States
| | - Wan-Yee Tang
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States
| | - Vsevolod Y Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
6
|
Zhou S, Xu Y, Xiong J, Cheng G. Cross-trait multivariate GWAS confirms health implications of pubertal timing. Nat Commun 2025; 16:799. [PMID: 39824883 PMCID: PMC11742396 DOI: 10.1038/s41467-025-56191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Pubertal timing is highly variable and is associated with long-term health outcomes. Phenotypes associated with pubertal timing include age at menarche, age at voice break, age at first facial hair and growth spurt, and pubertal timing seems to have a shared genetic architecture between the sexes. However, puberty phenotypes have primarily been assessed separately, failing to account for shared genetics, which limits the reliability of the purported health implications. Here, we model the common genetic architecture for puberty timing using a multivariate GWAS, with an effective population of 514,750 European participants. We find 266 independent variants in 197 loci, including 18 novel variants. Transcriptomic, proteome imputation and fine-mapping analyses reveal genes causal for pubertal timing, including KDM4C, LEPR, CCNC, ACP1, and PCSK1. Linkage disequilibrium score regression and Mendelian randomisation analysis establish causal associations between earlier puberty and both accelerated ageing and the risk of developing cardiovascular disease and osteoporosis. We find that alanine aminotransferase, glycated haemoglobin, high-density lipoprotein cholesterol and Parabacteroides levels are mediators of these relationships, and establish that controlling oily fish and retinol intake may be beneficial for promoting healthy pubertal development.
Collapse
Affiliation(s)
- Siquan Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yujie Xu
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingyuan Xiong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, China.
- Children's Medicine Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Ocłoń E, Gurgul A, Szmatoła T, Jasielczuk I, Kucharski M, Zubel-Łojek J, Zieba DA. Impact of modulating leptin sensitivity on the transcriptomic profile of adult-derived hypothalamic mouse neurons. Front Mol Neurosci 2025; 17:1518737. [PMID: 39916981 PMCID: PMC11800294 DOI: 10.3389/fnmol.2024.1518737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Abstract
The modulation of leptin sensitivity in hypothalamic neurons plays a crucial role in metabolic regulation and the development of obesity. Three distinct approaches, exposure to leptin (LEPA), administration of leptin antagonist (LANTA), and treatment with palmitate (PA), were explored in this study to assess their effects on adult-derived mHypoA-2/12 neurons and the resulting transcriptomic signatures. To this end, 3' mRNA-Seq transcriptome analysis was employed, unexpectedly revealing downregulation of key genes associated with the NOD-like receptor signaling pathway (Irf9, Mapk3, Stat2, Nfkbia, Ikbkg, Rela, Cxcl1, and Traf5), the C-type lectin receptor signaling pathway (Nfkb2, Irf9, Mapk3, Stat2, Nfkbia, Ikbkg, Rela, and Ptgs2), the NF kappa B signaling pathway (Nfkbia, Ikbkg, Nfkb2, Rela, Traf5, Cxcl1, and Ptgs2), and the IL 17 signaling pathway (Nfkbia, Ikbkg, Mapk3, Rela, Traf5, Cxcl1, and Ptgs2). These findings help elucidate the molecular mechanisms through which these factors influence leptin sensitivity and provide insights into the pathways implicated in the development of leptin resistance in hypothalamic neurons. The surprising downregulation of these pathways suggests a complex interplay between leptin signaling and the cellular stress response in hypothalamic neurons. This alteration may reflect adaptive mechanisms in response to prolonged leptin or fatty acid exposure. Understanding these dynamics is essential for elucidating the role of hypothalamic inflammation in the progression of leptin resistance and associated metabolic disorders.
Collapse
Affiliation(s)
- Ewa Ocłoń
- Laboratory of Recombinant Proteins Production, University of Agriculture in Krakow, Krakow, Poland
| | - Artur Gurgul
- Department of Basic Sciences, University of Agriculture in Krakow, Krakow, Poland
| | - Tomasz Szmatoła
- Department of Basic Sciences, University of Agriculture in Krakow, Krakow, Poland
| | - Igor Jasielczuk
- Department of Basic Sciences, University of Agriculture in Krakow, Krakow, Poland
| | - Miroslaw Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Joanna Zubel-Łojek
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Dorota Anna Zieba
- Department of Animal Biotechnology, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
8
|
Obaideen M, Önel T, Yıldırım E, Yaba A. The role of leptin in the male reproductive system. J Turk Ger Gynecol Assoc 2024; 25:247-258. [PMID: 39658934 PMCID: PMC11632632 DOI: 10.4274/jtgga.galenos.2024.2023-7-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/08/2024] [Indexed: 12/12/2024] Open
Abstract
Leptin is a hormone produced from adipose tissue, targeting the hypothalamus and regulating energy expenditure, adipose tissue mass, and reproductive function. Leptin concentration reflects body weight and the amount of energy stored, as well as the level of reproductive hormones and male fertility. In this review, the aim was to focus on leptin signaling mechanisms and the significant influence of leptin on the male reproductive system and to summarize the current knowledge of clinical and experimental studies. The PubMed database was searched for studies on leptin and the male reproductive system to summarize the mechanism of leptin in the male reproductive system. Studies have shown that obesity-related, high leptin levels or leptin resistance negatively affects male reproductive functions. Leptin directly affects the testis by binding to the hypothalamic-pituitary-gonadal axis and the receptors of testicular cells, and thus the location of leptin receptors plays a key role in the regulation of the male reproductive system with the negative feedback mechanism between adipose tissue and hypothalamus. Based on the current evidence, leptin may totally inhibit male reproduction, and investigation of this role of leptin has established a potential interaction between obesity and male infertility. The mechanism of leptin in the male reproductive system should be further investigated and possible treatments for subfertility should be evaluated, supported by better understanding of leptin and associated signaling mechanisms.
Collapse
Affiliation(s)
- Melek Obaideen
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Tuğçe Önel
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Ecem Yıldırım
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| | - Aylin Yaba
- Department of Histology and Embryology Yeditepe University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
9
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
10
|
Barros CADA, Gonçalves Panissa VL, Ferreira TADP, Cardoso LKDA, de Oliveira JPR, Vieira MM, Torres ALDC, Miranda RMDP, Rossi PAQ, Rossi FE. Influence of short-time resistance training on appetite and energy intake in young women with and without obesity. Physiol Behav 2024; 286:114667. [PMID: 39151651 DOI: 10.1016/j.physbeh.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The aim of this study was to investigate the effect of 6-weeks resistance training (RT) on appetite, energy intake and body composition in young women with and without obesity, and to examine the relationship between these variables. Thirty-five young women were divided according to the amount of body fat [with obesity (n = 16) and without obesity (n = 19)]. Appetite was assessed through self-reported hunger, fullness, desire to eat, satiety quotient, food frequency diary and motivations to eat palatable food (power of food scale) in both fasted and fed states (after a standardized breakfast). Energy intake and body composition were evaluated at pre- and post-6 weeks of RT. Results showed that self-reported hunger increased significantly in both fasted and fed states (p = 0.007 and p = 0.029, respectively), while self-reported fullness decreased at the fasted state (p = 0.030) in both groups. There were no significant effects for desire to eat fatty, sweet, savory and salty foods, motivation to eat palatable foods, or for total energy intake. Food frequency analysis indicated a decrease in consumption of soup and past (p = 0.045), vegetables and eggs (p = 0.034), and leafy vegetables (p = 0.022) in both groups. Fat-free mass increased significantly in both groups (p = 0.011 and p = 0.003), while fat mass did not show significant changes. There were no correlations between changes in appetite/energy intake and changes in body composition. In conclusion, following the 6-week RT program, both women with and without obesity exhibited increased self-reported hunger alongside decreased fullness, suggesting an increase in orexigenic drive. However, neither group showed an increase in energy intake and fat mass, while both groups experienced an increase in fat-free mass. Registered under Brazilian Registry of Clinical Trials n°. RBR-1024f4qs.
Collapse
Affiliation(s)
- Clara Andressa de Araujo Barros
- Postgraduate student in Science and Health, Federal University of Piauí (UFPI), Teresina-PI, Brazil; Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Valéria Leme Gonçalves Panissa
- Laboratory of Toxicology School of Medical Science, University of Campinas, Campinas, SP, Brazil; Exercise and Immunometabolism Research Group, Department of Physical Education, Faculty of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Thaís Alves de Paiva Ferreira
- Postgraduate student in Science and Health, Federal University of Piauí (UFPI), Teresina-PI, Brazil; Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Larissa Kelly de Araújo Cardoso
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | | | - Matheus Mesquita Vieira
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Physical Education, Federal University of Piaui (UFPI), Teresina-PI, Brazil; Postgraduate student in Movement Sciences - Interunits, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Aline Leal de Carvalho Torres
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Rodrigo Matheus da Paz Miranda
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Priscila Almeida Queiroz Rossi
- Exercise and Immunometabolism Research Group, Department of Physical Education, Faculty of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Fabrício Eduardo Rossi
- Postgraduate student in Science and Health, Federal University of Piauí (UFPI), Teresina-PI, Brazil; Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Professor at Graduate Program in Movement Science - Interunits, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil and Professor at Graduate Program in Science and Health, Federal University of Piauí (UFPI), Teresina-PI, Brazil.
| |
Collapse
|
11
|
Al Zein M, Akomolafe AF, Mahmood FR, Khrayzat A, Sahebkar A, Pintus G, Kobeissy F, Eid AH. Leptin is a potential biomarker of childhood obesity and an indicator of the effectiveness of weight-loss interventions. Obes Rev 2024; 25:e13807. [PMID: 39044542 DOI: 10.1111/obr.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/12/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
Childhood obesity represents a significant public health concern, imposing a substantial burden on the healthcare system. Furthermore, weight-loss programs often exhibit reduced effectiveness in adults who have a history of childhood obesity. Therefore, early intervention against childhood obesity is imperative. Presently, the primary method for diagnosing childhood obesity relies on body mass index (BMI), yet this approach has inherent limitations. Leptin, a satiety hormone produced by adipocytes, holds promise as a superior tool for predicting both childhood and subsequent adulthood obesity. In this review, we elucidate the tools employed for assessing obesity in children, delve into the biological functions of leptin, and examine the factors governing its expression. Additionally, we discuss maternal and infantile leptin levels as predictors of childhood obesity. By exploring the relationship between leptin levels and weight loss, we present leptin as a potential indicator of the effectiveness of obesity interventions.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | - Fathima R Mahmood
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali Khrayzat
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Economou A, Mallia I, Fioravanti A, Gentileschi S, Nacci F, Bellando Randone S, Lepri G, Guiducci S. The Role of Adipokines between Genders in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2024; 25:10865. [PMID: 39409194 PMCID: PMC11476677 DOI: 10.3390/ijms251910865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, degenerative joint disease characterized by joint pain, stiffness, and limited movement. It presents significant intra- and inter-individual variability-in particular, between genders. Recent research has increasingly focused on the role of adipokines-especially leptin, adiponectin, and resistin-in the development of OA. Adipokines, peptide hormones primarily secreted by adipose tissue, are involved in crucial physiological processes related to metabolism and immunity. They can also impact bone and cartilage turnover by interacting with joint cells such as osteoblasts, osteoclasts, chondrocytes, and mesenchymal stem cells, thereby linking inflammation with bone cartilage homeostasis. This review aims to elucidate the structure and functions of various adipokines, their serum and synovial levels, and their association with clinical presentation and radiographic progression in OA patients, with a focus on differences between sexes. A narrative literature review was conducted using three databases specifically analyzing sex differences. OA patients generally show elevated serum and synovial levels of leptin, chemerin, and visfatin, as well as high plasma levels of resistin and visfatin. In contrast, synovial levels of adiponectin and omentin are reduced in OA patients compared to healthy individuals, with an inverse relationship to disease severity, suggesting a potential protective role. Resistin and leptin were positively correlated with pain severity and radiographic progression, while adiponectin's role in OA remains controversial. Regarding sex differences, male OA patients exhibited higher serum levels of leptin, chemerin, and omentin compared to healthy controls, with a positive correlation to the BMI and estrogen levels, potentially explaining the sexual dimorphism observed in this condition. Studies on visfatin and lipocalin did not reveal significant differences in synovial or serum levels between the sexes. The role of resistin remains controversial. Adipokines influence the joint microenvironment and contribute to the progression of osteoarthritis (OA). However, the precise biological mechanisms are not yet fully understood due to the complex interactions between the metabolic, mechanical, and immune systems. Further research is needed to clarify their roles in OA and to identify targeted therapies for managing this degenerative disease.
Collapse
Affiliation(s)
- Alessio Economou
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Ilenia Mallia
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Antonella Fioravanti
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (A.F.); (S.G.)
| | - Stefano Gentileschi
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (A.F.); (S.G.)
| | - Francesca Nacci
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Silvia Bellando Randone
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Gemma Lepri
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Serena Guiducci
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| |
Collapse
|
13
|
Yu Y, Zhou M, Sadiq FA, Hu P, Gao F, Wang J, Liu A, Liu Y, Wu H, Zhang G. Comparison of the effects of three sourdough postbiotics on high-fat diet-induced intestinal damage. Food Funct 2024; 15:9053-9069. [PMID: 39162079 DOI: 10.1039/d4fo02948h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
There is significant interest in using postbiotics as an intervention strategy to address obesity. This study assesses the efficacy of postbiotics derived from different sourdough strains (Lactiplantibacillus plantarum LP1, LP25, and Pediococcus pentosaceus PP18) in mitigating intestinal injury in zebrafish fed on a high-fat diet. We screened postbiotics for their anti-colon cancer cell effects and compared various preparation methods applied to live bacterial strains, including heat-killing at different temperatures, pH adjustments, and ultraviolet radiation exposure. Heat-killing at 120 °C proved to be the most effective preparation method. A marked variation in health effects was observed in the heat-killed microbial cells, as evidenced by their hydrophobicity and self-aggregation ability. A five-week high-fat dietary intervention study in zebrafish demonstrated that diets supplemented with 108 CFU g-1 K-LP25 significantly attenuated weight gain and body fat, along with reductions in FASN, Leptin, and SREBF1 mRNA expression. However, diets supplemented with 107 CFU g-1 K-PP18 only reduced Leptin and SREBF1 mRNA expression. K-PP18 was more effective at mitigating gut barrier damage, promoting colonic Occludin, ZO-1, and Claudin-1 levels. Additionally, K-LP25 supplementation markedly downregulated the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, reducing intestinal inflammation. Supplementation with K-LP1 and K-PP18 increased the abundance of Acinetobacter spp., whereas K-LP25 increased the abundance of Cetobacterium and Plesiomonas. Collectively, these findings suggest that inactivated strains confer protective effects against high-fat diet-induced intestinal damage in zebrafish, with variation observed across different species. Studying the effects of sourdough-derived postbiotics on gut health may open new avenues for dietary interventions to manage gut-related diseases.
Collapse
Affiliation(s)
- Yujuan Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Min Zhou
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Faizan Ahmed Sadiq
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK
| | - Pengli Hu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Feng Gao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Juanxia Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Aowen Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yue Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
14
|
Gutiérrez Rico E, Joseph P, Noutsos C, Poon K. Hypothalamic and hippocampal transcriptome changes in App NL-G-F mice as a function of metabolic and inflammatory dysfunction. Neuroscience 2024; 554:107-117. [PMID: 39002757 DOI: 10.1016/j.neuroscience.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The progression of Alzheimer's disease (AD) has a silent phase that predates characteristic cognitive decline and eventually leads to active cognitive deficits. Metabolism, diet, and obesity have been correlated to the development of AD but is poorly understood. The hypothalamus is a brain region that exerts homeostatic control on food intake and metabolism and has been noted to be impacted during the active phase of Alzheimer's disease. This study, in using an amyloid overexpression AppNL-G-F mouse model under normal metabolic conditions, examines blood markers in young and old male AppNL-G-F mice (n = 5) that corresponds to the silent and active phases of AD, and bulk gene expression changes in the hypothalamus and the hippocampus. The results show a large panel of inflammatory mediators, leptin, and other proteins that may be involved in weakening the blood brain barrier, to be increased in the young AppNL-G-F mice but not in the old AppNL-G-F mice. There were also several differentially expressed genes in both the hypothalamus and the hippocampus in the young AppNL-G-F mice prior to amyloid plaque formation and cognitive decline that persisted in the old AppNL-G-F mice, including GABRa2 receptor, Wdfy1, and several pseudogenes with unknown function. These results suggests that a larger panel of inflammatory mediators may be used as blood markers to detect silent AD, and that a change in leptin and gene expression in the hypothalamus exist prior to cognitive effects, suggesting a coupling of metabolism with amyloid plaque induced cognitive decline.
Collapse
Affiliation(s)
- Evelyn Gutiérrez Rico
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Patricia Joseph
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Christos Noutsos
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Kinning Poon
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA.
| |
Collapse
|
15
|
Klimont A, Ruciński M, Sawicka-Gutaj N, Szyszka M, Blatkiewicz M, Wierzbicki T, Karczewski M, Janicka-Jedyńska M, Ruchała M, Komarowska H. Role of Different Variants of Leptin Receptor in Human Adrenal Tumor Types. Int J Mol Sci 2024; 25:8682. [PMID: 39201370 PMCID: PMC11354735 DOI: 10.3390/ijms25168682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The aim of the study was to evaluate the diagnostic and prognostic significance of leptin receptor isoforms in adrenal tumors. In a single-center study, 96 patients (19 with adrenal cortical carcinoma and 77 with benign tumors) underwent an adrenalectomy. A total of 14 unaffected adrenal gland tissues from kidney donors were used as controls. Fasting blood samples were collected for laboratory tests, and mRNA expressions of leptin receptor isoforms were assessed by RT-qPCR. The study analyzed correlations between mRNA expressions and clinical data and measured NCI-H295R cell proliferation via a real-time cell analyzer. All adrenal lesions expressed leptin receptor isoforms. Significantly lower LepR1 expression was observed in carcinoma tissues than in adenomas and controls (p = 0.016). Expressions of LepR3&LepR6 were correlated with overall survival (p = 0.036), while LepR2&LepR4 and LepR5 expressions were inversely related to morning serum cortisol levels (p = 0.041). Leptin reduced NCI-H295R cell proliferation (p < 0.0001). The study highlights the diagnostic and prognostic significance of leptin receptor isoforms in adrenal tumors. Specifically, LepR1 may serve as a diagnostic marker for carcinomas, while LepR3&LepR6 have potential use as prognostic markers.
Collapse
Affiliation(s)
- Anna Klimont
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Tomasz Wierzbicki
- Department of General, Endocrinological and Gastroenterological Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Karczewski
- Department of General and Transplantation Surgery, Poznan University of Medical Sciences, 60-356 Poznan, Poland
| | | | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland
| | - Hanna Komarowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-356 Poznan, Poland
| |
Collapse
|
16
|
Goldsmith CC, Dodd GT. TET2: the fat controller of leptin. LIFE METABOLISM 2024; 3:loae019. [PMID: 39872508 PMCID: PMC11749346 DOI: 10.1093/lifemeta/loae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 01/30/2025]
Affiliation(s)
- Callen C Goldsmith
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
17
|
Wang X, Wang Z, Liu S, Feng Y, Zhang T, Wu Z, Huang J, Zhao W. Hypomethylated leptin receptor reduces cerebral ischaemia-reperfusion injury by activating the JAK2/STAT3 signalling pathway. J Int Med Res 2024; 52:3000605241261912. [PMID: 39088656 PMCID: PMC11295227 DOI: 10.1177/03000605241261912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE To investigate the cerebroprotective effects of leptin in vitro and in vivo via the Janus kinase-2 (JAK2)/transcription factor signal transducer and activators of transcription-3 (STAT3) pathway and leptin receptors (LEPR). METHODS The study used the cellular oxygen-glucose deprivation (OGD) model in PC12 cells and the middle cerebral artery occlusion (MCAO) rat model of cerebral ischaemia-reperfusion injury (CIRI) to assess changes in gene expression and protein levels following leptin pretreatment. The methylated DNA immunoprecipitation (MeDIP) assay measured DNA methylation levels. RESULTS The optimal leptin concentration for exerting neuroprotective effects against ischaemia-reperfusion injury in PC12 cells was 200 ng/ml in vitro, but excessive leptin diminished this effect. Leptin pretreatment in the MCAO rat model demonstrated a similar effect to previously reported leptin administration post-CIRI. In addition to regulating the expression of inflammation-related cytokines, Western blot analysis showed that leptin pretreatment upregulated BCL-2 and downregulated caspase 3 levels. The MeDIP analysis demonstrated that DNA methylation regulated LEPR gene expression in the MCAO rat model when leptin pretreatment was used. CONCLUSION Exogenous leptin might bind to extra-activated LEPR by reducing the methylation level of the LEPR gene promoter region, which leads to an increase in phosphorylated JAK2/STAT3 and apoptotic signalling pathways.
Collapse
Affiliation(s)
- Xuelou Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Zhen Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Sha Liu
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yu Feng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Tingbao Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Zhongxiang Wu
- Department of Neurosurgery, Tongcheng County People's Hospital, Xianning, Hubei Province, China
| | - Junjie Huang
- Department of Neurosurgery, Tongcheng County People's Hospital, Xianning, Hubei Province, China
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
18
|
Okuka N, Milinkovic N, Velickovic K, Polovina S, Sumarac-Dumanovic M, Minic R, Korčok D, Djordjevic B, Ivanovic ND. Beneficial effects of a new probiotic formulation on adipocytokines, appetite-regulating hormones, and metabolic parameters in obese women. Food Funct 2024; 15:7658-7668. [PMID: 38953736 DOI: 10.1039/d4fo01269k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Obesity is often accompanied by low-grade chronic inflammation and metabolic syndrome. It has been established that microbiota influences many physiological processes, including the development of obesity, and dysbiosis has been observed in obese individuals. In this study, we aimed to evaluate the impact of a new probiotic formulation, containing two probiotic strains and the bioactive compound octacosanol, on body weight, metabolic parameters, and concentrations of certain adipocytokines and appetite-regulating hormones in obese women. This double blind placebo-controlled supplementary intervention study included twenty-five women in the intervention group and twenty-three in the placebo group, and it lasted 12 weeks. Daily oral supplementation included 7 × 1010 CFU of Lactiplantibacillus plantarum 299v (DSM9843), 5 × 109 CFU of Saccharomyces cerevisiae var. boulardii (DBVPG6763), and 40 mg of octacosanol or placebo. Body weight, metabolic parameters, adipocytokines, and appetite-regulating hormones were assessed before (T0) and after the intervention (T1). After the intervention, significantly lower median concentrations of CRP (p = 0.005) and IL-6 (p = 0.012) were measured in the intervention group than the baseline, while the median concentrations of ghrelin (p = 0.026) and HDL-cholesterol (p = 0.03) were significantly increased. The intervention group had lower CRP levels (p = 0.023) and higher ghrelin levels (p = 0.006) than the placebo group. Significant changes in BMI between groups were not observed. In summary, although the new probiotic formulation showed beneficial effects on IL-6, CRP, HDL, and ghrelin levels, its potential effects on regulating triglyceride, insulin, and glucose levels require further studies before the novel dietary intervention could be considered a useful adjuvant therapy and an effective strategy for the management of obesity and obesity-associated comorbidities.
Collapse
Affiliation(s)
- Nina Okuka
- University of Banja Luka, Faculty of Medicine, Department of Bromatology, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Neda Milinkovic
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, 11000, Belgrade, Serbia
| | - Ksenija Velickovic
- University of Belgrade, Faculty of Biology, Department of Cell and Tissue Biology, 11000 Belgrade, Serbia
| | - Snezana Polovina
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Pharmacy, Novi Sad, University Business Academy, 21000 Novi Sad, Serbia
| | - Mirjana Sumarac-Dumanovic
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- School of Medicine, University of Belgrade, Clinic for Endocrinology, Diabetes and Diseases of Metabolism, 11000 Belgrade, Serbia
| | - Rajna Minic
- Institute of Virology, Vaccines and Sera "Torlak", Department of Protein Engineering and Biochemistry, 11000 Belgrade, Serbia
| | - Davor Korčok
- Faculty of Pharmacy, Novi Sad, University Business Academy, 21000 Novi Sad, Serbia
| | - Brizita Djordjevic
- University of Belgrade, Faculty of Pharmacy, Department of Bromatology, 11000 Belgrade, Serbia
| | - Nevena Dj Ivanovic
- University of Belgrade, Faculty of Pharmacy, Department of Bromatology, 11000 Belgrade, Serbia
| |
Collapse
|
19
|
Cannarella R, Curto R, Condorelli RA, Lundy SD, La Vignera S, Calogero AE. Molecular insights into Sertoli cell function: how do metabolic disorders in childhood and adolescence affect spermatogonial fate? Nat Commun 2024; 15:5582. [PMID: 38961093 PMCID: PMC11222552 DOI: 10.1038/s41467-024-49765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Male infertility is a major public health concern globally with unknown etiology in approximately half of cases. The decline in total sperm count over the past four decades and the parallel increase in childhood obesity may suggest an association between these two conditions. Here, we review the molecular mechanisms through which obesity during childhood and adolescence may impair future testicular function. Several mechanisms occurring in obesity can interfere with the delicate metabolic processes taking place at the testicular level during childhood and adolescence, providing the molecular substrate to hypothesize a causal relationship between childhood obesity and the risk of low sperm counts in adulthood.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Scott D Lundy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Tarhan M, Hartl T, Shchyglo O, Colitti-Klausnitzer J, Kuhla A, Breuer TM, Manahan-Vaughan D. Changes in hippocampal volume, synaptic plasticity and amylin sensitivity in an animal model of type 2 diabetes are associated with increased vulnerability to amyloid-beta in advancing age. Front Aging Neurosci 2024; 16:1373477. [PMID: 38974903 PMCID: PMC11224464 DOI: 10.3389/fnagi.2024.1373477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
Type-2 diabetes (T2D) is a metabolic disorder that is considered a risk factor for Alzheimer's disease (AD). Cognitive impairment can arise due to hypoglycemia associated with T2D, and hyperamylinemia associated with insulin resistance can enhance AD pathology. We explored whether changes occur in the hippocampus in aging (6-12 months old) female V-Lep○b-/- transgenic (tg) mice, comprising an animal model of T2D. We also investigated whether an increase in vulnerability to Aβ (1-42), a known pathological hallmark of AD, is evident. Using magnetic resonance imaging we detected significant decreases in hippocampal brain volume in female tg-mice compared to wild-type (wt) littermates. Long-term potentiation (LTP) was impaired in tg compared to wt mice. Treatment of the hippocampus with Aβ (1-42) elicited a stronger debilitation of LTP in tg compared to wt mice. Treatment with an amylin antagonist (AC187) significantly enhanced LTP in wt and tg mice, and rescued LTP in Aβ (1-42)-treated tg mice. Taken together our data indicate that a T2D-like state results in an increased vulnerability of the hippocampus to the debilitating effects of Aβ (1-42) and that effects are mediated in part by changes in amylin receptor signaling.
Collapse
Affiliation(s)
- Melih Tarhan
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| | - Tim Hartl
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| | - Olena Shchyglo
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | | | - Angela Kuhla
- Rudolf Zenker Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | | | - Denise Manahan-Vaughan
- Department of Neurophysiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Bochum, Germany
| |
Collapse
|
21
|
Cannarella R, Crafa A, Curto R, Condorelli RA, La Vignera S, Calogero AE. Obesity and male fertility disorders. Mol Aspects Med 2024; 97:101273. [PMID: 38593513 DOI: 10.1016/j.mam.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Often associated with obesity, male infertility represents a widespread condition that challenges the wellbeing of the couple. In this article, we provide a comprehensive and critical analysis of studies exploring the association between obesity and male reproductive function, to evaluate the frequency of this association, and establish the effects of increased body weight on conventional and biofunctional sperm parameters and infertility. In an attempt to find possible molecular markers of infertility in obese male patients, the numerous mechanisms responsible for infertility in overweight/obese patients are reviewed in depth. These include obesity-related functional hypogonadism, insulin resistance, hyperinsulinemia, chronic inflammation, adipokines, irisin, gut hormones, gut microbiome, and sperm transcriptome. According to meta-analytic evidence, excessive body weight negatively influences male reproductive health. This can occurr through a broad array of molecular mechanisms. Some of these are not yet fully understood and need to be further elucidated in the future. A better understanding of the effects of metabolic disorders on spermatogenesis and sperm fertilizing capacity is very useful for identifying new diagnostic markers and designing therapeutic strategies for better clinical management of male infertility.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
22
|
Zandawala M, Gera J. Leptin- and cytokine-like unpaired signaling in Drosophila. Mol Cell Endocrinol 2024; 584:112165. [PMID: 38266772 DOI: 10.1016/j.mce.2024.112165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Animals have evolved a multitude of signaling pathways that enable them to orchestrate diverse physiological processes to tightly regulate systemic homeostasis. This signaling is mediated by various families of peptide hormones and cytokines that are conserved across the animal kingdom. In this review, we primarily focus on the unpaired (Upd) family of proteins in Drosophila which are evolutionarily related to mammalian leptin and the cytokine interleukin 6. We summarize expression patterns of Upd in Drosophila and discuss the parallels in structure, signaling pathway, and functions between Upd and their mammalian counterparts. In particular, we focus on the roles of Upd in governing metabolic homeostasis, growth and development, and immune responses. We aim to stimulate future studies on leptin-like signaling in other phyla which can help bridge the evolutionary gap between insect Upd and vertebrate leptin and cytokines like interleukin 6.
Collapse
Affiliation(s)
- Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
23
|
Hassell Sweatman CZW. Modelling remission from overweight type 2 diabetes reveals how altering advice may counter relapse. Math Biosci 2024; 371:109180. [PMID: 38518862 DOI: 10.1016/j.mbs.2024.109180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
The development or remission of diet-induced overweight type 2 diabetes involves many biological changes which occur over very different timescales. Remission, defined by HbA1c<6.5%, or fasting plasma glucose concentration G<126 mg/dl, may be achieved rapidly by following weight loss guidelines. However, remission is often short-term, followed by relapse. Mathematical modelling provides a way of investigating a typical situation, in which patients are advised to lose weight and then maintain fat mass, a slow variable. Remission followed by relapse, in a modelling sense, is equivalent to changing from a remission trajectory with steady state G<126 mg/dl, to a relapse trajectory with steady state G≥126 mg/dl. Modelling predicts that a trajectory which maintains weight will be a relapse trajectory, if the fat mass chosen is too high, the threshold being dependent on the lipid to carbohydrate ratio of the diet. Modelling takes into account the effects of hepatic and pancreatic lipid on hepatic insulin sensitivity and β-cell function, respectively. This study leads to the suggestion that type 2 diabetes remission guidelines be given in terms of model parameters, not variables; that is, the patient should adhere to a given nutrition and exercise plan, rather than achieve a certain subset of variable values. The model predicts that calorie restriction, not weight loss, initiates remission from type 2 diabetes; and that advice of the form 'adhere to the diet and exercise plan' rather than 'achieve a certain weight loss' may help counter relapse.
Collapse
Affiliation(s)
- Catherine Z W Hassell Sweatman
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, Auckland 1010, New Zealand.
| |
Collapse
|
24
|
Tong D, Xiang J, Liu W, Sun F, Wang L, Mou A, Cao T, Zhou Q, You M, Liao Y, Gao P, Liu D, Lu Z, Zhu Z. Leptin receptor deficiency impedes metabolic surgery related-weight loss through inhibition of energy expenditure in db/db mice. Diabetol Metab Syndr 2024; 16:33. [PMID: 38302999 PMCID: PMC10832203 DOI: 10.1186/s13098-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is an effective metabolic surgery against diabetes and obesity. Clinical evidence indicates that patients with severe obesity have a poor curative effect in losing weight if they suffer from leptin or its receptor deficiency, but the underlying mechanism remains elusive. Here, we investigated the effect of leptin receptor deficiency on metabolic dysfunction in db/db mice treated by RYGB surgery. METHODS The db/db mice and their heterozygote control db/m mice were subjected to RYGB or sham surgery. Body weight, blood glucose, food intake and glucose tolerance were evaluated. Micro-PET/CT and histological analysis were performed to examine the glucose uptake of tissues and the fat changes in mice. The key factors in glucose and fatty acid metabolism were detected by western blot analysis. RESULTS Compared with the sham group, the db/db mice in the RYGB group showed more significant weight regain after surgical recovery and improvement in hyperinsulinemia and glucose tolerance. However, the total body fat and multiple organ lipid deposition of RYGB-treated db/db mice was increased. The underlying mechanism studies suggested that the activation of AMPK regulated GLUT4 to increase glucose uptake, but AMPK could not promote fatty acid oxidation through the JAK2/STAT3 pathway under leptin receptor deficiency in db/db mice. CONCLUSION We conclude that leptin receptor deficiency impedes the AMPK activation-mediated fat catabolism but does not affect AMPK-related glucose utilization after metabolic surgery in db/db mice. This result helps select surgical indications for patients with obesity and diabetes.
Collapse
Affiliation(s)
- Dan Tong
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Jie Xiang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Wei Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Yingying Liao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China.
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China.
| |
Collapse
|
25
|
Kim JW, Kim JH, Lee YJ. The Role of Adipokines in Tumor Progression and Its Association with Obesity. Biomedicines 2024; 12:97. [PMID: 38255203 PMCID: PMC10813163 DOI: 10.3390/biomedicines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Obesity is a well-established risk factor for various malignancies and emerging evidence suggests that adipokines play a pivotal role in linking excess adiposity to tumorigenesis. Adipokines are bioactive molecules secreted by adipose tissue and their altered expression in obesity contributes to a pro-inflammatory, pro-angiogenic, and growth-promoting microenvironment conducive to tumorigenesis. Leptin, a key adipokine, activates survival and proliferative signaling pathways whereas adiponectin exhibits tumor-suppressive effects by inducing apoptosis and cell cycle arrest. Visfatin has also been documented to promote tumor growth, angiogenesis, migration, and invasion. Moreover, emerging studies suggest that adipokines, such as resistin, apelin, and chemerin, which are overexpressed in obesity, may also possess oncogenic functions. Despite advancements in our understanding of the roles of individual adipokines in cancer, the intricate interplay and crosstalk between adipokines, tumor cells, and the tumor microenvironment remain complex and multifaceted. This review highlights the evolving knowledge of how adipokines contribute to obesity-related tumorigenesis, shedding light on the potential of targeting adipokine signaling pathways as a novel therapeutic approach for obesity-associated cancers. Further research on the specific mechanisms and interactions between adipokines and tumor cells is crucial for a comprehensive understanding of obesity-associated cancer pathogenesis.
Collapse
Affiliation(s)
| | | | - Yoon Jae Lee
- Department of Plastic and Reconstructive Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea; (J.W.K.); (J.H.K.)
| |
Collapse
|
26
|
Hao Y, Wei Z, Wang S, An P, Huang Y, Yu L, Zhu M, Yu H, Yuan F, Wang S. Inhibition of SOCS3 signaling in the nucleus tractus solitarii and retrotrapezoid nucleus alleviates hypoventilation in diet-induced obese male mice. Brain Res 2024; 1822:148608. [PMID: 37778648 DOI: 10.1016/j.brainres.2023.148608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The central leptin signaling system has been found to facilitate breathing and is linked to obesity-related hypoventilation. Activation of leptin signaling in the nucleus tractus solitarii (NTS) and retrotrapezoid nucleus (RTN) enhances respiratory drive. In this study, we investigated how medullary leptin signaling contributes to hypoventilation and whether respective deletion of SOCS3 in the NTS and RTN could mitigate hypoventilation in diet-induced obesity (DIO) male mice. Our findings revealed a decrease in the number of CO2-activated NTS neurons and downregulation of acid-sensing ion channels in DIO mice compared to lean control mice. Moreover, NTS leptin signaling was disrupted, as evidenced by the downregulation of phosphorylated STAT3 and the upregulation of SOCS3 in DIO mice. Importantly, deleting SOCS3 in the NTS and RTN significantly improved the diminished hypercapnic ventilatory response in DIO mice. In conclusion, our study suggests that disrupted medullary leptin signaling contributes to obesity-related hypoventilation, and inhibiting the upregulated SOCS3 in the NTS and RTN can alleviate this condition.
Collapse
Affiliation(s)
- Yinchao Hao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei Province, China; Functional Laboratory, Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ziqian Wei
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shuang Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Pei An
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yifei Huang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lingxiao Yu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mengchu Zhu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Hongxiao Yu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei Province, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei Province, China.
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei Province, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
27
|
Yanik T, Durhan ST. Neuroendocrinological and Clinical Aspects of Leptin. Mini Rev Med Chem 2024; 24:886-894. [PMID: 37622709 DOI: 10.2174/1389557523666230825100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Obesity is characterized by an abnormal increase in adipose tissue mass and is regarded as a neurobehavioral as well as a metabolic disorder. Increases in body fat are caused by even slight, long-term discrepancies between energy intake and energy expenditure. It is a chronic condition linked to the metabolic syndrome, a spectrum of risky conditions, such as diabetes, high blood pressure, and heart disease. With a swiftly rising prevalence, obesity has emerged as a significant global health concern. Leptin influences the brain's neuroendocrine and metabolic processes, which is important for maintaining energy homeostasis. White adipose tissue secretes the majority of leptin, and there is a positive correlation between leptin levels in the blood and body fat percentages. The central nervous system is also modulated by leptin levels to modify energy intake and usage. The idea of an obesity cure sparked excitement after it was discovered more than 25 years ago. However, the leptin medication only effectively reduces weight in patients with congenital leptin insufficiency and not in patients with typical obesity who may also have leptin resistance. Recent research has focused on the role of leptin in managing weight reduction and preventing "yo-yo dieting". This review concentrates on the neurological effects of leptin with a focus on therapeutic and diagnostic applications, particularly for childhood obesity.
Collapse
Affiliation(s)
- Tulin Yanik
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Seyda Tugce Durhan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
28
|
Ansarin A, Mahdavi AM, Javadivala Z, Shanehbandi D, Zarredar H, Ansarin K. The cross-talk between leptin and circadian rhythm signaling proteins in physiological processes: a systematic review. Mol Biol Rep 2023; 50:10427-10443. [PMID: 37874505 DOI: 10.1007/s11033-023-08887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Today, modern lifestyles and disrupted sleep patterns cause circadian clock rhythm impairments that are associated with altered leptin levels, which subsequently affect a wide range of physiological processes and have significant health burdens on societies. Nevertheless, there has been no systematic review of circadian clock genes and proteins, leptin, and related signaling pathways. METHODS Accordingly, we systematically reviewed circadian clock proteins, leptin, and molecular mechanisms between them by searching Pubmed, Scopus, ProQuest, Web of Sciences, and Google Scholar until September 2022. After considering the inclusion and exclusion criteria, 20 animal studies were selected. The risk of bias was assessed in each study. RESULTS The results clarified the reciprocal interconnected relationship between circadian clock genes and leptin. Circadian clock genes regulate leptin expression and signaling via different mechanisms, such as CLOCK-BMAL1 heterodimers, which increase the expression of PPARs. PPARs induce the expression of C/EBPα, a key factor in upregulating leptin expression. CLOCK-BMAL1 also induces the expression of Per1 and Rev-erb genes. PER1 activates mTORC1 and mTORC1 enhances the expression of C/EBPα. In addition, REV-ERBs activate the leptin signaling pathway. Also, leptin controls the expression of circadian clock genes by triggering the AMPK and ERK/MAPK signaling pathways, which regulate the activity of PPARs. Moreover, the roles of these molecular mechanisms are elucidated in different physiological processes and organs. CONCLUSIONS Crosstalk between circadian clock genes and leptin and their affecting elements should be considered in the selection of new therapeutic targets for related disorders, especially obesity and metabolic impairments.
Collapse
Affiliation(s)
- Atefeh Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
| | - Aida Malek Mahdavi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Javadivala
- Department of Health Education & Promotion, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran.
| |
Collapse
|
29
|
Fontana A, Vieira JG, Vianna JM, Bichowska M, Krzysztofik M, Wilk M, Reis VM. Reduction of leptin levels during acute exercise is dependent on fasting but not on caloric restriction during chronic exercise: A systematic review and meta-analysis. PLoS One 2023; 18:e0288730. [PMID: 38015889 PMCID: PMC10684016 DOI: 10.1371/journal.pone.0288730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The importance of leptin in controlling body mass has recently gained more attention. Its levels are directly associated with the amount of fat mass, but not necessarily dependent on it. Exercise has great potential in reducing leptin levels, however the response of exercise to this cytokine is still not well understood. OBJECTIVE The objective of the review was to analyze the effects of physical exercise on plasma leptin concentration, either acutely (post-exercise/training session) and/or after a training period (short- or long-term), as well as to investigate the existence of possible moderating variables. METHODS The studies included in this systematic review were published between 2005 and May 2023. Only peer-reviewed studies, available in English, performed with humans that evaluated the effects of any form of exercise on leptin levels were included. The search was conducted on May 03, 2023, in Embase (Elsevier), MEDLINE via PubMed®, and Web of Science (Core collection). The risk of bias in the included trials was assessed by the Physiotherapy Evidence Database tool, considering 11 questions regarding the methodology of each study with 10 questions being scored. The data (n, mean, and standard deviation) were extracted from included studies to perform random effects meta-analyses using standardized mean difference between the pre- and post-intervention effects. RESULTS Twenty-five studies (acute effect: 262 subjects; short- and long-term effect: 377 subjects) were included in this systematic review and meta-analysis. Short- and long-term physical exercise and caloric restriction plus exercise reduce plasma leptin levels, presenting statistically significant differences (p<0.001); as well as acute effect (p = 0.035), however the latter result was influenced by the pre-exercise meal as shown in the subgroup analysis. In this meta-analysis the effect of moderating factors on leptin reduction, not addressed by past reviews, is verified, such as the relationship with caloric restriction, exercise intensity and pre-exercise meal on acute responses. CONCLUSION Both acute and chronic exercise reduce leptin levels, yet the acute effect is dependent on the pre-exercise meal. In addition to having a long-term reduction in leptin levels, the minimum amount of weekly exercise to have a significant reduction in plasma leptin is 180 minutes of moderate-intensity exercise and 120 minutes of high-intensity exercise.
Collapse
Affiliation(s)
- Alexandre Fontana
- Master in Sports Science, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - João Guilherme Vieira
- Graduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
- Strength Training Research Laboratory, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Jeferson Macedo Vianna
- Graduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
- Strength Training Research Laboratory, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Marta Bichowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Victor Machado Reis
- Research Center in Sports Sciences, Health Sciences & Human Development (CIDESD), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
30
|
Gao X, Yan D, Li G, Wei Y, He H, Zhai J. Polychlorinated biphenyls and risk of metabolic syndrome and comparison with the risk of diabetes: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165773. [PMID: 37506918 DOI: 10.1016/j.scitotenv.2023.165773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/07/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
With the increasing incidence of metabolic syndrome (MetS) worldwide and no consistent results on PCBs and MetS. A meta-analysis to explore their relationship was conducted. Given the high correlation and overlap of MetS with diabetes, analysis of diabetes risk, was used as a supplement to compare with MetS. Seven studies included MetS, 15 studies for diabetes, and one study included both outcomes. It was found that PCBs may not be a risk factor for MetS, but their high heterogeneity indicates that they are under-represented. In addition, our results showed that total PCBs might be a protective factor against diabetes. In the whole blood subgroup, which can reflect the accumulation of more than one body load, heterogeneity was reduced, and its OR value suggested that PCBs increased the risk of MetS in the whole blood biomaterial. DL-PCBs were positively associated with MetS and diabetes, while NDL-PCBs were negatively associated with diabetes. In the subgroup analysis of PCBs homologs, DL-PCB-126 and DL-PCB-118 were risk factors for MetS and diabetes, respectively. In addition, PCB-153 and 180 showed a dose-response relationship between them and diabetes mellitus, respectively. The results of total analysis of MetS and diabetes mellitus and subgroup analysis of PCBs were mixed, and this reason might be attributed to the different mechanisms of action and effect sizes of different PCBs, so based on subgroup results and in vivo and in vitro experiments, we considered PCBs to be a risk factor for MetS and diabetes. Due to various reasons, there are still many shortcomings in the evaluation of PCBs impact on human health, and more high-quality research are needed to further explore the role of PCBs of different species and congeners in MetS and diabetes.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China.
| |
Collapse
|
31
|
Kian N, Bagheri A, Salmanpour F, Soltani A, Mohajer Z, Samieefar N, Barekatain B, Kelishadi R. Breast feeding, obesity, and asthma association: clinical and molecular views. Clin Mol Allergy 2023; 21:8. [PMID: 37789370 PMCID: PMC10546753 DOI: 10.1186/s12948-023-00189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Asthma is a chronic condition that affects children worldwide. Accumulating number of studies reported that the prevalence of pediatric obesity and asthma might be altered through breastfeeding. It has been proposed that Leptin, which exists in human milk, is oppositely associated with weight increase in newborns. It may also influence peripheral immune system by promoting TH1 responses and suppressing TH2 cytokines. Leptin influences body weight and immune responses through complex signaling pathways at molecular level. Although previous studies provide explanations for the protective role of breastfeeding against both obesity and asthma, other factors such as duration of breastfeeding, parental, and prenatal factors may confound this relationship which requires further research.
Collapse
Affiliation(s)
- Naghmeh Kian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Bagheri
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Fardis Salmanpour
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afsaneh Soltani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Mohajer
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Behzad Barekatain
- Division of Neonatology, Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- USERN Office, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
32
|
Rezaei MH, Madadizadeh E, Aminaei M, Abbaspoor M, Schierbauer J, Moser O, Khoramipour K, Chamari K. Leptin Signaling Could Mediate Hippocampal Decumulation of Beta-Amyloid and Tau Induced by High-Intensity Interval Training in Rats with Type 2 Diabetes. Cell Mol Neurobiol 2023; 43:3465-3478. [PMID: 37378849 PMCID: PMC11409991 DOI: 10.1007/s10571-023-01357-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/29/2023] [Indexed: 06/29/2023]
Abstract
Leptin (LEP) can cross the blood-brain barrier and facilitate cross-talk between the adipose tissue and central nerve system (CNS). This study aimed to investigate the effect of 8-week high-intensity interval training (HIIT) on the LEP signaling in the hippocampus of rats with type 2 diabetes. 20 rats were randomly divided into four groups: (i) control (Con), (ii) type 2 diabetes (T2D), (iii) exercise (EX), and (iv) type 2 diabetes + exercise (T2D + EX). The rats in the T2D and T2D + EX were fed a high-fat diet for two months, then a single dose of STZ (35 mg/kg) was injected to induce diabetes. The EX and T2D + EX groups performed 4-10 intervals of treadmill running at 80-100% of Vmax. Serum and hippocampal levels of LEP as well as hippocampal levels of LEP receptors (LEP-R), Janus kinase 2 (JAK-2), signal transducer and activator of transcription 3 (STAT-3), activated protein kinase (AMP-K), proxy zoster receptor α (PGC-1α), beta-secretase 1 (BACE1), Beta-Amyloid (Aβ), Phosphoinositide 3-kinases (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), Glycogen Synthase Kinase 3 Beta (GSK3β), and hyperphosphorylated tau proteins (TAU) were measured. One-way ONOVA and Tukey post-hoc tests were used to analyze the data. Serum and hippocampal levels of LEP as well as hippocampal levels of LEP-R, JAK-2, STAT-3, AMP-K, PGC1α, PI3K, AKT, and mTOR were increased while hippocampal levels of BACE1, GSK3B, TAU, and Aβ were decreased in T2D + EX compared with T2D group. Serum LEP and hippocampal levels of LEP, LEP-R, JAK-2, STAT-3, AMP-K, PGC1α, PI3K, AKT, and mTOR were decreased. Conversely hippocampal levels of BACE1, GSK3B, TAU, and Aβ were increased in T2D group compared with CON group. HIIT could improve LEP signaling in the hippocampus of rats with type 2 diabetes and decrease the accumulation of Tau and Aβ, which may reduce the risk of memory impairments.
Collapse
Affiliation(s)
- Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mohsen Aminaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mehdi Abbaspoor
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Janis Schierbauer
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuht, Bayreuth, Germany
| | - Othmar Moser
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuht, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Karim Chamari
- Aspetar Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
33
|
Brandfon S, Eylon A, Khanna D, Parmar MS. Advances in Anti-obesity Pharmacotherapy: Current Treatments, Emerging Therapies, and Challenges. Cureus 2023; 15:e46623. [PMID: 37937009 PMCID: PMC10626572 DOI: 10.7759/cureus.46623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/01/2023] [Indexed: 11/09/2023] Open
Abstract
Obesity is a major public health concern linked to health risks such as hypertension, hyperlipidemia, type 2 diabetes mellitus (T2DM), stroke, metabolic syndrome, asthma, and cancer. It is among the leading causes of morbidity and mortality worldwide caused by an unhealthy diet and lack of physical activity, but genetic or hormonal factors may also contribute. Over a third of adults in the United States are obese. Pharmacological agents have been designed to reduce weight gain caused by excessive calorie intake and low physical activity. They work by inhibiting the absorption of dietary fat or stimulating the secretion of satiety hormones. These drugs include lipase inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists. However, the current weight-loss strategies do not effectively treat genetic-related diseases, such as generalized lipodystrophy, Bardet-Biedl syndrome, and proopiomelanocortin (POMC) deficiency. Emerging therapies for these gene mutations have been developed targeting leptin and melanocortin-4 receptors (MC4Rs), restoring the normal function of leptin or melanocortin-4 receptors regulating energy balance and appetite. Leptin analogs and MC4R agonists are novel therapies that target genetic or hormonal causes of obesity. This article provides a comprehensive review of anti-obesity medications (AOMs). In this review, we discuss the clinical trials, efficacy, United States FDA-approved indication, contraindications, and serious side effects of different classes of drugs, including lipase inhibitors, GLP-1 agonists, leptin analogs, and MC4R agonists.
Collapse
Affiliation(s)
- Skyler Brandfon
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Adi Eylon
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Deepesh Khanna
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Mayur S Parmar
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| |
Collapse
|
34
|
Li S, Liu M, Cao S, Liu B, Li D, Wang Z, Sun H, Cui Y, Shi Y. The Mechanism of the Gut-Brain Axis in Regulating Food Intake. Nutrients 2023; 15:3728. [PMID: 37686760 PMCID: PMC10490484 DOI: 10.3390/nu15173728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
With the increasing prevalence of energy metabolism disorders such as diabetes, cardiovascular disease, obesity, and anorexia, the regulation of feeding has become the focus of global attention. The gastrointestinal tract is not only the site of food digestion and absorption but also contains a variety of appetite-regulating signals such as gut-brain peptides, short-chain fatty acids (SCFAs), bile acids (BAs), bacterial proteins, and cellular components produced by gut microbes. While the central nervous system (CNS), as the core of appetite regulation, can receive and integrate these appetite signals and send instructions to downstream effector organs to promote or inhibit the body's feeding behaviour. This review will focus on the gut-brain axis mechanism of feeding behaviour, discussing how the peripheral appetite signal is sensed by the CNS via the gut-brain axis and the role of the central "first order neural nuclei" in the process of appetite regulation. Here, elucidation of the gut-brain axis mechanism of feeding regulation may provide new strategies for future production practises and the treatment of diseases such as anorexia and obesity.
Collapse
Affiliation(s)
- Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.L.); (M.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
35
|
Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of Leptin and Adiponectin in Carcinogenesis. Cancers (Basel) 2023; 15:4250. [PMID: 37686525 PMCID: PMC10486522 DOI: 10.3390/cancers15174250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
36
|
Kawasaki Y, Kitamura E, Kasai T. Impact of Body Composition on Sleep and Its Relationship with Sleep Disorders: Current Insights. Nat Sci Sleep 2023; 15:375-388. [PMID: 37220427 PMCID: PMC10200107 DOI: 10.2147/nss.s340946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Sleep is involved in many physiological processes and is essential for both physical and mental health. Obesity and sleep deprivation due to sleep disorders are major public health issues. Their incidence is increasing, and they have a wide range of adverse health-related consequences, including life-threatening cardiovascular disease. The impact of sleep on obesity and body composition is well-known, and many studies have shown an association between insufficient or excessive sleep duration and obesity, body fat percentage, and weight gain. However, there is growing evidence of the effects of body composition on sleep and sleep disorders (particularly sleep disordered breathing) through anatomical and physiological mechanisms (nocturnal fluid shift, core body temperature, or diet). Although some research has been conducted on the bidirectional effects of sleep-disordered breathing and body composition, the specific effects of obesity and body composition on sleep and the underlying mechanisms that explain these effects remain unclear. Therefore, this review summarizes the findings on the effects of body composition on sleep and draws conclusions and proposals for future research in this field.
Collapse
Affiliation(s)
- Yu Kawasaki
- Department of Obstetrics and Gynecology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Kitamura
- Department of Obstetrics and Gynecology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takatoshi Kasai
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sleep and Sleep-Disordered Breathing Center, Juntendo University Hospital, Tokyo, Japan
- Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiovascular Management and Remote Monitoring, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Zu Y, Pahlavani M, Ramalingam L, Jayarathne S, Andrade J, Scoggin S, Festuccia WT, Kalupahana NS, Moustaid-Moussa N. Temperature-Dependent Effects of Eicosapentaenoic Acid (EPA) on Browning of Subcutaneous Adipose Tissue in UCP1 Knockout Male Mice. Int J Mol Sci 2023; 24:ijms24108708. [PMID: 37240054 DOI: 10.3390/ijms24108708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Uncoupling protein 1 (UCP1) plays a central role in thermogenic tissues by uncoupling cellular respiration to dissipate energy. Beige adipocytes, an inducible form of thermogenic cells in subcutaneous adipose tissue (SAT), have become a major focus in obesity research. We have previously shown that eicosapentaenoic acid (EPA) ameliorated high-fat diet (HFD)-induced obesity by activating brown fat in C57BL/6J (B6) mice at thermoneutrality (30 °C), independently of UCP1. Here, we investigated whether ambient temperature (22 °C) impacts EPA effects on SAT browning in wild-type (WT) and UCP1 knockout (KO) male mice and dissected underlying mechanisms using a cell model. We observed resistance to diet-induced obesity in UCP1 KO mice fed HFD at ambient temperature, with significantly higher expression of UCP1-independent thermogenic markers, compared to WT mice. These markers included the fibroblast growth factor 21 (FGF21) and sarco/endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b), suggesting the indispensable role of temperature in beige fat reprogramming. Surprisingly, although EPA induced thermogenic effects in SAT-derived adipocytes harvested from both KO and WT mice, EPA only increased thermogenic gene and protein expression in the SAT of UCP1 KO mice housed at ambient temperature. Collectively, our findings indicate that the thermogenic effects of EPA, which are independent of UCP1, occur in a temperature-dependent manner.
Collapse
Affiliation(s)
- Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Shasika Jayarathne
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Jose Andrade
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - William T Festuccia
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
38
|
Liz-Pimenta J, Tavares V, Neto BV, Santos JMO, Guedes CB, Araújo A, Khorana AA, Medeiros R. Thrombosis and cachexia in cancer: two partners in crime? Crit Rev Oncol Hematol 2023; 186:103989. [PMID: 37061076 DOI: 10.1016/j.critrevonc.2023.103989] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Among cancer patients, thrombosis and cachexia are major causes of morbidity and mortality. Although the two may occur together, little is known about their possible relationship. Thus, a literature review was conducted by screening the databases PubMed, Scopus, SciELO, Medline and Web of Science. To summarize, cancer-associated thrombosis (CAT) and cancer-associated cachexia (CAC) seem to share several patient-, tumour- and treatment-related risk factors. Inflammation alongside metabolic and endocrine derangement is the potential missing link between CAT, CAC and cancer. Many key players, including specific pro-inflammatory cytokines, immune cells and hormones, appear to be implicated in both thrombosis and cachexia, representing attractive predictive markers and potential therapeutic targets. Altogether, the current evidence suggests a link between CAT and CAC, however, epidemiological studies are required to explore this potential relationship. Given the high incidence and negative impact of both diseases, further studies are needed for the better management of cancer patients.
Collapse
Affiliation(s)
- Joana Liz-Pimenta
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal; FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Valéria Tavares
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, 4050-313 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Beatriz Vieira Neto
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Joana M O Santos
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Catarina Brandão Guedes
- Department of Imunohemotherapy, Hospital da Senhora da Oliveira, 4835-044 Guimarães, Portugal
| | - António Araújo
- Department of Medical Oncology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal; UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alok A Khorana
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States of America
| | - Rui Medeiros
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, 4050-313 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Research Department, Portuguese League Against Cancer - Regional Nucleus of the North, 4200-172 Porto, Portugal; Biomedical Research Center, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
39
|
Smooth Muscle Cells from a Rat Model of Obesity and Hyperleptinemia Are Partially Resistant to Leptin-Induced Reactive Oxygen Species Generation. Antioxidants (Basel) 2023; 12:antiox12030728. [PMID: 36978976 PMCID: PMC10045401 DOI: 10.3390/antiox12030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
The aim of this study was to evaluate the effect of leptin on reactive oxygen species’ (ROS) generation of smooth muscle cells (SMCs) from a rat model of obesity and hyperleptinemia. Obesity and hyperleptinemia were induced in rats by a sucrose-based diet for 24 weeks. ROS generation was detected by using dichloro-dihydrofluorescein (DCF), a fluorescent ROS probe in primary SMCs culture. An increase in plasma leptin and oxidative stress markers was observed in sucrose-fed (SF) rats. At baseline SMCs from SF rats showed a more than twofold increase in fluorescence intensity (FI) compared to that obtained in control (C) cells. When the C cells were treated with 20 ng leptin, the FI increased by about 200%, whereas the leptin-induced FI in the SF cells increased only by 60%. In addition, sucrose feeding increased the levels of p22phox and gp91phox, subunits of Nox as an O2•− source in SMCs. Treatment of cells with leptin significantly increased p22phox and gp91phox levels in C cells and did not affect SF cells. Regarding STAT3 phosphorylation and the content of PTP1B and SOCS3 as protein markers of leptin resistance, they were found to be significantly increased in SF cells. These results suggest that SF aortic SMCs are partially resistant to leptin-induced ROS generation.
Collapse
|
40
|
Mousavi SN, Bahramfard T, Rad EY, Hosseinikia M, Saboori S. Association of Leptin and Retinol Binding Protein 4 with the Risk of Gestational Diabetes: A Systematic Review and Meta-Analysis of Observational Studies. Indian J Endocrinol Metab 2023; 27:96-104. [PMID: 37292076 PMCID: PMC10245309 DOI: 10.4103/ijem.ijem_385_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 06/10/2023] Open
Abstract
The positive correlation between serum levels of retinol binding protein 4 (RBP4) and gestational diabetes (GDM) has been proven in the previous meta-analysis on case-control studies. However, its association with serum levels of leptin is not studied in any meta-analysis. Therefore, we performed an updated systematic review of observational studies evaluating the association between serum RBP4 and leptin with the risk of GDM. A systematic search was performed on four databases, including PubMed, Scopus, Web of Science, and Google Scholar, up to March 2021. After screening and deleting duplicates, nine articles met our inclusion criteria. Studies had case-control and cohort design, and included 5074 participants with a mean age range between 18 and 32.65 years (2359 participants for RBP4 and 2715 participants for leptin). Interestingly, this meta-analysis revealed higher levels of RBP4 (OR=2.04; 95% CI: 1.37, 3.04) and leptin (OR=2.32; 95% CI: 1.39, 3.87) are significantly associated with the increased risk of overall GDM. The subgroup analysis approved the results based on the study design, trimester of pregnancy and serum/plasms to investigate the source of heterogeneity. The present meta-analysis determines serum leptin and RBP4 levels as predictors of GDM occurrence. However, studies included in this meta-analysis showed significant heterogeneity.
Collapse
Affiliation(s)
- Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tooba Bahramfard
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeil Yousefi Rad
- Nutritional Health Research Centre, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahboobe Hosseinikia
- Department of Nutrition and Food Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Somayeh Saboori
- Nutritional Health Research Centre, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
41
|
Zhou H, Rao Z, Zhang Z, Zhou J. Function of the GABAergic System in Diabetic Encephalopathy. Cell Mol Neurobiol 2023; 43:605-619. [PMID: 35460435 PMCID: PMC11415196 DOI: 10.1007/s10571-022-01214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Diabetes is a common metabolic disease characterized by loss of blood sugar control and a high rate of complications. γ-Aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter in the adult mammalian brain. The normal function of the GABAergic system is affected in diabetes. Herein, we summarize the role of the GABAergic system in diabetic cognitive dysfunction, diabetic blood sugar control disorders, diabetes-induced peripheral neuropathy, diabetic central nervous system damage, maintaining diabetic brain energy homeostasis, helping central control of blood sugar and attenuating neuronal oxidative stress damage. We show the key regulatory role of the GABAergic system in multiple comorbidities in patients with diabetes and hope that further studies elucidating the role of the GABAergic system will yield benefits for the treatment and prevention of comorbidities in patients with diabetes.
Collapse
Affiliation(s)
- Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Zhili Rao
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, People's Republic of China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, People's Republic of China.
| |
Collapse
|
42
|
Francis EC, Oken E, Hivert MF, Rifas-Shiman SL, Chavarro JE, Perng W. Antimüllerian hormone and adiposity across midlife among women in Project Viva. Menopause 2023; 30:247-253. [PMID: 36728523 PMCID: PMC9974681 DOI: 10.1097/gme.0000000000002143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study aimed to examine the association of antimüllerian hormone (AMH) with concurrent and prospective measures of adiposity during approximately 9 years of follow-up. METHODS Participants were 697 parous women from the Project Viva prebirth cohort without polycystic ovarian syndrome. We measured AMH at approximately 3 years postpartum (baseline). Outcomes were weight, body mass index (BMI), and waist circumference assessed at baseline, 4, and 9 years later; % body fat was assessed by bioimpedance at the 4- and 9-year visit. We used linear mixed-effect models including all outcome time points and accounting for age across follow-up and hormonal contraception prescription. In an additional model, we further adjusted for height. RESULTS Median AMH was 1.97 ng/mL (interquartile range, 0.83-4.36 ng/mL), 29.1% had AMH <1.0 ng/mL, and mean age at AMH measurement was 36.7 years (SD, 4.9 y; range, 20-48 y). AMH was inversely associated with average weight, BMI, and waist circumference over follow-up. In age-adjusted models, women with AMH <1.0 versus ≥1.0 ng/mL were 4.92 kg (95% CI, 2.01-7.82 kg) heavier, had a 2.51 cm (95% CI, 0.12-4.89 cm) greater waist circumference, and a 1.46 kg/m 2 (95% CI, 0.44-2.48 kg/m 2 ) greater BMI across the 9 years of follow-up. Findings were similar after covariate adjustment and when AMH was modeled continuously. AMH was also inversely associated with higher fat mass %; however, the CI crossed the null. CONCLUSION Low AMH at baseline was associated with greater adiposity concurrently and across approximately 9 years of follow-up. Whether low AMH is a useful marker of metabolic risk across midlife requires further research.
Collapse
Affiliation(s)
- Ellen C Francis
- From the Lifecourse Epidemiology of Adiposity and Diabetes Center, Colorado School of Public Health, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | | | | | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, and Harvard Pilgrim Health Care Institute, Landmark Center, Boston, MA
| | | | | |
Collapse
|
43
|
Jardim SR, de Souza LMP, de Souza HSP. The Rise of Gastrointestinal Cancers as a Global Phenomenon: Unhealthy Behavior or Progress? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3640. [PMID: 36834334 PMCID: PMC9962127 DOI: 10.3390/ijerph20043640] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The overall burden of cancer is rapidly increasing worldwide, reflecting not only population growth and aging, but also the prevalence and spread of risk factors. Gastrointestinal (GI) cancers, including stomach, liver, esophageal, pancreatic, and colorectal cancers, represent more than a quarter of all cancers. While smoking and alcohol use are the risk factors most commonly associated with cancer development, a growing consensus also includes dietary habits as relevant risk factors for GI cancers. Current evidence suggests that socioeconomic development results in several lifestyle modifications, including shifts in dietary habits from local traditional diets to less-healthy Western diets. Moreover, recent data indicate that increased production and consumption of processed foods underlies the current pandemics of obesity and related metabolic disorders, which are directly or indirectly associated with the emergence of various chronic noncommunicable conditions and GI cancers. However, environmental changes are not restricted to dietary patterns, and unhealthy behavioral features should be analyzed with a holistic view of lifestyle. In this review, we discussed the epidemiological aspects, gut dysbiosis, and cellular and molecular characteristics of GI cancers and explored the impact of unhealthy behaviors, diet, and physical activity on developing GI cancers in the context of progressive societal changes.
Collapse
Affiliation(s)
- Silvia Rodrigues Jardim
- Division of Worker’s Health, Universidade Federal do Rio de Janeiro, Rio de Janeiro 22290-140, RJ, Brazil
| | - Lucila Marieta Perrotta de Souza
- Departamento de Clínica Médica, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro 21941-913, RJ, Brazil
| | - Heitor Siffert Pereira de Souza
- Departamento de Clínica Médica, Hospital Universitário, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro 21941-913, RJ, Brazil
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
| |
Collapse
|
44
|
Kim MH, Li Y, Zheng Q, Jiang L, Myers MG, Wu WS, Rui L. LepRb+ cell-specific deletion of Slug mitigates obesity and nonalcoholic fatty liver disease in mice. J Clin Invest 2023; 133:156722. [PMID: 36512408 PMCID: PMC9927931 DOI: 10.1172/jci156722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Leptin exerts its biological actions by activating the long-form leptin receptor (LepRb). LepRb signaling impairment and leptin resistance are believed to cause obesity. The transcription factor Slug - also known as Snai2 - recruits epigenetic modifiers and regulates gene expression by an epigenetic mechanism; however, its epigenetic action has not been explored in leptin resistance. Here, we uncover a proobesity function of neuronal Slug. Hypothalamic Slug was upregulated in obese mice. LepRb+ cell-specific Slug-knockout (SlugΔLepRb) mice were resistant to diet-induced obesity, type 2 diabetes, and liver steatosis and experienced decreased food intake and increased fat thermogenesis. Leptin stimulated hypothalamic Stat3 phosphorylation and weight loss to a markedly higher level in SlugΔLepRb than in Slugfl/fl mice, even before their body weight divergence. Conversely, hypothalamic LepRb+ neuron-specific overexpression of Slug, mediated by AAV-hSyn-DIO-Slug transduction, induced leptin resistance, obesity, and metabolic disorders in mice on a chow diet. At the genomic level, Slug bound to and repressed the LepRb promoter, thereby inhibiting LepRb transcription. Consistently, Slug deficiency decreased methylation of LepRb promoter H3K27, a repressive epigenetic mark, and increased LepRb mRNA levels in the hypothalamus. Collectively, these results unravel what we believe to be a previously unrecognized hypothalamic neuronal Slug/epigenetic reprogramming/leptin resistance axis that promotes energy imbalance, obesity, and metabolic disease.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Department of Molecular & Integrative Physiology
| | - Yuan Li
- Department of Molecular & Integrative Physiology
| | | | - Lin Jiang
- Department of Molecular & Integrative Physiology
| | - Martin G Myers
- Department of Molecular & Integrative Physiology.,Division of Metabolism and Endocrinology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
The Bidirectional Relationship of NPY and Mitochondria in Energy Balance Regulation. Biomedicines 2023; 11:biomedicines11020446. [PMID: 36830982 PMCID: PMC9953676 DOI: 10.3390/biomedicines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Energy balance is regulated by several hormones and peptides, and neuropeptide Y is one of the most crucial in feeding and energy expenditure control. NPY is regulated by a series of peripheral nervous and humoral signals that are responsive to nutrient sensing, but its role in the energy balance is also intricately related to the energetic status, namely mitochondrial function. During fasting, mitochondrial dynamics and activity are activated in orexigenic neurons, increasing the levels of neuropeptide Y. By acting on the sympathetic nervous system, neuropeptide Y modulates thermogenesis and lipolysis, while in the peripheral sites, it triggers adipogenesis and lipogenesis instead. Moreover, both central and peripheral neuropeptide Y reduces mitochondrial activity by decreasing oxidative phosphorylation proteins and other mediators important to the uptake of fatty acids into the mitochondrial matrix, inhibiting lipid oxidation and energy expenditure. Dysregulation of the neuropeptide Y system, as occurs in metabolic diseases like obesity, may lead to mitochondrial dysfunction and, consequently, to oxidative stress and to the white adipose tissue inflammatory environment, contributing to the development of a metabolically unhealthy profile. This review focuses on the interconnection between mitochondrial function and dynamics with central and peripheral neuropeptide Y actions and discusses possible therapeutical modulations of the neuropeptide Y system as an anti-obesity tool.
Collapse
|
46
|
Toy VE, Ataoglu T, Eltas A, Otlu HG, Karabulut AB. Obesity as a modifying factor of periodontal therapy outcomes: local and systemic adipocytokines and oxidative stress markers. Clin Oral Investig 2023:10.1007/s00784-022-04854-7. [PMID: 36604342 DOI: 10.1007/s00784-022-04854-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Adipocytokines and oxidative stress (OS) are involved in the pathogenesis of both obesity and periodontitis. The aim of this study was to evaluate periodontal therapy outcomes in terms of serum and gingival crevicular fluid (GCF) levels of adipocytokines and OS markers in obese patients with periodontitis, in order to have an insight into the association between obesity and periodontitis. MATERIALS AND METHODS A total of 39 patients (20 obese, 19 non-obese) with periodontitis were included in this study. Clinical periodontal parameters were assessed; serum and GCF levels of adipocytokines and OS markers were evaluated by ELISA at baseline and 3 months after non-surgical periodontal therapy. RESULTS Significant improvements in clinical periodontal parameters were observed in both groups at 3 months (p < 0.01). While serum levels of TNF-α, leptin, and total oxidant status (TOS) in the obese group were higher at baseline (p < 0.01), leptin levels remained higher at 3 months despite a significant decrease (p < 0.01). Although NSPT improved GCF levels of total antioxidant status (TAS) and TOS in both groups, they were significantly different between the groups after therapy (p < 0.05). CONCLUSIONS It seems that leptin, TNF-α, and TOS contribute to systemic inflammatory and oxidative state in patients with obesity. Despite improvements in clinical periodontal parameters, obesity might be a modulating factor in the development and progression of periodontal disease in terms of some adipocytokines and OS markers. CLINICAL RELEVANCE Since the global burden of both obesity and periodontitis is continuously increasing, the management of these inflammatory diseases has become more important. The current study contributes to our understanding of the role of OS and adipocytokines on the relationship between obesity and periodontitis by response to periodontal treatment.
Collapse
Affiliation(s)
- Vesile Elif Toy
- Department of Periodontology, Faculty of Dentistry, Inonu University, 44280, Malatya, Turkey.
| | - Tamer Ataoglu
- Department of Periodontology, Faculty of Dentistry, Istinye University, Istanbul, Turkey
| | - Abubekir Eltas
- Department of Periodontology, Faculty of Dentistry, University of Health Sciences, Istanbul, Turkey
| | - Husniye Gul Otlu
- Medical Laboratory Techniques Program, Vocational School of Health Services, Turgut Ozal University, Malatya, Turkey
| | - Aysun Bay Karabulut
- Department of Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
47
|
Wu CS, Lin CC, Hsieh FC, Wu TY, Fang AH. Antiobesity Effect of Lacticaseibacillus paracasei LM-141 on High-Fat Diet-Induced Rats through Alleviation of Inflammation and Insulin Resistance. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1011591. [PMID: 37114144 PMCID: PMC10129431 DOI: 10.1155/2023/1011591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023]
Abstract
In this study, we set out to evaluate the antiobesity activities of our newly isolated Lacticaseibacillus paracasei LM-141 (LPLM141) using a high-fat diet (HFD)-fed rat model. Male Sprague-Dawley rats were fed with a HFD with or without low-dosage (2 × 107 CFU/day per rat) or high-dosage (2 × 109 CFU/day per rat) LPLM141 for 14 weeks. The results showed that administration of LPLM141 significantly decreased body weight gain, liver weight, adipose tissue weight, and epididymal white adipocyte size increased by HFD feeding. The abnormal serum lipid profile induced by HFD feeding was normalized by administration of LPLM141. The enhanced chronic low-grade inflammation in HFD-fed rats was reduced by LPLM141 supplementation, as reflected by decreased serum lipopolysaccharide (LPS) and monocyte chemoattractant protein-1 (MCP-1) levels, reduced macrophage infiltration in adipose tissue, and increased serum adiponectin concentration. In addition, the elevations of proinflammatory cytokine genes and suppression of PPAR-γ mRNA in adipose tissues of rats fed with a HFD were markedly reversed by LPLM141 administration. Oral administration of LPLM141 induced browning of epididymal white adipose tissue (eWAT) and activation of interscapular brown adipose tissue (iBAT) in rats fed with HFD. Consumption of LPLM141 exhibited a significant amelioration in insulin resistance, which were mechanistically caused by downregulation of the serum leptin level and upregulation of hepatic IRS-1 and p-Akt protein expressions, in HFD treated rats. LPLM141 consumption significantly decreased hepatic lipogenic gene expressions and preserved liver function stimulated by HFD treatment. Administration of LPLM141 obviously mitigated hepatic steatosis observed in HFD feeding rats. Our current findings shed light on LPLM141 supplementation that exhibited an antiobesity effect in HFD-fed rats by alleviating inflammation and insulin resistance, which further highlighted the potential of utilizing LPLM141 as a preventive/therapeutic probiotic agent for obesity.
Collapse
Affiliation(s)
- Ching-Shuang Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80708, Taiwan
| | - Chih-Chieh Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | | | - Tai-Yun Wu
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11466, Taiwan
| | - Ai-Hui Fang
- Department of Microbiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
48
|
Boro H, Bundela V, Mannar V, Nagendra L, Jain V, Jain B, Kumar S, Agstam S. Novel homozygous leptin receptor mutation in an infant with monogenic obesity. Pediatr Endocrinol Diabetes Metab 2023; 29:118-123. [PMID: 37728464 PMCID: PMC10411088 DOI: 10.5114/pedm.2023.129344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 09/21/2023]
Abstract
Monogenic obesity can be caused by a mutation in one of the single genes involved in hunger and satiety. The most common mutations affect melanocortin 4 (MC4) followed by the leptin gene and its receptor. Leptin receptor (LEPR) gene mutation is an extremely rare endocrine disease characterized by early-onset obesity, hyperphagia in addition to pituitary hormone deficiency, and metabolic abnormalities. We report the case of a 12-month-old male infant born of a non-consanguineous marriage. He presented to us with rapid weight gain from 2 months of age along with hyperphagia. Biochemistry revealed a deranged lipid profile, elevated transaminases, and markedly raised serum leptin levels. On genetic analysis, a novel mutation was detected, which was a homozygous variation In exon 12 of the LEPR gene (chr1:g.65608901G>A) that resulted in the synonymous amino acid change of lysine at codon 584 proximal to donor splice site (p.Lys584). The in silico prediction of the variant was 'damaging' by MutationTaster2. The mutation was classified as a 'variant of uncertain significance' due to a lack of published literature and had to be correlated carefully with the clinical symptoms. It was recommended to do Sanger sequencing of the parents and other family members. However, due to financial constraints, the family could not afford the same. At the time of writing, funds were being arranged for procuring setmelanotide, which is a novel and effective therapy for monogenic obesity due to LepR mutation.
Collapse
Affiliation(s)
- Hiya Boro
- Endocrinology and Metabolism, Aadhar Health Institute, India
| | | | | | | | | | - Bimal Jain
- Pediatrics, Aadhar Health Institute, India
| | - Senthil Kumar
- Scientific Affairs Team, MedGenome Laboratory, India
| | - Sourabh Agstam
- Cardiology, Vardhman Mahavir Medical College and Safdarjung Hospital, India
| |
Collapse
|
49
|
Xu P, Dong S, Wu L, Bai Y, Bi X, Li Y, Shu C. Maternal and Placental DNA Methylation Changes Associated with the Pathogenesis of Gestational Diabetes Mellitus. Nutrients 2022; 15:nu15010070. [PMID: 36615730 PMCID: PMC9823627 DOI: 10.3390/nu15010070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is an important metabolic complication of pregnancy, which affects the future health of both the mother and the newborn. The pathogenesis of GDM is not completely clear, but what is clear is that with the development and growth of the placenta, GDM onset and blood glucose is difficult to control, while gestational diabetes patients' blood glucose drops and reaches normal after placenta delivery. This may be associated with placental secretion of insulin-like growth factor, adipokines, tumor necrosis factor-α, cytokines and insulin resistance. Therefore, endocrine secretion of placenta plays a key role in the pathogenesis of GDM. The influence of DNA methylation of these molecules and pathway-related genes on gene expression is also closely related to the pathogenesis of GDM. Here, this review attempts to clarify the pathogenesis of GDM and the related maternal and placental DNA methylation changes and how they affect metabolic pathways.
Collapse
|
50
|
Relationships between Sclerostin, Leptin and Metabolic Parameters in Non-Dialysis Chronic Kidney Disease Males. J Pers Med 2022; 13:jpm13010031. [PMID: 36675692 PMCID: PMC9864785 DOI: 10.3390/jpm13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Sclerostin is an inhibitor of the Wnt-beta-catenin pathway. The relationship between sclerostin and adipose tissue or between sclerostin and nutritional status has been the subject of research interest in the last decade. Sclerostin concentrations are elevated in patients with chronic kidney disease (CKD). Leptin is an adipocytokine which inhibits food intake by stimulating the satiety center in the hypothalamus. Leptin concentrations rise with the reduction of eGFR (glomerular filtration rate). The aim of this study was to investigate the possible association between sclerostin and leptin, between sclerostin and selected poor prognostic factors of CKD progression, and between sclerostin and nutritional parameters in non-dialysis CKD male patients. 101 men with non-dialysis CKD stage 3-5 were included in the study. Bioimpedance spectroscopy (BIS) was used to measure body composition. Blood samples were drawn to measure the serum concentrations of sclerostin, leptin, creatinine, hemoglobin (Hgb), parathormone (PTH), inflammatory markers, and markers of nutritional status. We also measured homeostatic model assessment of insulin resistance (HOMA-IR) as well as blood pressure. We observed a significant, positive relationship between sclerostin and age, leptin, and glycated hemoglobin (HgbA1c) concentrations. A significant, negative association was observed between sclerostin and eGFR. Sclerostin is associated with leptin in non-dialysis CKD male patients. Sclerostin is also related to metabolic disturbances such as hyperglycemia in this population.
Collapse
|